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Abstract We quantify methane emissions and their 2010-2017 trends by sector in the contiguous

United States (CONUS), Canada, and Mexico by inverse analysis of in situ (GLOBALVIEWplus CH4

ObsPack) and satellite (GOSAT) atmospheric methane observations. The inversion uses as prior estimate

the national anthropogenic emission inventories for the three countries reported by the US Environmental

Protection 40 Agency (EPA), Environment and Climate Change Canada (ECCC), and the Instituto

Nacional de Ecología y Cambio Climático (INECC) in Mexico to the United Nations Framework Convention on

Climate Change (UNFCCC), and thus serves as an evaluation of these inventories in terms of their

magnitudes and trends. Emissions are optimized with a Gaussian mixture model (GMM) at 0.5°×0.625°

resolution and for individual years. Optimization is done analytically using log-normal error forms. This

yields 45 closed-form statistics of error covariances and information content on the posterior

(optimized) estimates, allows better representation of the high tail of the emission distribution, and enables

construction of a large ensemble of inverse solutions using different observations and assumptions. We �nd
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that GOSAT and in situ observations are largely consistent and complementary in the optimization of

methane emissions for North America. Mean 2010-2017 anthropogenic emissions from our base GOSAT + in

situ 50 inversion, with ranges from the inversion ensemble, are 36.9 (32.5-37.8) Tg a-1 for CONUS, 5.3

(3.6-5.7) Tg a-1 for Canada, and 6.0 (4.7-6.1) Tg a-1 for Mexico. These are higher than the most recent

reported national inventories of 26.0 Tg a-1 for the US (EPA), 4.0 Tg a-1 for Canada (ECCC), and 5.0 Tg a-1

for Mexico (INECC). The correction in all three countries is largely driven by a factor of 2 underestimate in

emissions from the oil sector with major contributions from the south-central US, western Canada, and 55

southeastern Mexico. Total CONUS anthropogenic emissions in our inversion peak in 2014, in contrast to

the EPA report of a steady decreasing trend over 2010-2017. This re�ects offsetting effects of

increasing emissions from the oil and land�ll sectors , decreasing emissions from the gas sector,

and �at emissions from the livestock and coal sectors. We �nd decreasing trends in Canadian and Mexican

anthropogenic methane emissions over the 2010-2017 period, mainly driven by oil and gas emissions. Our

best estimates 60 of mean 2010-2017 wetland emissions are 8.4 (6.4-10.6) Tg a-1 for CONUS, 9.9 (7.8-

12.0) Tg a-1 for Canada, and 0.6 (0.4-0.6) Tg a-1 for Mexico. Wetland emissions in CONUS show an

increasing trend of +2.6 (+1.7 - +3.8) % a-1 over 2010-2017 correlated with precipitation

. 65 70 75 1. Introduction Atmospheric methane (CH4) is the most important anthropogenic greenhouse gas after

carbon dioxide (CO2). Natural emissions are mainly from wetlands. Anthropogenic emissions are from many sectors

including the oil/gas supply chain, coal mining, livestock, and waste management. Individual countries must report their

anthropogenic methane emissions by sector to the United Nations in accordance with the United Nations Framework

Convention on Climate Change (UNFCCC, 1992). These national emission inventories are mainly constructed by bottom-

up methods as the product of activity data and emission factors, following methodological guidelines from the

Intergovernmental Panel on Climate Change (IPCC). The emission factors are highly variable and have large

uncertainties, leading to errors in estimating national

emissions, their trends, and the contributions of different sectors

(

Kirschke et al., 2013; Saunois et al., 2020

). Top-down methods involving inversion of atmospheric methane observations can usefully diagnose these errors

(Houweling et al., 2017). Here, we use an inverse analysis of 2010- 2017 in situ and

satellite observations of atmospheric methane over North America
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to evaluate national emission inventories and their

trends by sector for the United States (US), Canada, and Mexico

. 80 85 US anthropogenic methane emissions are reported yearly by the US Environmental Protection Agency (EPA,

2021) as part of the Inventory of US Greenhouse Gas Emissions and Sinks (GHGI). Methane emissions for the year

2012, from the 2016 version of this inventory (EPA, 2016), were spatially allocated on a 0.1o × 0.1o (10 × 10 km) grid by

Maasakkers et al. (2016) to enable its evaluation using top-down methods. Results using analysis of atmospheric

methane measurements from ground, aircraft, and satellite platforms show larger methane emissions than reported in

the GHGI, particularly for the oil/gas industry (Alvarez et al., 2018; Zhang et al., 2020; Lu et al., 2021; Maasakkers et al.

2021; Qu et al., 2021) and for livestock (Lu et al., 2021; Yu et al., 2021). Atmospheric observations also suggest an

increasing trend of US anthropogenic emissions over the past decade (Turner et al., 2016; Sheng et al., 2018a; Lan et al.,

2019; Maasakkers et al., 2021), while the GHGI indicates a decrease (EPA, 2021). 90 Anthropogenic methane emissions

for Canada are reported yearly by Environment and Climate Change Canada (ECCC, 2020a; 2021) as part of the National

Inventory Report (NIR). Atmospheric observations again indicate an underestimate of emissions from oil/gas

production (Atherton et al., 2017; Johnson et al., 2017; Chan et al., 2020; Baray et al., 2021; Lu et al., 2021; Tyner and

Johnson, 2021) but a decrease of these emissions over the past decade (Lu et al., 2021; Maasakkers et al., 2021).

