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Response to RC#3: 1 

Dear Editor and anonymous referee #4: 2 

We greatly appreciate your consideration and the reviewer’s constructive 3 

comments on the manuscript of “Estimation of Secondary PM2.5 in China and the 4 

United States using a Multi-Tracer Approach” (acp-2021-683). We have carefully 5 

revised the manuscript to address all the comments as described below. Reviewer 6 

comments are shown in blue. Our responses are shown in black. The revised texts are 7 

shown in italics. 8 

 9 

1. The manuscript presents a method for estimating the relative contributions of 10 

primary and secondary PM by proxy. The observed input parameters are CO, PM10 and 11 

PM2.5, however, the method also relies on estimated emissions of OA, EC, OC, fine 12 

dust, PM2.5, sulfate and nitrate, from emission inventories. The authors develop a proxy 13 

for secondary particulate matter on the basis of the observed parameters and estimated 14 

emissions. The motivation is presented as the need for a low cost, operational method 15 

for monitoring the contributions of secondary aerosols to the total PM2.5 levels.  16 

The method appears to have some use for informing operational air quality 17 

management or for informing policy, but the scientific value of the method is not 18 

convincingly presented. It relies on assumptions and inventories that are not universal, 19 

and the manuscript does not present a convincing argument for its use, other than that 20 

it is cheaper than source apportionment methods based on chemical speciation. But it 21 

does not present comparative estimates of primary-secondary contributions with those 22 

methods. 23 

It is questionable if this method has any value. It requires a big body of inputs, as 24 

other chemical transport models, but also relies heavily on assumptions and coefficients 25 

that are externally adjusted, even tuned to fit the model. 26 

Response: Thank you for the comments. The traditional methods to identify 27 
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PM2.5 compositions include observational and simulation methods. The observational 28 

method is currently the most common and useful way for quantitatively investigating 29 

the PM2.5 chemical compositions. Moreover, chemical transport model (CTM) is 30 

another useful tool to identify the composition characteristics of PM2.5. However, the 31 

CTM results are largely dependent on external inputs as the reviewer mentioned such 32 

as emission inventories, boundary conditions, initial conditions, etc. The internal 33 

parameterizations of itself significantly influence the final model results as well (Huang 34 

et al., 2021). 35 

Different from CTM, the MTEA model developed in this study is a statistical 36 

model, which does not suffer from the burden of high requirement in computational 37 

cost and storage. MTEA is positioned as a low economy-/technique-cost tool to 38 

conveniently estimate the primary and secondary PM2.5 in both scientific and practical 39 

areas, although concomitantly it is slightly inferior to the two traditional methods in 40 

terms of identifying detailed PM2.5 compositions and capturing high temporal variation.  41 

The aim of this study, by using MTEA, is to reveal the general characteristics of 42 

primary and secondary PM2.5 pollution over wide spatio-temporal coverages. The 43 

evaluation between MTEA estimation versus various measurements in terms of 44 

monthly mean value shows a satisfying performance (Section 3). At the same time, the 45 

reasonable spatio-temporal patterns of PPM and SPM concentrations disclosed by our 46 

model also inform that MTEA is a promising tool for illustrating general pollution 47 

patterns. Thus, for studies which would like to distinguish primary and secondary PM2.5, 48 

MTEA model can serve as a potential option. In the future, we also hope to cooperate 49 

with the team which focuses on observational studies to broaden the application of 50 

MTEA and reduce the uncertainty. Thanks again and we have rephrased our texts in the 51 

manuscript for a clearer description in terms of the scientific value of our method in 52 

