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Abstract. The year of 2015 was an extremely dry year for Southeast Asia where the direct impact of strong El Niño was in play.

As a result of this dryness and the relative lack of rainfall, an extraordinary amount of aerosol particles from biomass burning

remained in the atmosphere over the Maritime Continent during the fire season. This study uses the Weather Research and

Forecasting model coupled with Chemistry to understand the impacts of these fire particles on cloud microphysics and radiation

during the peak biomass burning season in September. Our simulations, one with fire particles and the other without them, cover5

the entire Maritime Continent region at a cloud-resolving resolution (4 km) for the entire month of September in 2015. The

comparison of the simulations shows a clear sign of precipitation enhancement by fire particles through microphysical effects;

smaller cloud droplets remain longer in the atmosphere to later form ice crystals, and/or they are more easily collected by ice-

phase hydrometeors, in comparison to droplets under no fire influences. As a result, mass of ice-phase hydrometeors increases

in the simulation with fire particles, so does rainfall. On the other hand, the aerosol radiative effect weakly counteracts the10

invigoration of convection. Clouds are more reflective in the simulation with fire particles as ice mass increases. Combined

with the direct scattering of sunlight by aerosols, the simulation with fire particles shows higher albedo over the simulation

domain on average. The simulated response of clouds to fire particles in our simulations clearly differs from what was presented

by two previous studies that modeled aerosol-cloud interaction in years with different phases of El Niño–Southern Oscillation

(ENSO), suggesting a further need for an investigation on the possible modulation of fire-aerosol-convection interaction by15

ENSO.

1 Introduction

The area of Southeast Asia (SEA) is characterized by the tropical monsoon climate where the rain belt meridionally shifts

across the region with season. Over this region, multiple dynamical factors, in addition to the monsoon, are concurrently

in play; land-sea breeze on a daily scale due to the contrast in surface heating, the Madden-Julian Oscillation (MJO) on20

an intraseasonal scale, El Niño–Southern Oscillation (ENSO) on a global scale, and the topographical influence on the flow

patterns in general. Xavier et al. (2014), for instance, presented the evidence for the direct impact of the MJO on the probability

of extreme rainfall events over SEA, using observational datasets. Meanwhile, a recent summary on the ENSO teleconnection

by Lenssen et al. (2020) showed the strong impact of ENSO on the amount of precipitation over SEA by presenting the

correlation between El Niño with anomalous drying and La Niña with anomalous wetting. Indeed, the TRMM rainfall data25
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(available at https://gpm.nasa.gov/data/directory) in Figure 1 seems to confirm this relationship between ENSO and the amount

of precipitation over SEA. This relationship can be explained by the zonal shifting of the Walker circulation, which defines

ENSO itself; during El Niño, the convective branch of the Walker circulation over the warm pool moves eastwards away from

SEA, whereas it gets strengthened near SEA during La Niña (e.g., Wang et al., 2017). Thus, SEA is subject to flow fields and

circulation patterns driven by varying scales of atmospheric phenomena.30
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Figure 1. 2-month accumulated precipitation [mm] observed by TRMM in September and October of each year from 2009 to 2015, calculated

from the monthly mean precipitation rate data (TRMM 3B43). Domain-mean amounts are shown in the bar graph at lower right. The

ENSO phases are based on the 3-month running mean Oceanic Niño Index (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/

ensostuff/ONI_v5.php).

SEA is also characterized by the emissions of aerosol particles from biomass burning activities (hereinafter "fire particles")

with a clear seasonal cycle. According to Lin et al. (2014), SEA can be split into the Indochina and the Maritime Continent (MC)

based on the peak biomass burning season, which is March and September, respectively. This is confirmed by our analysis on

MODIS Aerosol Optical Depth (AOD) data (available at https://ladsweb.modaps.eosdis.nasa.gov/), shown in Figure 2, where

the difference in AOD clearly stems from the seasonal meridional shift of the rain belt. In addition to the seasonality, the35

amount of aerosols over the region is also subject to the interannual variability according to ENSO. Likely because of the

tight connection between aerosols and their wet scavenging by rainfall, AOD and the amount of rainfall often show an inverse

relationship (e.g., Zhu et al., 2021). Indeed, our analysis of MODIS fire data in Figure 3 also shows an increased (decreased)

number of fires during El Niño (La Niña), which confirms the sensitivity of the aerosol abundance in the atmosphere to ENSO.

