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Response to RC#1: 1 

Dear Editor and anonymous referee #3: 2 

We greatly appreciate your consideration and the reviewer’s constructive 3 

comments on the manuscript of “Estimation of Secondary PM2.5 in China and the 4 

United States using a Multi-Tracer Approach” (acp-2021-683). We have carefully 5 

revised the manuscript to address all the comments as described below. Reviewer 6 

comments are shown in blue. Our responses are shown in black. The revised texts are 7 

shown in italics. 8 

 9 

This study developed a new method to determine the portion of primary and 10 

secondary PM2.5 using some basic measurements and inventory. They evaluated this 11 

new approach through the comparison with lots of observations in China and US. In 12 

addition, they analyzed the temporal and spatial variation as well as correlation 13 

between O3 and PM2.5 using the results from their new method. Although their 14 

evaluation looks very well, I think their results were not enough convincing because 15 

of unclear statement of their method and defect of this method. I would suggest major 16 

revision before reconsideration. My detail comments are following. 17 

Response: We thank the reviewer for the comments. According to the reviewer’s 18 

helpful and insightful comments, we have revised our manuscript and the point-by-19 

point responses to the specific comments were given subsequently. We sincerely hope 20 

the revisions are able to address the reviewer’s concerns. 21 

 22 

1. Eq (1) and Eq (2): These equations are the core of their method. They regarded 23 

CO as one tracer to represent the combustion process and assumed the combustion 24 

emission sources are same for CO, OC and EC. This assumption is mostly correct, but 25 

the emission factor/emission ratio of CO, OC and EC from different combustion 26 

sources are different. I think it is unconvincing to use one single coefficient without 27 
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the influence of diversity of sources to standard for all conditions. I may 28 

misunderstand something, please discuss this uncertainty or make this clear. 29 

Response: Thanks for the conducive comments. We also do believe that the 30 

emission factors of CO, OC and EC from different sources are various as well. Our 31 

method tracks the combustion process, which produces OC and EC, by regarding CO 32 

as the tracer. However, the correlation between different sources of diverse 33 

carbonaceous matter is hard to find out with the aid of current routine observations of 34 

CO. The coefficients in Eq. 1 are aimed at representing the relative contribution of 35 

combustion process and flying dust to primary PM2.5. We constrained the uncertainty 36 

of both coefficients by setting up a set of sensitivity tests. The specific discussion 37 

about this uncertainty is in Section 4.5. The specific configuration issue your 38 

concerned about the sensitivity experiment will be clarified in the following 3rd point. 39 

The final experiment result indicates that the adjustment of coefficient for CO (a) 40 

within 0.1 does not obviously affect the estimated secondary proportions of PM2.5 (< 41 

3%). To make this point clearer, the detailed description of this part has been 42 

corrected in the revised manuscript as follows. 43 

Revision in Section 2.1:  44 

As shown in Eq. 1, we use a and b to quantify the relative contributions of 45 

combustion and dust process to PPM. Given that the complicated process such as the 46 

combustion from multiple sources is hard to represent via current routine CO 47 

observations, we avoid considering the correlation among these sources but focus on 48 

the relative weights of combustion process and flying dust. Meanwhile, the 49 

uncertainty resulting from the apportioning coefficient a and b will be further 50 

discussed in Section 4.5. 51 

 52 

2. Eq (2): why did you name b as emission of fine dust? To my knowledge, 53 

MEIC does not include the emission of dust even urban dust. 54 

Response: Thanks for your concerns. The dust emissions are not specifically 55 
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separated from PM2.5 emissions in MEIC. In fact, the composition of PM2.5 emission 56 

in MEIC includes EC, OM, sulfate, nitrate and other trace elements such as Al, Ca, Si, 57 