Section 1. 53 

Revision in Section 1:  54 

Nevertheless, both the online and offline measurements require a high level of 55 
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manpower and economic cost, and for this reason, these methods are expensive and 56 

rarely applied in large-scale regions or long-term periods. 57 

Chemical transport model (CTM) is another useful tool to identify the composition 58 

characteristics of PM2.5. The simulation predicted by CTM is featured as high spatio-59 

temporal resolution (Geng et al., 2021). Meanwhile, it also provides vertical profiles of 60 

diverse chemical species (Ding et al., 2016). However, the CTM results are largely 61 

dependent on external inputs such as emission inventories, boundary conditions, initial 62 

conditions, etc. The internal parameterizations of itself significantly influence the final 63 

model results as well (Huang et al., 2021), which leads to uncertainty in the simulated 64 

PM2.5 and its composition. In addition, the burden of high requirement in computational 65 

cost and storage also makes CTM hard to universally use. 66 

In this study, we develop a novel method, Multi-Tracer Estimation Algorithm 67 

(MTEA), with the aim of distinguishing the primary and secondary compositions of 68 

PM2.5 from routine observation of PM2.5 concentration. Different from traditional CTMs, 69 

MTEA proposed by this study is based on statistical assumption and works in a more 70 

convenient way. This algorithm and its application are tested in China and the United 71 

States. In Section 2, we introduce the structure and principle of MTEA. In Section 3, we 72 

evaluate the MTEA results comparing with three PM2.5 composition data sets, (1) short-73 

term measurements in 16 cities in China from 2012 to 2016 reported by previous studies, 74 

(2) continuous long-term measurements in Beijing and Shanghai from 2014 to 2018, 75 

and (3) IMPROVE network in the United States during 2014 and 2018. Additionally, 76 

we also compare MTEA model with one of the most advanced datasets from CTM in 77 

China. Subsequently, in Section 4 we investigate the spatio-temporal characteristics of 78 

PPM and SPM concentrations in China, explain the unexpected haze event in several 79 

cities of China during the COVID-19 lockdown and discuss the complicated correlation 80 

between PM and O3. This study is different from previous works as follows: (1) we 81 

develop an efficient approach to explore PPM and SPM with low economy-/technique-82 

cost and computation burden, (2) we apply this approach to observation data from the 83 

MEE network, offering an unprecedented opportunity to quantify the PM2.5 components 84 

on a large space and time scale.  85 

 86 
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2. The manuscript describes comparisons between estimated and observed primary 87 

particulate matter. Categorization of measured historical data into secondary and 88 

primary aerosols for comparison with the MTEA seems to be based on chemical 89 

compositions, but this process is not clearly described and the criteria are vague. There 90 

has been no attempt to verify the MTEA estimates for ppm by comparing with 91 

published estimates based on receptor modelling, CTMs or AMS studies. There are 92 

many studies in the literature that have produced estimates that can be easily compared 93 

with the outcomes of the MTEA approach, but that has not been done. 94 

Response: Thank you for pointing this out. We have added the description about 95 

categorizing the concentrations of measured historical aerosol chemical species into 96 

PPM and SPM concentrations in Section 2.2.2 and 2.2.3.  97 

The estimation from MTEA model is based on the routine PM2.5 observation. 98 

However, the measurements from literature we summarized in Section 3.1.2 rely on 99 

sampling at different locations. The measurements may be quite different though the 100 

observational campaigns were conducted in the same city. Thus it is difficult to directly 101 

compare PPM concentrations predicted by MTEA with that in various literature. 102 

Therefore, we mainly focus on the comparison in terms of secondary proportions of 103 

PM2.5 between the MTEA method versus various previous studies. Please refer to Table 104 

S4 in the supplementary material for the specific comparisons. Moreover, we also 105 

revised Table S4 to clearly show the method applied by these previous studies (offline 106 

sampling or AMS instrument). 107 

To examine the difference in result between the MTEA approach and traditional 108 

CTM, we adopted the monthly simulated PPM/SPM concentrations from a data fusion 109 

system developed by Tsinghua University. This system, which is named Tracking Air 110 

