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Response to Referee #1 

 

1. Model evaluation should be added. The authors should show evidences to make the results 

convincing, especially the BVOC emissions. 

Response: Thank you so much for your suggestion. In revised manuscript, we add the 

model evaluations. 

(1) Validation of BVOC emission simulations by MEGAN. 

Firstly, we compared the estimation with canopy-level emission flux measurements in 

China (Bai et al., 2015, 2016, 2017). The gridded BVOC emission estimated by MEGAN were 

extracted where locating the flux measurement sites. The comparison of model simulation and 

observation is shown in Fig. S1. The estimated BVOC emissions are higher with an average 

mean bias of 1.11 mg m-2 h-1, mainly because of the differences in time between the simulation 

and measurements. But they are correlated by r=0.84, exhibiting good agreement in spatial 

variations. 

Secondly, formaldehyde (HCHO) concentrations observed by satellite were used to 

evaluate the spatial variability of estimated isoprene emissions. Isoprene is the dominant 

compound among BVOC species that accounts for almost half of total BVOC emissions in 

China. Since HCHO is an important proxy of isoprene in forest regions with no significant 

anthropogenic impact, satellite HCHO observations can be used to validate the spatial 

variability of biogenic isoprene emissions. We compared simulated isoprene emission with 



satellite-derived HCHO column concentration using the Ozone Monitoring Instrument (OMI) 

HCHO vertical column product. The monthly averaged OMI HCHO vertical column in June 

2018 correlates with the model estimated results at a 99% confidence level. 

Line 171–185 of revised manuscript, "The emission simulations were validated by using 

the measurements of BVOC emission flux and formaldehyde (HCHO) concentration. The flux 

measurements of BVOCs conducted in China were collected (Bai et al., 2015, 2016, 2017). The 

gridded BVOC emission estimated by MEGAN were extracted where the flux measurement 

sites were located to do the comparison (Fig. S1). The modeled fluxes of BVOCs in this study 

capture the spatial variability of observations better with a correlation coefficient of 0.84. But 

the estimation is higher than measurement with an average mean bias of 1.11 mg m-2 h-1, mainly 

because of the differences in time between them. Isoprene is the main compound in BVOC 

species, accounting for nearly half of total BVOC emissions in China. It undergoes chemical 

and photochemical reactions in the atmosphere, and the oxidation product is mainly HCHO 

(Bai and Hao, 2018; Orlando et al., 2000). In forest areas and in summer, biogenic isoprene is 

the dominant source of HCHO, so satellite HCHO column concentration is widely used to 

constrain isoprene emissions (Opacka et al., 2021; Palmer et al., 2003; Stavrakou et al., 2018; 

Wang et al., 2021; Zhang et al., 2021). In this study, we used the HCHO vertical column 

detected by Ozone Monitoring Instrument (OMI) to validate the spatial variability of isoprene 

estimates. The monthly OMI HCHO data from the EU FP7 project QA4ECV product (Quality 

Assurance for Essential Climate Variables; http://www.qa4ecv.eu) was used in this study. The 

result of the statistical analysis with a confidence interval of 99% indicates that the monthly 

averaged OMI HCHO vertical column in June 2018 is significantly correlated to the model-

estimated isoprene emissions." is added. 



 

Fig. S1. Comparison of MEGAN model simulations with flux measurements in China. 

(2) Validation of meteorological data simulated by WRF. 

Temperature and radiation play key roles in BVOC emissions. The observations of 

temperature at 2411 sites in 2008 and 684 sites in 2018 in China were used to compare with 

WRF-simulated 2-m temperature (T2). The simulated radiation was not evaluated because of a 

lack of available site observations. In the revised manuscript, we add the validation for WRF 

simulation. Meanwhile, to make the description more clear, the statement of MEGAN in 

Section 2.1 is reorganized. 

Line 87–96, "Meteorology, gridded fraction of plant functional types (PFTs), PFT-specific 

emission factors, and leaf area index (LAI) are inputs to drive MEGAN. MODIS LAI data was 

used. The hourly meteorological fields including temperature, downward shortwave radiation, 

wind speed, water vapor mixing ratio, pressure, and precipitation were simulated by the WRF 

model in this study. The WRF-simulated meteorological fields were verified to be considered 

reasonable for driving MEGAN (Li et al., 2013, 2021)." is revised to "MEGAN2.1 requires 

hourly weather variables to drive the calculation of hourly BVOC emissions. The hourly 

meteorological fields including temperature, downward shortwave radiation, wind speed, water 

vapor mixing ratio, pressure, and precipitation were simulated by the WRF model in this study. 

Temperature and radiation play key roles in BVOC emissions. We used the observed daily 



average temperature at 2411 sites in 2008 and 684 sites in 2018 in China to evaluate the 

reliability of the 2-m temperature (T2) simulated by WRF in this study. The observations were 

from the National Meteorological Data Center in China (http://data.cma.cn/). The simulated 

radiation was not evaluated because of a lack of available site observations. For 2008, the 

average mean bias (MB), mean absolute error (MAE), and root-mean-square error (RMSE) are 

0.36, 2.47, and 3.30 K over China. For 2018, these statistics are 1.24, 2.46 and 3.30 K, 

respectively. The correlation coefficients between simulations and observations are 0.82 and 

0.86 for the year 2008 and 2018, respectively. In general, the WRF simulation is considered 

reasonable for driving MEGAN.". Line 87, "Meteorological and vegetation data are inputs to 

drive MEGAN." is added. Line 96–98, "The vegetation data includes gridded fraction of plant 

functional types (PFTs), leaf area index (LAI), and PFT-specific emission factors." is added. 

Line 103, "For LAI, the MODIS LAI data was used." is added. 

(3) Validation of O3 and SOA simulations by WRF-Chem. 

In this study, we aim to explore the impact of interannual BVOC emission variations on 

O3 and SOA caused by vegetation biomass variability. The historical O3 and SOA 

concentrations were simulated by fixing the anthropogenic emissions and meteorological data 

in 2008. So we did not conduct validation for WRF-Chem simulation. However, WRF-Chem 

model has been widely used in global and regional pollution studies and verified to have a good 

performance on the simulation of secondary pollutants(Gupta and Mohan, 2015; Hoshyaripour 

et al., 2016; Li et al., 2018; Situ et al., 2013; Wu et al., 2018). 