Scarpelli et al. (2021) 95 recently allocated the ECCC NIR (ECCC 2020a) for the year 2018 on a 0.1o × 0.1o grid and our

work is the �rst to use it in an inverse analysis. 100 Mexico’s anthropogenic methane emissions are reported by the

Instituto Nacional de Ecología y Cambio Climático (INECC) in

Mexico’s National Inventory of Greenhouse Gases and Compounds

(INEGyCEI) for selected years (INECC and SEMARNAT, 2018). The last communication to the UNFCCC was in 2015 and

this inventory was allocated to a 0.1o×0.1o grid by Scarpelli et al. (2020). A recent inverse analysis of satellite data �nds

oil/gas emissions to be underestimated by a factor of 2 over eastern Mexico (Shen et al., 2021). 105 The above top-

down studies except for Baray

et al . (2020) and Lu et al. (2021 ) used either in situ or satellite observations

but not both. Satellite observations have better data coverage but are less sensitive to emissions (Turner et al., 2018)

and have larger uncertainties, particularly at high latitudes. In a previous inverse analysis (Lu et al., 2021), we showed

that

in situ and satellite observations provide complementary global information for inverse

analyses of methane
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emissions. That inversion was conducted at 4°×5° 110 resolution, too coarse for speci�c evaluation of national

inventories. 115 Here we apply extensive

in situ observations from surface sites, towers, ships, and aircraft

(GLOBALVIEWplus CH4 ObsPack data compilation) together with the Greenhouse Gases Observing Satellite (GOSAT)

observations, in an inverse analysis for 2010-2017 to optimize methane emissions and their year-to-year variability at up

to 0.5×0.625° resolution for North America. We use as prior estimates 120 the gridded national emission inventories

from EPA (US), ECCC (Canada), and INECC (Mexico), so that our results can inform inventory improvement planning at

the emission sector level. Following Lu et al. (2021), we use an analytical inversion method that

provides closed-form characterization of error statistics and information content of the

inverse solution, and also allows us to

compare quantitatively the information from the in situ and satellite observations. 125 130 2. Methods We use

methane observations from the GLOBALVIEWplus CH4 ObsPack in situ data (Section 2.1)

and /or GOSAT

satellite retrievals (Section 2.2) with the

GEOS-Chem chemical transport model (Section 2.4) as the forward model, to optimize a

state vector

of mean methane emissions for individual years (Section 2.3) covering the North American continent at a spatial

resolution of up to 0.5°×0.625°.

We derive posterior estimates of the state vector and the associated error covariance matrix by

analytical solution to the Bayesian optimization problem (Section 2

.5). Our base inversion uses GOSAT + in situ observations and our best choices of inversion parameters. We also

present results from an ensemble of sensitivity inversions using observation subsets (in situ or GOSAT) and varying

inversion parameter assumptions (e.g. different error distributions). We attribute inversion results to different methane
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emission sectors with the methodology described in Section 2.6. 135 140 145 2.1 In situ methane observations We use

the comprehensive database

of in situ (surface, tower, shipboard, and aircraft) methane

observations over North America for 2010-2017 from the

GLOBALVIEWplus CH4 ObsPack v1.0 product compiled by the National Oceanic and Atmospheric

Administration (NOAA) Global Monitoring Laboratory

(Cooperative Global Atmospheric Data Integration Project, 2019). Following Lu et al. (2021), data from surface and

tower sites are sampled only during daytime (10-16 local time) and averaged as daytime mean values on individual days

for use in the inversion. For sites with standard deviations larger than 30 ppb, we exclude data points

that depart by more than two standard deviations from the mean

because such local extreme conditions are di�cult to simulate with the chemical transport model. For other sites we

exclude data points

that depart by more than three standard deviations from the mean. We

also exclude aircraft measurements higher than 9 km above sea level as these measurements would have weak

sensitivity to surface �uxes. 4 150 The in situ observations thus include 49742 data points from surface sites, 15285

from towers, 56 from ship cruises, and 26620 from aircraft campaigns over North America and adjacent waters (Figure

1a). The number of available in situ observations per year increases from 10830 in 2010 to 13593 in 2017. All these in

situ data points are used in the base inversion to optimize methane emissions for individual years. We also conduct

sensitivity inversions by only using surface and tower sites with continuous eight-year records for trend analyses. 155

160 2.2 GOSAT satellite methane observations The GOSAT satellite

launched in 2009 measures the backscattered solar radiation from a sun-synchronous orbit at

around 13:00 local time (Kuze et al

., 2016).
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Methane is retrieved in the 1.65 µm shortwave infrared absorption band. We use the column -

averaged dry-air methane mixing ratios from the University of Leicester version 9.0 Proxy XCH4

retrieval (Parker et al

., 2020a). Comparison with

ground-based methane observations from the Total Carbon Column Observing Network

(TCCON) shows that the

retrieval has a single-observation precision of 13

ppb and an overall global bias of 9 ppb that is removed from the Proxy XCH4 data (Parker et al., 2020a). Here we use a

total of 205875 (25734 per year on average) GOSAT retrievals for 2010-2017 over North America in the inversion,

excluding

glint data over the oceans and data poleward of 60o which are not

representatively sampled and for which errors are large (Figure 1b). 165 170 2.3 Prior emission inventories We use as

prior estimates of anthropogenic methane emissions the gridded versions of the o�cial national inventories for the US

(EPA, 2016), Canada (ECCC, 2020), and Mexico (INECC and SEMARNAT, 2018) (Maasakkers et al., 2016; Scarpelli et al.,

2020, 2021). These emissions are listed in Table 1 for individual countries and the spatial distributions for major sectors

are shown in Figure 2. We assume no year-to-year trend in the prior emissions, so that trends from the inversion are

solely driven by observations. Prior anthropogenic emissions for the contiguous US (CONUS) are 28.7 Tg a-1.