Microphysical and radiative impacts of fire particles over SEA have been suggested by some observational studies. For40

instance, Rosenfeld (1999) observed a significant reduction of cloud droplet sizes over the island of Borneo, based on TRMM

data, when clouds were downwind of biomass burning. The investigations of two recent field campaigns over the northern part

of SEA by Lin et al. (2013) revealed the detailed chemical and radiative characteristics of fire particles, while their impacts
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Figure 2. MODIS-observed monthly mean AOD averaged over 2008-2019, separately for the three areas shown on the upper left map. The

data MOD/MYD08_M3 is 1°× 1°. The shading shows ± standard deviation. The rain belt shifts between ∼20°N (boreal summer) and ∼5°S

(boreal winter) around this area (e.g., Schneider et al., 2014).

on clouds remained to be clarified. Similarly, the review study by Tsay et al. (2013) summarized the observational findings on

the characteristics and the seasonality of fire particles over the Indochina. Another review study on aerosols and clouds over45

SEA by Lin et al. (2014) pointed out that the largest difficulty lies in the simultaneous observation of clouds and aerosols from

satellites, as aerosol data gets "contaminated" when clouds exist. Therefore, in order to fully understand the connection of fire

particles with cloud characteristics, modeling is indispensable.

In spite of the abundance of fire particles, only a few modeling studies have focused on aerosol-cloud interactions (ACIs)

over SEA. This may be due to the complexity of multi-scale dynamics over the region that differs quite significantly from50

season to season and/or year to year, or potentially because of the practical reason as a cloud-resolving simulation that covers

the entire SEA is computationally expensive. Lee et al. (2014), for example, used the simulations from the GEOS-5 AGCM

model (resolution 2.5°× 2°) to find the reduction of precipitation over SEA due to both indirect and semi-direct effects of

aerosols. Ge et al. (2014), who utilized the Weather Research and Forecasting model (WRF; Skamarock et al., 2008) coupled

with Chemistry (WRF-CHEM; Grell et al., 2005) for finer-resolution (27 km) simulations, found a decrease (increase) in55

cloud fraction during daytime (nighttime) due to the cloud radiative effects of aerosols (including the semi-direct effect) that

altered vertical and horizontal flow fields. Simulations in these studies, however, were not on a cloud-resolving scale, which

often refers to a horizontal resolution of ∼4 km or finer that does not require parameterization of convections. Hodzic and
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Figure 3. Number of fires (with high confidence) within the rectangles, according to 1-km MODIS 8-day fire data (MOD/MYD14A2);

yellow represents 2-3 counts, orange 4-5 counts, and red > 5 counts (the maximum is 16, as Terra and Aqua are counted separately for 8 time

frames within September-October). The lower right plot shows the total pixel counts of fires with high confidence within the rectangles.

Duvel (2018, hereinafter HD18) ran cloud-resolving simulations using WRF-CHEM over the Borneo island for a 40-day

period, including the entire month of September in 2009. According to their simulations, the inclusion of fire particles in the60

simulations resulted in a reduction of precipitation on island-average, but when particle absorptivity was raised, a nighttime

enhancement of precipitation was additionally seen. Thus, they concluded that the response of rainfall to aerosol perturbations

depended heavily on the absorptivity of fire particles. In the recent study by Lee and Wang (2020, hereinafter LW20), they

also used cloud-resolving WRF-CHEM simulations (resolution 5 km) to investigate the impacts of fires on clouds in SEA

over a 4-month period from June to September in 2008. Their simulations included not only the Borneo island but also the65

Sumatra island and the Malay and Indochina peninsulas. Even though it is one of a few cloud-resolving modeling studies on

ACIs over SEA for such a long period of time, changes of seasons within the time period allowed the dominant flow patterns

and emissions to change and hence made it difficult to find ACI signals that were consistent for 4 months. From their in-depth

analysis on selected cases, they found a reduction of nocturnal rainfall over the western Borneo due mainly to the semi-direct

effect of fire particles.70

This study aims at further deepening our understanding of ACI over MC during the peak fire season in an extremely dry year

of 2015 (Figures 1-3) due to the strong El Niño impact. In particular, we address the following questions: (1) how are cloud

radiative and microphysical characteristics influenced by fire particles, (2) does the total amount and/or the diurnal cycle of

rainfall change due to fire particles, and (3) what do the simulation results imply, regarding the indirect impacts of ENSO on

precipitation via aerosols? Even though the above studies partly gave answers to some of these questions from their simulations,75

further investigations and discussions, especially on cloud radiative property changes and ENSO impacts, are essential to fully
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comprehend ACI in MC. We seek answers to the questions by running a pair of month-long cloud-resolving WRF-CHEM

simulations over MC.

