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Response to RC#1: 1 

Dear Editor and anonymous referee #3: 2 

We greatly appreciate your consideration and the reviewer’s constructive 3 

comments on the manuscript of “Estimation of Secondary PM2.5 in China and the 4 

United States using a Multi-Tracer Approach” (acp-2021-683). We have carefully 5 

revised the manuscript to address all the comments as described below. Reviewer 6 

comments are shown in blue. Our responses are shown in black. The revised texts are 7 

shown in italics. 8 

 9 

This study developed a new method to determine the portion of primary and 10 

secondary PM2.5 using some basic measurements and inventory. They evaluated this 11 

new approach through the comparison with lots of observations in China and US. In 12 

addition, they analyzed the temporal and spatial variation as well as correlation 13 

between O3 and PM2.5 using the results from their new method. Although their 14 

evaluation looks very well, I think their results were not enough convincing because 15 

of unclear statement of their method and defect of this method. I would suggest major 16 

revision before reconsideration. My detail comments are following. 17 

Response: We thank the reviewer for the comments. According to the reviewer’s 18 

helpful and insightful comments, we have revised our manuscript and the point-by-19 

point responses to the specific comments were given subsequently. We sincerely hope 20 

the revisions are able to address the reviewer’s concerns. 21 

 22 

1. Eq (1) and Eq (2): These equations are the core of their method. They regarded 23 

CO as one tracer to represent the combustion process and assumed the combustion 24 

emission sources are same for CO, OC and EC. This assumption is mostly correct, but 25 

the emission factor/emission ratio of CO, OC and EC from different combustion 26 

sources are different. I think it is unconvincing to use one single coefficient without 27 
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the influence of diversity of sources to standard for all conditions. I may 28 

misunderstand something, please discuss this uncertainty or make this clear. 29 

Response: Thanks for the conducive comments. We also do believe that the 30 

emission factors of CO, OC and EC from different sources are various as well. Our 31 

method tracks the combustion process, which produces OC and EC, by regarding CO 32 

as the tracer. However, the correlation between different sources of diverse 33 

carbonaceous matter is hard to find out with the aid of current routine observations of 34 

CO. The coefficients in Eq. 1 are aimed at representing the relative contribution of 35 

combustion process and flying dust to primary PM2.5. We constrained the uncertainty 36 

of both coefficients by setting up a set of sensitivity tests. The specific discussion 37 

about this uncertainty is in Section 4.5. The specific configuration issue your 38 

concerned about the sensitivity experiment will be clarified in the following 3rd point. 39 

The final experiment result indicates that the adjustment of coefficient for CO (a) 40 

within 0.1 does not obviously affect the estimated secondary proportions of PM2.5 (< 41 

3%). To make this point clearer, the detailed description of this part has been 42 

corrected in the revised manuscript as follows. 43 

Revision in Section 2.1:  44 

As shown in Eq. 1, we use a and b to quantify the relative contributions of 45 

combustion and dust process to PPM. Given that the complicated process such as the 46 

combustion from multiple sources is hard to represent via current routine CO 47 

observations, we avoid considering the correlation among these sources but focus on 48 

the relative weights of combustion process and flying dust. Meanwhile, the 49 

uncertainty resulting from the apportioning coefficient a and b will be further 50 

discussed in Section 4.5. 51 

 52 

2. Eq (2): why did you name b as emission of fine dust? To my knowledge, 53 

MEIC does not include the emission of dust even urban dust. 54 

Response: Thanks for your concerns. The dust emissions are not specifically 55 
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separated from PM2.5 emissions in MEIC. In fact, the composition of PM2.5 emission 56 

in MEIC includes EC, OM, sulfate, nitrate and other trace elements such as Al, Ca, Si, 57 

Fe, Mg, K and other species etc. (Li et al., 2017a). Trace elements are usually related 58 

to the flying dust from constructions and onroad traffic transportation. In the MTEA 59 

approach, we would like to represent the dust-related part of PPM with the emissions 60 

of the mineral dust in fine mode particulate matter. We calculated the dust-related 61 

emissions by deducting the emissions of EC, OM, sulfate and nitrate from total PM2.5 62 

emissions. We revised the relevant texts for a clearer statement. 63 

Revision in Section 2.1:  64 

Coefficient b is aimed at reflecting the activity intensity of fine mode dust by 65 

counting its emissions. However, MEIC does not directly provide fine mode dust 66 

emissions. It is included in the emissions of total PM2.5 (Li et al., 2017a). Thus we 67 

inferred the fine mode dust emission by deducting the emissions of EC, POA, sulfate 68 

and nitrate from the PM2.5 emissions. 69 

 70 

3. I did not understand how you did the sensitivity experiment to examine the 71 

uncertainty in the inventories. Page 16, you said you changed the emission coefficient 72 

with 10%. If so, how can you keep a+b=100%? According to my understanding on 73 

this new method, the results should have large dependence on the inventory of PM2.5, 74 

OC, EC even the factor you used to decide OA, SO4
2- and NO3

-. I would strongly 75 

suggest setting up more comprehensive and scientific sensitivity experiments to 76 

discuss the dependence on the inventory. 77 

Response: Thank you for your conducive comments and rigorous attitude to 78 

scientific research. Coefficients a and b are determined by calculating the relative 79 

ratio between EC+POA to dust as Eq. 1-2. Hence the uncertainty of emission 80 

inventory can lead to the changes of the ratio a to b. In Section 4.5, we tested the 81 

adjoint changes of the final estimated secondary proportions of PM2.5 by adjusting the 82 

coefficient a. The adjustive test includes two parts. Firstly, we increased the value of a 83 
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in each city by 0.1 to check the model results in the case of underestimating the 84 

contributions of combustion process (or overestimating the contributions of dust 85 

process). Under this circumstance, the coefficient b which represents dust process 86 

should be decreased by 0.1. On the contrary, we also decreased the value of a in each 87 

city by 0.1 to check the model results in the case of overestimating the contributions 88 

of combustion process (or underestimating the contributions of dust process). 89 

Meanwhile, the coefficient b which stands for dust process is increased by 0.1. The 90 

sum of a and b is still 100%. The sensitivity experiment results indicate that the 91 

disturbance of coefficient a (±0.1) lead to changes in the secondary proportions of 92 

PM2.5 within ±3% (refer to Table S5 in the supplementary material). In addition, the 93 

discussion about the uncertainty of the primary sulfate and nitrate emissions also 94 

reveals that the predicted results are not sensitive to their emissions (refer to Section 95 

2.1 and Table S1 in the supplementary material). Therefore, we indeed agree that the 96 

emission inventory can pose impacts on our model estimation, but the effects are not 97 

obvious.  98 

The assumed tracer of PPM (i.e. X, see Eq. 1) is one of the cores of MTEA 99 

approach. However, the most determinative stuff for the final results of our model is 100 

the principle of the minimum correlation between PPM and SPM but not only the 101 

value of the tracer X. To prove this view, we also carried out another kind of test in 102 

adjusting X by changing the concentrations of CO and PMC. We (1) increased CO 103 

concentration by 10% as well as decreased PMC concentration by 10% and (2) 104 

decreased CO concentration by 10% as well as increased PMC concentration by 10%. 105 

Both sets of adjustment demonstrate changes within ±2% in the estimated secondary 106 

proportions of PM2.5 in all cities except for Urumqi (Table R1). This phenomenon also 107 

supports that the impacts of the tracer X on the final model results are not obvious. To 108 

clearly state the point mentioned by the reviewer, we have rephrased the relevant texts 109 

in the manuscript. 110 

Revision in Section 2.1: 111 

We evaluated the potential effect of the coefficient, by conducting a set of 112 
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comparative simulation with the coefficient of 0.03, and found that the final estimated 113 

SPM was not sensitive to this coefficient (Table S1). Thus we concluded that the 114 

uncertainty of primary sulfate and nitrate emissions did not significantly influence the 115 

final estimation of MTEA model. For other uncertainties of X which are dependent on 116 

emission intensities or tracer concentrations, we would conduct discussions in the 117 

later Section 4.5. 118 

Revision in Section 4.5: 119 

To evaluate the uncertainty, a comparison test was conducted by adjusting the 120 

apportioning coefficient (the a and b in Eq. 1) with a disturbance of ±0.1. Firstly, we 121 

decreased the value of a in each populous city by 0.1. Meanwhile, the coefficient b 122 

increased by 0.1. This scenario indicates an overestimation in contribution of 123 

combustion-related process to primary PM2.5 or underestimation in contribution of 124 

dust-related process. Secondly, we increased the value of a in each populous city by 125 

0.1 (decreased b by 0.1) for checking the opposite case. The results are presented in 126 

Table S5 and point out that the estimated secondary proportions of PM2.5 varied less 127 

than ±3% in most populous cities caused by the changes of the apportioning 128 

coefficient. This sensitivity experiment highlights that the apportioning coefficients 129 

depending on emissions has limited impacts on the final estimation results. Generally, 130 

the uncertainty of apportioning coefficient is one of two factors that directly affect the 131 

tracer X. The other one is the concentration of CO and PMC itself. Hence, we also 132 

conducted a similar test to check the impacts of tracer X on the model estimation by 133 

changing the tracer concentrations mentioned in Eq.1. Specifically, we (1) increased 134 

CO concentration by 10% as well as decreased PMC concentration by 10% and (2) 135 

decreased CO concentration by 10% as well as increased PMC concentration by 10%. 136 

Both sets of adjustment show changes within ±2% in the estimated secondary 137 

proportions of PM2.5 in all cities except for Urumqi (Table S6). This phenomenon from 138 

the perspective of tracer concentration also supports that the impacts of the tracer X 139 

on the final model results are limited. In summary, we believe that the most 140 

determinative stuff for the final results of our model is the principle of the minimum 141 
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correlation between PPM and SPM but not the tracer X which relies on emissions or 142 

concentrations. 143 

Table R1. Impacts of tracer concentration uncertainty on the estimated secondary proportion of 144 

PM2.5 1 in China (Unit: %). 145 

City 

Secondary 

proportion of 

PM2.5 

Change of secondary proportion of PM2.5 

1.1 * CO concentration 

& 0.9 * PMC concentration 

0.9 * CO concentration 

& 1.1 * PMC concentration 

Beijing 40.3 -0.01 0.01 

Tianjin 61.9 -0.32 -0.52 

Shijiazhuang 44.8 -0.26 -0.28 

Taiyuan 43.1 0.22 0.17 

Hohhot 48.6 -0.03 -0.01 

Shenyang 48.7 -0.06 -0.06 

Changchun 47.9 0.03 0.04 

Harbin 66.9 0.22 -0.59 

Shanghai 68.0 -1.51 -1.90 

Nanjing 50.3 0.00 0.03 

Hangzhou 45.6 -0.42 -0.46 

Hefei 65.4 -1.57 -1.73 

Fuzhou 64.8 -0.25 -0.44 

Nanchang 62.5 -0.33 -0.42 

Ji'nan 54.6 -0.04 -0.02 

Zhengzhou 54.6 0.14 0.14 

Wuhan 61.5 -1.45 -1.49 

Changsha 65.9 -1.60 -1.74 

Guangzhou 65.2 0.00 -0.28 

Nanning 65.2 -0.22 -0.47 

Haikou 65.9 -0.15 -0.09 

Chongqing 62.7 -0.23 -0.31 

Chengdu 45.3 0.42 0.44 

Guiyang 65.6 -0.22 -0.50 

Kunming 70.4 -0.40 -0.69 

Lhasa 56.1 0.07 0.05 

Xi'an 52.6 -0.04 -0.01 

Lanzhou 60.0 0.15 0.02 

Xining 59.1 -0.56 -0.60 
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Yinchuan 59.5 0.02 -0.06 