Anthropogenic US emissions outside CONUS (mostly Alaska, not optimized in the inversion) account for only 0.3 Tg a-1

according to Maasakkers et al. (2016). The latest GHGI report from EPA (2021) gives mean emissions of 26.0 Tg a-1 for

2010-2017. Prior anthropogenic emissions for Canada are 3.7 Tg a-1. The most recent 2021 version of the ECCC NIR

gives a mean of 4.0 Tg a-1 for 2010-2017 (ECCC, 2021). Mexico anthropogenic emissions are 5.0 Tg a-1. 2015 is the

latest available year from INECC. 180 185 Prior methane emissions from wetlands are the 0.5o × 0.5o gridded mean

monthly values for 2010-2017 from the nine highest-performance members of the WetCHARTs v1.3.1 inventory

ensemble (Ma et al, 2021), selected for their �t to the global GOSAT inversion results of Zhang et al. (2021). This choice

of prior estimate effectively corrects the large overestimates of wetland emissions for North America previously found

in inversions of GOSAT and aircraft data when using the overall mean of the WetCHARTs v1.0 ensemble (Sheng et al.,

2018b; Maasakkers et al., 2021). We do not include interannual variability from WetCHARTs because it is highly

uncertain and we prefer to have it informed by the observations. Unlike in our global inversion (Lu et al., 2021), we do not
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optimize the relative seasonal 5 190 variation of wetland emissions and instead have it imposed by the prior estimate

(Parker et al., 2020b). Prior estimates of open �re emissions are the daily values for individual years from the Global Fire

Emissions Database (GFED) version 4s (van der Werf et al., 2017). Other small natural emissions (seepages, termites)

are as described in Lu et al. (2021). 195 2.4 The GEOS-Chem

forward model We use the nested version of the GEOS-Chem 12.5.0 chemical transport model

(http://geos-chem.org, last access: 6 April 2021) (Wecht

et al ., 2014) as the forward model for the inversion. The model is driven by MERRA-2

reanalysis meteorological �elds

at their native 0.5° × 0.625° resolution (Gelaro et al., 2017). Methane loss from atmospheric oxidation is as described in

Lu et al. (2021) but is inconsequential here because it is negligibly

slow compared to the timescale for ventilation of the North American domain

. Soil uptake of methane is from the MeMo model v1.0 (Murguia-Flores et al., 2018) but is very small and therefore

not optimized in the inversion . 200 205 The GEOS-Chem model simulation

is conducted

at 0.5° × 0.625° resolution over the North America

domain (130-55°W, 15-65°N) (Fig.1) for the 2010-2017 period, with dynamic boundary conditions archived every 3 hours

from a global 2010-2017 simulation at 4°×5° resolution using methane emissions and sinks previously optimized with

GOSAT observations (Lu et al., 2021). This means that GOSAT observations over North America are used twice, once for

the global inversion (along with other 210 observations worldwide) and once for the North American inversion, but this

is inconsequential because the sole purpose of the global optimization

is to avoid biases in boundary conditions that would
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cause spurious corrections to emissions within the inversion domain (Wecht et al., 2014). Lu et al. (2021) show that

their optimized simulation is unbiased in comparison to global zonal mean observations for 2010- 2017 but we still �nd

some residual biases for individual years up to 5 ppbv. We therefore optimize the 215 mean boundary conditions for

individual years on each side of the domain (north, south, west, east) as part of the North American inversion. The initial

methane concentration �elds on 1 January 2010 are from Lu et al. (2021) which have been

adjusted to have an unbiased zonal mean relative to GOSAT observations

, such that

model discrepancies with observations over our 2010-2017 simulation period can be

attributed to model errors in emissions

instead of errors in initial conditions. 220 225 2.5 Inversion procedure Our state vector x to be optimized in the inversion

includes spatially resolved emissions in North America and boundary conditions for each year of 2010-2017. Although

we could technically optimize methane emissions for each of the 0.5°×0.625° native model grid elements, the

observations

do not have su�cient coverage to constrain emissions everywhere at that resolution

and doing so would introduce large smoothing

errors in the

inversion (Wecht et al., 2014 ). Following Turner and Jacob ( 2015 ) and Maasakkers

et al . (2021), we use instead a Gaussian mixture model (GMM

) to determine the

emission patterns that can be constrained effectively by the inversion

. This is done by projecting the native- resolution methane emissions onto 600 Gaussian functions optimized to �t the

location, magnitude, and distribution of methane emissions for different sectors as given by the prior estimates. Optimal
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construction of the GMM aggregates

regions with weak or homogeneous emissions while preserving 6 230 native resolution for

strong localized source regions. The Gaussian functions overlap, providing additional high-resolution structure in the

inverse solution on the 0.5o×0.625o native grid. The state vector 𝒙i? for individual years is de�ned as the emission of

each of the 600 Gaussians, plus the correction to the model boundary conditions as described earlier, for a total

dimension 𝑛i? = 604. 235 240 245 The inversion �nds the optimal estimate of 𝒙i?