Line 129–131 of revised manuscript, "A large number of global and regional air pollution 

studies widely apply it to simulate secondary pollutants, and the verification results show that 

it can well reproduce the observed pollutant concentrations (Gupta and Mohan, 2015; 

Hoshyaripour et al., 2016; Li et al., 2018; Situ et al., 2013; Wu et al., 2018)." is added. 

In addition, the uncertainty by fixing the anthropogenic emissions and meteorological data 

in 2008 is also added in the revised manuscript. Line 402–410, "In this study, we aim to explore 

the impact of interannual BVOC emission variations on O3 and SOA caused by vegetation 

biomass variability. The historical O3 and SOA concentrations were simulated by fixing the 

anthropogenic emissions and meteorological data in 2008. The influences of annual 

meteorology on BVOC emissions and formation of secondary air pollutants were not 

http://data.cma.cn/


considered. Although vegetation change is the main driver of interannual variations of BVOC 

emissions, it still brings uncertainty to the simulation in this study. Future work can update the 

anthropogenic emission inventory and use dynamic meteorological data to explore multivariate 

effects and provide more accurate data for evaluating the roles of biogenic emissions in air 

quality. At the same time, the impact of meteorological changes on the long-term changes of 

BVOC emissions and formation of secondary air pollutants should also be considered to 

provide a scientific basis for the precise prevention and control of air pollution in response to 

climate change." is added. 
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2. The manuscript focused on the change of background O3 and SOA in China due to the change 

of vegetation The MS should show the change of biomass as well as how the biomass changes 

affecting BVOC emissions. 

Response: Thank you very much for your valuable suggestion. In revised manuscript, we 

add a new Section of “3.1 BVOC emission”, in which “3.1.2 Influence of leaf biomass 

variability” describes the interannual variation of leaf biomass and its influence on BVOC 

emissions. The added Section 3.1.2 is as follows. 

"3.1.2 Influence of leaf biomass variability 

The leaf biomasses increased from 378.35 × 1012 g in 1981 to 1107.16 × 1012 g in 2018 at 

an average rate of 17.97 × 1012 g yr-1. Among them, the forest and crop leaf biomass increased 

from 237.10 × 1012 to 518.38 × 1012 g and from 141.25 × 1012 to 588.79 × 1012 g, respectively, 

totally increasing by 192.63%. The spatial distribution of interannual variations in leaf biomass 

is presented in Fig. S2. The increase of leaf biomass is most significant in Great Khingan, 

Changbai Mountains, North China Plain, south and southwest China. This is mainly due to the 

increased stock of broadleaf and coniferous forests as a result of afforestation. Northern 

Qinghai-Tibet area and Northwest China have a relatively high grass cover rate but insignificant 

increase in leaf biomass of vegetation. It is because that the grass biomasses were the same over 

the historical simulations due to lacking of data. 

Due to the increased volume and production of vegetation, the total BVOC emissions 



increased by 58.66% at average rates of 96.64 Gg yr-1, of which isoprene, monoterpene, 

sesquiterpene increased by 108.57%, 38.17%, and 33.35% at average rates of 11.10, 0.99, and 

0.17 Gg yr-1, respectively. Isoprene emissions increased more rapidly over the past 40 years, 

which is primarily due to the greater increase in the biomass of broadleaf trees, which have the 

highest isoprene emission rates. Monoterpene and sesquiterpene increased at a lower rate 

because the increase of leaf biomass of conifers is relatively small. Fig. 2 shows the spatial 

distribution of interannual variations in BVOC emissions caused by the changing leaf biomass. 

Since the needleleaf and broadleaf trees tend to have a higher emission potential than grass or 

crop (Guenther et al., 2012), their wide distribution and the substantial increase in biomass 

result in the largest interannual variability of BVOC emissions in the Great Khingan, Changbai 

Mountains, North China Plain, Central and Southern China, and Hainan Province. However, 

the emission of BVOCs in the northwest and southern coastal areas has decreased. 

 

Fig. 2. Spatial distribution of interannual variations in BVOC emissions caused by leaf 

biomass changes." 

Line 310–314, "The change of vegetation leaf biomass will cause the interannual variation 

of BVOCs emissions and then O3 and SOA generation. During 1981–2018, the forest and crop 

leaf biomass increased from 237.10 × 1012 g to 518.38 × 1012 g and from 141.25 × 1012 g to 

588.79 × 1012 g, respectively, totally increasing by 192.63%. In this study, the annual emission 

factors extrapolated from emission rates and annual leaf biomass were used to simulate the 

impact of interannual variation in BVOC emissions on O3 and SOA, as described in Scenario 



“HISTORY”." is deleted.  

Figure S2 is added to the Supplementary File. 

 

Fig. S2. Spatial distribution of interannual variations in leaf biomass. 
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3. The history simulation setting is not reasonable by fixing the meteorology in 2008 (as listed 

in Table 1). Why 2008 was chosen in this study? The BVOC emissions are very sensitive to 

meteorology change, and the meteorology is an important factor influencing the emission and 

air quality. Fixing the meteorology may induce the unreasonable results which should be 

discussed in the MS. Many factors influencing the BVOC emissions and their atmospheric 

chemistry in the past 4 decades. A method should be set to clarify the multivariate effects. 

Response: Thank you so much for your valuable suggestion. As your comment, 

meteorology is an important factor that can influence both BVOC emissions and air quality. In 

our study, we aim to explore the impacts of interannual BVOC emission variations on O3 and 



SOA formation caused by vegetation biomass variability during 1981–2018. In order to achieve 

this goal, we designed a scenario experiment by fixing meteorological data in one year and 

using the annual leaf biomass to drive BVOC estimates. The influences of annual meteorology 

on BVOC emissions and formation of secondary air pollutants were not considered. It is 

reported that vegetation change is the main driver of interannual variations of BVOC emissions 

(Li et al., 2020; Wang et al., 2021). The large-scale afforestation activities in recent years lead 

to the rapid increase of vegetation leaf biomass and therein BVOC emissions. In addition, 

China’s annual average temperature has a heating rate of 0.26 K per 10 years from 1951 to 2020 

(Climate Change Center of China Meteorological Administration, 2021). Taking into account 

the long-term warming trend, we chose meteorological data of a mid-year 2008 over 1981–

2018 as the constant input for historical simulation. Despite this, uncertainty is inevitable. 