Pollution in China (TAP), integrates ground measurements, satellite remote sensing 111 

retrievals, emission inventories (MEIC), and CTM simulations (WRF/CMAQ) based 112 

on machine learning algorithms. More descriptions of this dataset can be found at 113 

http://tapdata.org.cn/ (Geng et al., 2021; Geng et al., 2017). We treated the PPM and 114 

SPM concentrations from TAP as a typical model representation. To add this part in the 115 
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manuscript suggested by reviewer, we introduced TAP dataset in Section 2.3 and 116 

showed comparisons between MTEA and TAP in terms of PPM, SPM concentrations 117 

as well as their annual trends in 31 populous cities of China in Section 3.1.3.  118 

Revision in Section 2.2.2: 119 

After accessing the chemical compositions, we categorized them into PPM and 120 

SPM for further evaluation. Specifically, SOA was roughly identified from OM by EC-121 

tracer model (Ge et al., 2017). SPM concentrations were calculated via summing SO4
2-, 122 

NO3
-, NH4

+ and SOA concentrations. Then PPM could be calculated though deducting 123 

SPM from PM2.5. 124 

In addition, we investigated observation-based PM2.5 component analyses in 16 125 

cities of China during 2012-2016 from 32 published studies. This survey offered an 126 

opportunity to compare the estimation by MTEA with the past measurements in the 127 

terms of the secondary fraction of PM2.5. SPM concentrations in literature were roughly 128 

estimated by multiplying OM from 0.5 because of the limit of data source. Meanwhile, 129 

it is noted that the factor which converts OC to OM is dependent on the definition of 130 

each observation study itself. 131 

Revision in Section 2.2.3: 132 

The specific aerosol chemical compositions include ammonium sulfate, 133 

ammonium nitrate, organic/elemental carbon and soil/mineral dust. The categorization 134 

for PPM and SPM in IMPROVE dataset is similar to the process in Section 2.2.2. The 135 

only difference is that SPM concentration is the sum of ammonium sulfate, ammonium 136 

nitrate and SOA. 137 

Revision in Section Table S4: 138 

#Please see below# 139 
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Table S4. List of PM2.5 component measurements (µg m-3) of China in previous studies. 140 
City Period PM2.5 SO42- NO3- NH4+ SOA1 SPM/PM2.5 Mean SPM/PM2.5 Method References 

Beijing 

2012 Summer 103 20.6 15.8 8.3 10.1 53.2% 

31% ~ 80% 

Offline Tian et al., 2015 

2012 - 2013 72 9.3 11.9 5.3 9.6 50.3% Offline Liu et al., 2018b 
2013 Winter 159 25.4 19.0 15.6 32.2a 58.0% Offline Tao et al., 2015 

2013 Winter 143 23.9 20.2 16.5 15.4 53.1% AMS Huang et al., 2014b 

Jan 2014 153 9.6 12.1 6.7 33.8c 40.6% Offline Gao et al., 2018 

Apr 2014 115 10.7 10.7 11.4 15.2c 41.6% Offline Gao et al., 2018 

Jul 2014 96 25.6 25.6 14.1 11.1c 79.7% Offline Gao et al., 2018 

Oct 2014 139 21.1 45.5 13.9 23.0c 74.5% Offline Gao et al., 2018 
2014 Winter 138 21.0 26 14.1 17.4 51.8% Offline Lin et al., 2016 

