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Abstract 
We quantify methane emissions and their 2010-2017 trends by sector in the contiguous United States 
(CONUS), Canada, and Mexico by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and 
satellite (GOSAT) atmospheric methane observations. The inversion uses as prior estimate the national 
anthropogenic emission inventories for the three countries reported by the US Environmental Protection 35 

Agency (EPA), Environment and Climate Change Canada (ECCC), and the Instituto Nacional de Ecologia 
y Cambio Climatico (INECC) in Mexico to the United Nations Framework Convention on Climate 
Change (UNFCCC), and thus serves as an evaluation of these inventories in terms of their magnitudes 
and trends. Emissions are optimized with a Gaussian mixture model (GMM) at 0.5°×0.625° resolution 
and for individual years. Optimization is done analytically using log-normal error forms. This yields 40 

closed-form statistics of error estimates and information content on the posterior (optimized) estimates, 
allows better representation of the high tail of the emission distribution, and enables construction of a 
large ensemble of inverse solutions using different observations and assumptions. We find that GOSAT 
and in situ observations are largely consistent and complementary in the optimization of methane 
emissions for North America. Mean 2010-2017 anthropogenic emissions from our base GOSAT + in situ 45 

inversion, with ranges from the inversion ensemble, are 36.9 (32.5-37.8) Tg a-1 for CONUS, 5.3 (3.6-5.7) 
Tg a-1 for Canada, and 6.0 (4.7-6.1) Tg a-1 for Mexico. These are higher than the most recent reported 
national inventories of 26.0 Tg a-1 for the US (EPA), 4.0 Tg a-1 for Canada (ECCC), and 5.0 Tg a-1 for 
Mexico (INECC). The correction in all three countries is largely driven by a factor of 2 underestimate in 
emissions from the oil sector with major contributions from the south-central US, western Canada, and 50 

southeast Mexico. Total CONUS anthropogenic emissions in our inversion peak in 2014, in contrast to 
the EPA report of a steady decreasing trend over 2010-2017. This reflects combined effects of increases 
in emissions from the oil and landfill sectors, decrease from the gas, and flat emissions from the livestock 
and coal sectors. We find decreasing trends in Canadian and Mexican anthropogenic methane emissions 
over the 2010-2017 period, mainly driven by oil and gas emissions. Our best estimates of mean 2010-55 

2017 wetland emissions are 8.4 (6.4-10.6) Tg a-1 for CONUS, 9.9 (7.8-12.0) Tg a-1 for Canada, and 0.6 
(0.4-0.6) Tg a-1 for Mexico. Wetland emissions in CONUS show an increasing trend of 2.6 (1.7-3.8) % a-

1 over 2010-2017 correlated with precipitation. 
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1. Introduction 60 

Atmospheric methane (CH4) is the most important anthropogenic greenhouse gas after carbon dioxide 
(CO2). Natural emissions are mainly from wetlands. Anthropogenic emissions are from many sectors 
including the oil/gas supply chain, coal mining, livestock, and waste management. Individual countries 
must report their anthropogenic methane emissions by sector to the United Nations in accordance with 
the United Nations Framework Convention on Climate Change (UNFCCC, 1992). These national 65 

emission inventories are mainly constructed by bottom-up methods as the product of activity data and 
emission factors, following methodological guidelines from the Intergovernmental Panel on Climate 
Change (IPCC). The emission factors are highly variable and have large uncertainties, leading to errors 
in estimating national emissions, their trends, and the contributions of different sectors (Kirschke et al., 
2013; Saunois et al., 2020). Top-down methods involving inversion of atmospheric methane observations 70 

can usefully diagnose these errors (Houweling et al., 2017). Here, we use an inverse analysis of 2010-
2017 in situ and satellite observations of atmospheric methane over North America to evaluate national 
emission inventories and their trends by sector for the United States (US), Canada, and Mexico. 
 
US anthropogenic methane emissions are reported yearly by the US Environmental Protection Agency 75 

(EPA, 2021) as part of the Inventory of US Greenhouse Gas Emissions and Sinks (GHGI). Methane 
emissions for the year 2012, from the 2016 version of this inventory (EPA, 2016), were spatially allocated 
on a 0.1o × 0.1o (10 × 10 km) grid by Maasakkers et al. (2016) to enable its evaluation using top-down 
methods. Results using analysis of atmospheric methane measurements from ground, aircraft, and satellite 
platforms show larger methane emissions than reported in the GHGI, particularly for the oil/gas industry 80 

(Alvarez et al., 2018; Zhang et al., 2020; Lu et al., 2021; Maasakkers et al. 2021; Qu et al., 2021) and for 
livestock (Lu et al., 2021; Yu et al., 2021). Atmospheric observations also suggest an increasing trend of 
US anthropogenic emissions over the past decade (Turner et al., 2015; Sheng et al., 2018a; Lan et al., 
2019; Maasakkers et al., 2021), while the GHGI indicates a decrease (EPA, 2021).  
 85 

Anthropogenic methane emissions for Canada are reported yearly by Environment and Climate Change 
Canada (ECCC) (ECCC, 2020a; 2021) as part of the National Inventory Report (NIR). Atmospheric 
observations again indicate an underestimate of emissions from oil/gas production (Atherton et al., 2017; 
Johnson et al., 2017; Chan et al., 2020; Baray et al., 2021; Lu et al., 2021; Tyner and Johnson, 2021) but 
a decrease of these emissions over the past decade (Lu et al., 2021; Maasakkers et al., 2021). Scarpelli et 90 

al. (2021) recently allocated the 2020 version of the ECCC NIR for the year 2018 (ECCC 2020a) on a 
0.1o × 0.1o grid and our work is the first to use it in an inverse analysis. 
 
Mexico’s anthropogenic methane emissions are reported by the Instituto Nacional de Ecología y Cambio 
Climático (INECC) in Mexico’s National Inventory of Greenhouse Gases and Compounds (INEGyCEI) 95 

for selected years (INECC and SEMARNAT, 2018). The last communication to the UNFCCC was in 
2015 and this inventory was allocated to a 0.1o×0.1o grid by Scarpelli et al. (2020). A recent inverse 
analysis of satellite data finds oil/gas emissions to be underestimated by a factor of 2 over eastern Mexico 
(Shen et al., 2021).  
 100 
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The above top-down studies except for Baray et al. (2020) and Lu et al. (2021) used either in situ or 
satellite observations but not both. Satellite observations have better data coverage but are less sensitive 
to emissions and have larger uncertainties, particularly at high latitudes. In a previous inverse analysis 
(Lu et al., 2021), we showed that in situ and satellite observations provide complementary global 
information for inverse analyses of methane emissions. That inversion was conducted at 4°×5° resolution, 105 

too coarse for specific evaluation of national inventories.  
 
Here we apply extensive in situ observations from surface sites, towers, ships, and aircraft 
(GLOBALVIEWplus CH4 ObsPack data compilation) together with the Greenhouse Gases Observing 
Satellite (GOSAT) observations, in an inverse analysis for 2010-2017 to optimize methane emissions and 110 

their year-to-year variability at up to 0.5×0.625° resolution for North America. We use as prior estimates 
the gridded national emission inventories from EPA (US), ECCC (Canada), and INECC (Mexico), so that 
our results can inform inventory improvement planning at the emission sector level. Following Lu et al. 
(2021), we use an analytical inversion method that provides closed-form characterization of error statistics 
and information content of the inverse solution, and also allows us to compare quantitatively the 115 

information from the in situ and satellite observations.  
 
2. Methods 
We use methane observations from the GLOBALVIEWplus CH4 ObsPack in situ data (Section 2.1) and/or 
GOSAT satellite retrievals (Section 2.2) with the GEOS-Chem chemical transport model (Section 2.4) as 120 

the forward model, to optimize a state vector of mean methane emissions for individual years (Section 
2.3) covering the North American continent at a spatial resolution of up to 0.5°×0.625°. We derive 
posterior estimates of the state vector and the associated error covariance matrix by analytical solution to 
the Bayesian optimization problem (Section 2.5). Our base inversion uses GOSAT + in situ observations 
and our best choices of inversion parameters. We also present results from an ensemble of sensitivity 125 

inversions using observation subsets (in situ or GOSAT) and varying inversion parameter assumptions 
(e.g. different error distributions). We attribute inversion results to different methane emission sectors 
with the methodology described in Section 2.6. 
 
2.1 In situ methane observations 130 

We use the comprehensive database of in situ (surface, tower, shipboard, and aircraft) methane 
observations over North America for 2010-2017 from the GLOBALVIEWplus CH4 ObsPack v1.0 product 
compiled by the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring 
Laboratory (Cooperative Global Atmospheric Data Integration Project, 2019). Following Lu et al. (2021), 
data from surface and tower sites are sampled only during daytime (10-16 local time) and averaged as 135 

daytime mean values on individual days for use in the inversion. For sites with standard deviations larger 
than 30 ppb, we exclude data points that depart by more than two standard deviations from the mean 
because such conditions are difficult to simulate with the transport model. For other sites we exclude data 
points that depart by more than three standard deviations from the mean. We also exclude aircraft 
measurements higher than 9 km above sea level as these measurements would have weak sensitivity to 140 

surface fluxes. 

https://doi.org/10.5194/acp-2021-671
Preprint. Discussion started: 19 August 2021
c© Author(s) 2021. CC BY 4.0 License.