2 Methods

We utilized the WRF-CHEM model (available at https://www2.mmm.ucar.edu/wrf/users/download/get_source.html) version80

3.6.1 for the cloud-resolving simulations. The simulation domain is over MC as Figure 4 shows. The horizontal resolution of

this outer domain is 20 km, whose information gets passed to a nested inner domain outlined by the magenta rectangle. This

inner domain, which covers the major target region, has a 4-km horizontal resolution and 50 vertical levels. The time steps are

30 s and 6 s for the inner and outer domains, respectively.
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Figure 4. Terrain height [m] within the outer simulation domain, outlined by the map. The inner domain is outlined by the magenta rectangle.

Physical and dynamical settings of the simulations are as follows; a simulation with no fire input was initialized at 00UTC85

on 1 August 2015 by the 1-degree NCEP Final Analysis data (GFS-FNL; NCEP, NWS, NOAA, U.S. DOC, 2000, available

at https://www2.mmm.ucar.edu/wrf/users/download/free_data.html) that also provided 6-hourly boundary conditions to the

outer domain. This simulation was run for 31 days for spin-up and continued until the end of September 2015, whereas the

other simulation with a fire input started from 1 September with the spun-up chemistry field from the no-fire simulation.

Therefore, our analysis period is 1-30 September 2015. Microphysical processes were calculated by the two-moment Morrison90

scheme (Morrison et al., 2009) but its default upper limit on ice number concentration was removed. Longwave and shortwave

radiation processes were calculated by the RRTMG scheme (Iacono et al., 2008), land surface processes by the Unified NOAH

land surface model (Tewari et al., 2004), and surface layer processes or planetary boundary layer physics by the Mellor-Yamada

Nakamishi Niino Level 2.5 scheme (Nakanishi and Niino, 2006, 2009; Olson et al.). Cumulus parameterization, applied solely

to the outer domain, was based on the Grell-Freitas Ensemble scheme (Grell and Freitas, 2014). 6-hourly grid-nudging by the95

Four-Dimensional Data Assimilation (FDDA) was turned on for the outer domain.

Chemistry settings are as follows; emissions were specified by the REanalysis of the TROpospheric chemical composi-

tion over the past 40 years (RETRO; Schultz et al., 2008) and the Emission Database for Global Atmospheric Research

5
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(EDGAR; http://edgar.jrc.ec.europa.eu) via Prep-chem-source (Freitas et al., 2011) version 1.5. (available at ftp://aftp.fsl.noaa.

gov/divisions/taq/global_emissions/), except for black carbon, organic carbon, CO, NH3, SO2, NOx (split into 75% NO and100

25% NO2), PM2.5, and PM10 that were replaced by the 0.25°-resolution data from the Regional Emission inventory in ASia

(REAS; Kurokawa et al., 2013) version 2.1 (available at https://www.nies.go.jp/REAS/). The month-long spin-up period pro-

vided enough time for the concentrations of chemical species to stabilize. As for the calculations of chemical processes, we

employed the RADM2 chemical mechanism (Stockwell et al., 1990) with MADE/SORGAM aerosols (Ackermann et al.,

1998; Schell et al., 2001). Unfortunately, sea salt emissions needed to be turned off as the appropriate emission option was105

unavailable. As long as we focus on the comparison between the two simulations, we deem this has no impact on our findings.

Photolysis was calculated by the Madronich photolysis scheme (Madronich, 1987) and biogenic emissions by the Guenther

scheme (Guenther et al., 1994; Simpson et al., 1995).

Under these physical and chemical settings, two simulations were run and compared, with the aim to clarify the impacts of

fire particles on clouds and climate. The one with no fire emission is called NOFIRE and the other with high-resolution fire110

emissions, based on the Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011, available at https://www.acom.ucar.edu/

Data/fire/) version 1.5, is called FIRE. These fire particles were vertically distributed by the embedded plume-rise model based

on Freitas et al. (2007). Other than this fire input, everything else remained identical between the two simulations. It is worth

noting here that this choice of fire inventory may have a significant impact on the simulated results; for instance, the Quick

Fire Emissions Dataset (QFED; Darmenov and da Silva, 2015) provides a relatively large amount of particle emissions from115

fires compared to FINN (e.g., Liu et al., 2020; Pan et al., 2020). On the other hand, the recently published version of FINN

(version 2.4) may include an improvement to the FINN dataset that leads to its large difference from version 1.5 that this study

utilized. While the improvements of fire inventories are still ongoing and their comparisons are beyond the scope of this study,

the potential impact of using different inventories needs to be kept in mind.