Jun 2014 - Apr 2015 100 14.3 17.1 11.5 12.4b 55.6% Offline Huang et al., 2017 

May 2015 - Apr 2016 114 8.6 11.1 5.2 10.1 30.9% Offline Yu et al., 2019 

Jul 2015 - Apr 2016 81 9.6 12.4 8.6 7.7 47.1% Offline Xu et al., 2019 

Oct 2016 95 16.8 16.8 12.5 12.3b 61.5% Offline Zhang et al., 2018 

MTEA estimation 2  41% - This study 

Tianjin 

Jun 2014 - Apr 2015 106 16.6 16.2 13.7 10.4b 53.8% 

41% ~ 54% 

Offline Huang et al., 2017 

Jul 2015 - Apr 2016 86 12.1 13.9 10.5 7.3 51.0% Offline Xu et al., 2019 

Jul 2014 113 12.2 16.2 9.3 11.0c 43.0% Offline Gao et al., 2018 

Oct 2014 101 12.8 9.9 8.2 11.1c 41.4% Offline Gao et al., 2018 

2014 Winter 183 19.5 40.7 15.1 21.8c 53.1% Offline Gao et al., 2018 

May 2015 – Apr 2016 120 18.1 20.3 8.5 10.0 47.4% Offline Liu et al., 2018a 
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MTEA estimation  63%  This study 

Shijiazhuang 

Jun 2014 - Apr 2015 155 25.5 23.4 18.8 17.7b 55.0% 
51% ~ 55% 

Offline Huang et al., 2017 

Jul 2015 - Apr 2016 105 16.8 14.9 12.3 9.6 51.0% Offline Xu et al., 2019 
MTEA estimation  49%  This study 

Shanghai 

2012 Spring 70 15.3 8.6 6.4 5.7 51.4% 

26% ~ 71% 

Offline Zhao et al., 2015 

2012 Summer 51 9.7 5.6 3.6 3.7 44.3% Offline Zhao et al., 2015 

2012 Fall 82 17.9 20.2 7.8 7.7 65.4% Offline Zhao et al., 2015 

2012 Winter 70 11.6 13.2 5.6 8.5 55.6% Offline Zhao et al., 2015 

2012 Spring 64 12.0 10.8 4.3 4.9 50.0% Offline Huang et al., 2014a 
2011- 2013 Spring 49 11.0 11.0 6.9 5.9 71.0% Offline Wang et al., 2016a 

2011- 2013 Summer 31 8.1 5.2 4.2 4.7 67.3% Offline Wang et al., 2016a 

2011- 2013 Fall 41 8.8 7.4 4.8 5.2 63.9% Offline Wang et al., 2016a 

2011- 2013 Winter 65 13.0 13.2 8.3 6.7 63.4% Offline Wang et al., 2016a 

2012 - 2013 68 13.6 11.9 5.8 8.6 58.7% Offline Liu et al., 2018b 

Oct - Nov 2013 75 12.9 15.0 6.6 4.2 51.6% Offline Ming et al., 2017 
Dec 2013 – Jan 2014 138 19.5 29.1 12.6 10.3 51.8% Offline Ming et al., 2017 

Mar 2014 – Apr 2014 96 12.3 10.4 5.5 4.5 34.1% Offline Ming et al., 2017 

Jun 2014 – Jul 2014 56 6.7 2.8 2.1 2.9 25.9% Offline Ming et al., 2017 

2013 Winter 91 10.8 12.4 7.5 21.8b 57.7% AMS Huang et al., 2014b 

Dec 2014 – Jan 2015 103 18.3 25.4 14.4 14.1b 70.1% Offline Du et al., 2017 

Mar 2015 – Apr 2015 74 8.7 11.2 5.7 9.2b 47.0% Offline Du et al., 2017 
MTEA estimation  67%  This study 

Nanjing Apr – May 2013 110 23.1 11.7 6.4 17.7a 53.5% 52% ~ 79% Offline Li et al., 2016 
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Aug 2013 86 18.4 8.1 5.4 14.2a 53.6% Offline Li et al., 2016 