5 
 

 
The in situ observations thus include 49742 data points from surface sites, 15285 from towers, 56 from 
ship cruises, and 26620 from aircraft campaigns over North America and adjacent waters (Figure 1a). The 
number of available in situ observations per year increases from 10830 in 2010 to 13593 in 2017. All 145 

these in situ data points are used in the base inversion to optimize methane emissions for individual years. 
We also conduct sensitivity inversions by only using surface and tower sites with continuous eight-year 
records for trend analyses.  
 
2.2 GOSAT satellite methane observations 150 

The GOSAT satellite launched in 2009 measures the backscattered solar radiation from a sun-synchronous 
orbit at around 13:00 local time (Kuze et al., 2016). Methane is retrieved in the 1.65 µm shortwave 
infrared absorption band. We use the column-averaged dry-air methane mixing ratios from the University 
of Leicester version 9.0 Proxy XCH4 retrieval (Parker et al., 2020a). Comparison with ground-based 
methane observations from the Total Carbon Column Observing Network (TCCON) shows that the 155 

retrieval has a single-observation precision of 13 ppb and an overall global bias of 9 ppb that is removed 
from the Proxy XCH4 data (Parker et al., 2020a). Here we use a total of 205875 (25734 per year on 
average) GOSAT retrievals for 2010-2017 over North America in the inversion, excluding glint data over 
the oceans and data poleward of 60o which are not representatively sampled and for which errors are large 

(Figure 1b).  160 

 
2.3 Prior emission inventories 
We use as prior estimates of anthropogenic methane emissions the gridded versions of the official national 
inventories for the US (EPA, 2016), Canada (ECCC, 2020), and Mexico (INECC and SEMARNAT, 2018) 
(Maasakkers et al., 2016; Scarpelli et al., 2020, 2021). These emissions are listed in Table 1 for individual 165 

countries and the spatial distributions for major sectors are shown in Figure 2. We assume no year-to-year 
trend in the prior emissions, so that trends from the inversion are solely driven by observations. Prior 
anthropogenic emissions for the contiguous US (CONUS) are 28.7 Tg a-1. Anthropogenic US emissions 
outside CONUS (mostly Alaska, not optimized in the inversion) account for only 0.3 Tg a-1 according to 
Maasakkers et al. (2016). The latest GHGI report from EPA (2021) gives mean emissions of 26.0 Tg a-1 170 

for 2010-2017. Prior anthropogenic emissions for Canada are 3.7 Tg a-1. The most recent 2021 version of 
the ECCC NIR gives a mean of 4.0 Tg a-1 for 2010-2017 (ECCC, 2021). Mexico anthropogenic emissions 
are 5.0 Tg a-1. 2015 is the latest available year from INECC. 
 
Prior methane emissions from wetlands are the 0.5o × 0.5o gridded mean monthly values for 2010-2017 175 

from the nine highest-performance members of the WetCHARTs v1.3.1 inventory ensemble (Ma et al, 
2021), selected for their fit to the global GOSAT inversion results of Zhang et al. (2021). This choice of 
prior estimate effectively corrects the large overestimates of wetland emissions for North America 
previously found in inversions of GOSAT and aircraft data when using the overall mean of the 
WetCHARTs v1.0 ensemble (Sheng et al., 2018b; Maasakkers et al., 2021). We do not include interannual 180 

variability from WetCHARTs because it is highly uncertain and we prefer to have it informed by the 
observations. Unlike in our global inversion (Lu et al., 2021), we do not optimize the relative seasonal 
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variation of wetland emissions and instead have it imposed by the prior estimate (Parker et al., 2020b). 
Prior estimates of open fire emissions are the daily values for individual years from the Global Fire 
Emissions Database (GFED) version 4s (van der Werf et al., 2017). Other small natural emissions 185 

(seepages, termites) are as described in Lu et al. (2021).  
 
2.4 The GEOS-Chem forward model  
We use the nested version of the GEOS-Chem 12.5.0 chemical transport model (http://geos-chem.org, 
last access: 6 April 2021) (Wecht et al., 2014) as the forward model for the inversion. The model is driven 190 

by MERRA-2 reanalysis meteorological fields at their native 0.5° × 0.625° resolution (Gelaro et al., 2017). 
Methane loss from atmospheric oxidation is as described in Lu et al. (2021) but is inconsequential here 
because it is negligibly slow compared to the timescale for ventilation of the North American domain. 
Soil uptake of methane is from the MeMo model v1.0 (Murguia-Flores et al., 2018) but is very small and 
therefore not optimized in the inversion. 195 

 
The GEOS-Chem model simulation is conducted at 0.5° × 0.625° resolution over the North America 
domain (130-55°W, 15-65°N) (Fig.1) for the 2010-2017 period, with initial and dynamic boundary 
conditions archived every 3 hours from a global 2010-2017 simulation at 4°×5° resolution using methane 
emissions and sinks previously optimized with GOSAT observations (Lu et al., 2021). This means that 200 

GOSAT observations over North America are used twice, once for the global inversion (along with other 
observations worldwide) and once for the North American inversion, but this is inconsequential because 
the sole purpose of the global optimization is to avoid biases in boundary conditions that would cause 
spurious corrections to emissions within the inversion domain (Wecht et al., 2014). Lu et al. (2021) show 
that their optimized simulation is unbiased in comparison to global zonal mean observations for 2010-205 

2017 but we still find some residual bias for individual years. We therefore optimize the mean boundary 
conditions for individual years on each side of the domain (north, south, west, east) as part of the North 
American inversion.  
 
2.5 Inversion procedure 210 

Our state vector x to be optimized in the inversion includes spatially resolved emissions in North America 
and boundary conditions for each year of 2010-2017. Although we could technically optimize methane 
emissions for each of the 0.5°×0.625° native model grid elements, the observations do not have sufficient 
coverage to constrain emissions everywhere at that resolution and doing so would introduce large 
smoothing errors in the inversion (Wecht et al., 2014). Following Turner and Jacob (2015) and 215 

Maasakkers et al. (2021), we use instead a Gaussian mixture model (GMM) to determine the emission 
patterns that can be constrained effectively by the inversion. This is done by projecting the native-
resolution methane emissions onto 600 Gaussian functions optimized to fit the location, magnitude, and 
distribution of methane emissions for different sectors as given by the prior estimates. Optimal 
construction of the GMM aggregates regions with weak or homogeneous emissions while preserving 220 

native resolution for strong localized source regions. The Gaussian functions overlap, providing 
additional high-resolution structure in the inverse solution on the 0.5o×0.625o native grid. The state vector 
𝒙𝒙 for individual years is defined as the emission of each of the 600 Gaussians, plus the correction to the 
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model boundary conditions as described earlier, for a total dimension 𝑛𝑛 = 604. 
 225 

The inversion finds the optimal estimate of 𝒙𝒙 by minimizing the Bayesian cost function 𝐽𝐽(𝒙𝒙) (Brasseur 
and Jacob, 2017): 

𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝑨𝑨)𝑇𝑇𝑺𝑺𝑨𝑨−1(𝒙𝒙 − 𝒙𝒙𝑨𝑨) + 𝛾𝛾(𝒚𝒚 − 𝑭𝑭(𝒙𝒙)𝑇𝑇𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑭𝑭(𝒙𝒙)) (1), 
where 𝒙𝒙𝑨𝑨 is the prior estimate of 𝒙𝒙, 𝑺𝑺𝑨𝑨 denotes the prior error covariance matrix, 𝒚𝒚 is the observation 
vector, 𝑺𝑺𝑶𝑶 denotes the observation error covariance matrix, 𝛾𝛾 is a regularization factor (see below), 230 

and  𝑭𝑭(𝒙𝒙)  represents the GEOS-Chem simulation of 𝒚𝒚 . The GEOS-Chem forward model 𝑭𝑭(𝒙𝒙)  as 
implemented here is strictly linear (because methane sinks are not optimized), so that the model can 
expressed as 𝒚𝒚 = 𝑲𝑲𝒙𝒙 + 𝒄𝒄 , where 𝑲𝑲 = 𝜕𝜕𝒚𝒚/𝜕𝜕𝒙𝒙  represents the Jacobian matrix and 𝒄𝒄  is a constant. 
Minimizing the cost function (Eq.1) by solving 𝛁𝛁𝒙𝒙 𝐽𝐽(𝒙𝒙) = 0 yields closed-form posterior estimates of 
the state vector 𝒙𝒙�, its error covariance matrix 𝑺𝑺�, and the averaging kernel matrix 𝑨𝑨 (Rodgers, 2000; 235 

Brasseur and Jacob, 2017): 
𝒙𝒙� = 𝒙𝒙𝑨𝑨 + 𝑮𝑮(𝒚𝒚 − 𝑲𝑲𝒙𝒙𝑨𝑨) (2), 

𝑺𝑺� = (𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1𝑲𝑲 + 𝑺𝑺𝑨𝑨−1)−1 (3), 

𝑨𝑨 = 𝜕𝜕𝒙𝒙�
𝜕𝜕𝒙𝒙

=  𝑰𝑰𝒏𝒏 − 𝑺𝑺�𝑺𝑺𝑨𝑨−𝟏𝟏 (4), 

where 𝑮𝑮 in Eq.2 is the gain matrix,  240 

𝑮𝑮 = 𝜕𝜕𝒙𝒙�
𝜕𝜕𝒚𝒚

=  (𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1𝑲𝑲 + 𝑺𝑺𝑨𝑨−1)−1𝛾𝛾𝑲𝑲𝑇𝑇𝑺𝑺𝑶𝑶−1 (5). 