In the revised manuscript, we add the explanation for fixing meteorology in 2008 and 

discuss the uncertainty. Line 159–162, "For the meteorology, the fixing set of a mid-year 2008 

over 1981–2018 were used for all the HISTORY simulations. To explore the impacts of 

interannual BVOC emission variations caused by vegetation biomass variability, influences of 

annual meteorology on BVOC emissions and formation of secondary air pollutants were not 

considered." is added. 

Line 402–410, "In this study, we aim to explore the impact of interannual BVOC emission 

variations on O3 and SOA caused by vegetation biomass variability. The historical O3 and SOA 

concentrations were simulated by fixing the anthropogenic emissions and meteorological data 

in 2008. The influences of annual meteorology on BVOC emissions and formation of secondary 

air pollutants were not considered. Although vegetation change is the main driver of interannual 

variations of BVOC emissions, it still brings uncertainty to the simulation in this study. Future 

work can update the anthropogenic emission inventory and use dynamic meteorological data to 

explore multivariate effects and provide more accurate data for evaluating the roles of biogenic 

emissions in air quality. At the same time, the impact of meteorological changes on the long-

term changes of BVOC emissions and formation of secondary air pollutants should also be 

considered to provide a scientific basis for the precise prevention and control of air pollution in 

response to climate change." is added. 
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4. The logic is weak, and the text need to bere-organized. Each section in the results seems 

loose respectively, and the main line of the manuscript has not been highlighted. The topic is 

long term impacts variation, I think carry out the discussion in chronological order will be 

better. What’s more, that disturbs the readers’ thinking by posting the figure of spatial variations 

in BVOC emissions in Jun 2018 and explaining the emission situation in section 2.1. 

Response: Thank you for your suggestion. In the revised manuscript, we revise the 

structure of Section 3 to make the contents clear. Section 3.1 “BVOC emission” is added by 

moving the relative content in Section 2.1 here to introduce the BVOC emissions in June 2018, 

discuss the change in leaf biomass and its influence on BVOC emissions from 1981 to 2018. 

Section 3.2 “Impacts of BVOC emissions on O3 and SOA” mainly discusses the impact of 

BVOCs on MDA8 O3 and SOA in June 2018, separately. In addition, contributions by BVOC 

component are discussed. Section 3.3 “Interannual variability” discusses the impact of 

interannual BVOC emission variations on O3 and SOA formation caused by vegetation biomass 

variability in China during 1981–2018. In this section, the contents are revised to be in 

chronological order in the revised manuscript. 

The relative description of BVOC emission characteristics is moved to the added Section 

3.1 “BVOC emission” in line 164–204, as follows: 



"3.1 BVOC emission 

3.1.1 Spatial distributions of BVOC emissions 

The total BVOC emissions in China estimated by MEGAN2.1 are 9.91 Tg in June 2018, 

of which isoprene, monoterpene, sesquiterpene, and other BVOCs account for 64.21%, 10.58%, 

2.12%, and 23.09%, respectively. As shown in Fig. 1, BVOC emissions show significant spatial 

variations with the highest emissions in the Changbai Mountains, Greater Khingan Mountains, 

Qinling Mountains, the southeast and southwest China forest regions, and Hainan and Taiwan 

provinces, and the lowest in the Qinghai-Tibet Plateau and southern Xinjiang province. 

 

Fig. 1. Spatial variations in BVOC emissions in June 2018. 

The emission simulations were validated by using the measurements of BVOC emission 

flux and formaldehyde (HCHO) concentration. The flux measurements of BVOCs conducted 

in China were collected (Bai et al., 2015, 2016, 2017). The gridded BVOC emission estimated 

by MEGAN were extracted where the flux measurement sites were located to do the 

comparison (Fig. S1). The modeled fluxes of BVOCs in this study capture the spatial variability 

of observations better with a correlation coefficient of 0.84. But the estimation is higher than 

measurement with an average mean bias of 1.11 mg m-2 h-1, mainly because of the differences 

in time between them. Isoprene is the main compound in BVOC species, accounting for nearly 

half of total BVOC emissions in China. It undergoes chemical and photochemical reactions in 

the atmosphere, and the oxidation product is mainly HCHO (Bai and Hao, 2018; Orlando et al., 

2000). In forest areas and in summer, biogenic isoprene is the dominant source of HCHO, so 



satellite HCHO column concentration is widely used to constrain isoprene emissions (Opacka 

et al., 2021; Palmer et al., 2003; Stavrakou et al., 2018; Wang et al., 2021; Zhang et al., 2021). 

In this study, we used the HCHO vertical column detected by Ozone Monitoring Instrument 

(OMI) to validate the spatial variability of isoprene estimates. The monthly OMI HCHO data 

from the EU FP7 project QA4ECV product (Quality Assurance for Essential Climate Variables; 

http://www.qa4ecv.eu) was used in this study. The result of the statistical analysis with a 

confidence interval of 99% indicates that the monthly averaged OMI HCHO vertical column 

in June 2018 is significantly correlated to the model-estimated isoprene emissions. 

3.1.2 Influence of leaf biomass variability 

The leaf biomasses increased from 378.35 × 1012 g in 1981 to 1107.16 × 1012 g in 2018 at 

an average rate of 17.97 × 1012 g yr-1. Among them, the forest and crop leaf biomass increased 

from 237.10 × 1012 to 518.38 × 1012 g and from 141.25 × 1012 to 588.79 × 1012 g, respectively, 

totally increasing by 192.63%. The spatial distribution of interannual variations in leaf biomass 

is presented in Fig. S2. The increase of leaf biomass is most significant in Great Khingan, 

Changbai Mountains, North China Plain, south and southwest China. This is mainly due to the 

increased stock of broadleaf and coniferous forests as a result of afforestation. Northern 

Qinghai-Tibet area and Northwest China have a relatively high grass cover rate but insignificant 

increase in leaf biomass of vegetation. It is because that the grass biomasses were the same over 

the historical simulations due to lacking of data. 