3 Results120

In this chapter, the comparison of the simulations with observations (Sect. 3.1), the comparison of the two simulations

(Sect. 3.2), and the comparison of the findings to those in two previous studies (Sect. 3.3) are presented.

3.1 Comparison with Observations

In order to assess how realistic the simulations are, here we compare simulated fields against observations. Figure 5 shows

the maps of accumulated surface precipitation [mm] between 1 September and 30 September 2015, observed by TRMM125

(Figure 5a) and simulated by the model (Figure 5b-c). Despite the general overestimation of the amounts of precipitation in

the simulations, the major characteristic distributions are well captured by the model; for instance, large amounts of rainfall

in the west of Sumatra (Region 1, red), the southern part of the South China Sea (Region 2, magenta), and in the northern

part of the Borneo island (Region 3, yellow). Our analyses focus on these three regions, individually. When daily precipitation

patterns are compared, the simulated patterns match surprisingly well with the TRMM observations. According to the time130
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series in Figure 5d-f, the simulations generally capture the observed fluctuations of rainfall rates, especially over Region 2.

The discrepancies in the absolute values shown in Figure 5a-c may be largely due to the lack of ocean dynamics that can lead

to more realistic sea surface temperature (SST) distributions. As can be inferred from the effects of ENSO on the amounts

of precipitation over MC, SST has significant impacts on the convective activities in the tropics (e.g., Graham and Barnett,

1987; Woolnough et al., 2000; Tompkins, 2001). Indeed, MC lies over the tropical warm pool where the Earth’s highest SST135

is observed. Sabin et al. (2013), for example, analyzed the observed data of SST and convective activities around the warm

pool and found a tight connection between the two, especially between 26°C and 29°C. Estimating SST over MC also faces

an additional challenge: the complicatedly distributed while nearly equalized coverages of land and ocean in the area. It hence

requires a high-resolution ocean model to accomplish (e.g., Wei et al., 2014). Therefore, the lack of realistic temporal and

spatial variations in SST may be one of the reasons why the simulated amounts of rainfall are off, while the spatial distributions140

and the overall temporal evolution are reasonably well reproduced. Current WRF/WRF-CHEM does not have the capability of

coupling with an ocean model, which would remain as one of their desirable future developments.

As for aerosols, there seems to be an overall underestimation of AOD in our simulations on monthly average. Figure 6 shows

the maps of monthly mean AOD at 0.55 µm observed by MODIS Terra (Figure 6a; Aqua shows a similar result) and simulated

by the model (Figure 6b-c), which clearly indicates the underestimation, while the FIRE simulation is closer to the observation145

as expected. The time series of AODs in Figure 6d-f also show this underestimation in each region. Nevertheless, horizontal

distributions of high AOD areas are mostly well captured by the FIRE simulations, when the daily snapshots of AODs are

compared. Figure 7 compares AODs observed at AERONET stations within the simulation domain with those simulated at

the nearest grid points. The accuracy of the FIRE simulation varies from station to station, while the general underestimation

of AODs by the simulation is seen. The temporal evolution of AODs, however, seems to be reasonably well captured (e.g.,150

Figure 7g, e, and g). The scale of the AOD values in this figure also needs to be emphasized, as extremely high observed values

(e.g., > 2.0) are particularly not well captured by the FIRE simulation.

These comparisons indicate that our simulations capture the overall distributions of rainfall and aerosols, while the amounts

of aerosols are likely underestimated. This can be due to the lack of a few large aerosol particles that contribute significantly

to AODs because of their large sizes, and/or the lack of many small particles. That is, it is possible that FINN greatly under-155

estimated particle emissions from biomass burning, especially in such a year with extreme dryness. It is also plausible that

the volume-based calculations of aerosol optical properties from the aerosol abundance lead to the underestimation of AODs,

even though the number and mass concentrations of aerosols are realistic. Unfortunately, there is no observation of aerosol

number/mass concentrations that can be compared to our simulations. Given the potential for the underestimation of aerosol

mass/number, however, it needs to be kept in mind that the effects of fire particles in reality may have been even stronger than160

what we find from the comparison of the FIRE and NOFIRE simulations, presented in the following section.