Urumqi 72.1 -2.70 -2.85 

1 Based on the MEE observations in 2016. 146 

 147 

4. Figure 3, as I saw, the largest concentration is < 60 μg/m3. Why not short the 148 

range of axis to spread those dots? 149 

Response: Thanks for your highly careful reminding. We have reduced the range 150 

of axis from 130 to 65 for aesthetics. And the revised figure is shown below. 151 

Revision in Fig. 3: 152 

 153 

 154 

5. P8L7: Why did you remove the heavy pollution cases here as well as in 155 

Section 4? As you stated at P10L25, you would like to avoid the influence of extreme 156 

high primary emission cases. However, mostly heavy pollution cases are caused by 157 

unfavored meteorological condition but not caused by sudden high primary emission 158 

(except the biomass burning cases). I would be curious that how your method applied 159 

to analyze the heavy pollution cases. In general, it is more important to understand the 160 

contribution of secondary particles to heavy pollution cases than the general 161 
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conditions. 162 

Response: Thanks for your highly conducive comments and rigorous attitude to 163 

scientific research. The data preprocessing in P8L7 and P10L25 are different. The 164 

data preprocessing in Section 3.1.1 is aimed at removing the gap between long-term 165 

measurements of PM2.5 at a single site and routine observation of PM2.5 from national 166 

network for further evaluation.  167 

However, the data preprocessing in Section 4 is prepared for the usage of data 168 

from MEE. To address reviewer’s concern, we take estimation in 2016 as an example 169 

and make a comparison. MTEA method shows that the estimated secondary 170 

proportions of PM2.5 without excluding the heavy polluted cases are 2.0-13.7% lower 171 

than that including the data preprocessing (Fig. R1). We agree with the reviewer that 172 

unfavorable meteorological conditions are major causes for haze events. Under these 173 

unfavored meteorological conditions, the assumed tracer X may have extremely high 174 

co-linear relationship with total PM2.5. Thus the PPM concentrations may be falsely 175 

overestimated. Here we excluded these days to avoid the incorrectly estimation and 176 

focus more attention on the common characteristics of PPM/SPM during the general 177 

periods. We revised the statement in Section 3.1.1 and Section 4 for a clearer version. 178 

Revision in Section 3.1.1: 179 

Given the discrepancy in PM2.5 concentrations between in-situ measurements of 180 

a single site and multiple MEE national sites, we firstly preprocessed the data for 181 

further evaluation. In data preprocessing, we removed the in-situ daily measurements 182 

whose value was over 30 μg·m-3 higher than the city average (from MEE). 183 

Revision in Section 4: 184 

The observations during severe haze events (top 10% CO and PMC polluted 185 

days) were excluded to avoid the influence of unfavorable meteorological conditions 186 

and extreme high primary emission cases. Unfavorable meteorological conditions are 187 

major causes for haze events. PPM under these unfavored meteorological conditions 188 

may have considerable high co-linear relationship with total PM2.5. The concentration 189 
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of SPM from complicated formation pathways is then underestimated. Therefore, we 190 

excluded these polluted days to focus more attention on general characteristics of 191 

PPM and SPM concentration. 192 

 193 
Figure R1. The estimated secondary proportions of PM2.5 in case of including (No_Ex_top_10%) 194 

and excluding top 10% polluted days (Ex_top_10%) in 2016. 195 

 196 

6. P10L30: Could you explain what is regional background cities you defined 197 

here? Usually, cities are not background. 198 

Response: Thank you for pointing this out. We agree that cities usually are not 199 

categorized as background regions. We are aimed at disclosing the discrepancy in 200 

PPM/SPM among diverse cities which depend on different levels of anthropogenic 201 

activity. The 19 regional background cities in this study are chosen because they 202 

suffered the least PM2.5 pollution during 2014-2018. The averaged mean PM2.5 203 

concentration of each city is less than 35.0 μg m-3 (National Ambient Air Quality 204 

Standard level Ⅱ of China, NAAQS) except for Guyuan, Ningxia Province (refer to 205 

Table S3 in the supplementary material). We believe that these selected cities can 206 

generally reveal the PM pollution characteristics of the regions which are under sparse 207 

anthropogenic emissions. For a clearer expression, we have revised the related texts in 208 

the manuscript. 209 

Revision in Section 2.2.1: 31 among the 50 cities are provincial capital cities, 210 

employed to represent populous cities, while the rest 19 relatively small cities are 211 

categorized as regional background cities (Table S3). The mean PM2.5 concentration 212 
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of each regional background city is less than 35 μg m-3 (National Ambient Air Quality 213 

Standard level Ⅱ of China, NAAQS) except for Guyuan, indicating that they are 214 

slightly impacted by anthropogenic activities. By comparing populous cities with 215 

regional background cities, we could reveal the discrepancy in PPM and SPM among 216 

those regions which suffer from different levels of PM2.5 pollution. 217 

 218 

7. Section 4.2.1: I think the seasonal variation of PPM and SPM is largely 219 

depend on the seasonal variation of emissions you applied. 220 

Response: Thank you for your comments. We indeed agree with the reviewer 221 

that the seasonal pattern of the estimated PPM and SPM concentration can be 222 

attributed to the seasonal variations of emissions. Taking Shanghai as an example, we 223 

tested the impacts of the seasonal variations of emissions on the estimated PPM and 224 

SPM concentrations by comparing two cases (i.e. seasonal emissions in this study and 225 

homogenous emissions in the ideal sensitivity experiment). As listed in Table R2, 226 

though the seasonal maxima/minima of PPM and SPM concentration still happen in 227 

the wintertime/summertime, but the specific concentrations significantly change. The 228 

maximum of relative change can be 10% (PPM in DJF, changes from 15.8 μg·m-3 to 229 

14.3 μg·m-3). 230 

Table R2. Comparison of seasonal PPM and SPM concentrations between applying seasonal 231 

emissions or homogenous emissions in Shanghai (Unit: μg·m-3). 232 

  MAM JJA SON DJF 

PPM 

Seasonal emissions 

 (This study) 
12.4 11.1 11.7 15.8 

Homogenous emissions 

(Ideal study) 
12.8 11.7 12.2 14.3 

SPM 

Seasonal emissions 

(This study) 
29.5 22.5 20.8 25.4 

Homogenous emissions 

 (Ideal study) 
29.2 21.9 20.3 26.8 

 233 
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8. Section 4.2.2: Did you use the emission inventory for specific year here? 234 

China conducted a large reduction on PM2.5 emission since 2014. If you did not use 235 

the specific inventory, the estimated trend of PPM and SPM would not make sense, 236 

even though they agreed with observations. In addition, could you show the 237 

correlation coefficient between the observation and estimation here? 238 

Response: Thanks for your concern. We indeed agree with the reviewer’s 239 

opinion that the emission inventory should be matched for each year. For 240 

anthropogenic emissions from 2014 to 2017, we utilized the MEIC emission 241 

inventory (v1.3) developed by Tsinghua University, which is publicly offered at their 242 

website (http://meicmodel.org/) (Li et al., 2017a; Li et al., 2017b). In terms of 243 

emissions after 2017, we also accessed from MEIC support team (Zheng et al., 2021). 244 

For the correlation coefficient between the observation and estimation in Section 4.2.2, 245 

we have followed the suggestion from the reviewer and showed it both in the related 246 

figure and the related texts in the manuscript. 247 

 248 

Revision in Section 4.2.2: 249 

Applying the MTEA model to this case, we are delighted to find that our model 250 

not only successfully reproduces the consistent decreasing trends of PPM and SPM in 251 

Beijing and Shanghai (correlation coefficient r of observation versus estimation 252 

ranges from 0.83 to 0.89), but also captures the different trends in secondary 253 
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proportions of PM2.5 in the two cities (–0.6% yr-1 in Beijing and 0.3% yr-1 in 254 

Shanghai). 255 

 256 

9. Section 4.3: The same issue as above. Did you update the inventory to the 257 

lockdown condition? If yes, please state the inventory you used here and the decrease 258 

in the emission of PM2.5, CO, OC, EC. 259 

Response: Thank you for your concern. We used the emission reduction ratio in 260 

of various air pollutants during the COVID-19 lockdown from Huang et al. (2020). 261 

The specific emission reduction ratios of various air pollutants are listed in Table R3. 262 

Meanwhile, we modified the related texts in the manuscript to make it clearer. 263 

Revision in Section 4.3: With the help of MTEA, we tracked variations of the 264 

secondary proportions of PM2.5 in East China before and during the COVID-19 265 

lockdown (Fig. 8 d-f). The specific emission reductions owing to the national 266 

lockdown were derived from Huang et al. (2020). Based on the bottom-up dynamic 267 

estimation, provincial emissions of CO, NOx, SO2, VOC, PM2.5, BC and OC decreased 268 

by 13-41%, 29-57%, 15-42%, 28-46%, 9-34%, 13-54%, and 3-42%, respectively 269 

during the lockdown period. 270 

Table R3. Estimation of provincial emission reduction ratio (%) of CO, NOx, SO2, VOC, PM2.5, 271 

BC, OC due to COVID-19 lockdown in China. 272 

Province CO NOx SO2 VOC PM2.5 BC OC 

Beijing 22% 45% 26% 45% 18% 46% 8% 

Tianjin 21% 38% 20% 41% 14% 22% 6% 

Hebei 15% 45% 16% 36% 12% 17% 5% 

Shanxi 18% 40% 20% 33% 16% 19% 10% 

Inner Mongolia 14% 29% 15% 34% 13% 16% 6% 

Liaoning 21% 40% 28% 36% 16% 28% 8% 

Jilin 16% 39% 23% 34% 13% 18% 5% 

Heilongjiang 17% 37% 27% 28% 13% 15% 7% 

Shanghai 35% 48% 42% 45% 34% 54% 42% 

Jiangsu 23% 50% 26% 41% 16% 35% 7% 
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Zhejiang 41% 50% 29% 45% 30% 49% 20% 

Anhui 14% 56% 22% 31% 11% 22% 4% 

Fujian 29% 51% 30% 42% 19% 31% 7% 

Jiangxi 24% 53% 21% 43% 19% 30% 9% 

Shandong 23% 50% 25% 39% 19% 35% 9% 

Henan 23% 57% 22% 41% 18% 35% 8% 

Hubei 19% 55% 23% 35% 16% 23% 10% 

Hunan 22% 51% 25% 36% 20% 24% 15% 

Guangdong 38% 50% 33% 46% 27% 42% 13% 

Guangxi 24% 50% 28% 39% 17% 27% 5% 

Hainan 24% 44% 25% 36% 14% 25% 4% 

Chongqing 18% 53% 32% 37% 14% 20% 4% 

Sichuan 16% 50% 27% 33% 9% 15% 3% 

Guizhou 24% 39% 25% 30% 22% 25% 20% 

Yunnan 24% 51% 25% 41% 18% 21% 8% 

Tibet 16% 35% 15% 35% 14% 14% 5% 

Shaanxi 19% 45% 18% 34% 13% 22% 5% 

Gansu 13% 47% 16% 29% 9% 13% 3% 

Qinghai 23% 46% 22% 39% 20% 20% 7% 

Ningxia 24% 36% 24% 39% 20% 23% 8% 

Xinjiang 16% 35% 15% 35% 14% 14% 5% 

 273 

10. Section 4.4: How did you decide the diurnal variation of emission? Was your 274 

result sensitive to the diurnal pattern? Because the diurnal pattern of O3 concentration 275 

is almost constant. 276 

Response: Thank you for your careful concerns. MEIC provides the bottom-up 277 

anthropogenic emission inventory with monthly time resolution. Based on the fixed 278 

total emissions, we further distributed them with specific diurnal variation patterns of 279 

each sector, including power plants, industry, transportation and residential sources 280 