The averaging kernel matrix A in Eq. 4 quantifies the sensitivity of the posterior estimate to changes in 
the true value, and therefore measures the information content provided by the observing system for 
correcting the prior estimates and returning the true values as posterior estimates. We refer to the diagonal 
elements of A as the averaging kernel sensitivities, and to the trace of A as the degrees of freedom for 245 

signal (DOFS), representing the number of pieces of independent information on the state vector obtained 
from the observing system (Rodgers, 2000). Our inversion returns the posterior estimates of mean 
emissions and averaging kernel sensitivities for each Gaussian, and these can be mapped additively to the 
0.5o×0.625o grid using their spatial distributions on the grid.  
 250 

Analytical solution to equation (2), and inference of error statistics and information content from 
equations (3)-(4), requires explicit construction of the Jacobian matrix 𝑲𝑲 . We construct 𝑲𝑲  by 
conducting GEOS-Chem simulations where each element of the state vector is perturbed separately. This 
is readily done computationally as an embarrassingly parallel problem. Analytical solution has several 
advantages relative to the more widely used variational (numerical) approach. (1) It identifies the true 255 

minimum in the cost function. (2) It provides complete explicit forms of the posterior error covariance 
and averaging kernel matrices. (3) It enables a range of sensitivity analyses at no significant computational 
cost modifying the inversion parameters and adding/subtracting observations. 
 
To construct the prior error covariance matrix 𝑺𝑺𝑨𝑨 , we assume a 50% error standard deviation for 260 

individual Gaussians in the base inversion (and we test the sensitivity to that assumption as will be 
described later), with no spatial error covariance so that 𝑺𝑺𝑨𝑨 is diagonal. There is necessarily some spatial 
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covariance in the prior estimates since the Gaussians have spatial overlap, and there is also some spatial 
covariance in the forward model error contributing to 𝑺𝑺𝑶𝑶, but these are difficult to quantify. The former 
would underestimate the information content of the observations while the latter would overestimate it. 265 

We effectively correct for this using the regularization parameter γ as described below, and we further 
rely on our inversion ensemble rather than the posterior error covariance matrix to characterize the error 
in our posterior solution. 
 
The standard assumption of Gaussian error statistics in the cost function of equation (1) is required to 270 

achieve an analytical solution but may lead to unphysical negative emissions (Miller et al., 2014) and fail 
to capture the heavy tail of the emission distribution (Zavala-Araiza et al., 2015; Frankenberg et al., 2016; 
Alvarez et al., 2018). We solve this problem by optimizing for ln (𝒙𝒙) instead of 𝒙𝒙, with the error on ln 
(x) following a normal Gaussian distribution, i.e., lognormal errors for 𝒙𝒙 (Maasakkers et al., 2019). The 
forward model is then nonlinear, so that the solution must be solved iteratively with a transformed 275 

Jacobian matrix 𝑲𝑲′
𝑵𝑵 =  ∂𝒚𝒚/ ∂ln (𝒙𝒙) at each iteration N. Once the original Jacobian matrix 𝑲𝑲 = 𝜕𝜕𝒚𝒚/𝜕𝜕𝒙𝒙 

for the linear model has been computed, we can derive  𝑲𝑲′
𝑵𝑵  immediately at any iteration by 

∂y𝑖𝑖/ ∂ln (x𝑗𝑗) = x𝑗𝑗 ∂y𝑖𝑖/ ∂x𝑗𝑗 , where i and j represent the indices of the observation and state vector 
elements, respectively. The iterative solution is obtained with the Levenberg–Marquardt method (Rodgers, 
2000) for each iteration N: 280 

𝒙𝒙′𝑵𝑵+𝟏𝟏 =  𝒙𝒙′𝑵𝑵 + �𝛾𝛾𝑲𝑲′
𝑵𝑵
𝑻𝑻𝑺𝑺𝑶𝑶−1𝑲𝑲′

𝑵𝑵 + (1 + 𝜅𝜅)𝑺𝑺′𝑨𝑨
−1�

−1
((𝛾𝛾𝑲𝑲′

𝑵𝑵
𝑻𝑻𝑺𝑺𝑶𝑶−1(𝒚𝒚 − 𝑲𝑲𝒙𝒙𝑵𝑵) − 𝑺𝑺′𝑨𝑨

−1(𝒙𝒙′𝑵𝑵 − 𝒙𝒙′𝑨𝑨)) 

(6), 
where 𝒙𝒙′ = ln (𝒙𝒙) with the initial value 𝒙𝒙′𝟎𝟎 from the prior estimate, and 𝜅𝜅 = 10 is a coefficient for the 
iterative approach to the solution (Rodgers, 2000). 𝑺𝑺′𝑨𝑨 (with diagonal elements denoted by s′𝐴𝐴) is the 
prior error covariance matrix for the inversion in log space, and can be derived from the original prior 285 

error covariance matrix 𝑺𝑺𝑨𝑨 (with diagonal elements denoted by s𝐴𝐴) following (Maasakkers et al., 2019): 

s′A = �
(ln�

𝑥𝑥𝐴𝐴+�𝑠𝑠𝐴𝐴
𝑥𝑥𝐴𝐴

�+�ln�
𝑥𝑥𝐴𝐴−�𝑠𝑠𝐴𝐴

𝑥𝑥𝐴𝐴
��)

2
�

2

 (7). 

 
We adopt as convergence criterion that the maximum difference between 𝒙𝒙′𝑵𝑵+𝟏𝟏 and 𝐱𝐱′𝑵𝑵 elements be 

smaller than 5‰, at which point we adopt 𝒙𝒙′� =  𝒙𝒙′𝑵𝑵+𝟏𝟏  as our posterior solution. The posterior error 290 

covariance and averaging kernel matrices 𝑺𝑺′�  and A’ on the log solution are obtained by replacing 𝑺𝑺𝑨𝑨 

and 𝑲𝑲 with 𝑺𝑺′𝑨𝑨 and 𝑲𝑲′ in Eqs. (3) and (4). Optimization of emissions in log space means that 𝒙𝒙�′ is a 
best estimate of the median of the log-normal error distribution rather than the mean. The mean values 
for spatial and sectoral aggregation purposes can be inferred from the properties of the lognormal 

distribution as 𝑥𝑥𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑥𝑥𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚)𝑒𝑒𝑠𝑠′�𝑗𝑗𝑗𝑗/2  where 𝑠𝑠′�𝑗𝑗𝑗𝑗  is the corresponding diagonal element of the 295 

posterior error covariance matrix in log space, i.e., the geometric error standard deviation. The boundary 
conditions are still optimized with normal error distributions, assuming an error standard deviation of 10 
ppb. 
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The above describes our base inversion. We also conduct sensitivity inversions using different error 300 

assumptions. This includes 1) using the quadrature sum of error variances for all sectors contributing to 
a given Gaussian with a cap of 50% following Maasakkers et al. (2021), resulting in a 43% error on 
average; 2) to 4) using the normal error distributions (then with the linear Jacobian matrix) with 50%, 
95%, and the quadrature sum of errors for individual Gaussians as error variances; 5) assuming an error 
standard deviation of 5 ppb for boundary conditions.  305 

 
The observation error covariance matrix 𝑺𝑺𝑶𝑶  includes contributions from measurement and forward 
model errors. We compute it following the residual error method originally described by Heald et al. 
(2004) and previously used by Lu et al. (2021). A GEOS-Chem simulation with prior emission estimates 
yields a prior model estimate 𝑭𝑭(𝒙𝒙𝑨𝑨) of concentrations at the observation points. The mean 2010-2017 310 

discrepancy between the observations and the prior model, 𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)�������������, is determined for each grid cell 
(for GOSAT), individual observation site (surface and tower), and observation platform (shipboard and 
aircraft). 𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)������������� is taken to represent the systematic bias in the prior emissions to be corrected in the 
inversion. The residual term, 𝜺𝜺𝑶𝑶 = 𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑨𝑨) − 𝐲𝐲 − 𝑭𝑭(𝒙𝒙𝑨𝑨)������������� , represents the random observation error 
including contributions from the measurements, the forward model, and the representation of the 315 

observation points on the model grid (Heald et al., 2004). The variance of 𝜺𝜺𝑶𝑶 provides the diagonal terms 
of 𝑺𝑺𝑶𝑶. The resulting observation error standard deviations average 13 ppb for GOSAT, 26 ppb for surface 
sites, 39 ppb for towers, 19 ppb for ships, and 22 ppb for aircraft. The observation error is larger for in 
situ than for satellite observations, even though the in situ measurements are more precise, because the 
forward model error is larger for local points than for atmospheric columns (Turner et al., 2015). The 320 

observation error for in situ observations is dominated by the forward model error while that for GOSAT 
is dominated by the measurement error.  
 