3.2 FIRE vs. NOFIRE

The inclusion of fire particles led to differences in simulated radiative and microphysical fields. Firstly, their impacts on

radiation are discussed. Figure 8a-d shows the mean changes in incoming (ground-level) and outgoing (top-of-the-atmosphere)
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Figure 5. Accumulated precipitation [mm] for the month of September in 2015, (a) observed by TRMM and (b) simulated in NOFIRE and

(c) FIRE. Red, magenta, and yellow rectangles show the locations of Region 1 (95W-101.5W, 5S-7N), Region 2 (101.5W-119W, 6.5N-9.5N),

and Region 3 (108W-119W, 0-6.5N), respectively. Time series of TRMM (black, 3-hourly) and simulated (blue and red, hourly) precipitation

rates [mm/h], averaged over each region, are shown for (d) Region 1, (e) Region 2, and (f) Region 3.

shortwave radiation under clear- and all-sky conditions, respectively. It is clear from this figure that the inclusion of fire165

particles reduced the solar radiation reaching the ground by scattering and/or absorbing. Such a radiative difference indeed

led to lower temperature near the ground in FIRE, by a degree or so, as shown in Figure 8e. The location of this strongest

cooling effect coincides with that of the largest reduction in incoming insolation on the ground, implying their connection. At

the top of the atmosphere, outgoing shortwave radiation increases in FIRE particularly over the seas where the surface is dark,

due to scattering by fire particles. As a result, albedo increases in the FIRE run (Figure 8f), although this increase is partly170

due to the increased cloud optical depth (Figure 8g); the aerosol direct and indirect effects both worked to increase the overall

reflectivity, even though their timing or causal relationship remains uncertain. The reduction in outgoing longwave radiation

(OLR) in FIRE (Figure 8h) indicates that cloud top heights increased on monthly average. This reduction in OLR suggests that

convection was stronger and clouds developed taller in the FIRE run. Although this is contrary to what can be expected from
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Figure 6. Monthly mean AOD at 0.55 µm (a) observed by MODIS Terra (MOD08_D3) and (b) simulated in NOFIRE and (c) FIRE. AOD

from MODIS Aqua (MYD08_D3) shows a similar result. The simulated results in (b,c) are the averages of AOD snapshots at 0320 UTC

everyday, which corresponds to 10:20am in Indochina Time. Time series of observed (black dots, twice daily) and simulated (blue and red

lines, hourly) AODs, averaged over each region, are shown for (d) Region 1, (e) Region 2, and (f) Region 3. In (d-f), both Terra and Aqua are

included. Note that the MODIS data was projected onto the UTC time series in (d-f), assuming that the data was taken at 10:30am/01:30pm

in Indochina Time.

the aerosol radiative effect that reduced the surface temperature and worked to stabilize the atmosphere, we show next that175

convection became stronger in the FIRE run and increased the amount of rainfall.

The differences in rainfall between NOFIRE and FIRE, shown in Figure 9a, clearly indicate the enhancement of precip-

itation in the FIRE simulation over the simulation domain. The maximum increase amounts to 645.4 [mm/month] and the

domain-mean difference is +25.9 [mm/month]. Based on our analyses, this rainfall difference is a result of a modified chain

of microphysical processes, rather than dynamical differences: as mentioned above, aerosol radiative effect seemed to have180

stablized the atmosphere, which has the opposite effect to the invigoration of convection. Therefore, it is fair to state that the

enhanced rainfall was triggered by the microphysical effect of fire particles. The rest of this subsection is dedicated to explain-

ing the microphysical mechanisms that made rainfall to increase and clouds to become taller and more reflective in the FIRE

simulation as presented above.
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Figure 7. (a) Locations of 9 AERONET stations whose AOD data for the month of September 2015 are shown in (b-j) in green (675 nm)

and lime (500 nm). For (c), they are AODs at 551 nm (green) and 532 nm (lime) instead. Red and blue lines are estimated AODs at 550 nm

from the FIRE and NOFIRE simulations, respectively.