Oct 2013 77 12.6 7.3 3.8 36.8a 78.6% Offline Li et al., 2016 

Dec 2014 – Jan 2015 100 11.7 16.4 12.3 11.8b 52.2% Offline 
Du et al., 2017 

Mar 2015 – Apr 2015 83 21.4 16.1 7.9 9.1b 65.6% Offline 

MTEA estimation  53%  This study 

Hangzhou 
Oct 2013 36 9.7 5.3 6.0 6.5 76.4% 76% Offline Wu et al., 2016 

MTEA estimation  53%  This study 

Guangzhou 

Dec 2012 – Jan 2013 75 10.6 5.8 5.1 6.5 37.3% 

37% ~ 58% 

Offline Liu et al., 2014 

2012 - 2013 75 13.1 7.2 4.8 8.4 44.6% Offline Liu et al., 2018b 
Nov 2012 – Dec 2013 61 9.3 5.7 4.2 11.9b 51.0% Offline Chen et al., 2016 

2013 Summer 51 8.9 4.9 4.0 6.6 47.8% Offline Cui et al., 2015 

2013 Fall/Winter 68 9.8 7.3 4.5 9.4 45.6% Offline Cui et al., 2015 

2013 Winter 69 12.7 8.9 6.9 11.4b 57.8% AMS Huang et al., 2014b 

2014 Spring 44 8.2 2.4 3.6 4.5 42.5% Offline Tao et al., 2017 

2014 Summer 37 7.6 0.3 2.6 3.7 38.4% Offline Tao et al., 2017 
2014 Fall 48 11.4 1.0 4.4 4.7 44.8% Offline Tao et al., 2017 

2014 Winter 63 9.8 5.5 4.8 7.0 43.0% Offline Tao et al., 2017 

MTEA estimation  66%  This study 

Xi’an 

Dec 2012 137 13.5 9.8 6.6 21.6b 37.6% 

33% ~ 55% 

Offline Zhang et al., 2015 

2012 Spring 164 17.8 15.2 6.5 13.9 32.6% Offline Niu et al., 2016 

2012 Summer 109 25.0 10.1 6.6 8.8 46.3% Offline Niu et al., 2016 
2012 Fall 155 18.7 16.5 8.2 18.4 39.9% Offline Niu et al., 2016 

 Nov 2012 – Feb 2013 244 32.1 29.3 16.8 39.7 48.3% Offline Niu et al., 2016 
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Dec 2014 – Nov 2015 113 15.2 16.6 8.4 21.3 54.7% Offline Dai et al., 2018 

MTEA estimation  55%  This study 

Chengdu 

Oct – Nov 2014 62 10.5 9.3 6.9 8.3b 56.5% 

44% ~ 57% 

Offline Wang et al., 2018 
Jan – Feb 2015 114 16.4 17.5 12.7 15.8b 54.7% Offline Wang et al., 2018 

Apr 2015 48 8.3 5.9 5.1 5.0b 50.6% Offline Wang et al., 2018 

Jul 2015 45 9.7 3.9 4.2 5.9b 52.6% Offline Wang et al., 2018 

Jan 2015 48 6.1 3.7 2.4 8.7 43.5% Offline Li et al., 2017a 

MTEA estimation  46%  This study 

Chongqing 

2012 - 2013 74 19.7 6.5 6.1 8.6 55.3% 

44% ~ 56% 

Offline Liu et al., 2018b 
Oct – Nov 2014 56 9.9 7.8 5.7 7.8b 55.7% Offline Wang et al., 2018 

Jan – Feb 2015 115 17.5 15.8 11.3 19.4b 55.7% Offline Wang et al., 2018 

Apr 2015 58 10.4 5.9 5.2 8.0b 50.1% Offline Wang et al., 2018 

Jul 2015 54 11.1 1.6 4.0 6.8b 43.5% Offline Wang et al., 2018 

MTEA estimation  61%  This study 

Lanzhou 

Dec 2012 120 11.8 7.2 6.7 21.2 39.1% 

18% ~ 41% 

Offline Tan et al., 2016 
Jun – Jul 2013 34 4.3 1.9 1.9 5.8 40.9% Offline Tan et al., 2016 