by minimizing the Bayesian cost function 𝐽i?(𝒙i?) ( Brasseur and Jacob, 2017): 𝐽 i?(𝒙 i?) = (𝒙 i? −

𝒙 i ?𝑨i?)𝑇i? 𝑺i ?𝑨i?−1( 𝒙 i? − 𝒙 i ?𝑨i?) + 𝛾 i?(𝒚 i ? − 𝑭i?( 𝒙 i ?)𝑇i? 𝑺i ?𝑶i?−1( 𝒚 i ?

− 𝑭i?( 𝒙 i

?)) (1), where 𝒙i?𝑨i? is the prior estimate of 𝒙i?, 𝑺i?𝑨i? denotes the

prior error covariance matrix , 𝒚i? is the observation vector , 𝑺i?𝑶i? denotes the

observation error covariance matrix , 𝛾i? is a regularization factor

(see below), and 𝑭i?(𝒙i?) represents the GEOS-Chem simulation of 𝒚i?. The

GEOS-Chem forward model 𝑭i?(𝒙i?) as implemented here is strictly linear

(because methane sinks are not optimized), so that the model can expressed as 𝒚i? = 𝑲i?𝑲i? + 𝒄i?, where 𝑲i? = 𝜕i?𝒚i?/

𝜕i?𝒙i?

represents the Jacobian matrix and 𝒄i? is a constant . Minimizing the

cost function (Eq.1) by solving 𝛁i?𝒙i? 𝐽i?(𝒙i?) = 0 yields closed-form posterior estimates of the state vector ?𝒙i?, its error

covariance matrix ?𝑺i?, and the averaging kernel matrix 𝑨i? (Rodgers, 2000; Brasseur and Jacob, 2017): 𝒙i?? = 𝒙i?𝑨i? +

𝑮i?(
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𝒚 i? − 𝑲i?𝒙 i ?𝑨i?) (2), 𝑺i?? = (𝛾 i?𝑲i ?𝑇i? 𝑺i ?𝑶i?−1𝑲i? + 𝑺i

?𝑨i?−1)−1 (3), 𝑨i? = 𝜕i?𝒙i?? = 𝑰i?𝒏i? − ?𝑺i?𝑺i?𝑨i?−𝟏i? (4), 𝜕i?𝒙i? where 𝑮i? in Eq.2 is the gain matrix, 𝑮i? = 𝜕i?𝒙i?? = (𝛾i?

𝑲i?𝑇i?𝑺i?𝑶i?−1𝑲i? + 𝑺i?𝑨i?−1)−1𝛾i?𝑲i?𝑇i?𝑺i?𝑶i?−1 (5). 𝜕i?𝒚i? 250 The averaging kernel matrix A in Eq. 4 quanti�es the

sensitivity of the posterior estimate to changes in the true

value, and therefore measures the information content provided by the observing system for correcting the prior

estimates and returning the true values as posterior estimates.

We refer to the diagonal elements of A as the averaging kernel sensitivities , and to the

trace of A as the degrees of freedom for signal (DOFS), representing the number of pieces of

independent information on the state vector obtained from the

observing system (Rodgers, 2000). Our inversion returns the posterior estimates of mean emissions and averaging

kernel sensitivities for each Gaussian, and these can be mapped additively to the 0.5o×0.625o grid using their spatial

distributions on the grid. 260 265 Analytical solution to equation (2), and inference of error statistics and information

content from equations (3)-(4), requires explicit construction of the Jacobian matrix 𝑲i? . We construct 𝑲i?

by conducting GEOS-Chem simulations where each element of the state vector

(methane emission and model boundary correction) is perturbed separately. This is readily done computationally as an

embarrassingly parallel problem. Analytical solution

has several advantages relative to the more widely used variational (numerical ) approach. (

1) It identi�es the true minimum in the cost function

. (2) It provides complete explicit forms of the posterior error covariance and averaging kernel matrices. (3) It enables a

range of sensitivity analyses at no signi�cant computational cost modifying the inversion parameters and

adding/subtracting observations. To construct the prior error covariance matrix 𝑺i?𝑨i? ,
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we assume a 50% error standard deviation for

individual Gaussians in the base inversion (and we test the sensitivity to that assumption as will be 270 described later),

with no spatial error covariance so that 𝑺i?𝑨i? is diagonal. There is necessarily some spatial covariance in the prior

estimates since the Gaussians have spatial overlap, and there is also some spatial covariance in the forward model

error contributing to 𝑺i?𝑶i?, but these are di�cult to quantify. The former would underestimate the information content

of the observations while the latter would overestimate it. We effectively correct for this using the regularization

parameter γ as described below, and we further 275 rely on our inversion ensemble rather than the posterior error

covariance matrix to characterize the error in our posterior solution. The standard assumption of Gaussian error