According to Figure 9b-d, the amount of rainfall clearly increases in the FIRE simulation over Region 1 and Region 3, which185

both include a large portion of land, whereas the precipitation change is equally positive and negative over Region 2 that is over

a sea. In order to understand at what time this increase occurs in a day, regional mean differences (FIRE-NOFIRE) in hourly

precipitation rate [mm/h] are plotted in Figure 10 (left column), along with their monthly means (magenta). This analysis
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Figure 8. Simulated monthly mean differences (FIRE-NOFIRE) in (a) clear- and (b) all-sky downward shortwave radiation on the ground

[Wm−2], (c) clear- and (d) all-sky upward shortwave radiation at the top of the atmosphere [Wm−2], (e) temperature at the lowest model

level [K], (f) albedo [unitless], (g) estimated cloud optical depth [unitless], and (h) OLR [Wm−2]. These are the averages of differences at

06 UTC (around local midday) everyday in the month of September 2015.

shows that the increase occurs at 1200-0400 UTC on average, which is from evening to morning in local time. No decrease

is seen at other times. To confirm that this increase in nocturnal rainfall is not due to a single passage of a large convective190

system, the numbers of days with regional mean increase (+1, red, FIRE > NOFIRE) and decrease (-1, blue, FIRE < NOFIRE)

are counted every hour in Figure 10 (right column). Combining the plots in Figure 10, it is clear that there are many days

when precipitation rates increase in FIRE at night (right column), which all contribute to the increase of mean precipitation

rates in 1200-0400 UTC (left column, magenta). As no rainfall reduction is seen for the rest of the day, we conclude that these

precipitation increases over Regions 1 and 3 are an enhancement of nocturnal precipitation rather than a temporal shifting of a195

diurnal cycle. When monthly mean mass mixing ratios of hydrometeors are compared between FIRE and NOFIRE (Figures 11
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Figure 9. (a) Difference (FIRE-NOFIRE) in accumulated precipitation [mm] over the month of September. (b-d) Time series of regional

mean precipitation rate differences (FIRE-NOFIRE) in (b) Region 1, (c) Region 2, and (d) Region 3.

and A1), an increase in all hydrometeor masses in FIRE is apparent, particularly that of snow and graupel over Regions 1 and

3. It is also clear that the longitudinal/latitudinal patterns of the rain and snow/graupel masses correspond very well with each

other, implying the significant contribution of melted snow/graupel to rain mass. Furthermore, the absolute difference values

shown in Figures 11 and A1 are on the order of 0.01 [gm−3] for both rain and snow/graupel in all three regions, whereas those200

for cloud droplets are merely 0.001 [gm−3]. Thus, surface rainfall seems to largely stem from melted snow and graupel. As

more aerosol particles exist in the FIRE simulation, the number of smaller droplets increases. This initiated a chain of altered

microphysical processes that led to the increase in snow production, which is essential for subsequent graupel production.

Further analyses on microphysical process rates (Figure A2) show cloud features that are consistent with both of the hypotheses

that (i) more cloud droplets remain in air without raining out and later freeze aloft to form more ice crystals that are essential205

for more snow formation in FIRE and (ii) the increased mass and number of cloud droplets in the FIRE simulation set a more

favorable condition for efficient snow and graupel production in clouds, such as through droplet accretion by snow (Figure A2g-

i). Both of these paths may have concurrently played a role in producing more snow in the FIRE simulation. Once snow mass

increases, graupel mass also increases as they form on snow by riming. As for the invigoration of convection signified by

the increased rainfall and cloud top height, our analysis has revealed that the increased latent heat release is predominantly210

through increased condensation rather than increased freezing; Figure A3 shows the estimated amounts of maximum latent

heat released upon droplet activation and freezing. According to these estimates, convection was likely invigorated more by

increased condensation and less so by increased freezing. This result agrees with what was shown by Fan et al. (2018) and
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Lebo (2018). It is also likely that, once convection gets invigorated, stronger downdrafts can in turn induce stronger convection,

creating a positive feedback. This may have played a role in the invigorated convections in our FIRE simulation.215
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Figure 10. (a,c,e) FIRE-NOFIRE differences in hourly precipitation rate [mmh−1] each day in September (black) and their monthly average

(magenta). (b,d,f) Raw counts of increased (+1, red) or decreased (-1, blue) hourly rainfall rates (FIRE-NOFIRE). All are averages over (a,b)

Region 1, (c,d) Region 2, and (e,f) Region 3.