(Fig. R3a). This kind of preprocessing is also adopted for preparing emission input for 281 

other air quality model studies and is proved to be reasonable (Li et al., 2021; Zhang 282 

et al., 2021).  283 

We used the processed emissions as input for MTEA method and found that the 284 
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model results show obvious diurnal pattern as well. The diurnal patterns are 285 

characterized by two peaks in the day, one occurring at 10:00-15:00 (local time, 286 

UTC+8) and the other appearing at 22:00-00:00. The 10:00-15:00 peak can be 287 

explained by the elevating emissions of PM2.5 precursors, such as NOx and SO2, as 288 

well as strong solar radiation. The intensive solar radiation around noon can promote 289 

production of hydroxyl (OH) radical, and further oxidizes substantial precursors to 290 

form secondary particles. However, the 22:00-00:00 peak is mostly attributed to the 291 

other two factors. Firstly, the primary PM2.5 obviously is decreased due to the 292 

reduction of emission activities at night. Meanwhile, the secondary PM2.5 requires 293 

some time to generate and accumulate, thus lagging behind changes in emission. 294 

Secondly, nitrate particles can also be produced via N2O5 heterogeneous reactions in 295 

the nighttime. 296 

 297 

Figure R3. (a) The diurnal distribution of anthropogenic emissions from power plants, industry, 298 

residential and transportation (Unit: %). (b) The diurnal variation of the estimated nationwide 299 

secondary proportion of PM2.5 (Unit: %). 300 

 301 

11. Section 4.4: Why did you exclude the wet deposition case here but include in 302 
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other sections? I would suggest adding the application condition for your method 303 

somewhere. 304 

Response: Thank you for your highly careful reminding. Section 4.4 is aimed at 305 

discussing the statistical correlation between ozone versus PM2.5. We used the daily 306 

concentration of these two variables as inputs for further investigation. For PM2.5, the 307 

24-h mean concentration can be applied to representing its daily level. The maximum 308 

daily 8-h average ozone concentration (MDA8) is usually adopted for describing its 309 

concentration level on the daily time-scale. As the reviewer said in the 10th point, 310 

ozone is a kind of typical secondary air pollutant with distinctive diurnal pattern 311 

(Wang et al., 2017). As shown in Fig. R3, the precipitation process can destroy this 312 

diurnal pattern because of the extremely weak radiative condition on rainy days. 313 

Meanwhile, ozone concentration level under this condition is mainly affected by 314 

background fields. Therefore, MDA8 of rainy days can reveal the background 315 

concentration characteristics but not the intensity of secondary formation. To explain 316 

the relationship between PM and O3 from the aspect of chemical generation, 317 

removing the background dominated cases of O3 concentrations which under 318 

precipitation is necessary. We have followed your suggestion to add the explanation 319 

for using this preprocessing and rephrase the related texts in Section 4.4. 320 

Revision in Section 4.4: 321 

The O3 diurnal formation regime can be destroyed because of the suppressed 322 

radiative condition under precipitation. The local O3 concentration level is mainly 323 

dominated by background fields. Here we would like to focus our attention on the 324 

secondary formation relationship between daily PM2.5 and O3. Therefore the cases 325 

when precipitation took place were removed to avoid the cleaning impacts of wet 326 

deposition on MDA8 (maximum daily 8-h average) O3 concentrations. 327 
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 328 

Figure R3. The diurnal variations of O3 concentration in Shanghai on 11 Mar (sunny weather) and 329 

17 Mar (rainy weather), 2022 based on the observations from MEE. 330 

 331 

12. The general method to calculate the portion of secondary PM2.5 is chemical 332 

transport model using bottom-up inventory. It’s better to examine the difference in the 333 

result between your method and CTM with same inventory. 334 

Response: Thanks for your highly conducive comments and rigorous attitude to 335 

scientific research. It is really an awesome suggestion. We completely agree that 336 

chemical transport model (CTM) is another useful tool to reveal the aerosol 337 

compositions. It is interesting to conduct a parallel comparison between two kinds of 338 

modeling methods. To examine the difference in result between the MTEA approach 339 

and traditional CTM, we adopted the monthly simulated PPM/SPM concentrations 340 

from a data fusion system developed by Tsinghua University. This system, which is 341 

named Tracking Air Pollution in China (TAP), integrates ground measurements, 342 

satellite remote sensing retrievals, emission inventories (MEIC), and CTM 343 

simulations (WRF/CMAQ) based on machine learning algorithms. More descriptions 344 

of this dataset can be found at http://tapdata.org.cn/ (Geng et al., 2021; Geng et al., 345 

2017). We treated the PPM and SPM concentrations from TAP as the state-of-the-art 346 

model representation. Then we showed comparisons between MTEA and TAP in 347 

terms of PPM, SPM concentrations and their annual trends in 31 populous cities of 348 

China (Fig. R4). In general, comparisons indicate that MTEA estimation has a good 349 
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agreement with the CTM simulation. To add this part in the manuscript suggested by 350 

reviewer, we introduced the TAP dataset in Section 2.3 and showed the related 351 

comparisons in Section 3.1.3. 352 

Revision in Section 2.3: 353 

2.3 PPM and SPM estimated by CTM 354 

Apart from evaluating PPM and SPM with various composition measurements, 355 

we also compared MTEA estimation with CTM results. Here we utilized the PM2.5 356 

composition gridded dataset with a spatial resolution of 10 km×10 km developed by 357 

Tsinghua University for further comparisons. This dataset is named Tracking Air 358 

Pollution in China (TAP, available at http://tapdata.org.cn/, last access 15 Mar 2022) 359 

(Geng et al., 2021; Geng et al., 2017). TAP is directly calculated by Community 360 

Multiscale Air Quality (CMAQ) model. In terms of methodology, based on machine 361 

learning algorithms, TAP integrates surface measurements, satellite remote sensing 362 

retrievals, emission inventories (MEIC) with CMAQ simulations. Moreover, it is also 363 

constrained by ground aerosol composition measurements. We collected the monthly 364 

mean concentrations of aerosol species during 2014-2018 from TAP, including SO4
2-, 365 

NO3
-, NH4

+, OM, BC and total PM2.5. SOA was further calculated from OM by EC-366 

tracer model (Ge et al., 2017). SPM concentrations were inferred by summing SO4
2-, 367 

NO3
-, NH4

+ and SOA. PPM concentrations were then obtained via deducting SPM 368 

from PM2.5. 369 

Revision in Section 3.1.3: 370 

3.1.3 Comparison with the CTM simulation 371 

In addition to evaluating our model via PPM and SPM measurements in China, 372 

we also provided a comparison between MTEA estimation and CTM simulation in 31 373 

populous cities based on the monthly mean PM concentrations. As shown in Fig. R4 374 

a-b, the correlation coefficient r for TAP versus MTEA is 0.86 in terms of PPM 375 

concentration and 0.91 in terms of SPM concentration, showing a strongly positive 376 

correlation between the two models. At the same time, both slopes (1.26 and 0.89) and 377 
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intercepts (–3.7 μg m-3 and 1.9 μg m-3) of the regression about PPM and SPM 378 

illustrate that most of the scattering spots distribute around 1:1 ratio line.  379 

Moreover, we further compared the long-term varying trends between MTEA 380 

versus TAP in averaged PPM and SPM concentration of 31 populous cities (Fig. R4 381 

c-d). Both of them exhibit a descending interannual trend in PPM concentration, with 382 

a rate of –2.0 μg m-3 yr-1 for MTEA and –1.9 μg m-3 yr-1 for TAP. In terms of SPM 383 

concentration, the decline rates are –2.9 μg m-3 yr-1 and –2.8 μg m-3 yr-1, respectively. 384 

Meanwhile, the statistical correlations between two interannual variations are 0.98 385 

(PPM) and 0.99 (SPM), which are quite close to 1, showing a good agreement. 386 

Thus, the comparisons about PPM/SPM concentration magnitudes and 387 

interannual variations between two kinds of models suggest that statistical model can 388 

infer similar estimation with traditional CTM. Meanwhile, it is again highlighted that 389 

our model is capable of capturing reasonable PPM and SPM concentrations. 390 

Furthermore, it is also shown that MTEA can track primary and secondary 391 

component of PM2.5 by using proxy at a much lower cost when compared to 392 

traditional air quality model simulations. 393 

 394 

Figure R4. Comparisons between MTEA and TAP in terms of PPM, SPM concentrations and 395 
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their annual trends from 2014 to 2018 in 31 populous cities of China. In panel (a) and (b), each 396 

blue solid dot stands for a monthly mean concentration of PPM or SPM in one of 31 populous 397 

cities. The number of samples is 1860 (60×31). The metrics r, s and d represent correlation 398 

coefficient, slope and intercept of fitting line, respectively. The fitting method follows the 399 

Reduced Major Axis (RMA) regression. In panel (c) and (d), MTEA and TAP are marked by blue 400 

circles and red triangles. Each dot represents the mean PPM/SPM concentration of 31 cities. The 401 

colorful numbers stand for the annual trends of PPM and SPM concentrations during 2014-2018. 402 

At the same time, the correlation coefficient (r) between MTEA versus TAP is also provided. 403 

 404 
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Response to RC#2: 450 

Dear Editor and anonymous referee #1: 451 

We greatly appreciate your consideration and the reviewer’s constructive 452 

comments on the manuscript of “Estimation of Secondary PM2.5 in China and the 453 

United States using a Multi-Tracer Approach” (acp-2021-683). We have carefully 454 

revised the manuscript to address all the comments as described below. Reviewer 455 

comments are shown in blue. Our responses are shown in black. The revised texts are 456 

shown in italics. 457 

 458 

The manuscript demonstrates the multi-tracer estimation algorithm (MTEA), to 459 

identify the primary and secondary components from routine observation of PM2.5 and 460 

validates the method by comparing the long-term and short-term measurements of 461 

aerosol chemical composition in China and a network from the United States. This 462 

method provides a useful and uncomplicated way to estimate primary and secondary 463 