statistics in the cost function of equation (1) is required to achieve an analytical solution but may lead to unphysical

negative emissions (Miller et al., 2014) and fail 280 to capture the heavy tail of the emission distribution (Zavala-Araiza

et al., 2015 ; Frankenberg et al., 2016 ; Alvarez et al ., 2018). We

solve this problem by optimizing for ln(𝒙i?) instead of 𝒙i?, with the error on ln (x) following a normal Gaussian

distribution, i.e., lognormal errors for 𝒙i? (Maasakkers et al., 2019). The forward

model is then nonlinear, so that the solution

must be solved iteratively with a transformed Jacobian matrix 𝑲i?′𝑵i? = ∂𝒚i?/ ∂ln(𝒙i?) at each iteration N. Once the

original Jacobian matrix 𝑲i? = 𝜕i?𝒚i?/𝜕i?𝒙i? 285 for the linear model has been computed, we can derive 𝑲i?′𝑵i?

immediately at any iteration by ∂y𝑖i?/ ∂ln(x𝑗i?) = x𝑗i? ∂y𝑖i?/ ∂x𝑗i? , where i and j represent the indices of the observation

and state vector elements, respectively. The iterative solution

is obtained with the Levenberg–Marquardt method (Rodgers, 2000) for each iteration N

: 𝒙i?′𝑵i?+𝟏i? = 𝒙i?′𝑵i? + ?𝛾i?𝑲i?′𝑵i?𝑻i?𝑺i?𝑶i?−1𝑲i?′𝑵i? + (1 + 𝜅i?)𝑺i?′𝑨i?−1 −1((𝛾i?𝑲i?′𝑵i?𝑻i?𝑺i?𝑶i?−1(𝒚i? − 𝑲i?𝒙i?𝑵i?) −

𝑺i?′𝑨i?−1(𝒙i?′𝑵i? − 𝒙i?′𝑨i?)) ? 290 (6), where 𝒙i?′ = ln(𝒙i?) with the initial value 𝒙i?′𝟎i? from the

prior estimate, and 𝜅i? = 10 is a coe�cient for the iterative approach to the solution

(Rodgers, 2000). 𝑺i?′𝑨i? (with diagonal elements denoted by s′𝐴i?) is the prior error covariance matrix for the inversion in

log space, and can be
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derived from the original prior error covariance matrix 𝑺i?𝑨i? (with diagonal elements

denoted by

s𝐴i?) following (Maasakkers et al., 2019): 2 s′A = ? (ln?𝑥i?𝐴i?+?𝑠i?𝐴i??+?ln?𝑥i?𝐴i?−?𝑠i?𝐴i???) 𝑥i? 𝐴i? 𝑥i? 𝐴i? 2 ? (7). We

adopt as convergence criterion that the maximum difference between 𝒙i?′𝑵i?+𝟏i? and 𝐱i?′𝑵i? elements be smaller than

5‰, at which point we adopt 𝒙i??′ = 𝒙i?′𝑵i?+𝟏i? as our posterior solution. The posterior error covariance and averaging

kernel matrices 𝑺i??′ and A’ on the log solution are obtained by replacing 𝑺i?𝑨i? 300 and 𝑲i? with 𝑺i?′𝑨i? and 𝑲i?′ in Eqs.

(3) and (4). Optimization of

emissions in log space means that ?𝒙i?′ is a best estimate of the median of the

log-normal error distribution rather than the mean. The mean values for spatial and sectoral aggregation purposes can

be inferred from the properties of the lognormal distribution as 𝑥i?𝑗i?(𝑚i?𝑚i?𝑚i?𝑚i?) = 𝑥i?𝑗i?(𝑚i?𝑚i?𝑚i?𝑚i?𝑚i?𝑚i?)𝑒i?

𝑠i??′𝑗i?𝑗i?/2 where 𝑠i??′𝑗i?𝑗i? is the

corresponding diagonal element of the 8 305 posterior error covariance matrix

in log space, i.e., the geometric error standard deviation. The boundary conditions are still optimized with normal error

distributions, assuming an error standard deviation of 10 ppb. 310 The above describes our base inversion. We also

conduct sensitivity inversions using different error assumptions. This includes 1) using the quadrature sum of

error variances for all sectors contributing to a given Gaussian

with a cap of 50% following Maasakkers et al. (2021), resulting in a 43% error on average; 2) to 4) using the normal error

distributions (then with the linear Jacobian matrix) with 50%, 95%, and the quadrature sum of errors for individual

Gaussians as error variances; 5) assuming an error standard deviation of 5 ppb for boundary conditions. 315 The

observation

error covariance matrix 𝑺i?𝑶i? includes contributions from measurement and forward model

errors. We compute it following the residual error method originally described by Heald et

al. (2004

) and previously used by Lu et al. (2021). A GEOS-Chem simulation with prior emission estimates yields a prior model

estimate 𝑭i?(𝒙i?𝑨i?) of concentrations at the observation points. The mean 2010-2017 discrepancy between the
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observations and the prior model, ?𝐲i???−???𝑭i???(?𝒙i???𝑨i???), is determined for each grid cell (for GOSAT), individual

observation site (surface and tower), and observation platform (shipboard and aircraft). 𝐲i????−???𝑭i???(?𝒙i???𝑨i??)? is

taken to represent the systematic bias in the prior emissions to be corrected in the inversion. The residual term,

𝜺 i?𝑶 i? = 𝒚 i? − 𝑭i?(𝒙 i?𝑨 i?) − ?𝐲i???−???𝑭i???(?𝒙 i???𝑨 i ???), represents the

random observation error including contributions from the measurements, the forward model, and the representation of

the observation points on the model grid (Heald et al., 2004). The variance of 𝜺i?𝑶i? provides the diagonal terms of 𝑺i?