Areas with increased cloud optical depth (Figure 8g) overlap with areas of increased droplet number concentrations (over

land) and areas of increased ice mass (over sea), based on Figure 12. This suggests the direct impacts of fire particles on

cloud droplets over land (i.e., source region) and their propagated impacts over seas on cloud reflectivity via ice. As for cloud

top heights, the areas of decreased OLR (Figure 8h) correspond well with the areas of increased ice (Figure 12d-f), mostly

over seas. This increased mass of ice crystals is likely due to the hypothesis (i) stated above, which applies to convective220

clouds that can eventually dissipate into more stratiform anvil clouds and drift in the atmosphere for an extended period of

time. Such aerosol-induced changes in stratiform anvil clouds, namely their extended lifetime and heightened cloud top, have

been reported in previous studies (e.g., Fan et al., 2018), even though these changes can be independent of the invigoration

of convection. The increased ice mass indicates increased latent heat release in FIRE through freezing and riming, which is

consistent with the higher cloud tops. Thus, an increase of fire particles triggered the changes in microphysical process rates225

that ultimately modified the cloud radiative properties.
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Figure 11. Monthly and meridional mean mass concentrations [gm−3] of (a,b) liquid cloud, (d,e) rain, (g,h) ice, (j,k) snow, and (m,n) graupel

in (a,d,g,j,m) NOFIRE and (b,e,h,k,n) FIRE over Region 3. Respective differences (FIRE-NOFIRE) are shown in the rightmost column. The

dashed and dotted lines are temporally and meridionally averaged 0°C and -40°C isotherms, respectively. See Figure A1 for equivalent

difference figures for Regions 1 and 2.

These microphysically-driven changes of cloud properties have some implications on climate. The invigoration of convec-

tive clouds produces more rainfall and hence facilitates the energy exchange between the surface and the upper atmosphere.

Interestingly, the increase of fire particles in the atmosphere is partly dependent on the amount of precipitation; the year of 2015

was particularly dry and had an exceptionally high AODs (Figure 2) due to the lack of rainfall (Figure 1). Although the amount230

of increased rainfall in FIRE is not as much as interannual differences, our simulations showed the effect of fire particles to

slightly compensate for the lack of rainfall in the year of 2015.

3.3 Comparison with Previous Studies

Here we compare the results in this study with those from HD18 and LW20. The objective of this subsection is to clarify

the differences in the overall impacts of aerosol-cloud interaction among the three studies, particularly in the surface rain-235

fall changes. As simulation settings differ among the three, only the signs of the rainfall change are concerned rather than

its magnitude or physical mechanism. The simulation period was mostly September in HD18 and 4 months from June to

September in LW20. The month of September, therefore, is the common period of interest among these studies and the

current work. The ENSO phase, however, differs among the three: very strong El Niño in 2015 (this study), moderate El

14



Figure 12. Monthly mean column-integrated (a,b) cloud droplet number [m−2] and (d,e) ice mass [kgm−2] in (a,d) NOFIRE and (b,e) FIRE.

Differences are shown in (c,f).

Niño in 2009 (HD18), and weak La Niña in 2008 (LW20), according to the 3-month running mean Oceanic Niño Index240

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). Although the simulation resolutions

are more or less the same cloud-resolving scale for the three (i.e., 4 km or 5 km), the simulation domain contains both the

Indochina and MC in LW20, only MC in this study, and only the Borneo island in HD18. With these differences in mind, the

findings of rainfall changes due to fires over the Borneo island are compared in this subsection.

Our results show the increase in nocturnal rainfall over Borneo (i.e., Region 3) due to the intensification of convective clouds245

through microphysical processes. The direct and semi-direct effects of aerosols were small. In HD18, however, the inclusion of

fires reduced the rainfall from late afternoon to evening (see their Figure 5) due to radiative (stabilization of the atmosphere) and

microphysical (locally vary) reasons. As for LW20, rainfall slightly increased during daytime but decreased during nighttime

when fires were included (see their Figure 10). LW20 concluded that it was likely due to the semi-direct effect of aerosols, which

reinforced sea breeze during the day but weakened land breeze at night. Over the same region and same month, these studies250

have varying results for the fire-induced rainfall change and its mechanism. We attribute these differences to (a) microphysical

paramterizations and their sensitivities to aerosol perturbations, (b) settings of aerosol properties, such as absorptivity and size

distributions, that would affect the sign and/or magnitude of aerosol radiative effects, and (c) the interannual variability of