PM, using routine observation species and emission inventories. This manuscript aims 464 

to address important questions quantifying primary and secondary aerosols and is 465 

within the scope of ACP. 466 

However, regarding the method itself, the method should be carefully introduced 467 

with more details. The validation part is a bit weak and should be strengthened in the 468 

next version. It is vital because only with good validation can one trust the result from 469 

the model. In addition, in the result and discussion part, the discussion is superficial, 470 

which needs to be improved in depth, and backed up by more scientific evidence 471 

and/or publications. 472 

As a conclusion, the manuscript provides a novel algorithm in primary and 473 

secondary particle concentrations, however, the manuscript is not carefully written 474 

from the perspective of science and scientific writing, with certain degree of 475 

improvement for publication in ACP. Therefore, this manuscript needs a major 476 

revision in terms of major context and English language. 477 
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Response: We thank the reviewer for the comments. According to the reviewer’s 478 

helpful and insightful comments, we have revised our manuscript and the point-by-479 

point responses to the specific comments were given subsequently. We sincerely hope 480 

these revisions are able to address the reviewer’s concerns. 481 

 482 

1. Introduction: the introduction is poorly written and need to be re-write. If I 483 

were you, I would write the introduction based on this outline: 1) introduction of 484 

atmospheric aerosols, including sources, type, chemical composition and impacts on 485 

air quality, human health and climate, 2) summaries other studies, you must state what 486 

has been achieved and what is the current challenging, 3) what is your paper about, 487 

how this paper can narrow the gap. 488 

In the current version, the point 1) is addressed, but should be introduced in 489 

smoother way. The author is trying to address the point 2), but the studies mentioned 490 

in the paragraph 3 in page 3 look not very relevant. For example, the author 491 

summarizes the online and offline studies, which is good, and people can see the 492 

drawbacks of field and lab measurement to study the PPM and SPM, so the next 493 

paragraph should state to overcome these drawbacks, people use model to study the 494 

PPM and SPM, and should also state what these model studies have achieved and/or 495 

the drawbacks of these method. Finally, this paragraph can lead the final paragraph in 496 

the introduction, namely, introduce this study and how this study advances the model 497 

studies on PPM and SPM estimation. 498 

Response: Thanks for your constructive suggestions and rigorous attitude to 499 

scientific research. We do think it is necessary and important to rephrase the structure 500 

of this part. Following the suggestion, we have rewritten the introduction section. The 501 

detailed description of this part has been corrected in the revised manuscript as 502 

follows. 503 

Revision in Section 1: 504 

Fine particulate matter (PM2.5, aerodynamic diameter less than 2.5 μm) can be 505 
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categorized into primary and secondary PM2.5 according to its formation processes. 506 

Primary PM2.5 (PPM), including primary organic aerosol (POA), elemental carbon 507 

(EC), sea salt and mineral dust, is the product of direct emission from combustion of 508 

fossil/biomass fuel, dust blowing and sea spray. Secondary PM2.5 (SPM) mainly 509 

generates from the further oxidation of gaseous precursors emitted by anthropogenic 510 

and biogenic activities (Zhu et al., 2018; Wang et al., 2019). SPM consists of 511 

secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA, including 512 

sulfate, nitrate and ammonium). The primary and secondary components of PM2.5 513 

have different environmental impacts on air quality, human health and climate change. 514 

For example, as a typical PPM, EC can severely reduce atmospheric visibility and 515 

greatly influence weather and climate due to its strong absorption of solar radiation 516 

(Bond et al., 2013; IPCC, 2013; Mao et al., 2017). Sulfate, a critical hygroscopic 517 

component of secondary PM2.5 (SPM), can be fast formed under high relative 518 

humidity conditions and further leads to grievous air pollution (Cheng et al., 2016; 519 

Guo et al., 2014; Quan et al., 2015). Furthermore, the sulfate and other hygroscopic 520 

PM2.5 have considerable influences on climate change mostly by changing cloud 521 

properties (Leng et al., 2013; von Schneidemesser et al., 2015). In addition, different 522 

PM2.5 components also have various deleterious impacts on human health for their 523 

toxicities (Hu et al., 2017; Khan et al., 2016; Maji et al., 2018). 524 

To understand the severe PM2.5 pollution characteristics in China over the past 525 

several years (An et al., 2019; Song et al., 2017; Yang et al., 2016), many 526 

observational studies have been conducted on PM2.5 components. The basic methods 527 

of these studies are offline laboratory analysis and online instrument measurement 528 

such as aerosol mass spectrometer (AMS). The observational studies are crucial to 529 

exactly identify the aerosol chemical compositions. For offline approach, it is the most 530 

widely used method (Ming et al., 2017; Tang et al., 2017; Tao et al., 2017; Dai et al., 531 

2018; Gao et al., 2018; Liu et al., 2018a; Wang et al., 2018; Zhang et al., 2018; Xu et 532 

al., 2019; Yu et al., 2019) and is successfully applied to investigate the inter-annual 533 

variations of different aerosol chemical species (Ding et al., 2019; Liu et al., 2018b). 534 

In terms of online approach, AMS is the state-of-the-art method for analyzing different 535 

chemical species with high time resolution, which has great application value in 536 

diagnosing the causes of haze events in China over the past decade (Huang et al., 537 

2014; Quan et al., 2015; Guo et al., 2014; Yang et al., 2021; Gao et al., 2021; Hu et 538 
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al., 2021; Zhang et al., 2022). 539 

Nevertheless, both the online and offline measurements require a high level of 540 

manpower and economic cost, and for this reason, these methods are expensive and 541 

rarely applied in large-scale regions or long-term periods. 542 

Chemical transport model (CTM) is another useful tool to identify the 543 

composition characteristics of PM2.5. The simulation predicted by CTM is featured as 544 

high spatio-temporal resolution (Geng et al., 2021). Meanwhile, it also provides 545 

vertical profiles of diverse chemical species (Ding et al., 2016). However, the CTM 546 

results are largely dependent on external inputs such as emission inventories, 547 

boundary conditions, initial conditions, etc. The internal parameterizations of itself 548 

significantly influence the final model results as well (Huang et al., 2021), which 549 

leads to uncertainty in the simulated PM2.5 and its composition. In addition, the 550 

burden of high requirement in computational cost and storage also makes CTM hard 551 

to universally use. 552 

In this study, we develop a novel method, Multi-Tracer Estimation Algorithm 553 

(MTEA), with the aim of distinguishing the primary and secondary compositions of 554 

PM2.5 from routine observation of PM2.5 concentration. Different from traditional 555 

CTMs, MTEA proposed by this study is based on statistical assumption and works in a 556 

more convenient way. This algorithm and its application are tested in China and the 557 

United States. In Section 2, we introduce the structure and principle of MTEA. In 558 

Section 3, we evaluate the MTEA results comparing with three PM2.5 composition 559 

data sets, (1) short-term measurements in 16 cities in China from 2012 to 2016 560 

reported by previous studies, (2) continuous long-term measurements in Beijing and 561 

Shanghai from 2014 to 2018, and (3) IMPROVE network in the United States during 562 

2014 and 2018. Additionally, we also compare MTEA model with one of the most 563 

advanced datasets from CTM in China. Subsequently, in Section 4 we investigate the 564 

spatio-temporal characteristics of PPM and SPM concentrations in China, explain 565 

the unexpected haze event in several cities of China during the COVID-19 lockdown 566 

and discuss the complicated correlation between PM and O3. This study is different 567 

from previous works as follows: (1) we develop an efficient approach to explore PPM 568 
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and SPM with low economy-/technique-cost and computation burden, (2) we apply 569 

this approach to observation data from the MEE network, offering an unprecedented 570 

opportunity to quantify the PM2.5 components on a large space and time scale.  571 

 572 

2. Methodology: the methodology part is written in a reasonable logic, but the 573 

author needs to pay more attention to specify the technical details, e.g., the definition 574 

of some terms. 575 

Response: Thanks for your kind reminding and rigorous attitude to scientific 576 

research. We have carefully checked all technical details and revised them for a more 577 

proper expression in Section 2. 578 

Revision in Section 2: 579 

The multi-tracer (marked as X) is defined to represent multiple primary 580 

contributions to PM2.5, mainly resulting from incomplete combustion of carbonaceous 581 

material and flying dust. 582 

We select the typical combustion product CO as one tracer to represent the 583 

combustion process, and the particles in coarse mode (PMcoarse, marked as PMC, 584 

PMC = PM10 – PM2.5) as the other tracer to track flying dust. 585 

However, this investigative coefficient for quantifying primary sulfate and nitrate 586 

emissions might be relatively higher compared to empirical coefficients (0.01-0.05) 587 

used in previous simulation studies. 588 

They estimated primary and secondary organic carbon (marked as POC and 589 

SOC) concentrations by adopting a proper POC/EC ratio when SOC correlated with 590 

EC worst. 591 

 592 

3. Model validation: this part straightforwardly delivers the good validation 593 

result between model and observation. Good correlation is shown in this part, 594 
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suggesting good model performance. However, this part also requires more 595 

interpretation on the model’s over/underestimation behavior compared to observation, 596 

which is now absent. Ideally, the author should focus most on this part, because only 597 

when the model is reasonable validated can we trust the result and make the further 598 

interpretation on the result. Therefore, from my own perspective, the author should 599 

strengthen this part. 600 

Response: Thanks for your conducive comment. We have enhanced the 601 

discussion in the model evaluation part as you suggested. 602 

Revision in Section 3.1.2: 603 

However, we find that there are still a few discrepancies between the estimated 604 

and observation-based results. For example, we overestimated the secondary 605 

proportions of PM2.5 in cities such as Haikou, Lanzhou and Lhasa. Though all of them 606 

show a considerable overestimation of over 20%, the causes lead to this kind of bias 607 

may be quite different. In coastal city Haikou, we may attribute this discrepancy 608 

between MTEA and observation to the neglect of the contribution of sea salt aerosols. 609 

The PM2.5 offline measurements in 2015 exhibited that the contribution of sea salt 610 

aerosols to ambient PM2.5 mass concentration in Haikou is 3.6-8.3% (Liu et al., 2017). 611 

Secondly, the overestimation phenomenon in Lanzhou, which is a typical inland city 612 

located in northwestern China, can be explained by overlooking the contribution of 613 

natural dust to PM2.5 speciation. Generally, both sea salt and natural dust are 614 

categorized into non-anthropogenic processes, and are not accounted for by 615 

anthropogenic emission inventory, resulting in the underestimation of representing 616 

primary process intensity. Finally, for Lhasa, the observation-based results which are 617 

derived from too few samplers also pose controversial comparison against MTEA 618 

model. 619 

 620 

4. Result and discussion: this part also very straightforwardly and logically 621 

reports the results. However, the interpretation of results should be more 622 
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comprehensive and backed up by previous studies and/or solid evidence, which is 623 

absent now and needs to be added. In addition, the discussion of the result is very 624 

superficial, lacking depths, which should also be improved. 625 

Response: Thanks for your conducive comments and rigorous attitude to 626 

scientific research. To enrich our discussion as the reviewer mentioned, we have 627 

carefully revised the related texts in the result part. 628 

Revision in Section 4: 629 

We used the MTEA approach and the MEE observation data to estimate PPM 630 

and SPM concentrations in China for the period of 2014-2018. The observations 631 

during severe haze events (top 10% CO and PMC polluted days) were excluded to 632 

avoid the influence of unfavorable meteorological conditions and extreme high 633 

primary emission cases. Unfavorable meteorological conditions are major causes for 634 

haze events. PPM under these unfavored meteorological conditions may have 635 

considerable high co-linear relationship with total PM2.5. The concentration of SPM 636 

from complicated formation pathways is then underestimated. Therefore, we excluded 637 

these polluted days to focus more attention on general characteristics of PPM and 638 