𝑶i?. The resulting observation error standard deviations average 13 ppb for GOSAT, 26 ppb for surface sites, 39 ppb for

towers, 19 ppb for ships, and 22 ppb for aircraft. The observation error is larger for in situ than for satellite observations,

even though the in situ measurements are more precise, because the forward model error is larger for vertically resolved

points (particularly for surface air in source regions) than for atmospheric columns (Cusworth et al., 2018). The

observation error for in situ observations is dominated by the forward model error

while that for GOSAT is dominated by the measurement error. We do not have su�cient objective information to

quantify the error correlation structure of SO and we therefore assume it to be diagonal. This may underestimate 𝑺i?𝑶i?

because of correlated

transport and source aggregation errors in the forward model

, as noted above. We follow Zhang et al. (2018) to introduce a regularization factor 𝛾i? for the observation terms in the

cost function 𝐽i?(𝒙i?) (Eq. 1) to avoid either over�ts or under�ts that would result from missing covariant (off-diagonal)

structure in 𝑺i?𝑶i? and 𝑺i?𝑨i?, respectively. Lu et al. (2021) showed that the optimal value of this regularization factor

can be selected such that the sum of the n prior

terms in the posterior estimate of the cost function

(𝐽i?𝐴i?(?𝒙i?) = (?𝒙i? − 𝒙i?𝑨i?)𝑻i?𝑺i?𝑨i?−𝟏i?(?𝒙i? − 𝒙i?𝑨i?)) has a value ≈ n, which is the expected value from the

Chi-square distribution with n degrees of freedom

. Here we determine the regularization factor 𝛾i? separately for in-situ and GOSAT data following Lu et al. (2021), and

�nd that γ = 1 is best for both.
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We also conduct a sensitivity inversion using γ = 0.5 for

the GOSAT observation terms (while keeping γ = 1 for in-situ data terms in the joint inversion) as adopted in Maasakkers

et al. (2021). Table 2 summarizes the settings of our base inversion (in bold) and the inversion ensemble. The ensemble

comprises 33 inversions using the different combinations of settings in the Table. The base inversion including GOSAT

+ in situ data represents our best estimate, but we will compare it prominently to the

GOSAT-only and in-situ–only inversions with the same inversion parameters in

order to evaluate the contributions from the different observing platforms for optimizing emissions. We will use the

other ensemble members to discuss the sensitivity of inversion results to the choices of observations and inversion

parameters, and to de�ne the range of uncertainty in the inversion results. 2.6 Sectoral attribution and aggregation of

inversion results The inversion returns the posterior estimates of mean emissions for each of the Gaussians, and we

allocate these emissions to the native 0.5o×0.625o model grid by summing the contributions of all Gaussians on the

grid. This de�nes a correction factor f0 to total prior emissions for each 0.5o × 0.625o grid cell and including the

contributions from all q emission sectors (in our case q = 12, cf. Table 1). For sectoral attribution of this total correction

factor we need to derive the correction factors � to the individual sectors 𝑖i? ∈ [1, 𝑞i?] contributing to f0. We use two

alternative methods for this purpose. The �rst method simply takes � = f0 for all i, thus assuming that the partitioning of

sectoral

emissions in individual grid cells is correct in the prior inventory

and all sectors contribute equally to the grid-level correction factor (Maasakkers et al., 2021; Lu et al., 2021; Zhang et al.,

2021) .

These assumptions are reasonable when the sectors are spatially separated, but

may be source of error when they spatially overlap. The second method (Shen et al., 2021) accounts for emissions from

different sectors having different prior error standard deviation σi and therefore contributing differently to f0. Following

Shen et al. (2021), 𝑓i?𝑖i? is then given by: 𝒇i?𝒊i? = 𝟏i? − η𝜶i?𝒊i?𝝈i?𝟐i?𝒊i?𝝈i?,(𝟐i?𝑨i?𝟏i?−𝒇i?𝟎i?), (8) where 𝛼i?𝑖i? is the

fraction of total emissions in the grid cell contributed by sector i, 𝜎i?𝐴i? is the prior error standard deviation for total

emissions in the grid cell, and η = 𝑞i? 𝜎i?𝐴i?2 2 is a normalization factor. For the 2 ∑ 𝑖i?=1 𝛼i?𝑖i? 𝜎i?𝑖i? prior error

standard deviations σi on the 0.5o×0.625o grid
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we use the scale-dependent adaptation by Maasakkers et al. (2016) of

EPA sectoral national error estimates. This results in prior error standard deviations of 43% for rice, 66% for wastewater,