dominant regional weather pattern that prevails over SEA, likely varying with the ENSO phase. As for (a) and partly for (b),

both LW20 and this study used the Morrison scheme (Morrison et al., 2009), but the removal of the default upper limit on255

ice number concentrations in this study may have increased the sensitivity of clouds to aerosol perturbations. HD18 utilized

the two-moment scheme by Thompson and Eidhammer (2014) that separates aerosols into water-friendly and ice-friendly and
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activates a fraction of water-friendly aerosols based on a look-up table. These differences in the calculations of microphysical

processes must have a considerable influence on the simulated results of the fire effects. The additional factor of (c) may further

complicate the interpretation of the differences among simulations. Therefore, comparisons of simulations with a consistent260

microphysics scheme or the same ENSO phase are required for fully clarifying the role of fire particles on clouds or the effects

of ENSO phases on ACI over the region.

4 Conclusions

We have used two cloud-resolving WRF-CHEM simulations to reveal the impacts of fire particles on cloud microphysics and

radiation over MC for the month of September in 2015, when extremely high AODs were observed. Our month-long FIRE265

simulation with fire particles showed more reflective and taller clouds than those in the NOFIRE simulation. The amount

of precipitation was also larger in the FIRE simulation. All of these features suggest the invigoration of convection by fire

particles. Based on our further analyses, the increased mass of snow seemed to be particularly responsible for the increased

rainfall, whereas the changes in cloud top height and reflectivity stemmed mainly from increased ice crystals that are more

reflective and longer-lived than snow. The changes in microphysical process rates were all initiated by a simple increase in270

aerosol number concentrations, which in turn triggered a chain of modified microphysical processes such as increased freezing

of smaller ice crystals aloft and thermodynamic responses. Although the magnitude of the differences between FIRE and

NOFIRE is not comparable to interannual differences, we conclude that the intensification of convection by fire particles acted

to partly compensate for the lack of rainfall for the month of September 2015. These findings answer the three scientific

questions posed for this study in Introduction.275

It is of a profound interest to understand the interannual variability of aerosol effects potentially influenced by ENSO, which

is commonly believed to be a major driver for convective activities and also a critical factor behind biomass burning in SEA.

To explore this issue, we have compared our simulations with two previous studies, perhaps the only other cloud-resolving,

month-long simulations available hitherto over the region but for years in different ENSO phases. Convective systems in our

simulations displayed the invigoration effect by fire particles that the two studies did not show. Nevertheless, many questions280

still remain unanswered. For instance, do smaller amounts of aerosols in other years simply exert the weaker invigoration

effect that was presented in this study? Or even small amounts of aerosols have an equivalently strong invigoration effect if

the background condition is always pristine, unlike the aerosol-loaded year of 2015? Does the aerosol semi-direct effect play a

stronger role in other years, or depending on the aerosol settings in simulations? Are aerosol effects completely different under

different weather regimes? Although it was out of the scope of this paper, recent studies such as Zhang et al. (2019) have shown285

a potential importance of heat effects of fires on convective clouds; they found strengthening of convection by the heat effects

and therefore significant changes in subsequent cloud properties in their simulations. In the region of our interest, how much

the heat effects of fires exert the invigoration of convection could definitely be examined in the future. Furthermore, do our

simulation results depend on the fire inventory used for the simulations? The answers to all of these questions will be sought

in our future work.290
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Appendix A: Supplementary Figures

This appendix provides additional figures that support the contents of the paper.
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Figure A1. Same as (c,f,i,l,o) in Figure 11 but for (left column) Region 1 and (right column) Region 2.
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Figure A2. Differences (FIRE-NOFIRE) in rates [#kg−1s−1] of (a-c) cloud droplet freezing, (d-f) droplet accretion by ice, and (g-i) droplet

accretion by snow in (left column) Region 1, (middle column) Region 2, and (right column) Region 3.

Figure A3. Differences (FIRE-NOFIRE) in the maximum amount of latent heat [Jkg−1] released upon (top) droplet activation and (bottom)

droplet freezing in (a,d) Region 1, (b,e) Region 2, and (c,f) Region 3. These were estimated from newly activated droplet number concentra-

tion [#kg−1], time step [s], droplet freezing rate [#kg−1s−1], and cloud droplet and ice effective radii rc and ri. Since newly formed droplets

and ice crystals are typically smaller than rc and ri, respectively, these are the maximum estimates. Note the difference in the scale of the

color bars.
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