Apr – May 2014 83 4.0 1.7 0.8 8.0 17.5% Offline Wang et al., 2016b 

Aug 2014 38 4.8 2.0 1.3 3.5 30.5% Offline Wang et al., 2016b 

Oct 2014 93 5.8 7.1 3.6 12.7 31.4% Offline Wang et al., 2016b 

Jan, Dec 2014 141 7.6 10.1 6.0 18.2 29.7% Offline Wang et al., 2016b 

MTEA estimation  63%  This study 

Changsha 
Sep – Oct 2013 102 19.4 2.6 8.7 12.5b 42.4% 

41% ~ 44% 
Offline Tang et al., 2017 

Dec 2013 – Jan 2014 145 19.3 9.7 14.3 20.5b 44.0% Offline Tang et al., 2017 
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Apr – May 2014 97 17.0 1.4 7.5 14.0b 41.1% Offline Tang et al., 2017 

Jul – Aug 2014 78 13.9 2.9 7.4 9.4b 43.1% Offline Tang et al., 2017 

MTEA estimation  67%  This study 

Haikou 

Jan 2015 17 3.1 0.5 1.0 2.3 40.1% 

32% ~ 40% 

Offline Liu et al., 2017 

Mar 2015 9 1.6 0.2 0.5 1.2 38.8% Offline Liu et al., 2017 

Jul 2015 23 3.8 0.3 0.8 2.4 31.7% Offline Liu et al., 2017 

Sep 2015 47 7.9 3.1 3.0 2.8 35.7% Offline Liu et al., 2017 

MTEA estimation  61%  This study 

Zhengzhou 

Oct 2014 143 19.6 17.9 9.2 12.0 41.0% 

41% ~ 54% 

Offline Jiang et al., 2017 
Dec 2014 – Jan 2015 191 23.5 26.5 19.8 22.6 48.4% Offline Jiang et al., 2017 

Apr 2015 138 19.7 20.3 14.4 11.3 47.6% Offline Jiang et al., 2017 

Jul 2015 110 24.2 14.3 13.9 7.3 54.3% Offline Jiang et al., 2017 

MTEA estimation  60%  This study 

Shenyang 
2013 – 2014 82 13.2 4.6 4.5 11.7 41.5% 42% Offline Liu et al., 2018b 

MTEA estimation  51%  This study 

Lhasa 
2013 – 2014 36 0.8 0.5 0.4 7.6 25.8% 26% Offline Liu et al., 2018b 

MTEA estimation  64%  This study 
1 SOA = 0.5*OM, OM = f * OC. Default f is 1.2. In case of a, b and c, the f is 1.8, 1.6 and 1.4 respectively. 141 
2 For period of 2014-2018. 142 
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Revision in 2.3: 143 

2.3 PPM and SPM estimated by CTM 144 

Apart from evaluating PPM and SPM with various composition measurements, we 145 

also compared MTEA estimation with CTM results. Here we utilized the PM2.5 146 

composition gridded dataset with a spatial resolution of 10 km×10 km developed by 147 

Tsinghua University for further comparisons. This dataset is named Tracking Air 148 

Pollution in China (TAP, available at http://tapdata.org.cn/, last access 15 Mar 2022) 149 

(Geng et al., 2021; Geng et al., 2017). TAP is directly calculated by Community 150 

Multiscale Air Quality (CMAQ) model. In terms of methodology, based on machine 151 

learning algorithms, TAP integrates surface measurements, satellite remote sensing 152 

retrievals, emission inventories (MEIC) with CMAQ simulations. Moreover, it is also 153 

constrained by ground aerosol composition measurements. We collected the monthly 154 

mean concentrations of aerosol species during 2014-2018 from TAP, including SO4
2-, 155 

NO3
-, NH4

+, OM, BC and total PM2.5. SOA was further calculated from OM by EC-156 

tracer model (Ge et al., 2017). SPM concentrations were inferred by summing SO4
2-, 157 