51% for land�lls, 38% for livestock, 18% for coal, 30% for gas, and 87% for oil emissions. We further use 70% for

wetlands (Bloom et al., 2017) and 100% for all other natural sources. These error estimates are solely used to infer �

values in equation (8), so that more uncertain emissions will contribute more to the correction. We use the second

method in our base attribution of posterior estimates to emission sectors but will also use the results from the �rst

method to contribute to error ranges in these sector-attributed posterior estimates. We also need to aggregate posterior

emission estimates nationally and by sector for comparison to the national emission inventories. Following Maasakkers

et al. (2019), this is done by a

transformation from the posterior full-dimension state vector ?𝒙i? to the reduced state vector

?𝒙i?𝒓i?𝒓i?𝒓i? (national emission for a given sector) with a summation matrix W: 385 390 ?𝒙i?𝒓i?𝒓i?𝒓i? = 𝑾i??𝒙i? (9). The

posterior error covariance and averaging kernel matrices for the reduced state vector are then

given by ?𝑺i?𝒓i?𝒓i?𝒓i? = 𝑾i??𝑺i?𝑾i?𝑻i? (10), 𝑨i?𝒓i?𝒓i?𝒓i? =

𝑾 i?𝑾 i?𝑾 i ?∗ (11), where 𝑾 i?∗ = 𝑾 i?𝑻i?(𝑾 i? 𝑾 i?𝑻i?)−𝟏 i

? (Calisesi et al., 2005). ?𝑺i?𝒓i?𝒓i?𝒓i? enables us to determine whether national correction factors for individual sectors

are affected by error correlations between sectors. 𝑨i?𝒓i?𝒓i?𝒓i? enables us to determine the ability of the observing

system to quantify national emissions from a particular sector independently from the prior estimate. 395

3. Results and Discussion 3.1 Base inversion compared to GOSAT-only and in-situ

-only inversions Figure 3a shows the gridded posterior correction factors from the base inversion averaged over 2010-

2017, i.e., the multiplicative factors applied to the total prior emissions from Figure 2, mapped on the 0.5o×0.625o

model grid. Figure 3b shows the corresponding averaging kernel sensitivities, indicating the dependence of the posterior

solution on the prior estimate (0 = total dependence, 1 = no dependence).

The number of independent pieces of information afforded by the
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observations (DOFS = 114) can be placed in the context of the 600 Gaussian state vector elements used to optimize the

spatial distribution of emissions. We see that the observations provide considerable information to optimize methane

emissions but we also see that a �ner resolution for the inversion would not be justi�ed on the continental scale.

Figures 3c-f show the results from the GOSAT-only and in-situ-only inversions, enabling us to compare the information

contents and consistency of the two data sets. The GOSAT-only inversion yields a DOFS of 68, while the in-situ-only

inversion yields a DOFS of 80, even though there are 50% fewer in situ observations than GOSAT observations. This is

because the sensitivities of surface observations to emissions are an order of magnitude higher than those of satellite

observations (Cusworth et al., 2018). The GOSAT observations have the advantage of broader coverage. Thus we �nd

that the in-situ observations dominate the information content of the base inversion over California, the upper Midwest,

and Canada; whereas GOSAT dominates the information content in Mexico (where there are no in-situ observations) and

most of the western US. GOSAT and in-situ observations contribute comparably in the south-central and eastern US,

though with different weights in different locations. We conclude

that GOSAT and in situ observations make comparable and complementary contributions to

the optimization of methane emissions for North America

. We next examine the consistency in the

information from GOSAT and in situ observations for correcting prior methane

emissions. Inspection of the posterior correction factors from the GOSAT-only and in-situ- only inversions in Figure 3

shows overall qualitative agreement. Figure 4 displays a more quantitative comparison of the posterior corrections by

correlating the values for 0.5o×0.625o grid cells

between the GOSAT-only and in-situ-only inversions

, selecting regions with relatively high averaging kernel sensitivities for both. We �nd overall good consistency between

the two inversions (correlation coe�cient r = 0.47 for the ensemble of points, with 73% of grid cells showing corrections

in the same direction). 11 The reduced-major-axis regression slope is 0.62, consistent with GOSAT providing overall less

information. Both inversions �nd that methane emissions over the south-central US, the southeast US, the Great Plains,

and Alberta are underestimated in the prior inventories. They also agree on downward corrections over central Canada

and the Upper Midwest where wetland emissions dominate. The largest inconsistency is over California where the two

inversions show correction factors in opposite direction for much of the state. This may re�ect the coarse resolution

of model CO2 used in the proxy GOSAT retrieval
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that leads to underestimation of CO2 (and hence methane) over the Los Angeles Basin (Turner et al., 2015; Maasakkers

et al., 2021), and/or complex topography. Results from the base inversion tend toward either of the two inversions

depending on which has the most information content. We evaluated the ability of the base GOSAT + in situ inversion to

�t the two observational data sets by comparing 2010-2017 GEOS-Chem simulations with posterior versus prior

emissions and boundary conditions. Results are shown in Figure 5. The posterior simulation reduces the model mean

bias (MB) at surface and tower measurements from -11 ppb in the prior simulation to -5 ppb, and also narrows the root-

mean-square error (RMSE) from 24 to 14 ppb. For GOSAT the improvement is less apparent from the continental-scale

comparison statistics, because the prior simulation already has a low mean bias MB = - 0.5 ppb and a small RMSE of

6.9 ppb. However, we see from Figure 5 that the small mean bias re�ects an offset between high bias in western US and