Due to the increased volume and production of vegetation, the total BVOC emissions 

increased by 58.66% at average rates of 96.64 Gg yr-1, of which isoprene, monoterpene, 

sesquiterpene increased by 108.57%, 38.17%, and 33.35% at average rates of 11.10, 0.99, and 

0.17 Gg yr-1, respectively. Isoprene emissions increased more rapidly over the past 40 years, 

which is primarily due to the greater increase in the biomass of broadleaf trees, which have the 

highest isoprene emission rates. Monoterpene and sesquiterpene increased at a lower rate 

because the increase of leaf biomass of conifers is relatively small. Fig. 2 shows the spatial 

distribution of interannual variations in BVOC emissions caused by the changing leaf biomass. 

Since the needleleaf and broadleaf trees tend to have a higher emission potential than grass or 

crop (Guenther et al., 2012), their wide distribution and the substantial increase in biomass 

result in the largest interannual variability of BVOC emissions in the Great Khingan, Changbai 



Mountains, North China Plain, Central and Southern China, and Hainan Province. However, 

the emission of BVOCs in the northwest and southern coastal areas has decreased. 

 

Fig. 2. Spatial distribution of interannual variations in BVOC emissions caused by leaf 

biomass changes." 

Figures S1 and S2 are added to the Supplementary File. 

 

Fig. S1. Comparison of MEGAN model simulations with flux measurements in China. 



 

Fig. S2. Spatial distribution of interannual variations in leaf biomass. 

In Section 3.2 and 3.3, some contents are revised to be in chronological order and make 

them logical. 

Line 217–218, "Some areas in the west also have very small effect on O3 formation by 

BVOC emissions." is deleted. 

Line 331–332, "The growth was the most rapid in 2003 with an increase of 1.99% 

comparing with 1998." is revised to "Among the annual growth rates, the growth was the 

biggest in 2003 with an increase of 1.99% comparing with 1998.".  

Line 339–347, "The lowest growth rate occurs in BTH. Due to the Three North Shelterbelt 

System Project, the area coverage of natural forest in the north of BTH has more than tripled 

than that in 2003, resulting in an increase in leaf biomass and BVOC emissions (Ma et al, 2019). 

However, because of the rapid urbanization in Beijing, a large amount of forest has been 

converted to urban construction land, and the reduction of BVOC emission related to losses of 

trees may offset part of their increase associated with rising coverage and volume in the 

surrounding areas. Although the largest O3 enhancement occurs in PRD overall, MDA8 O3 

showed a significant decrease from 1981 to 1998 and an increase from 2013 to 2018. Under the 

influence of reform and opening in China, the vegetation leaf biomass in Guangdong Province 

has decreased from 25.48 × 1012 g to 6.92 × 1012 g by 72.81% during 1981–1998. The decrease 

of MDA8 O3 in YRD is mainly due to the decrease of forest and cultivated biomass caused by 



urbanization during 1994–2003." is revised to "At the end of the last century, the 

implementation of reform and opening up led to the continuous acceleration of the level of 

urbanization and the reduction of forest and arable land biomass and eventually resulting in the 

fluctuating decline of MDA8 O3 in YRD and PRD during 1981–2003. The rapid growth of 

MDA8 O3 in PRD led to a greater average annual growth rate of MDA8 O3 in PRD greater than 

that in YRD from 1981 to 2018. The lowest growth rate occurs in BTH. Due to the Three North 

Shelterbelt System Project, the area coverage of natural forest in the north of BTH has more 

than tripled than that in 2003, resulting in an increase in leaf biomass and BVOC emissions 

(Ma et al, 2019). However, because of the rapid urbanization in Beijing, a large amount of forest 

has been converted to urban construction land, and the reduction of BVOC emission related to 

losses of trees may offset part of their increase associated with rising coverage and volume in 

the surrounding areas.". 

Line 371–375, "With a similar overall growth rate, however, YRD and PRD have different 

interannual variability. In PRD, SOA showed a striking growth during the last five years owing 

to the increase of leaf biomass by up to 4.21 × 1012 g. YRD experienced two stages of increasing 

before and after 2003. In BTH, SOA annual growth rate is the lowest and lower than the national 

average rate. It can be attributed to the obvious decrease of leaf biomass with 17.57 × 1012 g 

from 1998 to 2008." is revised to "In BTH, SOA annual growth rate is the lowest and lower 

than the national average rate. It can be attributed to the obvious decrease of leaf biomass with 

17.57 × 1012 g from 1998 to 2008. With a similar overall growth rate, however, YRD and PRD 

have different interannual variability. YRD experienced two stages of increasing before and 

after 2003. In PRD, SOA showed a striking growth during the last five years owing to the 

increase of leaf biomass by up to 4.21 × 1012 g.". 
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5. Overall the explanations are lack of mature and the scientific thinking is not 

Response: Thank you for your suggestion. We are sorry for the insufficient explanation 

and discussion in the manuscript. We add the necessary discussion and explanation deeply to 

the results in the revised manuscript. 

Line 223–232, "The positive contribution of BVOCs to O3 in the southern region also 

confirms the conclusion that the VOCs-limited regime is dominant in southern China (Lu et al., 

2019; Lyu et al., 2016; Tan et al., 2018). Because the dense population leads to a large number 

of NOx emitted by human activities, NOx is saturated with the formation of O3 which is more 

sensitive to VOC emissions. Therefore, the higher BVOC emissions usually cause greater 

contribution to O3 in these areas. To decrease BVOC emissions by planting plants with low 

emission potential may contribute to O3 pollution control. From the spatial distribution of the 

BVOC effect (Fig. 2), the surface O3 is sensitive to BVOC emissions in most regions in China 

which can furtherly indicate they are usually VOCs-limited. Comparing with the spatial 

distribution of BVOC emissions (Fig. 1), the areas with high BVOC emissions usually have a 



higher contribution to O3." is revised to "From the spatial distribution of the BVOC effect (Fig. 