Fe, Mg, K and other species etc. (Li et al., 2017a). Trace elements are usually related 58 

to the flying dust from constructions and onroad traffic transportation. In the MTEA 59 

approach, we would like to represent the dust-related part of PPM with the emissions 60 

of the mineral dust in fine mode particulate matter. We calculated the dust-related 61 

emissions by deducting the emissions of EC, OM, sulfate and nitrate from total PM2.5 62 

emissions. We revised the relevant texts for a clearer statement. 63 

Revision in Section 2.1:  64 

Coefficient b is aimed at reflecting the activity intensity of fine mode dust by 65 

counting its emissions. However, MEIC does not directly provide fine mode dust 66 

emissions. It is included in the emissions of total PM2.5 (Li et al., 2017a). Thus we 67 

inferred the fine mode dust emission by deducting the emissions of EC, POA, sulfate 68 

and nitrate from the PM2.5 emissions. 69 

 70 

3. I did not understand how you did the sensitivity experiment to examine the 71 

uncertainty in the inventories. Page 16, you said you changed the emission coefficient 72 

with 10%. If so, how can you keep a+b=100%? According to my understanding on 73 

this new method, the results should have large dependence on the inventory of PM2.5, 74 

OC, EC even the factor you used to decide OA, SO4
2- and NO3

-. I would strongly 75 

suggest setting up more comprehensive and scientific sensitivity experiments to 76 

discuss the dependence on the inventory. 77 

Response: Thank you for your conducive comments and rigorous attitude to 78 

scientific research. Coefficients a and b are determined by calculating the relative 79 

ratio between EC+POA to dust as Eq. 1-2. Hence the uncertainty of emission 80 

inventory can lead to the changes of the ratio a to b. In Section 4.5, we tested the 81 

adjoint changes of the final estimated secondary proportions of PM2.5 by adjusting the 82 

coefficient a. The adjustive test includes two parts. Firstly, we increased the value of a 83 
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in each city by 0.1 to check the model results in the case of underestimating the 84 

contributions of combustion process (or overestimating the contributions of dust 85 

process). Under this circumstance, the coefficient b which represents dust process 86 

should be decreased by 0.1. On the contrary, we also decreased the value of a in each 87 

city by 0.1 to check the model results in the case of overestimating the contributions 88 

of combustion process (or underestimating the contributions of dust process). 89 

Meanwhile, the coefficient b which stands for dust process is increased by 0.1. The 90 

sum of a and b is still 100%. The sensitivity experiment results indicate that the 91 

disturbance of coefficient a (±0.1) lead to changes in the secondary proportions of 92 

PM2.5 within ±3% (refer to Table S5 in the supplementary material). In addition, the 93 

discussion about the uncertainty of the primary sulfate and nitrate emissions also 94 

reveals that the predicted results are not sensitive to their emissions (refer to Section 95 

2.1 and Table S1 in the supplementary material). Therefore, we indeed agree that the 96 

emission inventory can pose impacts on our model estimation, but the effects are not 97 

obvious.  98 

The assumed tracer of PPM (i.e. X, see Eq. 1) is one of the cores of MTEA 99 

approach. However, the most determinative stuff for the final results of our model is 100 

the principle of the minimum correlation between PPM and SPM but not only the 101 

value of the tracer X. To prove this view, we also carried out another kind of test in 102 

adjusting X by changing the concentrations of CO and PMC. We (1) increased CO 103 

concentration by 10% as well as decreased PMC concentration by 10% and (2) 104 

decreased CO concentration by 10% as well as increased PMC concentration by 10%. 105 

Both sets of adjustment demonstrate changes within ±2% in the estimated secondary 106 

proportions of PM2.5 in all cities except for Urumqi (Table R1). This phenomenon also 107 

supports that the impacts of the tracer X on the final model results are not obvious. To 108 

clearly state the point mentioned by the reviewer, we have rephrased the relevant texts 109 

in the manuscript. 110 

Revision in Section 2.1: 111 

We evaluated the potential effect of the coefficient, by conducting a set of 112 
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comparative simulation with the coefficient of 0.03, and found that the final estimated 113 

SPM was not sensitive to this coefficient (Table S1). Thus we concluded that the 114 

uncertainty of primary sulfate and nitrate emissions did not significantly influence the 115 

final estimation of MTEA model. For other uncertainties of X which are dependent on 116 

emission intensities or tracer concentrations, we would conduct discussions in the 117 

later Section 4.5. 118 

Revision in Section 4.5: 119 

To evaluate the uncertainty, a comparison test was conducted by adjusting the 120 

apportioning coefficient (the a and b in Eq. 1) with a disturbance of ±0.1. Firstly, we 121 

decreased the value of a in each populous city by 0.1. Meanwhile, the coefficient b 122 

increased by 0.1. This scenario indicates an overestimation in contribution of 123 

combustion-related process to primary PM2.5 or underestimation in contribution of 124 

dust-related process. Secondly, we increased the value of a in each populous city by 125 