We do not have sufficient objective information to quantify the error correlation structure of SO and we 
therefore assume it to be diagonal. This may underestimate 𝑺𝑺𝑶𝑶 because of correlated transport and source 325 

aggregation errors in the forward model, as noted above. We follow Zhang et al. (2018) to introduce a 
regularization factor 𝛾𝛾 for the observation terms in the cost function 𝐽𝐽(𝒙𝒙) (Eq. 1) to avoid either overfits 
or underfits that would result from underestimates of 𝑺𝑺𝑶𝑶 and 𝑺𝑺𝑨𝑨, respectively. Lu et al. (2021) showed 
that the optimal value of this regularization factor can be selected such that the sum of the n prior terms 
in the posterior estimate of the cost function (𝐽𝐽𝐴𝐴(𝒙𝒙�) = (𝒙𝒙� − 𝒙𝒙𝑨𝑨)𝑻𝑻𝑺𝑺𝑨𝑨−𝟏𝟏(𝒙𝒙� − 𝒙𝒙𝑨𝑨)) has a value ≈ n, which is 330 

the expected value from the Chi-square distribution with n degrees of freedom. Here we find that γ = 1 is 
best for both the in-situ and GOSAT inversions (i.e., no weighting in the inversion). We also conduct a 
sensitivity inversion using γ = 0.5 for the GOSAT observation terms as adopted in Maasakkers et al. 
(2021). 
 335 

Table 2 summarizes the settings of our base inversion (in bold) and the inversion ensemble. The ensemble 
comprises 33 inversions using the different combinations of settings in the Table. The base inversion 
including GOSAT + in situ data represents our best estimate, but we will compare it prominently to the 
GOSAT-only and in-situ–only inversions with the same inversion parameters in order to evaluate the 
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contributions from the different observing platforms for optimizing emissions. We will use the other 340 

ensemble members to discuss the sensitivity of inversion results to the choices of observations and 
inversion parameters, and to define the range of uncertainty in the inversion results. 
 
2.6 Sectoral attribution and aggregation of inversion results  
The inversion returns the posterior estimates of mean emissions for each of the Gaussians, and we allocate 345 

these emissions to the native 0.5o×0.625o model grid by summing the contributions of all Gaussians on 
the grid. This defines a correction factor f0 to total prior emissions for each 0.5o × 0.625o grid cell and 
including the contributions from all q emission sectors (in our case q = 12, cf. Table 1). For sectoral 
attribution of this total correction factor we need to derive the correction factors fi to the individual sectors 
𝑖𝑖 ∈ [1, 𝑞𝑞] contributing to f0. We use two alternative methods for this purpose. The first method simply 350 

takes fi = f0 for all i, thus assuming that all sectors contribute equally to the grid-level correction factor 
(Maasakkers et al., 2021; Lu et al., 2021; Zhang et al., 2021) . The second method (Shen et al., 2021) 
accounts for emissions from different sectors having different prior error standard deviation σi and 
therefore contributing differently to f0. Following Shen et al. (2021), 𝑓𝑓𝑖𝑖 is then given by: 

𝒇𝒇𝒊𝒊 = 𝟏𝟏 −  η𝜶𝜶𝒊𝒊𝝈𝝈𝒊𝒊,
𝟐𝟐(𝟏𝟏−𝒇𝒇𝟎𝟎)

𝝈𝝈𝑨𝑨
𝟐𝟐 ,    (8) 355 

where 𝛼𝛼𝑖𝑖 is the fraction of total emissions in the grid cell contributed by sector i, 𝜎𝜎𝐴𝐴 is the prior error 

standard deviation for total emissions in the grid cell, and η = 𝜎𝜎𝐴𝐴
2

∑ 𝛼𝛼𝑖𝑖
2𝑞𝑞

𝑖𝑖=1 𝜎𝜎𝑖𝑖
2 is a normalization factor. For the 

prior error standard deviations σi on the 0.5o×0.625o grid we use the scale-dependent adaptation by 
Maasakkers et al. (2016) of EPA sectoral national error estimates. This results in prior error standard 
deviations of 43% for rice, 66% for wastewater, 51% for landfills, 38% for livestock, 18% for coal, 30% 360 

for gas, and 87% for oil emissions. We further use 70% for wetlands (Bloom et al., 2017) and 100% for 
all other natural sources. These error estimates are solely used to infer fi values in equation (8), so that 
more uncertain emissions will contribute more to the correction. We use the second method in our base 
attribution of posterior estimates to emission sectors but will also use the results from the first method to 
contribute to error ranges in these sector-attributed posterior estimates.  365 

 
We also need to aggregate posterior emission estimates nationally and by sector for comparison to the 
national emission inventories. Following Maasakkers et al. (2019), this is done by a transformation from 
the posterior full-dimension state vector 𝒙𝒙�  to the reduced state vector 𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓  (national emission for a 
given sector) with a summation matrix W: 370 

𝒙𝒙�𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝒙𝒙� (9). 
The posterior error covariance and averaging kernel matrices for the reduced state vector are then given 
by 

𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝑺𝑺�𝑾𝑾𝑻𝑻 (10), 
𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 =  𝑾𝑾𝑨𝑨𝑾𝑾∗ (11), 375 

where 𝑾𝑾∗ =  𝑾𝑾𝑻𝑻(𝑾𝑾 𝑾𝑾𝑻𝑻)−𝟏𝟏 (Calisesi et al., 2005). 𝑺𝑺�𝒓𝒓𝒓𝒓𝒓𝒓 enables us to determine whether national 
correction factors for individual sectors are affected by error correlations between sectors. 𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓 enables 
us to determine the ability of the observing system to quantify national emissions from a particular sector 

https://doi.org/10.5194/acp-2021-671
Preprint. Discussion started: 19 August 2021
c© Author(s) 2021. CC BY 4.0 License.



11 
 

independently from the prior estimate.  
 380 

3. Results and Discussion 
3.1 Base inversion compared to GOSAT-only and in-situ-only inversions 
Figure 3a shows the gridded posterior correction factors from the base inversion averaged over 2010-
2017, i.e., the multiplicative factors applied to the total prior emissions from Figure 2, mapped on the 
0.5o×0.625o model grid. Figure 3b shows the corresponding averaging kernel sensitivities, indicating the 385 

dependence of the posterior solution on the prior estimate (0 = total dependence, 1 = no dependence). The 
DOFS = 114 can be placed in the context of the 600 Gaussian state vector elements used to optimize the 
spatial distribution of emissions. We see that the observations provide considerable information to 
optimize methane emissions but we also see that a finer resolution for the inversion would not be justified 
on the continental scale. 390 

 
Figures 3c-f show the results from the GOSAT-only and in-situ-only inversions, enabling us to compare 
the information contents and consistency of the two data sets. The GOSAT-only inversion yields a DOFS 
of 68, while the in-situ-only inversion yields a DOFS of 80, even though there are 50% fewer in situ 
observations than GOSAT observations. This is because the sensitivities of surface observations to 395 

emissions are an order of magnitude higher than those of satellite observations (Cusworth et al., 2018). 
The GOSAT observations have the advantage of broader coverage. Thus we find that the in-situ 
observations dominate the information content of the base inversion over California, the upper Midwest, 
and Canada; whereas GOSAT dominates the information content in Mexico (where there are no in-situ 
observations) and most of the western US. GOSAT and in-situ observations contribute comparably in the 400 

south-central and eastern US, though with different weights in different locations. We conclude that 
GOSAT and in situ observations make comparable and complementary contributions to the optimization 
of methane emissions for North America.   
 
We next examine the consistency in the information from GOSAT and in situ observations for correcting 405 

prior methane emissions. Inspection of the posterior correction factors from the GOSAT-only and in-situ-
only inversions in Figure 3 shows overall qualitative agreement. Figure 4 displays a more quantitative 
comparison of the posterior corrections by correlating the values for 0.5o×0.625o grid cells between the 
GOSAT-only and in-situ-only inversions, selecting regions with relatively high averaging kernel 
sensitivities for both. We find overall good consistency between the two inversions (correlation coefficient 410 

r = 0.47 for the ensemble of points, with 73% of grid cells showing corrections in the same direction). 
The reduced-major-axis regression slope is 0.62, consistent with GOSAT providing overall less 
information. Both inversions find that methane emissions over the south-central US, the southeast US, 
the Great Plains, and Alberta are underestimated in the prior inventories. They also agree on downward 
corrections over central Canada and the Upper Midwest where wetland emissions dominate. The largest 415 

inconsistency is over California where the two inversions show correction factors in opposite direction 
for much of the state. This may reflect the underestimation of CO2 over the Los Angeles Basin in the 
proxy GOSAT retrieval (Turner et al., 2015) and/or complex topography. Results from the base inversion 
tend toward either of the two inversions depending on which has the most information content. 
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 420 

We evaluated the ability of the base GOSAT + in situ inversion to fit the two observational data sets by 
comparing 2010-2017 GEOS-Chem simulations with posterior versus prior emissions and boundary 
conditions. Results are shown in Figure 5. The posterior simulation reduces the model mean bias (MB) at 
surface and tower measurements from -11 ppb in the prior simulation to -5 ppb, and also narrows the root-
mean-square error (RMSE) from 24 to 14 ppb. For GOSAT the improvement is less apparent from the 425 

comparison statistics, because the prior simulation already has a low mean bias MB = -0.5 ppb, and the 
prior RMSE is only 6.9 ppb (which decreases to 6.5 ppb). However, we see from Figure 5 a significant 
whitening of the noise with reduction of regional-scale biases. 
 