NO3
-, NH4

+ and SOA. PPM concentrations were then obtained via deducting SPM from 158 

PM2.5. 159 

Revision in Section 3.1.3: 160 

3.1.3 Comparison with the CTM simulation 161 

In addition to evaluating our model via PPM and SPM measurements in China, 162 

we also provided a comparison between MTEA estimation and CTM simulation in 31 163 

populous cities based on the monthly mean PM concentrations. As shown in Fig. R1 a-164 

b, the correlation coefficient r for TAP versus MTEA is 0.86 in terms of PPM 165 

concentration and 0.91 in terms of SPM concentration, showing a strongly positive 166 

correlation between the two models. At the same time, both slopes (1.26 and 0.89) and 167 

intercepts (–3.7 μg m-3 and 1.9 μg m-3) of the regression about PPM and SPM illustrate 168 

that most of the scattering spots distribute around 1:1 ratio line.  169 

Moreover, we further compared the long-term varying trends between MTEA 170 
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versus TAP in averaged PPM and SPM concentration of 31 populous cities (Fig. R1 c-171 

d). Both of them exhibit a descending interannual trend in PPM concentration, with a 172 

rate of –2.0 μg m-3 yr-1 for MTEA and –1.9 μg m-3 yr-1 for TAP. In terms of SPM 173 

concentration, the decline rates are –2.9 μg m-3 yr-1 and –2.8 μg m-3 yr-1, respectively. 174 

Meanwhile, the statistical correlations between two interannual variations are 0.98 175 

(PPM) and 0.99 (SPM), which are quite close to 1, showing a good agreement. 176 

Thus, the comparisons about PPM/SPM concentration magnitudes and 177 

interannual variations between two kinds of models suggest that statistical model can 178 

infer similar estimation with traditional CTM. Meanwhile, it is again highlighted that 179 

our model is capable of capturing reasonable PPM and SPM concentrations. 180 

Furthermore, it is also shown that MTEA can track primary and secondary component 181 

of PM2.5 by using proxy at a much lower cost when compared to traditional air quality 182 

model simulations. 183 

 184 

Figure R1. Comparisons between MTEA and TAP in terms of PPM, SPM concentrations and their 185 

annual trends from 2014 to 2018 in 31 populous cities of China. In panel (a) and (b), each blue solid 186 

dot stands for a monthly mean concentration of PPM or SPM in one of 31 populous cities. The 187 
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number of samples is 1860 (60×31). The metrics r, s and d represent correlation coefficient, slope 188 

and intercept of fitting line, respectively. The fitting method follows the Reduced Major Axis (RMA) 189 

regression. In panel (c) and (d), MTEA and TAP are marked by blue circles and red triangles. Each 190 

dot represents the mean PPM/SPM concentration of 31 cities. The colorful numbers stand for the 191 

annual trends of PPM and SPM concentrations during 2014-2018. At the same time, the correlation 192 

coefficient (r) between MTEA versus TAP is also provided. 193 

 194 

3. It is true as the authors state that those other methods are labor-intensive and 195 

expensive, but they are also scientifically tried and tested and therefore more 196 

convincing, so it would make sense to develop the performance of the MTEA against 197 

such methods more than has been done in this manuscript. 198 

Response: Thank the reviewer for pointing this out. There is no doubt that the 199 

measurements via offline or online methods are absolutely crucial to scientifically 200 

understanding the compositions of PM2.5. To some extent, the identification of PM2.5 201 

based on these methods offers a conclusive insight for model developers, and the MTEA 202 

model we developed should be in line with the observational results. We heartfeltly 203 

acknowledged the efforts that the highly scientific observations made. We compared 204 

the MTEA results with a series of observational studies as shown in Table S4, and 205 

revised the related text in Section 2.2.  206 

In addition, this study mainly devotes to illustrating the general pattern of primary 207 

and secondary PM2.5 pollution over a wide spatio-temporal coverage with the aid of a 208 

convenient proxy tool, and has no intention to replace the crucial observational methods 209 