0.1 (decreased b by 0.1) for checking the opposite case. The results are presented in 126 

Table S5 and point out that the estimated secondary proportions of PM2.5 varied less 127 

than ±3% in most populous cities caused by the changes of the apportioning 128 

coefficient. This sensitivity experiment highlights that the apportioning coefficients 129 

depending on emissions has limited impacts on the final estimation results. Generally, 130 

the uncertainty of apportioning coefficient is one of two factors that directly affect the 131 

tracer X. The other one is the concentration of CO and PMC itself. Hence, we also 132 

conducted a similar test to check the impacts of tracer X on the model estimation by 133 

changing the tracer concentrations mentioned in Eq.1. Specifically, we (1) increased 134 

CO concentration by 10% as well as decreased PMC concentration by 10% and (2) 135 

decreased CO concentration by 10% as well as increased PMC concentration by 10%. 136 

Both sets of adjustment show changes within ±2% in the estimated secondary 137 

proportions of PM2.5 in all cities except for Urumqi (Table S6). This phenomenon from 138 

the perspective of tracer concentration also supports that the impacts of the tracer X 139 

on the final model results are limited. In summary, we believe that the most 140 

determinative stuff for the final results of our model is the principle of the minimum 141 
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correlation between PPM and SPM but not the tracer X which relies on emissions or 142 

concentrations. 143 

Table R1. Impacts of tracer concentration uncertainty on the estimated secondary proportion of 144 

PM2.5 1 in China (Unit: %). 145 

City 

Secondary 

proportion of 

PM2.5 

Change of secondary proportion of PM2.5 

1.1 * CO concentration 

& 0.9 * PMC concentration 

0.9 * CO concentration 

& 1.1 * PMC concentration 

Beijing 40.3 -0.01 0.01 

Tianjin 61.9 -0.32 -0.52 

Shijiazhuang 44.8 -0.26 -0.28 

Taiyuan 43.1 0.22 0.17 

Hohhot 48.6 -0.03 -0.01 

Shenyang 48.7 -0.06 -0.06 

Changchun 47.9 0.03 0.04 

Harbin 66.9 0.22 -0.59 

Shanghai 68.0 -1.51 -1.90 

Nanjing 50.3 0.00 0.03 

Hangzhou 45.6 -0.42 -0.46 

Hefei 65.4 -1.57 -1.73 

Fuzhou 64.8 -0.25 -0.44 

Nanchang 62.5 -0.33 -0.42 

Ji'nan 54.6 -0.04 -0.02 

Zhengzhou 54.6 0.14 0.14 

Wuhan 61.5 -1.45 -1.49 

Changsha 65.9 -1.60 -1.74 

Guangzhou 65.2 0.00 -0.28 

Nanning 65.2 -0.22 -0.47 

Haikou 65.9 -0.15 -0.09 

Chongqing 62.7 -0.23 -0.31 

Chengdu 45.3 0.42 0.44 

Guiyang 65.6 -0.22 -0.50 

Kunming 70.4 -0.40 -0.69 

Lhasa 56.1 0.07 0.05 

Xi'an 52.6 -0.04 -0.01 

Lanzhou 60.0 0.15 0.02 

Xining 59.1 -0.56 -0.60 
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Yinchuan 59.5 0.02 -0.06 

Urumqi 72.1 -2.70 -2.85 

1 Based on the MEE observations in 2016. 146 

 147 

4. Figure 3, as I saw, the largest concentration is < 60 μg/m3. Why not short the 148 

range of axis to spread those dots? 149 

Response: Thanks for your highly careful reminding. We have reduced the range 150 

of axis from 130 to 65 for aesthetics. And the revised figure is shown below. 151 