3), the surface O3 is sensitive to BVOC emissions in most regions in China which can furtherly 

indicate they are usually VOCs-limited. It confirms the conclusion made by Lu et al. (2019), 

Lyu et al. (2016), and Tan et al. (2018) that the VOCs-limited regime is dominant in southern 

China. Comparing with the spatial distribution of BVOC emissions (Fig. 1), the areas with high 

BVOC emissions usually have a higher contribution to O3. Because the dense population leads 

to a large number of NOx emitted by human activities, NOx is saturated with the formation of 

O3 which is more sensitive to VOC emissions. Therefore, the higher BVOC emissions usually 

cause greater contribution to O3 in these areas. In the VOC-limited regime, the reduction of 

VOC emissions reduces the chemical production of organic radicals (RO2), which in turn lead 

to decreased cycling with NOx and consequently lower concentration of O3 (Jin and Holloway, 

2015; Milford et al., 1989). To decrease BVOC emissions by planting plants with low emission 

potential may contribute to O3 pollution control.". 

Line 238–241, "These four key areas are populous, economically developed, and power 

grids are dense. The high concentration of NOx emissions may lead to saturation of NOx and 

excessive consumption of OH, so ozone generation is more sensitive to VOC emissions (Jin 

and Holloway, 2015)." is added. 

Line 301, "which mainly because of the low concentration of other precursors" is added. 

Line 307, "due to the different ratios of the different BVOC components emissions" is 

added. 

Line 363–365, "Due to the low monoterpene emission level with less distribution of 

needleleaf trees in Hainan, the growth of SOA is very small." is revised to "Because of the 

tropical climate in southwestern Yunnan and Hainan, needleleaf trees with greater monoterpene 

emission potential are less distributed and the change of leaf biomass is small, which led to 

small or even negative changes in the growth of SOA.". 
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6. Section 2.2: Using a table to list the model settings is better to list them in a paragraph 

Response: Thank you for your valuable suggestion. We add a table as Table S1 in the 

revised manuscript to show the main parameterization options for physical and chemical 

schemes of the model setup. 

Correspondingly, line 133–135, "The Purdue Lin microphysics scheme, the Rapid 

Radiative Transfer Model (RRTM) longwave radiation scheme, the Goddard shortwave 

radiation scheme, the Yonsei University (YSU) planetary boundary layer scheme, the Noah 

land surface scheme, and the Grell-Freitas cumulus parameterization scheme were used." is 

deleted. Line 133–134, "Main parameterization options for physical and chemical schemes of 

the model setup are listed in Table S1." is added. 

  



Table S1. WRF-Chem configuration. 

Parameter Option 

Microphysics Purdue Lin et al. scheme 

Long-wave radiation RRTM scheme 

Short-wave radiation Goddard shortwave scheme 

Surface layer Monin-Obukhov theory 

Land surface Noah Land Surface Model  

Cumulus parameter Grell-Devenyi Ensemble scheme 

Planetary Boundary Layer YSU scheme 

Gas phase chemistry scheme NOAA/ESRL RACM 

Aerosol chemistry scheme VBS 

Photolysis scheme Fast-J 

 

7. Table 2: Don’t branch the percentages of BVOC contribution 

Response: Thank you for your suggestion. The percentages are deleted in the revised 

Table 2, as follows. 

Table 2. Emissions of each BVOC category and their corresponding contribution to MDA8 O3 

and SOA concentration in the five key regions of China in June 2018. 

 BVOC category China BTH FWP PRD YRD CC 

Emission 

(104 tons) 

Isoprene 636.28 15.66 30.29 34.74 53.43 24.50 

Monoterpene 104.81 2.77 2.16 5.09 4.38 11.59 

Sesquiterpene 20.98 0.64 0.32 1.27 1.42 1.65 

Total BVOCs 990.91 29.23 40.67 46.29 74.18 51.32 

Contribution to 

MDA8 O3 (ppb) 

Isoprene 7.01 3.42 18.01 16.81 12.55 20.49 

Monoterpene 1.17 1.74 0.32 4.07 2.92 6.89 

Sesquiterpene 0.16 0.93 -1.36 1.66 1.06 2.88 

Isoprenoid 7.77 2.94 17.43 16.34 14.23 24.55 

Total BVOCs 8.61 4.10 18.94 18.74 13.40 23.29 

Contribution to 

SOA (μg m-3) 

Isoprene 0.25 0.20 0.53 0.95 0.63 0.91 

Monoterpene 0.52 0.45 0.72 1.21 0.62 1.59 

Sesquiterpene 0.22 0.21 0.26 0.49 0.31 0.75 

Isoprenoid 0.84 0.78 1.30 1.96 1.29 2.52 

Total BVOCs 0.84 0.74 1.29 1.96 1.27 2.51 



 

8. The form of picture display should be strengthened 

Response: Thank you for your suggestion. In the revised manuscript, Fig. 4–8 are revised 

to make them more clear. Firstly, in Fig. 4, 5, and 7, the five key regions are marked. Secondly, 

Fig. 6 and 8 are changed by adding a coordinate of the annual increasing rate to better display 

the differences in the five key regions. 

 

Fig. 4. Spatial variations in impact of BVOC emission on SOA concentration. 

 

Fig. 5. Spatial distribution of interannual variations in O3 simulated using annual BVOC 

emission factors. 



 

Fig. 6. The interannual changes of O3 in China and the key regions. 

 

Fig. 7. Spatial distribution of interannual variations in SOA simulated using annual BVOC 

emission factors. 



 

Fig. 8. The interannual changes of SOA in China and the key regions. 

  



Response to Referee #2 

 

1. Section 2.1: I recommend that you show a spatial map of changes in BVOCs over time? Li 

et al. (2020) shows only 2008-2018. 

Response: Thank you for your valuable suggestion. In this study, the historical BVOC 

emissions were estimated using the same meteorology data to explore the influence of the 

interannual variability of vegetation biomass. So we add a spatial map of changes in BVOC 

emissions caused by vegetation biomass variability, as shown in Fig. 2. In addition, we add a 

new Section 3.1 “BVOC emissions” to describe the BVOC emissions in June 2018 and their 

interannual changes. The relative description of BVOC emissions in Section 2.1 of the original 

manuscript are moved here. In Section 3.1.2 “Sensitivity of the BVOC emissions to leaf 

biomass”, Figure 2 is added and the changes in BVOC emissions caused by vegetation biomass 

variability are discussed. 