with MTEA. Thank you for the review’s comment again and we have revised the related 210 

texts in Section 1 to clarify the roles and relationships between observational method 211 

and MTEA. 212 

Revision in Section 1:  213 

To understand the severe PM2.5 pollution characteristics in China over the past 214 

several years (An et al., 2019; Song et al., 2017; Yang et al., 2016), many observational 215 
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studies have been conducted on PM2.5 components. The basic methods of these studies 216 

are offline laboratory analysis and online instrument measurement such as aerosol 217 

mass spectrometer (AMS). The observational studies are crucial to exactly identify the 218 

aerosol chemical compositions. For offline approach, it is the most widely used method 219 

(Ming et al., 2017; Tang et al., 2017; Tao et al., 2017; Dai et al., 2018; Gao et al., 2018; 220 

Liu et al., 2018a; Wang et al., 2018; Zhang et al., 2018; Xu et al., 2019; Yu et al., 2019) 221 

and is successfully applied to investigate the inter-annual variations of different aerosol 222 

chemical species (Ding et al., 2019; Liu et al., 2018b). In terms of online approach, 223 

AMS is the state-of-the-art method for analyzing different chemical species with high 224 

time resolution, which has great application value in diagnosing the causes of haze 225 

events in China over the past decade (Huang et al., 2014; Quan et al., 2015; Guo et al., 226 

2014; Yang et al., 2021; Gao et al., 2021; Hu et al., 2021; Zhang et al., 2022). 227 

 228 

4. Also, the manuscript states that the numerical calculations were done on a 229 

supercomputing system. It can be argued that if the approach requires a supercomputing 230 

facility, then it is no less costly or inaccessible than the existing source apportionment 231 

methods, but the cost has been shifted from scientific equipment to IT services. 232 

Response: Thank you for the comment and the careful reminding. We indeed 233 

agree that traditional numerical models such as WRF-Chem, CMAQ and CAMx does 234 

cost considerable computational sources. However, our model is based on the statistical 235 

principle. Actually, it is capable of running on the personal computer (PC) platform 236 

with basic equipment requirement. In the future, we look forward to simplifying the 237 

model for a more lightweight version so that it can be easily utilized for application 238 

anywhere. 239 

 240 

5. The manuscript does touch on a discussion that has scientific interest, and that 241 

is contained in the sections 4.1 and 4.2 on spatial and temporal variation. The discussion 242 

on spatial variation has some merit. There is potentially a better motivation for 243 
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developing the MTEA approach in order to inform a discussion on the spatial and 244 

temporal variation where only proxy parameters are available, by leveraging national 245 

monitoring networks to learn more about geographical distribution of secondary 246 

aerosols and feed into a discussion on variations in atmospheric processes. 247 

Response: Thank you for your comments and rigorous attitude to scientific 248 

research. We have rephrased our statement of the motivation for this study in Section 5. 249 

Revision in Section 5: 250 

In this study, we developed a new approach MTEA to distinguish the primary and 251 

secondary compositions of PM2.5 efficiently from routine observation of PM2.5 252 

concentration with much less computation cost than traditional CTMs. 253 

Meanwhile, our model posed a great agreement with the reanalysis dataset from 254 

one of the most advanced CTMs in China as well. 255 

The methods to quantify different PM2.5 components are often based on either lab 256 

analysis of offline filter samplings or online observation instruments such as AMS. 257 

However, these methods are often labor-intensive, strict technical and high economic 258 

cost. CTM is another useful tool to reveal the composition characteristics of PM2.5. But 259 

traditional CTMs are short in high requirement of hardware as well. Our study develops 260 

an efficient approach based on statistical principle to explore PPM and SPM with lower 261 

cost, and applying this approach to large-scale observation networks, such as the MEE 262 

network, can offer an unprecedented opportunity to quantify the PM2.5 components on 263 

a large space and time scale.  264 
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