Revision in Fig. 3: 152 

 153 

 154 

5. P8L7: Why did you remove the heavy pollution cases here as well as in 155 

Section 4? As you stated at P10L25, you would like to avoid the influence of extreme 156 

high primary emission cases. However, mostly heavy pollution cases are caused by 157 

unfavored meteorological condition but not caused by sudden high primary emission 158 

(except the biomass burning cases). I would be curious that how your method applied 159 

to analyze the heavy pollution cases. In general, it is more important to understand the 160 

contribution of secondary particles to heavy pollution cases than the general 161 
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conditions. 162 

Response: Thanks for your highly conducive comments and rigorous attitude to 163 

scientific research. The data preprocessing in P8L7 and P10L25 are different. The 164 

data preprocessing in Section 3.1.1 is aimed at removing the gap between long-term 165 

measurements of PM2.5 at a single site and routine observation of PM2.5 from national 166 

network for further evaluation.  167 

However, the data preprocessing in Section 4 is prepared for the usage of data 168 

from MEE. To address reviewer’s concern, we take estimation in 2016 as an example 169 

and make a comparison. MTEA method shows that the estimated secondary 170 

proportions of PM2.5 without excluding the heavy polluted cases are 2.0-13.7% lower 171 

than that including the data preprocessing (Fig. R1). We agree with the reviewer that 172 

unfavorable meteorological conditions are major causes for haze events. Under these 173 

unfavored meteorological conditions, the assumed tracer X may have extremely high 174 

co-linear relationship with total PM2.5. Thus the PPM concentrations may be falsely 175 

overestimated. Here we excluded these days to avoid the incorrectly estimation and 176 

focus more attention on the common characteristics of PPM/SPM during the general 177 

periods. We revised the statement in Section 3.1.1 and Section 4 for a clearer version. 178 

Revision in Section 3.1.1: 179 

Given the discrepancy in PM2.5 concentrations between in-situ measurements of 180 

a single site and multiple MEE national sites, we firstly preprocessed the data for 181 

further evaluation. In data preprocessing, we removed the in-situ daily measurements 182 

whose value was over 30 μg·m-3 higher than the city average (from MEE). 183 

Revision in Section 4: 184 

The observations during severe haze events (top 10% CO and PMC polluted 185 

days) were excluded to avoid the influence of unfavorable meteorological conditions 186 

and extreme high primary emission cases. Unfavorable meteorological conditions are 187 

major causes for haze events. PPM under these unfavored meteorological conditions 188 

may have considerable high co-linear relationship with total PM2.5. The concentration 189 
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of SPM from complicated formation pathways is then underestimated. Therefore, we 190 

excluded these polluted days to focus more attention on general characteristics of 191 

PPM and SPM concentration. 192 

 193 
Figure R1. The estimated secondary proportions of PM2.5 in case of including (No_Ex_top_10%) 194 

and excluding top 10% polluted days (Ex_top_10%) in 2016. 195 

 196 

6. P10L30: Could you explain what is regional background cities you defined 197 

here? Usually, cities are not background. 198 

Response: Thank you for pointing this out. We agree that cities usually are not 199 

categorized as background regions. We are aimed at disclosing the discrepancy in 200 

PPM/SPM among diverse cities which depend on different levels of anthropogenic 201 

activity. The 19 regional background cities in this study are chosen because they 202 

suffered the least PM2.5 pollution during 2014-2018. The averaged mean PM2.5 203 

concentration of each city is less than 35.0 μg m-3 (National Ambient Air Quality 204 

Standard level Ⅱ of China, NAAQS) except for Guyuan, Ningxia Province (refer to 205 

Table S3 in the supplementary material). We believe that these selected cities can 206 

generally reveal the PM pollution characteristics of the regions which are under sparse 207 

anthropogenic emissions. For a clearer expression, we have revised the related texts in 208 

the manuscript. 209 

Revision in Section 2.2.1: 31 among the 50 cities are provincial capital cities, 210 

employed to represent populous cities, while the rest 19 relatively small cities are 211 

categorized as regional background cities (Table S3). The mean PM2.5 concentration 212 
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of each regional background city is less than 35 μg m-3 (National Ambient Air Quality 213 