Line 195–204 in revised manuscript, "Due to the increased volume and production of 

vegetation, the total BVOC emissions increased by 58.66% at average rates of 96.64 Gg yr-1, 

of which isoprene, monoterpene, sesquiterpene increased by 108.57%, 38.17%, and 33.35% at 

average rates of 11.10, 0.99, and 0.17 Gg yr-1, respectively. Isoprene emissions increased more 

rapidly over the past 40 years, which is primarily due to the greater increase in the biomass of 

broadleaf trees, which have the highest isoprene emission rates. Monoterpene and sesquiterpene 

increased at a lower rate because the increase of leaf biomass of conifers is relatively small. Fig. 

2 shows the spatial distribution of interannual variations in BVOC emissions caused by the 

changing leaf biomass. Since the needleleaf and broadleaf trees tend to have a higher emission 

potential than grass or crop (Guenther et al., 2012), their wide distribution and the substantial 

increase in biomass result in the largest interannual variability of BVOC emissions in the Great 

Khingan, Changbai Mountains, North China Plain, Central and Southern China, and Hainan 

Province. However, the emission of BVOCs in the northwest and southern coastal areas has 

decreased." 



 

Fig. 2. Spatial distribution of interannual variations in BVOC emissions caused by leaf 

biomass changes. 
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Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. 

 

2. In the introduction your say that your study uses “more accurate BVOC emissions”. However, 

you don’t provide evidence of this. Satellite data of formaldehyde could help in the evaluation 

over the satellite era. Do a literature search as there are a number of studies that use HCHO 

data to constrain BVOC emissions. How will you validate your emissions before the satellite 

era (e.g., 1981–2004)? 

Response: Thank you for your constructive comment and we are sorry for the unclear 

explanation for our “more accurate BVOC emissions”. 

Firstly, we outstand the higher accuracy through comparing the method between our study 

and others in BVOC emission estimation. (1) Determination of emission rate and leaf 

biomass. In previous studies, traditional emission categories were used to determine isoprene 



and monoterpene emission rates (Guenther et al., 1994; Klinger et al., 2002; Simpson et al., 

1999; Wang et al., 2007). In this method, discrete emission categories (e.g., negligible, low, 

moderate, and high) were defined, which lacked theoretical evidence. And some studies utilized 

coarse emission intensity classifications. The determined emission rates typically differed 

between studies and had high uncertainty. In our study, we summarized a large number of 

observations from China and other countries to obtain more accurate basal emission rates by 

the theoretically effective statistical approach (Li et al., 2020). The statistical isoprene emission 

rates included seven categories by lowest, lower, low, moderate, high, higher, and highest. 

Monoterpene included six categories by lowest, lower, low, moderate, high, and higher. The 

accuracy of emission rates can be expected to be improved. For leaf biomass, the previous 

studies usually applied an average value for each vegetation class, such as broadleaf trees, 

needleleaf trees, crops, and grasses, without revealing their differences among regions and plant 

species (Klinger et al., 2002; Wang et al., 2007). In our study, the plant specific leaf biomasses 

were estimated based on the provincial or city-level statistic of vegetation volume and 

production using apportion models (Li and Xie, 2014). We obtained the gridded leaf biomass 

for the 23 vegetation species/types. (2) Detailed vegetation classification. Most studies on the 

BVOC emissions inventory in China typically include a coarse vegetation classification that is 

based on a less-detailed vegetation distribution (Gao et al., 2019; Klinger et al., 2002; Wang et 

al., 2007). And the MEGAN2.1 defined 15 vegetation types (Guenther et al., 2012). In our study, 

Vegetation Atlas of China (1:1,000,000), which had detailed vegetation distributions at a high 

horizontal resolution of about 250 m, was used to produce more detailed vegetation 

classification in Shandong Province, including 23 plant species/types (four broadleaf trees, five 

needleleaf trees, eight crop species, and six subtypes of shrub and grass). 

In the revised manuscript, we add the explanation to show the higher accuracy of the 

determined emission factors and vegetation classification. Line 101–103, "Previous studies 

typically included a coarse vegetation classification that is based on a less-detailed vegetation 

distribution (Gao et al., 2019; Klinger et al., 2002; Wang et al., 2007). And the MEGAN2.1 

defined 15 vegetation types by default (Guenther et al., 2012)." is added. Line 109–111, "In 

previous studies, traditional emission categories were used to determine emission rates 

(Guenther et al., 1994; Klinger et al., 2002; Simpson et al., 1999; Wang et al., 2007), which 



usually utilized coarse categories and resulted in high uncertainty." is added. Line 113–115, 

"Previous studies usually applied an average value for each vegetation class, such as broadleaf 

trees, needleleaf trees, crops, and grasses, without revealing their differences among regions 

and plant species (Klinger et al., 2002; Wang et al., 2007)." is added. 

Secondly, as you suggested, we add the validation of BVOC emissions by comparing the 

simulation with satellite observation of formaldehyde concentration and also the canopy-level 

emission flux measurements in China. The validation is conducted for estimation in 2018. The 

emissions in other years are not evaluated because the historical BVOC emissions are estimated 

using the same meteorology data to explore the influence of the interannual variability of 

vegetation biomass. They cannot display the real emissions for the years other than 2018. (1) 

Validation by comparing with canopy-level emission flux measurements. The canopy-level 

emission flux measurements in China were used for validation (Bai et al., 2015, 2016, 2017). 

The gridded BVOC emission estimated by MEGAN were extracted where locating the flux 

measurement sites. The comparison of model simulation and observation is shown in Fig. S1. 

The estimated of BVOC emissions are higher with an average mean bias of 1.11 mg m-2 h-1, 

mainly because of the differences in time between the simulation and measurements. But they 

are correlated by r=0.84, exhibiting good agreement in spatial variations. (2) Validation by 

comparing with satellite observation of formaldehyde concentration. We compared simulated 

isoprene emission with satellite-derived HCHO column concentration using the Ozone 

Monitoring Instrument (OMI) HCHO vertical column product. The monthly averaged OMI 

HCHO vertical column in June 2018 correlates with the model estimated results at a 99% 

confidence level. 