SPM concentration. 639 

Revision in Section 4.3: 640 

To explore this unexpected air pollution, we find that the enhanced secondary 641 

pollution could be the major factor, which even offset the reduction of primary 642 

emissions in the BTH region during the lockdown. With the help of MTEA, we tracked 643 

variations of the secondary proportions of PM2.5 in East China before and during the 644 

COVID-19 lockdown (Fig. 9 d-f). The specific emission reductions owing to the 645 

national lockdown were derived from Huang et al. (2020). Based on the bottom-up 646 

dynamic estimation, provincial emissions of CO, NOx, SO2, VOC, PM2.5, BC and OC 647 

decreased by 13-41%, 29-57%, 15-42%, 28-46%, 9-34%, 13-54%, and 3-42%, 648 

respectively during the lockdown period. The secondary proportions in the BTH 649 

region show an evident increase, at the level of 7%-34%, which highlights the 650 
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importance of the secondary formation during the lockdown. Our result is consistent 651 

with recent observation and simulation studies (Chang et al., 2020; Huang et al., 652 

2020; Le et al., 2020), which suggested that the reduced NO2 resulted in O3 653 

enhancement, further increasing the AOC and facilitating the formation of secondary 654 

inorganic aerosols such as ammonium sulfate, ammonium nitrate. In addition, 655 

another cause of the air pollution is the unfavorable atmospheric diffusion conditions. 656 

CO, a nonreactive pollutant, was increased by 22% in Beijing during the lockdown 657 

even under considerable reduction on its emission.  658 

Revision in Section 4.4: 659 

A series of recent studies have focused on the correlation between PM2.5 and O3, 660 

and many of them agreed that the correlation varies greatly in different regions of 661 

China. Specifically, the statistical correlation is stronger positive in southern cities 662 

compared to that in northern cities (Chu et al., 2020). Because of this significant 663 

difference, a question raises: is the difference mostly caused by PPM, or SPM, or both 664 

of them? To address this question, we compare the correlations between daily PPM, 665 

SPM and total PM2.5 versus O3 in Beijing-Tianjin-Hebei (BTH) and Yangtze River 666 

Delta (YRD) region during the study period, with the help of META approach. The O3 667 

diurnal formation regime can be destroyed because of the suppressed radiative 668 

condition under precipitation. The local O3 concentration level is mainly dominated 669 

by background fields. Here we would like to focus our attention on the secondary 670 

formation relationship between daily PM2.5 and O3. Therefore the cases when 671 

precipitation took place were removed to avoid the cleaning impacts of wet deposition 672 

on MDA8 (maximum daily 8-h average) O3 concentrations. Precipitation data is 673 

based on the ERA5 reanalysis database from the European Centre for Medium-Range 674 

Weather Forecasts (ECMWF, https://www.ecmwf.int/, last access, 1 August 2021). 675 

Revision in Section 4.5: 676 

Thirdly, current bottom-up emission inventories are generally outdated with a 677 

time lag of at least 1-2 years, mainly due to the lack of timely and accurate statistics. 678 
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Consequently, the adjoint uncertainty in MTEA estimation is inevitable.  679 

To evaluate the uncertainty, a comparison test was conducted by adjusting the 680 

apportioning coefficient (the a and b in Eq. 1) with a disturbance of ±0.1. Firstly, we 681 

decreased the value of a in each populous city by 0.1. Meanwhile, the coefficient b 682 

increased by 0.1. This scenario indicates an overestimation in contribution of 683 

combustion-related process to primary PM2.5 or underestimation in contribution of 684 

dust-related process. Secondly, we increased the value of a in each populous city by 685 

0.1 (decreased b by 0.1) for checking the opposite case. The results are presented in 686 

Table S5 and point out that the estimated secondary proportions of PM2.5 varied less 687 

than ±3% in most populous cities caused by the changes of the apportioning 688 

coefficient. This sensitivity experiment highlights that the apportioning coefficients 689 

depending on emissions has limited impacts on the final estimation results. Generally, 690 

the uncertainty of apportioning coefficient is one of two factors that directly affect the 691 

tracer X. The other one is the concentration of CO and PMC itself. Hence, we also 692 

conducted a similar test to check the impacts of tracer X on the model estimation by 693 

changing the tracer concentrations mentioned in Eq.1. Specifically, we (1) increased 694 

CO concentration by 10% as well as decreased PMC concentration by 10% and (2) 695 

decreased CO concentration by 10% as well as increased PMC concentration by 10%. 696 

Both sets of adjustment show changes within ±2% in the estimated secondary 697 

proportions of PM2.5 in all cities except for Urumqi (Table S6). This phenomenon from 698 

the perspective of tracer concentration also supports that the impacts of the tracer X 699 

on the final model results are limited. In summary, we believe that the most 700 

determinative stuff for the final results of our model is the principle of the minimum 701 

correlation between PPM and SPM but not the tracer X which relies on emissions or 702 

concentrations. 703 

 704 

5. Conclusion: it summarizes the significance of the study, but one or two 705 

paragraph need to be re-written, based on the revised context in Section 4. 706 
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Response: Thank you for your comments and we have added the related texts to 707 

the manuscript. 708 

Revision in Section 5: 709 

We also discussed the uncertainties of the MTEA method. MTEA may pose 710 

overestimation on the secondary fractions of PM2.5 in those regions which are near to 711 

desert or sea by ~20% for failing taking natural dust into consideration. In addition, 712 

the sensitivity experiment through imposing reasonable disturbance on emissions and 713 

tracer concentrations also show the limited impacts on final estimation. Overall, the 714 

most determinative stuff for our model estimate is the principle of the minimum 715 

correlation between PPM and SPM. 716 

 717 
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Response to RC#3: 885 

Dear Editor and anonymous referee #4: 886 

We greatly appreciate your consideration and the reviewer’s constructive 887 

comments on the manuscript of “Estimation of Secondary PM2.5 in China and the 888 

United States using a Multi-Tracer Approach” (acp-2021-683). We have carefully 889 

revised the manuscript to address all the comments as described below. Reviewer 890 

comments are shown in blue. Our responses are shown in black. The revised texts are 891 

shown in italics. 892 

 893 

1. The manuscript presents a method for estimating the relative contributions of 894 

primary and secondary PM by proxy. The observed input parameters are CO, PM10 895 

and PM2.5, however, the method also relies on estimated emissions of OA, EC, OC, 896 

fine dust, PM2.5, sulfate and nitrate, from emission inventories. The authors develop a 897 

proxy for secondary particulate matter on the basis of the observed parameters and 898 

estimated emissions. The motivation is presented as the need for a low cost, 899 

operational method for monitoring the contributions of secondary aerosols to the total 900 

PM2.5 levels.  901 

The method appears to have some use for informing operational air quality 902 

management or for informing policy, but the scientific value of the method is not 903 

convincingly presented. It relies on assumptions and inventories that are not universal, 904 

and the manuscript does not present a convincing argument for its use, other than that 905 

it is cheaper than source apportionment methods based on chemical speciation. But it 906 

does not present comparative estimates of primary-secondary contributions with those 907 

methods. 908 

It is questionable if this method has any value. It requires a big body of inputs, as 909 

other chemical transport models, but also relies heavily on assumptions and 910 

coefficients that are externally adjusted, even tuned to fit the model. 911 
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Response: Thank you for the comments. The traditional methods to identify 912 

PM2.5 compositions include observational and simulation methods. The observational 913 

method is currently the most common and useful way for quantitatively investigating 914 

the PM2.5 chemical compositions. Moreover, chemical transport model (CTM) is 915 

another useful tool to identify the composition characteristics of PM2.5. However, the 916 

CTM results are largely dependent on external inputs as the reviewer mentioned such 917 

as emission inventories, boundary conditions, initial conditions, etc. The internal 918 

parameterizations of itself significantly influence the final model results as well 919 

(Huang et al., 2021). 920 

Different from CTM, the MTEA model developed in this study is a statistical 921 

model, which does not suffer from the burden of high requirement in computational 922 

cost and storage. MTEA is positioned as a low economy-/technique-cost tool to 923 

conveniently estimate the primary and secondary PM2.5 in both scientific and practical 924 

areas, although concomitantly it is slightly inferior to the two traditional methods in 925 

terms of identifying detailed PM2.5 compositions and capturing high temporal 926 

variation.  927 

The aim of this study, by using MTEA, is to reveal the general characteristics of 928 

primary and secondary PM2.5 pollution over wide spatio-temporal coverages. The 929 

evaluation between MTEA estimation versus various measurements in terms of 930 

monthly mean value shows a satisfying performance (Section 3). At the same time, 931 

the reasonable spatio-temporal patterns of PPM and SPM concentrations disclosed by 932 

our model also inform that MTEA is a promising tool for illustrating general pollution 933 

patterns. Thus, for studies which would like to distinguish primary and secondary 934 

PM2.5, MTEA model can serve as a potential option. In the future, we also hope to 935 

cooperate with the team which focuses on observational studies to broaden the 936 

application of MTEA and reduce the uncertainty. Thanks again and we have rephrased 937 

our texts in the manuscript for a clearer description in terms of the scientific value of 938 

our method in Section 1. 939 

Revision in Section 1:  940 
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Nevertheless, both the online and offline measurements require a high level of 941 

manpower and economic cost, and for this reason, these methods are expensive and 942 

rarely applied in large-scale regions or long-term periods. 943 

Chemical transport model (CTM) is another useful tool to identify the 944 

composition characteristics of PM2.5. The simulation predicted by CTM is featured as 945 

high spatio-temporal resolution (Geng et al., 2021). Meanwhile, it also provides 946 

vertical profiles of diverse chemical species (Ding et al., 2016). However, the CTM 947 

results are largely dependent on external inputs such as emission inventories, 948 

boundary conditions, initial conditions, etc. The internal parameterizations of itself 949 

significantly influence the final model results as well (Huang et al., 2021), which 950 

leads to uncertainty in the simulated PM2.5 and its composition. In addition, the 951 

burden of high requirement in computational cost and storage also makes CTM hard 952 

to universally use. 953 

In this study, we develop a novel method, Multi-Tracer Estimation Algorithm 954 

(MTEA), with the aim of distinguishing the primary and secondary compositions of 955 

PM2.5 from routine observation of PM2.5 concentration. Different from traditional 956 

CTMs, MTEA proposed by this study is based on statistical assumption and works in a 957 

more convenient way. This algorithm and its application are tested in China and the 958 

United States. In Section 2, we introduce the structure and principle of MTEA. In 959 

Section 3, we evaluate the MTEA results comparing with three PM2.5 composition 960 

data sets, (1) short-term measurements in 16 cities in China from 2012 to 2016 961 

reported by previous studies, (2) continuous long-term measurements in Beijing and 962 

Shanghai from 2014 to 2018, and (3) IMPROVE network in the United States during 963 

2014 and 2018. Additionally, we also compare MTEA model with one of the most 964 

advanced datasets from CTM in China. Subsequently, in Section 4 we investigate the 965 

spatio-temporal characteristics of PPM and SPM concentrations in China, explain 966 

the unexpected haze event in several cities of China during the COVID-19 lockdown 967 

and discuss the complicated correlation between PM and O3. This study is different 968 

from previous works as follows: (1) we develop an efficient approach to explore PPM 969 

and SPM with low economy-/technique-cost and computation burden, (2) we apply 970 

this approach to observation data from the MEE network, offering an unprecedented 971 
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opportunity to quantify the PM2.5 components on a large space and time scale.  972 