Standard level Ⅱ of China, NAAQS) except for Guyuan, indicating that they are 214 

slightly impacted by anthropogenic activities. By comparing populous cities with 215 

regional background cities, we could reveal the discrepancy in PPM and SPM among 216 

those regions which suffer from different levels of PM2.5 pollution. 217 

 218 

7. Section 4.2.1: I think the seasonal variation of PPM and SPM is largely 219 

depend on the seasonal variation of emissions you applied. 220 

Response: Thank you for your comments. We indeed agree with the reviewer 221 

that the seasonal pattern of the estimated PPM and SPM concentration can be 222 

attributed to the seasonal variations of emissions. Taking Shanghai as an example, we 223 

tested the impacts of the seasonal variations of emissions on the estimated PPM and 224 

SPM concentrations by comparing two cases (i.e. seasonal emissions in this study and 225 

homogenous emissions in the ideal sensitivity experiment). As listed in Table R2, 226 

though the seasonal maxima/minima of PPM and SPM concentration still happen in 227 

the wintertime/summertime, but the specific concentrations significantly change. The 228 

maximum of relative change can be 10% (PPM in DJF, changes from 15.8 μg·m-3 to 229 

14.3 μg·m-3). 230 

Table R2. Comparison of seasonal PPM and SPM concentrations between applying seasonal 231 

emissions or homogenous emissions in Shanghai (Unit: μg·m-3). 232 

  MAM JJA SON DJF 

PPM 

Seasonal emissions 

 (This study) 
12.4 11.1 11.7 15.8 

Homogenous emissions 

(Ideal study) 
12.8 11.7 12.2 14.3 

SPM 

Seasonal emissions 

(This study) 
29.5 22.5 20.8 25.4 

Homogenous emissions 

 (Ideal study) 
29.2 21.9 20.3 26.8 

 233 
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8. Section 4.2.2: Did you use the emission inventory for specific year here? 234 

China conducted a large reduction on PM2.5 emission since 2014. If you did not use 235 

the specific inventory, the estimated trend of PPM and SPM would not make sense, 236 

even though they agreed with observations. In addition, could you show the 237 

correlation coefficient between the observation and estimation here? 238 

Response: Thanks for your concern. We indeed agree with the reviewer’s 239 

opinion that the emission inventory should be matched for each year. For 240 

anthropogenic emissions from 2014 to 2017, we utilized the MEIC emission 241 

inventory (v1.3) developed by Tsinghua University, which is publicly offered at their 242 

website (http://meicmodel.org/) (Li et al., 2017a; Li et al., 2017b). In terms of 243 

emissions after 2017, we also accessed from MEIC support team (Zheng et al., 2021). 244 

For the correlation coefficient between the observation and estimation in Section 4.2.2, 245 

we have followed the suggestion from the reviewer and showed it both in the related 246 

figure and the related texts in the manuscript. 247 

 248 

Revision in Section 4.2.2: 249 

Applying the MTEA model to this case, we are delighted to find that our model 250 

not only successfully reproduces the consistent decreasing trends of PPM and SPM in 251 

Beijing and Shanghai (correlation coefficient r of observation versus estimation 252 

ranges from 0.83 to 0.89), but also captures the different trends in secondary 253 
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proportions of PM2.5 in the two cities (–0.6% yr-1 in Beijing and 0.3% yr-1 in 254 

Shanghai). 255 

 256 

9. Section 4.3: The same issue as above. Did you update the inventory to the 257 

lockdown condition? If yes, please state the inventory you used here and the decrease 258 

in the emission of PM2.5, CO, OC, EC. 259 

Response: Thank you for your concern. We used the emission reduction ratio in 260 

of various air pollutants during the COVID-19 lockdown from Huang et al. (2020). 261 

The specific emission reduction ratios of various air pollutants are listed in Table R3. 262 

Meanwhile, we modified the related texts in the manuscript to make it clearer. 263 