In the revised manuscript, the above validations are added in Section 3.1.1. Meanwhile, a 

literature summarization that use HCHO data to constrain BVOC emissions is also added. Line 

171–185, "The emission simulations were validated by using the measurements of BVOC 

emission flux and formaldehyde (HCHO) concentration. The flux measurements of BVOCs 

conducted in China were collected (Bai et al., 2015, 2016, 2017). The gridded BVOC emission 

estimated by MEGAN were extracted where the flux measurement sites were located to do the 

comparison (Fig. S1). The modeled fluxes of BVOCs in this study capture the spatial variability 

of observations better with a correlation coefficient of 0.84. But the estimation is higher than 



measurement with an average mean bias of 1.11 mg m-2 h-1, mainly because of the differences 

in time between them. Isoprene is the main compound in BVOC species, accounting for nearly 

half of total BVOC emissions in China. It undergoes chemical and photochemical reactions in 

the atmosphere, and the oxidation product is mainly HCHO (Bai and Hao, 2018; Orlando et al., 

2000). In forest areas and in summer, biogenic isoprene is the dominant source of HCHO, so 

satellite HCHO column concentration is widely used to constrain isoprene emissions (Opacka 

et al., 2021; Palmer et al., 2003; Stavrakou et al., 2018; Wang et al., 2021; Zhang et al., 2021). 

In this study, we used the HCHO vertical column detected by Ozone Monitoring Instrument 

(OMI) to validate the spatial variability of isoprene estimates. The monthly OMI HCHO data 

from the EU FP7 project QA4ECV product (Quality Assurance for Essential Climate Variables; 

http://www.qa4ecv.eu) was used in this study. The result of the statistical analysis with a 

confidence interval of 99% indicates that the monthly averaged OMI HCHO vertical column 

in June 2018 is significantly correlated to the model-estimated isoprene emissions." is added. 

 

Fig. S1. Comparison of MEGAN model simulations with flux measurements in China. 
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3. Table 1: Why do you use “Year 2008” for your “HISTORY” run, but “Year 2018” for the 

rest of your simulations? 

Response: In the “HISTORY” simulation, we aimed to explore the impacts of interannual 

BVOC emission variations on O3 and SOA formation caused by vegetation biomass variability 

during 1981–2018. In order to achieve this goal, we designed a scenario experiment by fixing 

meteorological data in one year and using the annual leaf biomass to drive BVOC estimates. 

The influences of annual meteorology on BVOC emissions and formation of secondary air 

pollutants were not considered. It is reported that vegetation change is the main driver of 

interannual variations of BVOC emissions (Li et al., 2020; Wang et al., 2021). The large-scale 

afforestation activities in recent years lead to the rapid increase of vegetation leaf biomass and 

therein BVOC emissions. In addition, the annual average temperature has a heating rate of 0.26 

K per 10 years from 1951 to 2020 (Climate Change Center of China Meteorological 

Administration, 2021). Taking into account the long-term warming trend, we chose 

meteorological data of a mid-year 2008 over 1981–2018 as the constant input for historical 

simulation. The scenarios “BASE”, “BIO”, “ISOP”, “MTP”, “SQT”, and “ISOPRENOID” 

were designed to simulate the impacts of emissions of BVOCs, isoprene, monoterpenes, 

sesquiterpenes, and isoprenoids (total of isoprene, monoterpene and sesquiterpene emissions) 

in June 2018 on O3 and SOA, respectively. So we used the meteorology of 2018 to drive 

MEGAN to estimate the emissions in 2018. 

We add the explanation in the revised manuscript. Line 156–157, "For these simulations, 

the meteorology of 2018 was used to drive MEGAN to estimate biogenic emissions in June 

2018." is added. Line 159–162, "For the meteorology, the fixing set of a mid-year 2008 over 

1981–2018 were used for all the HISTORY simulations. To explore the impacts of interannual 

BVOC emission variations caused by vegetation biomass variability, influences of annual 



meteorology on BVOC emissions and formation of secondary air pollutants were not 

considered." is added. 

 

References: 

Climate Change Center of China Meteorological Administration: China Blue Book of Climate 

Change (2021), Science Press, Beijing, China, 2021. 

Li, L., Yang, W., Xie, S., and Wu, Y.: Estimations and uncertainty of biogenic volatile organic 

compound emission inventory in China for 2008–2018, Sci. Total. Environ., 733, 139301, 

https://doi.org/10.1016/j.scitotenv.2020.139301, 2020. 

Wang, H., Wu, Q. Z., Guenther, A. B., Yang, X. C., Wang, L. N., Xiao, T., Li, J., Feng, J. M., 

Xu, Q., and Cheng, H.: A long-term estimation of biogenic volatile organic compound 

(BVOC) emission in China from 2001–2016: the roles of land cover change and climate 

variability, Atmos. Chem. Phys., 21, 4825-4848, https://doi.org/10.5194/acp-21-4825-

2021, 2021. 

 

4. Line 176: Can you show a map of the simulated VOC to NOx ratio to help you make your 

point. Also, there are a number of papers discussing the VOC to NOx ratio over China, 

including as observed from space. For example: Jin, X., T. A. Holloway (2015). Spatial and 

temporal variability of ozone sensitivity over China observed from the Ozone Monitoring 

Instrument. Journal of Geophysical Research Atmospheres, 120(14), 7229–7246, doi: 

10.1002/2015JD023250. Please do a literature search to see what they’ve concluded and if 

those conclusions are consistent with your study. It would also be helpful to show a spatial map 

of the simulated NOx distributions. 

Response: Thank you very much for the constructive comment. In this study, we aim to 

explore the impact of interannual BVOC emission variations on O3 and SOA caused by 

vegetation biomass variability. The impact of anthropogenic emissions was not considered. 