 973 

2. The manuscript describes comparisons between estimated and observed 974 

primary particulate matter. Categorization of measured historical data into secondary 975 

and primary aerosols for comparison with the MTEA seems to be based on chemical 976 

compositions, but this process is not clearly described and the criteria are vague. 977 

There has been no attempt to verify the MTEA estimates for ppm by comparing with 978 

published estimates based on receptor modelling, CTMs or AMS studies. There are 979 

many studies in the literature that have produced estimates that can be easily 980 

compared with the outcomes of the MTEA approach, but that has not been done. 981 

Response: Thank you for pointing this out. We have added the description about 982 

categorizing the concentrations of measured historical aerosol chemical species into 983 

PPM and SPM concentrations in Section 2.2.2 and 2.2.3.  984 

The estimation from MTEA model is based on the routine PM2.5 observation. 985 

However, the measurements from literature we summarized in Section 3.1.2 rely on 986 

sampling at different locations. The measurements may be quite different though the 987 

observational campaigns were conducted in the same city. Thus it is difficult to 988 

directly compare PPM concentrations predicted by MTEA with that in various 989 

literature. Therefore, we mainly focus on the comparison in terms of secondary 990 

proportions of PM2.5 between the MTEA method versus various previous studies. 991 

Please refer to Table S4 in the supplementary material for the specific comparisons. 992 

Moreover, we also revised Table S4 to clearly show the method applied by these 993 

previous studies (offline sampling or AMS instrument). 994 

To examine the difference in result between the MTEA approach and traditional 995 

CTM, we adopted the monthly simulated PPM/SPM concentrations from a data fusion 996 

system developed by Tsinghua University. This system, which is named Tracking Air 997 

Pollution in China (TAP), integrates ground measurements, satellite remote sensing 998 

retrievals, emission inventories (MEIC), and CTM simulations (WRF/CMAQ) based 999 
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on machine learning algorithms. More descriptions of this dataset can be found at 1000 

http://tapdata.org.cn/ (Geng et al., 2021; Geng et al., 2017). We treated the PPM and 1001 

SPM concentrations from TAP as a typical model representation. To add this part in 1002 

the manuscript suggested by reviewer, we introduced TAP dataset in Section 2.3 and 1003 

showed comparisons between MTEA and TAP in terms of PPM, SPM concentrations 1004 

as well as their annual trends in 31 populous cities of China in Section 3.1.3.  1005 

Revision in Section 2.2.2: 1006 

After accessing the chemical compositions, we categorized them into PPM and 1007 

SPM for further evaluation. Specifically, SOA was roughly identified from OM by EC-1008 

tracer model (Ge et al., 2017). SPM concentrations were calculated via summing 1009 

SO4
2-, NO3

-, NH4
+ and SOA concentrations. Then PPM could be calculated though 1010 

deducting SPM from PM2.5. 1011 

In addition, we investigated observation-based PM2.5 component analyses in 16 1012 

cities of China during 2012-2016 from 32 published studies. This survey offered an 1013 

opportunity to compare the estimation by MTEA with the past measurements in the 1014 

terms of the secondary fraction of PM2.5. SPM concentrations in literature were 1015 

roughly estimated by multiplying OM from 0.5 because of the limit of data source. 1016 

Meanwhile, it is noted that the factor which converts OC to OM is dependent on the 1017 

definition of each observation study itself. 1018 

Revision in Section 2.2.3: 1019 

The specific aerosol chemical compositions include ammonium sulfate, 1020 

ammonium nitrate, organic/elemental carbon and soil/mineral dust. The 1021 

categorization for PPM and SPM in IMPROVE dataset is similar to the process in 1022 

Section 2.2.2. The only difference is that SPM concentration is the sum of ammonium 1023 

sulfate, ammonium nitrate and SOA. 1024 

Revision in Section Table S4: 1025 

#Please see below# 1026 
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Table S4. List of PM2.5 component measurements (µg m-3) of China in previous studies. 1027 
City Period PM2.5 SO42- NO3- NH4+ SOA1 SPM/PM2.5 Mean SPM/PM2.5 Method References 

Beijing 

2012 Summer 103 20.6 15.8 8.3 10.1 53.2% 

31% ~ 80% 

Offline Tian et al., 2015 

2012 - 2013 72 9.3 11.9 5.3 9.6 50.3% Offline Liu et al., 2018b 

2013 Winter 159 25.4 19.0 15.6 32.2a 58.0% Offline Tao et al., 2015 

2013 Winter 143 23.9 20.2 16.5 15.4 53.1% AMS Huang et al., 2014b 
Jan 2014 153 9.6 12.1 6.7 33.8c 40.6% Offline Gao et al., 2018 

Apr 2014 115 10.7 10.7 11.4 15.2c 41.6% Offline Gao et al., 2018 

Jul 2014 96 25.6 25.6 14.1 11.1c 79.7% Offline Gao et al., 2018 

Oct 2014 139 21.1 45.5 13.9 23.0c 74.5% Offline Gao et al., 2018 

2014 Winter 138 21.0 26 14.1 17.4 51.8% Offline Lin et al., 2016 

Jun 2014 - Apr 2015 100 14.3 17.1 11.5 12.4b 55.6% Offline Huang et al., 2017 
May 2015 - Apr 2016 114 8.6 11.1 5.2 10.1 30.9% Offline Yu et al., 2019 

Jul 2015 - Apr 2016 81 9.6 12.4 8.6 7.7 47.1% Offline Xu et al., 2019 

Oct 2016 95 16.8 16.8 12.5 12.3b 61.5% Offline Zhang et al., 2018 

MTEA estimation 2  41% - This study 

Tianjin 

Jun 2014 - Apr 2015 106 16.6 16.2 13.7 10.4b 53.8% 

41% ~ 54% 

Offline Huang et al., 2017 

Jul 2015 - Apr 2016 86 12.1 13.9 10.5 7.3 51.0% Offline Xu et al., 2019 
Jul 2014 113 12.2 16.2 9.3 11.0c 43.0% Offline Gao et al., 2018 

Oct 2014 101 12.8 9.9 8.2 11.1c 41.4% Offline Gao et al., 2018 

2014 Winter 183 19.5 40.7 15.1 21.8c 53.1% Offline Gao et al., 2018 

May 2015 – Apr 2016 120 18.1 20.3 8.5 10.0 47.4% Offline Liu et al., 2018a 
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MTEA estimation  63%  This study 

Shijiazhuang 

Jun 2014 - Apr 2015 155 25.5 23.4 18.8 17.7b 55.0% 
51% ~ 55% 

Offline Huang et al., 2017 

Jul 2015 - Apr 2016 105 16.8 14.9 12.3 9.6 51.0% Offline Xu et al., 2019 

MTEA estimation  49%  This study 

Shanghai 

2012 Spring 70 15.3 8.6 6.4 5.7 51.4% 

26% ~ 71% 

Offline Zhao et al., 2015 
2012 Summer 51 9.7 5.6 3.6 3.7 44.3% Offline Zhao et al., 2015 

2012 Fall 82 17.9 20.2 7.8 7.7 65.4% Offline Zhao et al., 2015 

2012 Winter 70 11.6 13.2 5.6 8.5 55.6% Offline Zhao et al., 2015 

2012 Spring 64 12.0 10.8 4.3 4.9 50.0% Offline Huang et al., 2014a 

2011- 2013 Spring 49 11.0 11.0 6.9 5.9 71.0% Offline Wang et al., 2016a 

2011- 2013 Summer 31 8.1 5.2 4.2 4.7 67.3% Offline Wang et al., 2016a 
2011- 2013 Fall 41 8.8 7.4 4.8 5.2 63.9% Offline Wang et al., 2016a 

2011- 2013 Winter 65 13.0 13.2 8.3 6.7 63.4% Offline Wang et al., 2016a 

2012 - 2013 68 13.6 11.9 5.8 8.6 58.7% Offline Liu et al., 2018b 

Oct - Nov 2013 75 12.9 15.0 6.6 4.2 51.6% Offline Ming et al., 2017 

Dec 2013 – Jan 2014 138 19.5 29.1 12.6 10.3 51.8% Offline Ming et al., 2017 

Mar 2014 – Apr 2014 96 12.3 10.4 5.5 4.5 34.1% Offline Ming et al., 2017 
Jun 2014 – Jul 2014 56 6.7 2.8 2.1 2.9 25.9% Offline Ming et al., 2017 

2013 Winter 91 10.8 12.4 7.5 21.8b 57.7% AMS Huang et al., 2014b 

Dec 2014 – Jan 2015 103 18.3 25.4 14.4 14.1b 70.1% Offline Du et al., 2017 

Mar 2015 – Apr 2015 74 8.7 11.2 5.7 9.2b 47.0% Offline Du et al., 2017 

MTEA estimation  67%  This study 

Nanjing Apr – May 2013 110 23.1 11.7 6.4 17.7a 53.5% 52% ~ 79% Offline Li et al., 2016 
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Aug 2013 86 18.4 8.1 5.4 14.2a 53.6% Offline Li et al., 2016 

Oct 2013 77 12.6 7.3 3.8 36.8a 78.6% Offline Li et al., 2016 

Dec 2014 – Jan 2015 100 11.7 16.4 12.3 11.8b 52.2% Offline 
Du et al., 2017 

Mar 2015 – Apr 2015 83 21.4 16.1 7.9 9.1b 65.6% Offline 

MTEA estimation  53%  This study 

Hangzhou 
Oct 2013 36 9.7 5.3 6.0 6.5 76.4% 76% Offline Wu et al., 2016 

MTEA estimation  53%  This study 

Guangzhou 

Dec 2012 – Jan 2013 75 10.6 5.8 5.1 6.5 37.3% 

37% ~ 58% 

Offline Liu et al., 2014 

2012 - 2013 75 13.1 7.2 4.8 8.4 44.6% Offline Liu et al., 2018b 

Nov 2012 – Dec 2013 61 9.3 5.7 4.2 11.9b 51.0% Offline Chen et al., 2016 

2013 Summer 51 8.9 4.9 4.0 6.6 47.8% Offline Cui et al., 2015 
2013 Fall/Winter 68 9.8 7.3 4.5 9.4 45.6% Offline Cui et al., 2015 

2013 Winter 69 12.7 8.9 6.9 11.4b 57.8% AMS Huang et al., 2014b 

2014 Spring 44 8.2 2.4 3.6 4.5 42.5% Offline Tao et al., 2017 

2014 Summer 37 7.6 0.3 2.6 3.7 38.4% Offline Tao et al., 2017 

2014 Fall 48 11.4 1.0 4.4 4.7 44.8% Offline Tao et al., 2017 

2014 Winter 63 9.8 5.5 4.8 7.0 43.0% Offline Tao et al., 2017 
MTEA estimation  66%  This study 

Xi’an 

Dec 2012 137 13.5 9.8 6.6 21.6b 37.6% 

33% ~ 55% 

Offline Zhang et al., 2015 

2012 Spring 164 17.8 15.2 6.5 13.9 32.6% Offline Niu et al., 2016 

2012 Summer 109 25.0 10.1 6.6 8.8 46.3% Offline Niu et al., 2016 

2012 Fall 155 18.7 16.5 8.2 18.4 39.9% Offline Niu et al., 2016 

 Nov 2012 – Feb 2013 244 32.1 29.3 16.8 39.7 48.3% Offline Niu et al., 2016 
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Dec 2014 – Nov 2015 113 15.2 16.6 8.4 21.3 54.7% Offline Dai et al., 2018 