Revision in Section 4.3: With the help of MTEA, we tracked variations of the 264 

secondary proportions of PM2.5 in East China before and during the COVID-19 265 

lockdown (Fig. 8 d-f). The specific emission reductions owing to the national 266 

lockdown were derived from Huang et al. (2020). Based on the bottom-up dynamic 267 

estimation, provincial emissions of CO, NOx, SO2, VOC, PM2.5, BC and OC decreased 268 

by 13-41%, 29-57%, 15-42%, 28-46%, 9-34%, 13-54%, and 3-42%, respectively 269 

during the lockdown period. 270 

Table R3. Estimation of provincial emission reduction ratio (%) of CO, NOx, SO2, VOC, PM2.5, 271 

BC, OC due to COVID-19 lockdown in China. 272 

Province CO NOx SO2 VOC PM2.5 BC OC 

Beijing 22% 45% 26% 45% 18% 46% 8% 

Tianjin 21% 38% 20% 41% 14% 22% 6% 

Hebei 15% 45% 16% 36% 12% 17% 5% 

Shanxi 18% 40% 20% 33% 16% 19% 10% 

Inner Mongolia 14% 29% 15% 34% 13% 16% 6% 

Liaoning 21% 40% 28% 36% 16% 28% 8% 

Jilin 16% 39% 23% 34% 13% 18% 5% 

Heilongjiang 17% 37% 27% 28% 13% 15% 7% 

Shanghai 35% 48% 42% 45% 34% 54% 42% 

Jiangsu 23% 50% 26% 41% 16% 35% 7% 
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Zhejiang 41% 50% 29% 45% 30% 49% 20% 

Anhui 14% 56% 22% 31% 11% 22% 4% 

Fujian 29% 51% 30% 42% 19% 31% 7% 

Jiangxi 24% 53% 21% 43% 19% 30% 9% 

Shandong 23% 50% 25% 39% 19% 35% 9% 

Henan 23% 57% 22% 41% 18% 35% 8% 

Hubei 19% 55% 23% 35% 16% 23% 10% 

Hunan 22% 51% 25% 36% 20% 24% 15% 

Guangdong 38% 50% 33% 46% 27% 42% 13% 

Guangxi 24% 50% 28% 39% 17% 27% 5% 

Hainan 24% 44% 25% 36% 14% 25% 4% 

Chongqing 18% 53% 32% 37% 14% 20% 4% 

Sichuan 16% 50% 27% 33% 9% 15% 3% 

Guizhou 24% 39% 25% 30% 22% 25% 20% 

Yunnan 24% 51% 25% 41% 18% 21% 8% 

Tibet 16% 35% 15% 35% 14% 14% 5% 

Shaanxi 19% 45% 18% 34% 13% 22% 5% 

Gansu 13% 47% 16% 29% 9% 13% 3% 

Qinghai 23% 46% 22% 39% 20% 20% 7% 

Ningxia 24% 36% 24% 39% 20% 23% 8% 

Xinjiang 16% 35% 15% 35% 14% 14% 5% 

 273 

10. Section 4.4: How did you decide the diurnal variation of emission? Was your 274 

result sensitive to the diurnal pattern? Because the diurnal pattern of O3 concentration 275 

is almost constant. 276 

Response: Thank you for your careful concerns. MEIC provides the bottom-up 277 

anthropogenic emission inventory with monthly time resolution. Based on the fixed 278 

total emissions, we further distributed them with specific diurnal variation patterns of 279 

each sector, including power plants, industry, transportation and residential sources 280 

(Fig. R3a). This kind of preprocessing is also adopted for preparing emission input for 281 

other air quality model studies and is proved to be reasonable (Li et al., 2021; Zhang 282 

et al., 2021).  283 

We used the processed emissions as input for MTEA method and found that the 284 
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model results show obvious diurnal pattern as well. The diurnal patterns are 285 

characterized by two peaks in the day, one occurring at 10:00-15:00 (local time, 286 

UTC+8) and the other appearing at 22:00-00:00. The 10:00-15:00 peak can be 287 

explained by the elevating emissions of PM2.5 precursors, such as NOx and SO2, as 288 

well as strong solar radiation. The intensive solar radiation around noon can promote 289 

production of hydroxyl (OH) radical, and further oxidizes substantial precursors to 290 

form secondary particles. However, the 22:00-00:00 peak is mostly attributed to the 291 

other two factors. Firstly, the primary PM2.5 obviously is decreased due to the 292 

reduction of emission activities at night. Meanwhile, the secondary PM2.5 requires 293 

some time to generate and accumulate, thus lagging behind changes in emission. 294 