3.2 Optimized 2010-2017 anthropogenic methane emissions for CONUS, Canada, and Mexico 430 

Tables 1a-c summarize our inversion results for national 2010-2017 methane emissions by sector in 
CONUS, Canada, and Mexico. Our best estimates of total anthropogenic + natural emissions from the 
base inversion are 46.3 (40.2-48.4) Tg a-1 for CONUS, 16.2 (13.5-17.4) Tg a-1 for Canada, and 6.8 (5.4-
6.9) Tg a-1 for Mexico. The ranges given in parentheses are from the 33 inversion ensemble members 
(Table 2). Averaging kernel sensitivities for these total national emissions (the diagonal elements in 𝑨𝑨𝒓𝒓𝒓𝒓𝒓𝒓, 435 

section 2.6) are 0.72 for CONUS, 0.60 for Canada, and 0.40 for Mexico, indicate that the GOSAT + in 
situ observation system informs 72% of the total methane emissions in CONUS, 60% in Canada, and 40% 
in Mexico. The lower values for Mexico are due to the lack of in situ observations. 
 
We partition these national totals into different sectors as described in Section 2.6, and use the posterior 440 

error covariance matrix (equation (10)) to evaluate the ability of the inversion to separate between sectors. 
This is shown in Figure 6 as the posterior error correlation matrix, displaying the error correlation 
coefficients (r) in the inversion results for all sector pairs. Error correlation coefficients are generally 
lower than 0.2 for CONUS, indicating successful separation, except for small sources (termites, seeps, 
other anthropogenic). The same holds for Canada except for error correlation between landfills and 445 

wastewater treatment, both associated with urban areas. Anthropogenic emissions in Canada are well 
separated from the large wetland emissions. Error correlations are higher in Mexico, because emissions 
from different sectors tend to be concentrated in Mexico City and the eastern part of the country (Scarpelli 
et al., 2020), but even there the error correlation coefficients are generally less than 0.4. Optimization of 
the oil/gas sector is well separated from the other sectors in all three countries. 450 

 
We find that anthropogenic methane emissions for all three countries are larger in our inversion results 
than in the national inventories submitted to the UNFCCC. Our best estimate of the mean 2010-2017 
anthropogenic methane emission for CONUS is 36.9 (32.5-37.8) Tg a-1, which is 30% higher than the 
28.7 Tg a-1 in the 2016 version of the EPA GHGI used as prior estimate (EPA, 2016), and 42% higher 455 

than the mean 26.0 Tg a-1 for 2010-2017 in the most recent version of the GHGI (EPA, 2021). Maasakkers 
et al. (2021) previously obtained a mean 2010-2015 CONUS anthropogenic emission of 30.6 (29.4–31.3) 
Tg a-1 by inversion of GOSAT data using the same prior anthropogenic estimate as ours but a much higher 
prior estimate for CONUS wetlands (15.7 Tg a-1). The need to decrease the wetlands source in their 
inversion (to a posterior estimate of 11.8 Tg a-1), as well as their reliance of GOSAT observations only, 460 
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may have dampened their ability to quantify anthropogenic emissions.  
 
Our best estimate of the mean 2010-2017 anthropogenic methane emission for Canada is 5.3 (3.6-5.7) Tg 
a-1, which is 43% higher than the 3.7 Tg a-1 in the ECCC NIR (2020 version) used as prior estimate, and 
33% higher than the 4.0 Tg a-1 for 2010-2017 reported in the most recent version of the ECCC NIR 465 

(ECCC, 2021). Baray et al. (2021) previously obtained a mean 2010-2015 anthropogenic emission of 6.1 
Tg a-1 for Canada by inversion of data from GOSAT and ECCC surface sites.  
 
Our best estimate of the mean 2010-2017 anthropogenic methane emission for Mexico is 6.0 (4.7-6.1) Tg 
a-1, which is 20% higher than the 5.0 Tg a-1 in Mexico's national inventory (INECC and SEMARNAT, 470 

2018) used as prior estimate. Shen et al. (2021) similarly found higher emissions than the national 
inventory in their inversion of TROPOMI methane data for eastern Mexico. 
 
Figure 7 displays the data from Tables 1a-c for the national posterior emission estimates from different 
sectors in comparison with the EPA (US), ECCC (Canada), and INECC (Mexico) national inventories 475 

used as prior estimates. We find that emissions from all major sectors except coal and wastewater are 
lower in the national inventories than our inversion results, with the largest underestimates for fugitive 
emissions from the oil sector. The total CONUS oil and gas emissions in our inversion are 4.6 and 9.9 Tg 
a-1, respectively, 109% and 45% higher than the EPA (2016) inventory used here as prior estimate, and 
177% and 65% higher than the most recent EPA (EPA, 2021) inventory for the 2010-2017 mean. The EPA 480 

inventory reports an uncertainty of -24 to +29% for oil and -15 to +14% for natural gas emissions (EPA, 
2021). Our estimates are also higher than those in Maasakkers et al. (2021), which are 3.6 and 8.0 Tg a-1 
respectively for oil and gas emissions in 2010-2015. They are consistent with the Alvarez et al. (2018) 
estimates for total CONUS oil and gas emissions of 13 (11–15) Tg a-1 in 2015 based on field 
measurements within oil and gas basins, scaled up to derive a national value.  485 

 
We mentioned previously that the lower estimates in Maasakkers et al. (2021) could reflect their use of 
GOSAT observations only, the difference in time frame, and their high prior estimate for wetlands, but 
another factor is their assumption of normal distributions for prior emission error standard deviations. We 
find from our inversion ensemble that assuming a log normal distribution instead (as in our base inversion) 490 

increases the resulting posterior oil and gas emissions by 0.8 and 0.9 Tg a-1 respectively by better 
capturing the heavy tail of the emission probability density functions, as previously observed in oil/gas 
production regions (Zavala-Araiza et al., 2015; Frankenberg et al., 2016; Alvarez et al., 2018). Adding 
the in situ observations to the GOSAT-only inversion further increases the posterior oil and gas emissions 
by 0.2 and 0.3 Tg a-1, respectively. Thus our base inversion yields the high end of the estimated range 495 

from the inversion ensemble (Table 1a) but still represents our best estimate.  
 
Our inversion increases the oil emissions over Canada by more than a factor of two to 1.8 Tg a-1 compared 
to the ECCC inventory. The total posterior oil and gas emissions for Canada are 2.9 (1.6-3.3) Tg a-1. This 
is in good agreement with a recent inversion study (3.0 Tg a-1) based on 2010-2017 surface methane 500 

measurements in western Canada (Chan et al., 2020). Most of the information for Canada in our base 
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inversion indeed comes from the in situ measurements (Figure 3), which are relatively dense in Canada 
(Figure 1), and considering that GOSAT observations at high latitudes are relatively sparse and seasonally 
limited (Lu et al., 2021). Maasakkers et al. (2021) previously found little information for Canadian 
anthropogenic emissions in their GOSAT-only inversion, although that was further complicated by their 505 

large overestimate of prior wetland emissions that dominate total emissions in Canada.  
 
We further compared our oil/gas inversion results for CONUS, Canada, and Mexico to the TRACE 
bottom-up inventory aggregating data from individual assets up to the country level (Climate TRACE, 
2021). This inventory uses lifecycle assessment emissions models for production, processing, refining, 510 

and shipping (Gordon et al., 2015; Masnadi et al., 2018; Gordon and Reuland, 2021). The TRACE oil/gas 
total emission estimates for CONUS (9.6 Tg a-1), Canada (1.8 Tg a-1), and Mexico (0.5 Tg a-1) are similar 
to the prior estimates from EPA, ECCC, and INECC respectively (Table 1) and correspondingly lower 
than our best posterior estimates of 14.5 Tg a-1 for CONUS, 3.2 Tg a-1 for Canada, and 1.3 Tg a-1 for 
Mexico. The bottom-up oil and gas modeling in TRACE assesses routine methane emissions from normal 515 

operations, assuming normal fugitive emissions. Recent flyover work, however, shows that methane 
emissions are highly intermittent (Cusworth, et. al., 2021) and this is not well captured in bottom-up 
estimates.  
 
Figure 8 shows the spatial distributions of posterior correction to the gridded version of national 520 

inventories for the oil, gas, livestock, and landfill sectors. We find large upward corrections for the major 
oil/gas production basins in the US including the Permian, Barnett Shale, Eagle Ford, Bakken Shale, 
Marcellus Shale, and Anadarko basins, consistent with previous reports based on field measurements and 
satellite observations (Miller et al., 2013; Karion et al., 2015; Peischl et al., 2015; Lyon et al., 2015; Ren 
et al., 2019; Robertson et al., 2020; Zhang et al., 2020). Upward corrections in Canada are concentrated 525 

over the oil/gas production regions of Alberta and Saskatchewan, again consistent with previous studies 
(Johnson et al., 2017; Baray et al., 2018; Chan et al., 2020). For Mexico the upward correction is 
concentrated in the onshore Sureste Basin which is the largest oil field in the country, but with a downward 
correction for offshore operations. This is consistent with aircraft and TROPOMI satellite observations, 
suggesting that methane from offshore oil platforms is piped onshore and inefficiently flared (Zavala-530 

Araiza et al., 2021; Shen et al., 2021). 
 