MTEA estimation  55%  This study 

Chengdu 

Oct – Nov 2014 62 10.5 9.3 6.9 8.3b 56.5% 

44% ~ 57% 

Offline Wang et al., 2018 

Jan – Feb 2015 114 16.4 17.5 12.7 15.8b 54.7% Offline Wang et al., 2018 

Apr 2015 48 8.3 5.9 5.1 5.0b 50.6% Offline Wang et al., 2018 
Jul 2015 45 9.7 3.9 4.2 5.9b 52.6% Offline Wang et al., 2018 

Jan 2015 48 6.1 3.7 2.4 8.7 43.5% Offline Li et al., 2017a 

MTEA estimation  46%  This study 

Chongqing 

2012 - 2013 74 19.7 6.5 6.1 8.6 55.3% 

44% ~ 56% 

Offline Liu et al., 2018b 

Oct – Nov 2014 56 9.9 7.8 5.7 7.8b 55.7% Offline Wang et al., 2018 

Jan – Feb 2015 115 17.5 15.8 11.3 19.4b 55.7% Offline Wang et al., 2018 
Apr 2015 58 10.4 5.9 5.2 8.0b 50.1% Offline Wang et al., 2018 

Jul 2015 54 11.1 1.6 4.0 6.8b 43.5% Offline Wang et al., 2018 

MTEA estimation  61%  This study 

Lanzhou 

Dec 2012 120 11.8 7.2 6.7 21.2 39.1% 

18% ~ 41% 

Offline Tan et al., 2016 

Jun – Jul 2013 34 4.3 1.9 1.9 5.8 40.9% Offline Tan et al., 2016 

Apr – May 2014 83 4.0 1.7 0.8 8.0 17.5% Offline Wang et al., 2016b 
Aug 2014 38 4.8 2.0 1.3 3.5 30.5% Offline Wang et al., 2016b 

Oct 2014 93 5.8 7.1 3.6 12.7 31.4% Offline Wang et al., 2016b 

Jan, Dec 2014 141 7.6 10.1 6.0 18.2 29.7% Offline Wang et al., 2016b 

MTEA estimation  63%  This study 

Changsha 
Sep – Oct 2013 102 19.4 2.6 8.7 12.5b 42.4% 

41% ~ 44% 
Offline Tang et al., 2017 

Dec 2013 – Jan 2014 145 19.3 9.7 14.3 20.5b 44.0% Offline Tang et al., 2017 
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Apr – May 2014 97 17.0 1.4 7.5 14.0b 41.1% Offline Tang et al., 2017 

Jul – Aug 2014 78 13.9 2.9 7.4 9.4b 43.1% Offline Tang et al., 2017 

MTEA estimation  67%  This study 

Haikou 

Jan 2015 17 3.1 0.5 1.0 2.3 40.1% 

32% ~ 40% 

Offline Liu et al., 2017 

Mar 2015 9 1.6 0.2 0.5 1.2 38.8% Offline Liu et al., 2017 
Jul 2015 23 3.8 0.3 0.8 2.4 31.7% Offline Liu et al., 2017 

Sep 2015 47 7.9 3.1 3.0 2.8 35.7% Offline Liu et al., 2017 

MTEA estimation  61%  This study 

Zhengzhou 

Oct 2014 143 19.6 17.9 9.2 12.0 41.0% 

41% ~ 54% 

Offline Jiang et al., 2017 

Dec 2014 – Jan 2015 191 23.5 26.5 19.8 22.6 48.4% Offline Jiang et al., 2017 

Apr 2015 138 19.7 20.3 14.4 11.3 47.6% Offline Jiang et al., 2017 
Jul 2015 110 24.2 14.3 13.9 7.3 54.3% Offline Jiang et al., 2017 

MTEA estimation  60%  This study 

Shenyang 
2013 – 2014 82 13.2 4.6 4.5 11.7 41.5% 42% Offline Liu et al., 2018b 

MTEA estimation  51%  This study 

Lhasa 
2013 – 2014 36 0.8 0.5 0.4 7.6 25.8% 26% Offline Liu et al., 2018b 

MTEA estimation  64%  This study 
1 SOA = 0.5*OM, OM = f * OC. Default f is 1.2. In case of a, b and c, the f is 1.8, 1.6 and 1.4 respectively. 1028 
2 For period of 2014-2018. 1029 
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Revision in 2.3: 1030 

2.3 PPM and SPM estimated by CTM 1031 

Apart from evaluating PPM and SPM with various composition measurements, 1032 

we also compared MTEA estimation with CTM results. Here we utilized the PM2.5 1033 

composition gridded dataset with a spatial resolution of 10 km×10 km developed by 1034 

Tsinghua University for further comparisons. This dataset is named Tracking Air 1035 

Pollution in China (TAP, available at http://tapdata.org.cn/, last access 15 Mar 2022) 1036 

(Geng et al., 2021; Geng et al., 2017). TAP is directly calculated by Community 1037 

Multiscale Air Quality (CMAQ) model. In terms of methodology, based on machine 1038 

learning algorithms, TAP integrates surface measurements, satellite remote sensing 1039 

retrievals, emission inventories (MEIC) with CMAQ simulations. Moreover, it is also 1040 

constrained by ground aerosol composition measurements. We collected the monthly 1041 

mean concentrations of aerosol species during 2014-2018 from TAP, including SO4
2-, 1042 

NO3
-, NH4

+, OM, BC and total PM2.5. SOA was further calculated from OM by EC-1043 

tracer model (Ge et al., 2017). SPM concentrations were inferred by summing SO4
2-, 1044 

NO3
-, NH4

+ and SOA. PPM concentrations were then obtained via deducting SPM 1045 

from PM2.5. 1046 

Revision in Section 3.1.3: 1047 

3.1.3 Comparison with the CTM simulation 1048 

In addition to evaluating our model via PPM and SPM measurements in China, 1049 

we also provided a comparison between MTEA estimation and CTM simulation in 31 1050 

populous cities based on the monthly mean PM concentrations. As shown in Fig. R1 1051 

a-b, the correlation coefficient r for TAP versus MTEA is 0.86 in terms of PPM 1052 

concentration and 0.91 in terms of SPM concentration, showing a strongly positive 1053 

correlation between the two models. At the same time, both slopes (1.26 and 0.89) and 1054 

intercepts (–3.7 μg m-3 and 1.9 μg m-3) of the regression about PPM and SPM 1055 

illustrate that most of the scattering spots distribute around 1:1 ratio line.  1056 

Moreover, we further compared the long-term varying trends between MTEA 1057 



48 
 

versus TAP in averaged PPM and SPM concentration of 31 populous cities (Fig. R1 1058 

c-d). Both of them exhibit a descending interannual trend in PPM concentration, with 1059 

a rate of –2.0 μg m-3 yr-1 for MTEA and –1.9 μg m-3 yr-1 for TAP. In terms of SPM 1060 

concentration, the decline rates are –2.9 μg m-3 yr-1 and –2.8 μg m-3 yr-1, respectively. 1061 

Meanwhile, the statistical correlations between two interannual variations are 0.98 1062 

(PPM) and 0.99 (SPM), which are quite close to 1, showing a good agreement. 1063 

Thus, the comparisons about PPM/SPM concentration magnitudes and 1064 

interannual variations between two kinds of models suggest that statistical model can 1065 

infer similar estimation with traditional CTM. Meanwhile, it is again highlighted that 1066 

our model is capable of capturing reasonable PPM and SPM concentrations. 1067 

Furthermore, it is also shown that MTEA can track primary and secondary 1068 

component of PM2.5 by using proxy at a much lower cost when compared to 1069 

traditional air quality model simulations. 1070 

 1071 

Figure R1. Comparisons between MTEA and TAP in terms of PPM, SPM concentrations and 1072 

their annual trends from 2014 to 2018 in 31 populous cities of China. In panel (a) and (b), each 1073 

blue solid dot stands for a monthly mean concentration of PPM or SPM in one of 31 populous 1074 
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cities. The number of samples is 1860 (60×31). The metrics r, s and d represent correlation 1075 

coefficient, slope and intercept of fitting line, respectively. The fitting method follows the 1076 

Reduced Major Axis (RMA) regression. In panel (c) and (d), MTEA and TAP are marked by blue 1077 

circles and red triangles. Each dot represents the mean PPM/SPM concentration of 31 cities. The 1078 

colorful numbers stand for the annual trends of PPM and SPM concentrations during 2014-2018. 1079 

At the same time, the correlation coefficient (r) between MTEA versus TAP is also provided. 1080 

 1081 

3. It is true as the authors state that those other methods are labor-intensive and 1082 

expensive, but they are also scientifically tried and tested and therefore more 1083 

convincing, so it would make sense to develop the performance of the MTEA against 1084 

such methods more than has been done in this manuscript. 1085 

Response: Thank the reviewer for pointing this out. There is no doubt that the 1086 

measurements via offline or online methods are absolutely crucial to scientifically 1087 

understanding the compositions of PM2.5. To some extent, the identification of PM2.5 1088 

based on these methods offers a conclusive insight for model developers, and the 1089 

MTEA model we developed should be in line with the observational results. We 1090 

heartfeltly acknowledged the efforts that the highly scientific observations made. We 1091 

compared the MTEA results with a series of observational studies as shown in Table 1092 

S4, and revised the related text in Section 2.2.  1093 

In addition, this study mainly devotes to illustrating the general pattern of 1094 

primary and secondary PM2.5 pollution over a wide spatio-temporal coverage with the 1095 

aid of a convenient proxy tool, and has no intention to replace the crucial 1096 

observational methods with MTEA. Thank you for the review’s comment again and 1097 

we have revised the related texts in Section 1 to clarify the roles and relationships 1098 

between observational method and MTEA. 1099 

Revision in Section 1:  1100 

To understand the severe PM2.5 pollution characteristics in China over the past 1101 

several years (An et al., 2019; Song et al., 2017; Yang et al., 2016), many 1102 
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observational studies have been conducted on PM2.5 components. The basic methods 1103 

of these studies are offline laboratory analysis and online instrument measurement 1104 

such as aerosol mass spectrometer (AMS). The observational studies are crucial to 1105 

exactly identify the aerosol chemical compositions. For offline approach, it is the most 1106 

widely used method (Ming et al., 2017; Tang et al., 2017; Tao et al., 2017; Dai et al., 1107 

2018; Gao et al., 2018; Liu et al., 2018a; Wang et al., 2018; Zhang et al., 2018; Xu et 1108 

al., 2019; Yu et al., 2019) and is successfully applied to investigate the inter-annual 1109 

variations of different aerosol chemical species (Ding et al., 2019; Liu et al., 2018b). 1110 

In terms of online approach, AMS is the state-of-the-art method for analyzing different 1111 

chemical species with high time resolution, which has great application value in 1112 

diagnosing the causes of haze events in China over the past decade (Huang et al., 1113 