WRF-Chem model was run by fixing the anthropogenic emissions and meteorological data in 

a mid-year 2008 over 1981–2018. So we do not show the map of the simulated VOC to NOx 

ratio and NOx distribution, considering that there may be deviations with reality. However, we 



do literature searches discussing the VOC to NOx ratio over China to explain our results (Jin 

and Holloway, 2015; Lu et al., 2019; Lyu et al., 2016; Tan et al., 2018; Milford et al., 1989; 

Wang et al., 2008). 

In the revised manuscript, we revise the relevant contents and made a more scientific 

explanation in line 218–235: "The spatial pattern of estimated MDA8 O3 impacted by BVOC 

emissions differs from the spatial distribution of BVOC emissions mainly because of the 

variability of the nonlinear response relationship between O3 formation and precursors. As the 

important precursors, VOCs and NOx react in the presence of hydroxyl (OH) and hydroperoxyl 

(HO2) radicals to create O3. The O3 formation is expected to be affected by the different levels 

of O3 precursors in different land use functional areas. According to different VOCs/ NOx ratio, 

O3 formation regimes can be classified into VOC-limited (VOC-sensitive), transition, and NOx-

limited (NOx-sensitive) regimes (Lu et al., 2019; Wang et al., 2008). From the spatial 

distribution of the BVOC effect (Fig. 3), the surface O3 is sensitive to BVOC emissions in most 

regions in China which can furtherly indicate they are usually VOCs-limited. It confirms the 

conclusion made by Lu et al. (2019), Lyu et al. (2016), and Tan et al. (2018) that the VOCs-

limited regime is dominant in southern China. Comparing with the spatial distribution of BVOC 

emissions (Fig. 1), the areas with high BVOC emissions usually have a higher contribution to 

O3. Because the dense population leads to a large number of NOx emitted by human activities, 

NOx is saturated with the formation of O3 which is more sensitive to VOC emissions. Therefore, 

the higher BVOC emissions usually cause greater contribution to O3 in these areas. In the VOC-

limited regime, the reduction of VOC emissions reduces the chemical production of organic 

radicals (RO2), which in turn lead to decreased cycling with NOx and consequently lower 

concentration of O3 (Jin and Holloway, 2015; Milford et al., 1989). To decrease BVOC 

emissions by planting plants with low emission potential may contribute to O3 pollution control. 

Notably, both northeastern and southern regions have the highest BVOC emissions, but their 

contributed O3 differ much, which indicates that O3 formation in the south is more sensitive to 

VOCs than in the northeast. Hainan province also has higher BVOC emissions but relatively 

lower contribution to O3." 
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5. Line 192: Can you mark (with boxes, for instance) the 5 regions on one of the maps, such as 

Figure 2? 

Response: Thank you for your valuable suggestion. In the revised manuscript, the five 

key regions are marked in Figures 4, 5, and 7. 



 

Fig. 4. Spatial variations in impact of BVOC emission on SOA concentration. 

 

Fig. 5. Spatial distribution of interannual variations in O3 simulated using annual BVOC 

emission factors. 



 

Fig. 7. Spatial distribution of interannual variations in SOA simulated using annual BVOC 

emission factors. 

 

6. Line 245: “N3”? Do you mean NO3? 

Response: We appreciate your careful reading very much and are sorry for the error. In 

revised manuscript, line 288, it is revised to "NO3". 

 

7. Line 275: You don’t show the BVOCs emission changes for your study in “HISTORY”. Why? 

A spatial map of the changes would be very helpful for the discussion. 

Response: Thank you for your suggestion. In the revised manuscript, we add the detailed 

description of BVOC emission changes for the “HISTORY” simulation in Section3.1.2. The 

spatial map of the changes is also added as Fig. 2. In addition, the reason for the changes is 

discussed. The revisions can refer to the Response to Comment 1 of Reviewer 2. 

 

8. Section 3.3.1: The discussion would be facilitated by maps (e.g., in supplementary material) 

of vegetation changes, leaf biomass changes, emission factors, etc. 

Response: Thank you for your suggestion. In the revised manuscript, we add a spatial 

map of leaf biomass changes over 1981–2018 as Fig. S2. The vegetation distribution in our 



estimations was derived from the Vegetation Atlas of China (1:1,000,000), which provides a 

detailed vegetation distribution at a high resolution. It was produced based on nationwide 

vegetation surveys and research from the past four decades and was published in 2007. It is 

rarely updated, and it represents the average distribution of vegetation in China. Therefore, the 

same PFT distribution was used to estimate BVOC emissions for 1981–2018 in this study. 

Emission factors were extrapolated by the leaf-level emission rates and leaf biomass using the 

canopy environment model described in MGEAN2.1. Emission rates were constant by time. So 

the interannual change of emission factor can be explained by that of leaf biomass. 

Line 187–194 in revised manuscript, we add descriptions for the changes of leaf biomass: 

"The leaf biomasses increased from 378.35 × 1012 g in 1981 to 1107.16 × 1012 g in 2018 at an 

average rate of 17.97 × 1012 g yr-1. Among them, the forest and crop leaf biomass increased 

from 237.10 × 1012 to 518.38 × 1012 g and from 141.25 × 1012 to 588.79 × 1012 g, respectively, 

totally increasing by 192.63%. The spatial distribution of interannual variations in leaf biomass 

is presented in Fig. S2. The increase of leaf biomass is most significant in Great Khingan, 

Changbai Mountains, North China Plain, south and southwest China. This is mainly due to the 

increased stock of broadleaf and coniferous forests as a result of afforestation. Northern 

Qinghai-Tibet area and Northwest China have a relatively high grass cover rate but insignificant 

increase in leaf biomass of vegetation. It is because that the grass biomasses were the same over 

the historical simulations due to lacking of data.". 

 

Fig. S2. Spatial distribution of interannual variations in leaf biomass. 



 

Other modifications 

1. Line 298–299, "For all the five regions, isoprene has both the largest emissions and the 

highest O3 generation, followed by monoterpene and sesquiterpene." is revised to "For all the 

five regions, isoprene has both the largest emissions and the highest contribution of O3 

generation, followed by monoterpene and sesquiterpene.".  

2. Line 360–361, "Hainan, and Taiwan provinces" is revised to " and Hainan provinces".  

3. Line 361, "In these areas" is revised to "In northwestern areas". 