The spatial distribution of posterior corrections to livestock emissions indicates that the national 
inventories are too low for most regions, although there are exceptions in particular in the western US 
(Fig. 8). The highest emissions in the gridded version of the EPA (2016) GHGI are for the Upper Midwest 535 

and our inversion results suggest that these are too low, possibly reflecting higher-emitting manure 
management systems from confined animal feeding operations than included in the GHGI calculations 
(Sheng et al., 2018a). Yu et al. (2021) also found from an aircraft-based inversion that livestock emissions 
from the EPA inventory over the US Corn Belt and Upper Midwest region are underestimated by 25% 
during summer and winter. 540 

 
Our inversion finds CONUS methane emissions from landfills of 7.2 (6.0-7.6) Tg a-1, 24% higher than 
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the prior EPA (2016) estimate of 5.8 Tg a-1. The most recent EPA (2021) inventory gives 4.5 Tg a-1 for 
landfill emissions with an uncertainty of ±22%. The organic decay rate and methane production potential 
used in the GHGI calculation may be too low (Wang et al., 2013; Sun et al., 2019). 545 

 
3.3 2010-2017 trends in anthropogenic methane emissions 
Our inversion optimizes emissions for individual years in 2010-2017, allowing investigation of emission 
trends. Figure 9 shows the 2010-2017 time series of total anthropogenic methane emissions from CONUS, 
Canada, and Mexico, and the contributions from the dominant sectors (oil, gas, coal, livestock, and 550 

landfills). We include no trend in the prior estimates so that the trends in Figure 9 are solely driven by the 
observations. Table 3 gives the corresponding 2010-2017 linear trends in emissions inferred from ordinary 
linear regression, and compares to the trends reported in the most recent national inventories for the US 
(EPA, 2021) and Canada (ECCC, 2021). Mexico only reports emissions up to 2015. 
 555 

Our inversion shows that over the time frame of 2010 to 2017, total anthropogenic methane emissions in 
CONUS peaked in 2014 and then decreased, resulting in no net trend for the 2010-2017 period (0.1 (-0.1-
0.3) % a-1). The increasing trend for 2010-2015 is 0.9 (0.4-1.8) % a-1, higher than 0.4 % a-1 in the GOSAT-
only inversion by Maasakkers et al. (2021) and more consistent with the 0.7±0.3 % a-1 for 2006-2015 in 
an in-situ-only inversion by Lan et al. (2019). Inspection of CONUS trends for different emission sectors 560 

in the base inversion indicates that the 2014 maximum largely reflects opposite trends between oil and 
landfill emissions, which increased by 2.9 (1.0-2.9) % a-1 and 1.7 (1.0-1.8) % a-1 respectively over the 
2010-2017 period, and gas emissions, which decreased by 1.8 % a-1 over the 2010-2017 period, with 
livestock and coal emissions showing no significant trend (Figure 9). In contrast, the most recent EPA 
GHGI inventory reports a steady decreasing trend of -0.8 % a-1 in US anthropogenic methane emissions 565 

over the 2010-2017 period mostly driven by coal (-5.4% a-1) and landfills (-1.6% a-1) (EPA, 2021). The 
decrease for gas is more pronounced in our inversion than in the EPA inventory (-0.4% a-1). The EPA 
inventory shows no significant trend for oil emissions. 
 
Figure 10 shows the spatial distributions of the linear regression fits to the 2010-2017 trends for the major 570 

anthropogenic sectors, i.e., the equivalent linear trends over the period. We find that the oil increases are 
mostly driven by major basins in the south-central US including the Permian and Eagle Ford basins. The 
gas decreases are mostly driven by fields in the western US (Niobrara) and southeastern US (Haynesville). 
Livestock emissions show variable regional patterns of increase and decrease that could reflect variations 
in animal populations. The increase in Iowa is consistent with a previous study of GOSAT trends by Sheng 575 

et al. (2018a), who attributed it to an increase in the number of swine (Iowa Department of Natural 
Resources, 2017). Landfills also show variable patterns of increase and decrease.  
 
The ECCC reports no significant trends of Canadian anthropogenic methane emissions over 2010-2017, 
but notes some decreases of oil emissions, in particular after 2014 (ECCC, 2021). Here we find a 580 

decreasing trend in Canadian anthropogenic emissions of -2.3 (-2.5 - -1.6) % a-1 from the inversion, 
mainly driven by gas (-3.8 (-3.9 - -1.7) % a-1) and oil (-1.7 (-2.0 - -0.4) % a-1). This may reflect reductions 
in livestock and oil/gas emissions over this period (ECCC, 2020b) and the ongoing regulation of methane 
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released from the oil/gas sectors following the Pan-Canadian Framework on Clean Growth and Climate 
Change, which aims to reduce methane emissions by 40-45% by 2025 relative to the 2012 level (ECCC, 585 

2017). The inversion also suggests a decreasing trend in Mexican anthropogenic methane emissions by -
3.3 (-3.4 - -1.7) % a-1, but this is mainly driven by a decrease from 2010 to 2011. We find very large 
relative decreases of oil emissions (-11.6 (-15.0 - -3.5) % a-1) in particular for offshore Sureste, consistent 
with increasing utilization of associated gas (Zhang et al., 2019).   
 590 

3.4 2010-2017 wetland methane emissions and trends 
Our inversion shows strong ability to optimize wetland emissions over CONUS and Canada (averaging 
kernel sensitivity of 0.57). Wetland emissions in Mexico are much smaller and are not efficiently 
optimized by the inversion, as shown in Table 1c. Posterior wetland emissions are 8.4 (6.4-10.6) Tg a-1 
for CONUS and 9.9 (7.8-12.0) Tg a-1 for Canada, compared to 7.5 and 12.0 Tg a-1 in the prior estimate 595 

from the WetCHARTs v1.3.1 high-performance subset for North America (Ma et al., accepted). There are 
larger regional upward (southeast US) and downward (Upper Midwest) corrections even with this high-
performance subset, as shown in Figure 11, pointing to major gaps in our understanding.  
 
Figures 11 and 12 show the 2010-2017 trends of wetland emissions for CONUS and Canada. We find a 600 

significant increase of 2.6 (1.7-3.8) % a-1 in wetland methane emissions over CONUS in 2010-2017, in 
particular after 2014, and this is consistent with but higher than the WetCHARTs trend estimates of 1.3 % 
a-1 (not used in the inversion). The trends over CONUS are mostly driven by increases in the southeast 
US (Fig.11b). Fluctuations in emissions for temperate and boreal wetlands are mostly modulated by 
temperature, snow melt, precipitation, and drought events (Watts et al., 2014). We find a significant 605 

correlation of 0.89 between the CONUS wetland emissions and annual precipitation in the CONUS 
wetland regions, and a strong 2010-2017 increase in the later that may drive the wetland trends (Fig.12c). 
Wetland emissions over Canada do not show significant trends in the inversion. The 2016 peak is 
consistent with WetCHARTs and may be explained by high precipitation (Fig.12d). 
 610 

4 Conclusions 
We estimated mean methane emissions and trends for 2010-2017 in the contiguous United States 
(CONUS), Canada, and Mexico by inversion of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite 
(GOSAT) atmospheric methane observations. Our inversion used gridded versions of the national 
anthropogenic emission inventories reported to the UNFCCC by EPA (CONUS), ECCC (Canada) and 615 

INECC (Mexico) as prior estimates. It optimized a 600-member Gaussian mixture model (GMM) of 
emissions for individual years at up to 0.5×0.625° resolution. The inversion involved analytic 
minimization of the Bayesian cost function with log-normal prior statistics. This enabled a large ensemble 
of inversions to test the sensitivity of results to a range of assumptions, and provided closed-form 
expressions of posterior error covariance and information content to evaluate the results for different 620 

regions and emission sectors. We find that GOSAT and in situ observations make comparable and 
complementary contributions to the optimization of methane emissions for North America, and that they 
show overall consistent corrections to prior methane emissions.  
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We estimate from our base inversion a mean 2010-2017 methane emission of 46.3 (40.2-48.4 ensemble 625 

range) Tg a-1 for CONUS, of which 36.9 (32.5-37.8) Tg a-1 is anthropogenic. This anthropogenic emission 
is 30% higher than the EPA inventory of 28.7 Tg a-1 used as prior estimate (EPA, 2016), and 42% higher 
than the 2010-2017 mean of 26.0 Tg a-1 in the most recent version of the EPA inventory (EPA, 2021). 
These upward corrections are largely attributed to the oil (4.6 Tg a-1) and gas (9.9 Tg a-1) sectors, which 
are respectively 177% and 65% higher than the EPA (2021) estimates. The upward corrections of the oil 630 

and gas sectors are mainly in large basins of the south-central US. The inversion also shows upward 
corrections of livestock emissions to 10.6 Tg a-1, 15% higher than the EPA estimate (9.2 Tg a-1), and of 
landfill emissions to 7.2 Tg a-1, 24% higher than the EPA estimate (5.8 Tg a-1). 
 