Secondly, nitrate particles can also be produced via N2O5 heterogeneous reactions in 295 

the nighttime. 296 

 297 

Figure R3. (a) The diurnal distribution of anthropogenic emissions from power plants, industry, 298 

residential and transportation (Unit: %). (b) The diurnal variation of the estimated nationwide 299 

secondary proportion of PM2.5 (Unit: %). 300 

 301 

11. Section 4.4: Why did you exclude the wet deposition case here but include in 302 
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other sections? I would suggest adding the application condition for your method 303 

somewhere. 304 

Response: Thank you for your highly careful reminding. Section 4.4 is aimed at 305 

discussing the statistical correlation between ozone versus PM2.5. We used the daily 306 

concentration of these two variables as inputs for further investigation. For PM2.5, the 307 

24-h mean concentration can be applied to representing its daily level. The maximum 308 

daily 8-h average ozone concentration (MDA8) is usually adopted for describing its 309 

concentration level on the daily time-scale. As the reviewer said in the 10th point, 310 

ozone is a kind of typical secondary air pollutant with distinctive diurnal pattern 311 

(Wang et al., 2017). As shown in Fig. R3, the precipitation process can destroy this 312 

diurnal pattern because of the extremely weak radiative condition on rainy days. 313 

Meanwhile, ozone concentration level under this condition is mainly affected by 314 

background fields. Therefore, MDA8 of rainy days can reveal the background 315 

concentration characteristics but not the intensity of secondary formation. To explain 316 

the relationship between PM and O3 from the aspect of chemical generation, 317 

removing the background dominated cases of O3 concentrations which under 318 

precipitation is necessary. We have followed your suggestion to add the explanation 319 

for using this preprocessing and rephrase the related texts in Section 4.4. 320 

Revision in Section 4.4: 321 

The O3 diurnal formation regime can be destroyed because of the suppressed 322 

radiative condition under precipitation. The local O3 concentration level is mainly 323 

dominated by background fields. Here we would like to focus our attention on the 324 

secondary formation relationship between daily PM2.5 and O3. Therefore the cases 325 

when precipitation took place were removed to avoid the cleaning impacts of wet 326 

deposition on MDA8 (maximum daily 8-h average) O3 concentrations. 327 
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 328 

Figure R3. The diurnal variations of O3 concentration in Shanghai on 11 Mar (sunny weather) and 329 

17 Mar (rainy weather), 2022 based on the observations from MEE. 330 

 331 

12. The general method to calculate the portion of secondary PM2.5 is chemical 332 

transport model using bottom-up inventory. It’s better to examine the difference in the 333 

result between your method and CTM with same inventory. 334 

Response: Thanks for your highly conducive comments and rigorous attitude to 335 

scientific research. It is really an awesome suggestion. We completely agree that 336 

chemical transport model (CTM) is another useful tool to reveal the aerosol 337 

compositions. It is interesting to conduct a parallel comparison between two kinds of 338 

modeling methods. To examine the difference in result between the MTEA approach 339 

and traditional CTM, we adopted the monthly simulated PPM/SPM concentrations 340 

from a data fusion system developed by Tsinghua University. This system, which is 341 

named Tracking Air Pollution in China (TAP), integrates ground measurements, 342 

satellite remote sensing retrievals, emission inventories (MEIC), and CTM 343 

simulations (WRF/CMAQ) based on machine learning algorithms. More descriptions 344 

of this dataset can be found at http://tapdata.org.cn/ (Geng et al., 2021; Geng et al., 345 

2017). We treated the PPM and SPM concentrations from TAP as the state-of-the-art 346 

model representation. Then we showed comparisons between MTEA and TAP in 347 

terms of PPM, SPM concentrations and their annual trends in 31 populous cities of 348 

China (Fig. R4). In general, comparisons indicate that MTEA estimation has a good 349 
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agreement with the CTM simulation. To add this part in the manuscript suggested by 350 

reviewer, we introduced the TAP dataset in Section 2.3 and showed the related 351 

comparisons in Section 3.1.3. 352 

Revision in Section 2.3: 353 

2.3 PPM and SPM estimated by CTM 354 

Apart from evaluating PPM and SPM with various composition measurements, 355 

we also compared MTEA estimation with CTM results. Here we utilized the PM2.5 356 

composition gridded dataset with a spatial resolution of 10 km×10 km developed by 357 