2014; Quan et al., 2015; Guo et al., 2014; Yang et al., 2021; Gao et al., 2021; Hu et 1114 

al., 2021; Zhang et al., 2022). 1115 

 1116 

4. Also, the manuscript states that the numerical calculations were done on a 1117 

supercomputing system. It can be argued that if the approach requires a 1118 

supercomputing facility, then it is no less costly or inaccessible than the existing 1119 

source apportionment methods, but the cost has been shifted from scientific 1120 

equipment to IT services. 1121 

Response: Thank you for the comment and the careful reminding. We indeed 1122 

agree that traditional numerical models such as WRF-Chem, CMAQ and CAMx does 1123 

cost considerable computational sources. However, our model is based on the 1124 

statistical principle. Actually, it is capable of running on the personal computer (PC) 1125 

platform with basic equipment requirement. In the future, we look forward to 1126 

simplifying the model for a more lightweight version so that it can be easily utilized 1127 

for application anywhere. 1128 

 1129 

5. The manuscript does touch on a discussion that has scientific interest, and that 1130 
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is contained in the sections 4.1 and 4.2 on spatial and temporal variation. The 1131 

discussion on spatial variation has some merit. There is potentially a better motivation 1132 

for developing the MTEA approach in order to inform a discussion on the spatial and 1133 

temporal variation where only proxy parameters are available, by leveraging national 1134 

monitoring networks to learn more about geographical distribution of secondary 1135 

aerosols and feed into a discussion on variations in atmospheric processes. 1136 

Response: Thank you for your comments and rigorous attitude to scientific 1137 

research. We have rephrased our statement of the motivation for this study in Section 1138 

5. 1139 

Revision in Section 5: 1140 

In this study, we developed a new approach MTEA to distinguish the primary 1141 

and secondary compositions of PM2.5 efficiently from routine observation of PM2.5 1142 

concentration with much less computation cost than traditional CTMs. 1143 

Meanwhile, our model posed a great agreement with the reanalysis dataset from 1144 

one of the most advanced CTMs in China as well. 1145 

The methods to quantify different PM2.5 components are often based on either lab 1146 

analysis of offline filter samplings or online observation instruments such as AMS. 1147 

However, these methods are often labor-intensive, strict technical and high economic 1148 

cost. CTM is another useful tool to reveal the composition characteristics of PM2.5. 1149 

But traditional CTMs are short in high requirement of hardware as well. Our study 1150 

develops an efficient approach based on statistical principle to explore PPM and SPM 1151 

with lower cost, and applying this approach to large-scale observation networks, such 1152 

as the MEE network, can offer an unprecedented opportunity to quantify the PM2.5 1153 

components on a large space and time scale.  1154 

 1155 

Reference 1156 

Dai, Q., Bi, X., Liu, B., Li, L., Ding, J., Song, W., Bi, S., Schulze, B. C., Song, C., Wu, 1157 



52 
 

J., Zhang, Y., Feng, Y., and Hopke, P. K.: Chemical nature of PM2.5 and PM10 in 1158 

Xi'an, China: Insights into primary emissions and secondary particle formation, 1159 

Environ. Pollut., 240, 155-166, 10.1016/j.envpol.2018.04.111, 2018. 1160 

Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y., Qi, X., Shen, 1161 

Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X.-Q., Qin, W., Zhang, X., Cheng, 1162 

W., Liu, W., Pan, L., and Fu, C.: Significant reduction of PM2.5 in eastern China 1163 

due to regional-scale emission control: evidence from SORPES in 2011–2018, 1164 

Atmospheric Chemistry and Physics, 19, 11791-11801, 10.5194/acp-19-11791-1165 

2019, 2019. 1166 

Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., Su, H., Cheng, 1167 

Y. F., Yang, X. Q., Wang, M. H., Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. 1168 

D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, 1169 

S., Kulmala, M., and Fu, C. B.: Enhanced haze pollution by black carbon in 1170 

megacities in China, Geophys. Res. Lett., 43, 2873-2879, 10.1002/2016gl067745, 1171 

2016. 1172 

Gao, J., Wang, K., Wang, Y., Liu, S., Zhu, C., Hao, J., Liu, H., Hua, S., and Tian, H.: 1173 

Temporal-spatial characteristics and source apportionment of PM2.5 as well as its 1174 

associated chemical species in the Beijing-Tianjin-Hebei region of China, 1175 

Environ. Pollut., 233, 714-724, 10.1016/j.envpol.2017.10.123, 2018. 1176 

Gao, J., Li, Y., Li, J., Shi, G., Liu, Z., Han, B., Tian, X., Wang, Y., Feng, Y., and 1177 

Russell, A. G.: Impact of Formation Pathways on Secondary Inorganic Aerosol 1178 

During Haze Pollution in Beijing: Quantitative Evidence From High‐Resolution 1179 

Observation and Modeling, Geophys. Res. Lett., 48, 10.1029/2021gl095623, 1180 

2021. 1181 

Ge, X., Li, L., Chen, Y., Chen, H., Wu, D., Wang, J., Xie, X., Ge, S., Ye, Z., Xu, J., 1182 

and Chen, M.: Aerosol characteristics and sources in Yangzhou, China resolved 1183 

by offline aerosol mass spectrometry and other techniques, Environ. Pollut., 225, 1184 

74-85, 10.1016/j.envpol.2017.03.044, 2017. 1185 



53 
 

Geng, G., Xiao, Q., Liu, S., Liu, X., Cheng, J., Zheng, Y., Xue, T., Tong, D., Zheng, 1186 

B., Peng, Y., Huang, X., He, K., and Zhang, Q.: Tracking Air Pollution in China: 1187 

Near Real-Time PM2.5 Retrievals from Multisource Data Fusion, Environ. Sci. 1188 

Technol., 55, 12106-12115, 10.1021/acs.est.1c01863, 2021. 1189 

Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, 1190 

M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze 1191 

formation in China, Proc. Natl. Acad. Sci., 111, 17373-17378, 1192 

10.1073/pnas.1419604111, 2014. 1193 

Hu, R., Wang, S., Zheng, H., Zhao, B., Liang, C., Chang, X., Jiang, Y., Yin, R., Jiang, 1194 

J., and Hao, J.: Variations and Sources of Organic Aerosol in Winter Beijing 1195 

under Markedly Reduced Anthropogenic Activities During COVID-2019, 1196 

Environ. Sci. Technol., 10.1021/acs.est.1c05125, 2021. 1197 

Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., Liu, Z., Emery, C., Yarwood, 1198 

G., Wang, Y., Fu, J., Zhang, K., and Li, L.: Recommendations on benchmarks for 1199 

numerical air quality model applications in China – Part 1: PM2.5 and chemical 1200 

species, Atmospheric Chemistry and Physics, 21, 2725-2743, 10.5194/acp-21-1201 

2725-2021, 2021. 1202 

Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., 1203 

Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, 1204 

E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., 1205 

Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El 1206 

Haddad, I., and Prevot, A. S.: High secondary aerosol contribution to particulate 1207 

pollution during haze events in China, Nature, 514, 218-222, 1208 

10.1038/nature13774, 2014. 1209 

Liu, W., Xu, Y., Liu, W., Liu, Q., Yu, S., Liu, Y., Wang, X., and Tao, S.: Oxidative 1210 

potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: 1211 

Seasonal variation and source apportionment, Environ. Pollut., 236, 514-528, 1212 

10.1016/j.envpol.2018.01.116, 2018a. 1213 



54 
 

Liu, Z., Gao, W., Yu, Y., Hu, B., Xin, J., Sun, Y., Wang, L., Wang, G., Bi, X., Zhang, 1214 

G., Xu, H., Cong, Z., He, J., Xu, J., and Wang, Y.: Characteristics of PM2.5 mass 1215 

concentrations and chemical species in urban and background areas of China: 1216 

emerging results from the CARE-China network, Atmos. Chem. Phys., 18, 8849-1217 

8871, 10.5194/acp-18-8849-2018, 2018b. 1218 

Ming, L., Jin, L., Li, J., Fu, P., Yang, W., Liu, D., Zhang, G., Wang, Z., and Li, X.: 1219 

PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal 1220 

variations, and regional pollution events, Environ. Pollut., 223, 200-212, 1221 

10.1016/j.envpol.2017.01.013, 2017. 1222 

Quan, J., Liu, Q., Li, X., Gao, Y., Jia, X., Sheng, J., and Liu, Y.: Effect of 1223 

heterogeneous aqueous reactions on the secondary formation of inorganic 1224 

aerosols during haze events, Atmos. Environ., 122, 306-312, 1225 

10.1016/j.atmosenv.2015.09.068, 2015. 1226 

Tang, X., Chen, X., and Tian, Y.: Chemical composition and source apportionment of 1227 

PM2.5 – A case study from one year continuous sampling in the Chang-Zhu-Tan 1228 

urban agglomeration, Atmos. Pollut. Res., 8, 885-899, 10.1016/j.apr.2017.02.004, 1229 

2017. 1230 

Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen, L., Zhang, 1231 

Z., Wu, Y., Xia, Y., Ye, S., and Zhang, R.: Source apportionment of PM2.5 at 1232 

urban and suburban areas of the Pearl River Delta region, south China - With 1233 

emphasis on ship emissions, Sci. Total Environ., 574, 1559-1570, 1234 

10.1016/j.scitotenv.2016.08.175, 2017. 1235 

Wang, H., Tian, M., Chen, Y., Shi, G., Liu, Y., Yang, F., Zhang, L., Deng, L., Yu, J., 1236 

Peng, C., and Cao, X.: Seasonal characteristics, formation mechanisms and 1237 

source origins of PM2.5 in two megacities in Sichuan Basin, China, Atmos. Chem. 1238 

Phys., 18, 865-881, 10.5194/acp-18-865-2018, 2018. 1239 

Xu, H., Xiao, Z., Chen, K., Tang, M., Zheng, N., Li, P., Yang, N., Yang, W., and Deng, 1240 

X.: Spatial and temporal distribution, chemical characteristics, and sources of 1241 



55 
 

ambient particulate matter in the Beijing-Tianjin-Hebei region, Sci. Total 1242 

Environ., 658, 280-293, 10.1016/j.scitotenv.2018.12.164, 2019. 1243 

Yang, S., Liu, Z., Li, J., Zhao, S., Xu, Z., Gao, W., Hu, B., and Wang, Y.: Insights into 1244 

the chemistry of aerosol growth in Beijing: Implication of fine particle episode 1245 

formation during wintertime, Chemosphere, 274, 129776, 1246 

10.1016/j.chemosphere.2021.129776, 2021. 1247 

Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., and Liu, W.: Characteristics and 1248 

oxidative potential of atmospheric PM2.5 in Beijing: Source apportionment and 1249 

seasonal variation, Sci. Total Environ., 650, 277-287, 1250 

10.1016/j.scitotenv.2018.09.021, 2019. 1251 

Zhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., Zhang, H., and Wang, H.: 1252 

Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn, Sci. 1253 

Total Environ., 630, 72-82, 10.1016/j.scitotenv.2018.02.151, 2018. 1254 

Zhang, Y., Zhang, X., Zhong, J., Sun, J., Shen, X., Zhang, Z., Xu, W., Wang, Y., Liang, 1255 

L., Liu, Y., Hu, X., He, M., Pang, Y., Zhao, H., Ren, S., and Shi, Z.: On the fossil 1256 

and non-fossil fuel sources of carbonaceous aerosol with radiocarbon and AMS-1257 

PMF methods during winter hazy days in a rural area of North China plain, 1258 

Environ. Res., 208, 112672, 10.1016/j.envres.2021.112672, 2022. 1259 

 1260 

 1261 