We estimate a mean 2010-2017 emission for Canada of 16.2 (13.5-17.4) Tg a-1, of which 5.3 (3.6-5.7) Tg 635 

a-1 is anthropogenic. This anthropogenic emission is 43% higher than the 3.7 Tg a-1 in the ECCC (2020) 
national inventory used as prior estimate. Most of this difference is due to oil emissions which we estimate 
at 1.8 Tg a-1, more than twice the ECCC estimate, and mainly from production in Alberta and 
Saskatchewan. 
 640 

We estimate a mean 2010-2017 emission for Mexico of 6.8 (5.4-6.9) Tg a-1, of which 6.0 (4.7-6.1) Tg a-1 

is anthropogenic. This anthropogenic emission is 20% higher than the 5.0 Tg a-1 in the INECC (2018) 
national inventory used as prior estimate. Again, most of the underestimate is due the oil sector and 
specifically to oil production in the Sureste onshore region. Offshore oil emissions are lower than the 
INECC estimate, suggesting that the associated gas is piped onshore and then vented, perhaps because of 645 

inefficient flaring.  
 
We find from the inversion that anthropogenic emissions in CONUS peaked in 2014 and had no net trend 
over the 2010-2017 period (0.1 (-0.1-0.3) % a-1), in contrast with the EPA inventory that reports a steady 
decreasing trend of -0.8 % a-1 over this period. The net trend in the inversion reflects compensating effects 650 

from increases in emissions from the oil and landfill sectors, decreases from the gas sector, and flat 
emissions from the livestock and coal sectors. We find a decreasing trend in Canadian anthropogenic 
emissions of -2.3 (-2.5 - -1.6) % a-1 over the 2010-2017 period, mainly driven by oil and gas production. 
We also find a decreasing trend in Mexican anthropogenic methane emissions (-3.3 (-3.4 - -1.7) % a-1) 
over the 2010-2017 period, mostly driven by the oil sector and in particular by offshore operations. 655 

 
Wetlands are the main natural source of methane in all three countries. Starting from the high-performance 
subset of the WetCHARTs inventory ensemble as prior estimate, our inversion yields mean wetland 
emission estimates for 2010-2017 of 8.4 (6.4-10.6) Tg a-1 for CONUS, 9.9 (7.8-12.0) Tg a-1 for Canada, 
and 0.6 (0.4-0.6) Tg a-1 for Mexico. Wetland emissions in CONUS show a significant increase of 2.6 (1.7-660 

3.8) % a-1 over 2010-2017 correlated with precipitation. 
 

Data availability. The GLOBALVIEWplus CH4 ObsPack v1.0 data product is available at 
https://gml.noaa.gov/ccgg/obspack/data.php?id=obspack_ch4_1_GLOBALVIEWplus_v1.0_2019-01-
08. The University of Leicester GOSAT Proxy v9.0 XCH4 data is available from the Centre for 665 
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Environmental Data Analysis data repository at 
http://dx.doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (Parker and Boesch, 2020). The 
WetCHARTs v1.3.1 is available at the ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/1915. 
Modeling data can be accessed by contacting the corresponding author Xiao Lu 
(luxiao25@mail.sysu.edu.cn).  670 
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Table 1a. Mean 2010-2017 methane emissions for the contiguous US (CONUS) 

 Prior a Posterior b  Sensitivity c 
Total sources [Tg a-1] 36.8 46.3 (40.2-48.4) 0.72 
Anthropogenic sources 28.7d 36.9 (32.5-37.8) 0.55 
Livestock 9.2 10.6 (9.2-11.8) 0.43 
Oil 2.3 4.6 (3.0-4.7) 0.43 
Natural gas 6.8 9.9 (8.1-10.5) 0.42 
Coal mining 2.9 2.8 (2.4-3.5) 0.44 
Landfills 5.8 7.2 (6.0-7.6) 0.34 
Wastewater 0.70 0.63 (0.56-0.74) 0.57 
Rice cultivation 0.48 0.65 (0.49-0.68) 0.33 
Other Anthropogenic 0.46 0.45 (0.44-0.54) 0.30 
Natural Sources 8.6 9.5 (7.4-11.5) 0.64 
Wetlands 7.5 8.4 (6.4-10.6) 0.57 
Open fires 0.16 0.17 (0.15-0.24) 0.43 
Termites 0.59 0.63 (0.57-0.76) <0.1 
Seeps 0.28 0.27 (0.23-0.35) 0.14 

a Prior estimates for the inversion. Anthropogenic emissions are from the Environmental Protection Agency (EPA) 
Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHGI) for year 2012 as reported by EPA (2016). Wetland 
emissions are the 2010-2017 mean of the high-performance subset of the WetCHARTs ensemble (Ma et al., accepted). 965 
Open fire emissions area from GFEDv4s (van der Werf et al., 2017). Termite and seep emissions are as described in Lu 
et al. (2021). 
b Results from the base inversion of GOSAT and GLOBALVIEWplus data, with the range from the inversion ensemble 
and from the two sectoral attribution methods (66 total ensemble members) in parentheses. 
c Sensitivity of the posterior estimate to the observations as diagnosed by the diagonal elements of the averaging kernel 970 
matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full sensitivity, posterior fully determined by the 
observations). Values are from the base inversion for year 2015. Results for other years show similar values. See section 
2.6 for more details. 
d The most recent EPA GHGI report (EPA, 2021) gives a mean anthropogenic emission of 26.0 Tg a-1 for 2010-2017. 
Anthropogenic US emissions outside CONUS (mostly Alaska) account for only 0.3 Tg a-1 according to the Maasakkers 975 
et al. (2016). 
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Table 1b. Mean 2010-2017 methane emissions for Canada. 

 Prior a Posterior b Sensitivity c 
Total sources [Tg a-1] 17.1 16.2 (13.5-17.4) 0.60 
Anthropogenic sources 3.7 5.3 (3.6-5.7) 0.59 
Livestock 1.1 1.4 (1.0-1.6) 0.48 
Oil 0.75 1.8 (0.81-1.9) 0.48 
Natural gas 0.80 1.1 (0.76-1.6) 0.54 
Coal mining <0.1 <0.1 0.51 
Landfills 0.66 0.69 (0.45-0.74) 0.33 
Wastewater <0.1 <0.1 0.20 
Rice cultivation 0 0 / 
Other Anthropogenic 0.27 0.31 (0.26-0.36) 0.18 
Natural Sources 13.5 10.9 (8.7-13.2) 0.54 
Wetlands 12.0 9.9 (7.8-12.0) 0.57 
Open fires 1.1 0.67 (0.48-0.95) 0.54 
Termites 0.28 0.29 (0.24-0.30) <0.1 
Seeps <0.1 <0.1 <0.1 

a Prior estimates for the inversion. Anthropogenic emissions are from the Environment and Climate Change Canada 
(ECCC) National Inventory Report (NIR) for year 2018 (ECCC, 2020). Wetland emissions are the 2010-2017 mean of 980 
the high-performance subset of the WetCHARTs ensemble (Ma et al., 2021). Open fire emissions area from GFEDv4s 
(van der Werf et al., 2017). Termite and seep emissions are as described in Lu et al. (2021). 
b Results from the base inversion of GOSAT and GLOBALVIEWplus in situ data, with the range from the inversion 
ensemble and from the two sectoral attribution methods (66 total ensemble members) in parentheses. 
c Sensitivity of the posterior estimate to the observations as diagnosed by the diagonal elements of the averaging kernel 985 
matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full sensitivity, posterior fully determined by the 
observations). Values are from the base inversion for year 2015. Results for other years show similar values. See section 
2.6 for more details. 
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Table 1c. Mean 2010-2017 methane emissions for Mexico. 990 

 Prior a Posterior b Sensitivity c 
Total sources [Tg a-1] 5.8 6.8 (5.4-6.9) 0.40 
Anthropogenic sources 5.0 6.0 (4.7-6.1) 0.41 
Livestock 2.3 2.5 (2.0-2.6) 0.24 
Oil 0.44 0.84 (0.42-0.85) 0.20 
Natural gas 0.34 0.42 (0.36-0.53) 0.44 
Coal mining 0.28 0.26 (0.26-0.52) 0.80 
Landfills 0.77 1.0 (0.67-1.0) 0.30 
Wastewater 0.69 0.80 (0.65-0.86) 0.14 
Rice cultivation <0.1 <0.1 <0.1 
Other Anthropogenic 0.13 0.14 (0.12-0.16) 0.10 
Natural Sources 0.79 0.83 (0.64-0.89) 0.10 
Wetlands 0.52 0.57 (0.43-0.60) <0.1 
Open fires 0.14 0.14 (0.10-0.16) <0.1 
Termites 0.13 0.12 (0.10-0.14) <0.1 
Seeps <0.1 <0.1 <0.1 

a Prior estimates for the inversion. Anthropogenic emissions are from the National Inventory of Greenhouse Gases and 
Compounds constructed by the Instituto Nacional de Ecología y Cambio Clim′atico (INECC). Wetland emissions are the 
2010-2017 mean of the high-performance subset of the WetCHARTs ensemble (Ma et al., 2021). Open fire emissions 
area from GFEDv4s (van der Werf et al., 2017). Termite and seep emissions are as described in Lu et al. (2021). 
b Results from the base inversion of GOSAT and GLOBALVIEWplus data, with the range from the inversion ensemble 995 
and from the two sectoral attribution methods (66 total ensemble members) in parentheses. 
c Sensitivity of the posterior estimate to the observations as diagnosed by the diagonal elements of the averaging kernel 
matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full sensitivity, posterior fully determined by the 
observations). Values are from the base inversion for year 2015. Results for other years show similar values. See section 
2.6 for more details. 1000 
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Table 2. Settings for generation of the 33-member inversion ensemble a.  
Observations  Regularization 

parameter γ 

Prior error standard deviation 

Emissions Boundary conditions 

GOSAT + in situ 

GOSAT + in situ (long-term)c 

GOSAT 

In situ  

In situ (long-term) c 

1 

0.5 (GOSAT) 