Tsinghua University for further comparisons. This dataset is named Tracking Air 358 

Pollution in China (TAP, available at http://tapdata.org.cn/, last access 15 Mar 2022) 359 

(Geng et al., 2021; Geng et al., 2017). TAP is directly calculated by Community 360 

Multiscale Air Quality (CMAQ) model. In terms of methodology, based on machine 361 

learning algorithms, TAP integrates surface measurements, satellite remote sensing 362 

retrievals, emission inventories (MEIC) with CMAQ simulations. Moreover, it is also 363 

constrained by ground aerosol composition measurements. We collected the monthly 364 

mean concentrations of aerosol species during 2014-2018 from TAP, including SO4
2-, 365 

NO3
-, NH4

+, OM, BC and total PM2.5. SOA was further calculated from OM by EC-366 

tracer model (Ge et al., 2017). SPM concentrations were inferred by summing SO4
2-, 367 

NO3
-, NH4

+ and SOA. PPM concentrations were then obtained via deducting SPM 368 

from PM2.5. 369 

Revision in Section 3.1.3: 370 

3.1.3 Comparison with the CTM simulation 371 

In addition to evaluating our model via PPM and SPM measurements in China, 372 

we also provided a comparison between MTEA estimation and CTM simulation in 31 373 

populous cities based on the monthly mean PM concentrations. As shown in Fig. R4 374 

a-b, the correlation coefficient r for TAP versus MTEA is 0.86 in terms of PPM 375 

concentration and 0.91 in terms of SPM concentration, showing a strongly positive 376 

correlation between the two models. At the same time, both slopes (1.26 and 0.89) and 377 
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intercepts (–3.7 μg m-3 and 1.9 μg m-3) of the regression about PPM and SPM 378 

illustrate that most of the scattering spots distribute around 1:1 ratio line.  379 

Moreover, we further compared the long-term varying trends between MTEA 380 

versus TAP in averaged PPM and SPM concentration of 31 populous cities (Fig. R4 381 

c-d). Both of them exhibit a descending interannual trend in PPM concentration, with 382 

a rate of –2.0 μg m-3 yr-1 for MTEA and –1.9 μg m-3 yr-1 for TAP. In terms of SPM 383 

concentration, the decline rates are –2.9 μg m-3 yr-1 and –2.8 μg m-3 yr-1, respectively. 384 

Meanwhile, the statistical correlations between two interannual variations are 0.98 385 

(PPM) and 0.99 (SPM), which are quite close to 1, showing a good agreement. 386 

Thus, the comparisons about PPM/SPM concentration magnitudes and 387 

interannual variations between two kinds of models suggest that statistical model can 388 

infer similar estimation with traditional CTM. Meanwhile, it is again highlighted that 389 

our model is capable of capturing reasonable PPM and SPM concentrations. 390 

Furthermore, it is also shown that MTEA can track primary and secondary 391 

component of PM2.5 by using proxy at a much lower cost when compared to 392 

traditional air quality model simulations. 393 

 394 

Figure R4. Comparisons between MTEA and TAP in terms of PPM, SPM concentrations and 395 
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their annual trends from 2014 to 2018 in 31 populous cities of China. In panel (a) and (b), each 396 

blue solid dot stands for a monthly mean concentration of PPM or SPM in one of 31 populous 397 

cities. The number of samples is 1860 (60×31). The metrics r, s and d represent correlation 398 

coefficient, slope and intercept of fitting line, respectively. The fitting method follows the 399 

Reduced Major Axis (RMA) regression. In panel (c) and (d), MTEA and TAP are marked by blue 400 

circles and red triangles. Each dot represents the mean PPM/SPM concentration of 31 cities. The 401 

colorful numbers stand for the annual trends of PPM and SPM concentrations during 2014-2018. 402 

At the same time, the correlation coefficient (r) between MTEA versus TAP is also provided. 403 

 404 
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