50% (log normal) 

quadrature sum (log normal)d 

50% (normal) 

95% (normal) 

quadrature sum (normal) d 

10 ppb 

5 ppb 

a Settings for the base inversion are in bold. The 33-member inversion ensemble uses the different combinations of 
settings to probe the effects of different choices in observations and in inversion parameters. The GOSAT + in situ 
inversion includes the following 7-member ensemble: (1) base inversion with γ = 1 for in situ and GOSAT observations , 1005 
𝜎𝜎𝐴𝐴 = 50% (log normal) for emissions, and 𝜎𝜎𝐴𝐴 = 10 ppb for boundary conditions; (2) the same as (1) except that γ= 0.5 
for GOSAT observations; (3)-(6) the same as (1), except that 𝜎𝜎𝐴𝐴 for emissions uses the other 4 options in the Table; and 
(7) is the same as (1), except that 𝜎𝜎𝐴𝐴 = 5 ppb for boundary conditions. Similarly, the GOSAT + in situ (long-term) and 
GOSAT inversions have 7 ensemble members, respectively. The in situ and in situ (long-term) inversion have 6 ensemble 
members, respectively. This adds up to 33 inversion ensemble members. Sectoral attribution is done by two alternative 1010 
methods (see text in Section 2.6), resulting in a total of 66 members. 
c Including only long-term surface and tower sites with observations for all years of the 2010-2017 record. 
d Adding the errors from individual sectors in quadrature following Maasakkers et al. (2021). 
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Table 3. 2010-2017 trends in methane anthropogenic emissionsa. 
 

 Inversion ensembleb National inventoriesc 
CONUS (% a-1)  

Total anthropogenic 0.10 (-0.11 - 0.34) -0.8* 
Livestock -0.25 (-0.61 - 0.09) 0.5 
Oil 2.9* (1.0 - 1.9) -0.4 
Natural gas -1.8* (-1.8 - -0.48) -0.4* 
Coal mining -1.0 (-1.9 - -0.04) -5.4* 
Landfills 1.7*(1.0-1.8) -1.6* 

Canada (% a-1)  
Total anthropogenic -2.3 (-2.5 - -1.6) -0.3 
Livestock -2.2 (-2.7 - -1.5) -0.3 
Oil -1.7 (-2.0 - -0.42) -1.2 
Natural gas -3.8 (-3.9 - -1.7) -0.1 
Landfills -2.3 (-3.9 - -1.7) -0.4* 

Mexico (% a-1)  
Total anthropogenic -3.3 (-3.4 - -1.7) NA 
Oil -11.6* (-15.0 - -3.5) NA 
Natural gas -3.1 (-6.1 - -1.0) NA 

aFrom ordinary linear regression of emissions in individual years, reported in % a-1 relative to the 2010-2017 mean. 
Figure 9 shows the time series for the base inversion. Trends marked with * are significant with p-value<0.1. 1020 
bTrends from the base inversion, with the range of trends from the inversion ensemble members in parentheses. 
cFrom national inventory emissions in individual years reported by the Environmental Protection Agency (EPA, 2021) 
and Environment and Climate Change Canada (ECCC, 2021). INECC in Mexico only reports emissions up to 2015 
hence the Not Available (NA) entries. 
 1025 
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Figure 1. Methane observations over North America used in the inversion. The observations are from the in situ 1030 

GLOBALVIEWplus CH4 ObsPack data product and from the GOSAT satellite instrument. Mixing ratios shown for 
surface, tower, and GOSAT observations are means for 2010-2017. Aircraft and shipboard observation locations are 
shown as additional symbols. The GOSAT data are dry column mixing ratios from the University of Leicester version 9 
Proxy XCH4 retrieval (Parker et al., 2020a) and are averaged here on the 0.5° × 0.625° GEOS-Chem model grid.  
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Figure 2. Prior estimates of methane emissions from individual sectors. Anthropogenic emissions are from spatially 
explicit versions of the EPA, ECCC, and INECC official national inventories. Wetland emissions are from the mean of 1040 
the high-performance subset of the WetCHARTs inventory ensemble. 
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Figure 3. Optimization of mean 2010–2017 methane emissions over North America. Results are from the base inversion 
using both GOSAT and GLOBALVIEWplus in situ observations, the GOSAT-only inversion, and the in-situ only 1045 
inversion. The left panels show the posterior correction factors, i.e., the multiplicative factors applied to the total prior 
emissions in Figure 2, and the right panels show the averaging kernel sensitivities (diagonal elements of the averaging 
kernel matrix). The degrees of freedom for signal (DOFS, defined as the trace of the averaging kernel matrix) are shown 
inset.  
 1050 
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Figure 4. Comparison of posterior correction factors to prior methane emissions on the 0.5o × 0.625o grid between 
GOSAT-only and in-situ-only inversions. The comparisons are for 9 regions with relatively high averaging kernel 1055 
sensitivities for both inversions. Each point represents the posterior correction factors from both inversions in a 
0.5ox0.625o grid cell (Fig.3). Correlation coefficients for each of the nine regions are shown inset. Percentiles in each 
quadrant show the fraction of the total points in that quadrant.  
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 1060 

 
Figure 5. Ability of the base inversion to fit the in situ (surface and tower) and GOSAT observations for 2010-2017. The 
figure shows the mean differences between GEOS-Chem simulations and the observations using either prior or posterior 
methane emissions. Mean bias (MB) and root-mean square error (RMSE) are shown inset, calculated from the temporally 
averaged differences for each in situ site or GOSAT grid cell. 1065 
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Figure 6. Posterior error correlation coefficients (r) between sectoral methane emissions in the contiguous US (CONUS), 
Canada, and Mexico, using the sector-aggregated error covariance matrix as described in Section 2.6. Error correlation 
coefficients indicate the ability of the inversion to separate emissions between sectors (0 = perfectly, ± 1 = not at all). 1070 
Results are from the base inversion for year 2015. Results for other years show similar patterns. 
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Figure 7. Mean 2010–2017 methane emissions by source sectors for the contiguous US (CONUS), Canada, and Mexico, 1075 
displaying values and ranges from the corresponding Tables 1a-c. The official UNFCCC-reported national inventories 
for the US (EPA), Canada (ECCC) and Mexico (INECC) are used as prior estimates for the inversion. Inversion results 
are from the base inversion of GOSAT + in situ observations and the ranges are for the ensemble of 66 sensitivity 
inversions (Table 2) and sectoral attribution methods (Section 2.6). The dashed line separates anthropogenic and natural 
sources. Note the break in scale for Canada to accommodate the large wetlands source.  1080 
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Figure 8. Posterior correction for mean 2010-2017 methane emissions from the oil, gas, livestock, and landfill sectors 
as given by the base inversion. The correction factors for anthropogenic emissions are relative to the national emission 
inventories used as prior estimates (EPA GHGI for the US, ECCC NIR for Canada, INECC for Mexico).  
  1085 
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Figure 9. 2010-2017 trends in anthropogenic methane emissions in CONUS, Canada, and Mexico as inferred from the 
base inversion. The left panels show the total national anthropogenic methane emissions and the right panels show 
changes relative to 2010 for major sectors.  1090 
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Figure 10. 2010-2017 linear trends in emissions from major anthropogenic sectors on the 0.5ox0.625o grid as inferred 
from the base inversion. The linear trends are fitted by linear regression to the inversion results for individual years. 1095 
Areas in white have no emissions from the corresponding sector.    
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Figure 11. Posterior correction and linear trends for 2010-2017 wetland emissions in North America. The posterior 
correction factors are relative to the 2010-2017 mean of the high-performance subset of the WetCHARTs inventory 1100 
ensemble (Ma et al., 2021). The linear trends are from ordinary linear regression to base inversion results for individual 
years. 
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 1105 

 
 
Figure 12. 2010-2017 trends of wetland methane emissions and precipitation in CONUS and Canada. The left panels 
show the results from the base inversion and the mean annual emissions from the high-performance ensemble of the 
WetCHARTs v1.3.1 inventory (Ma et al., 2021), The 8-year WetCHARTs average is used as prior estimate for the 1110 
inversion so that the trend in the inversion results is solely from the atmospheric observations. The right panels show the 
annual precipitation over the wetland regions of CONUS and Canada, as determined by weighting precipitation amounts 
with the WetCHARTs wetland emission fluxes on their native 0.5ox0.5o grid. The gridded precipitation data are from the 
ERA-Interim re-analyses (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim/, 0.5°×0.5°). 
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