Canada and low bias in the central and eastern US. The inversion results in spatial whitening of this bias. Independent

evaluation with the

ground-based column observations from the Total Carbon Column Observing Network (TCCON) (

Wunch et al., 2011

) further shows that the mean model bias at �ve sites in CONUS decreases from 5.2-14.0 ppbv in the prior simulation to

1.0-13.5 ppbv in the posterior simulation. 450 3.2 Optimized 2010-2017 anthropogenic methane emissions for CONUS,

Canada, and Mexico Tables 1a-c summarize our inversion results for national 2010-2017 methane emissions by sector

in CONUS, Canada, and Mexico. Our best posterior estimates of total anthropogenic + natural emissions from the base

inversion are 46.3 (40.2-48.4) Tg a-1 for CONUS, 16.2 (13.5-17.4)

Tg a-1 for Canada, and 6 .8 ( 5 .4- 6 .9) Tg a-1 for Mexico

. The ranges given in parentheses are from the 33 inversion ensemble members (Table 2). Averaging kernel sensitivities

for these total national emissions (the diagonal elements in 𝑨i?𝒓i?𝒓i?𝒓i?, section 2.6) are 0.72 for CONUS, 0.60 for

Canada, and 0.40 for Mexico, indicating that the GOSAT + in situ observation system informs 72% of total methane

emissions in CONUS, 60% in Canada, and 40% in Mexico, with the remainder of the posterior emissions anchored to the

prior estimate. The lower information content for Mexico is due to the lack of in situ observations. 460 465 We partition

these national totals into different sectors as described in Section 2.6, and use the posterior error covariance matrix

(equation (10)) to evaluate the ability of the inversion to separate between sectors. This is shown in Figure 6 as the

posterior error correlation matrix, displaying the error correlation coe�cients (r) in the inversion results for all sector

pairs. Error correlation coe�cients are generally lower than 0.2 for CONUS, indicating successful separation, except for

small sources (termites, seeps, other anthropogenic). The same holds for Canada except for error correlation between

land�lls and wastewater treatment, both associated with urban areas. Anthropogenic emissions in Canada are well 12

470 475 separated from the large wetland emissions. Error correlations are higher in Mexico, because emissions from

different sectors tend to be concentrated in Mexico City and the eastern part of the country (Scarpelli et al., 2020), but

even there the error correlation coe�cients are generally less than 0.4. Optimization of the oil/gas sector is well
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separated from the other sectors in all three countries, and separation between oil and gas is also successful because

the two sectors have very different spatial distributions in the gridded inventories (Figure 2). However, there is some

ambiguity for the production subsectors, because wells often produce both oil and gas (Maasakkers et al., 2016), and

for this reason some studies prefer to refer to oil/gas emissions as a combined sector (

Alvarez et al., 2018 ). Separating oil and gas emissions

is useful for our purpose because such separation is required under UNFCCC reporting, but the reader should be aware

that this separation is done on the basis of the spatial distributions of emissions in Figure 2. 480 485 We �nd that

anthropogenic methane emissions for all three countries are larger in our inversion results than in the national

inventories submitted to the UNFCCC. Our best estimate of the mean 2010-2017 anthropogenic methane emission for

CONUS is 36.9 (32.5-37.8) Tg a-1, which is 30% higher than the 28.7 Tg a-1 in the 2016

version of the EPA GHGI used as prior estimate (EPA, 2016

), and 42% higher than the mean 26.0 Tg a-1 for 2010-2017 in the most recent

version of the GHGI ( EPA , 2021). Maasakkers et al . (2021) previously obtained a

mean 2010-2015 CONUS anthropogenic emission of 30.6 (29.4–31.3) Tg a-1

by inversion of GOSAT data using the same prior anthropogenic estimate as ours but a much higher prior estimate for

CONUS wetlands (15.7 Tg a-1). The need to decrease the wetlands source in their inversion (to a posterior estimate of

11.8 Tg a-1), as well as their reliance of GOSAT observations only, may have dampened their ability to quantify

anthropogenic emissions. 490 Our best estimate of the mean 2010-2017 anthropogenic methane emission for Canada

is 5.3 (3.6-5.7) Tg a-1, which is 43% higher than the 3.7 Tg a-1 in the ECCC NIR (2020 version) used as prior estimate,

and 33% higher than the 4.0 Tg a-1 for 2010-2017 reported in the most recent version of the ECCC NIR (ECCC, 2021).

Baray et al. (2021) previously obtained a mean 2010-2015 anthropogenic emission of 6.1 Tg a-1 for Canada by inversion

of data from GOSAT and ECCC surface sites. 495 Our best estimate of the mean 2010-2017 anthropogenic methane

emission for Mexico is 6.0 (4.7-6.1) Tg a-1, which is 20% higher than the 5.0 Tg a-1 in Mexico's national inventory (INECC

and SEMARNAT, 2018) used as prior estimate. Shen et al. (2021) similarly found higher emissions than the national

inventory in their inversion of TROPOMI satellite methane data for eastern Mexico. 500 Figure 7 displays the data from

Tables 1a-c for the national posterior emission estimates from different sectors in comparison with the EPA (US), ECCC

(Canada), and INECC (Mexico) national inventories used as prior estimates. We �nd that emissions from all major

sectors except coal and wastewater are lower in the national inventories than our inversion results, with the largest

https://app.ithenticate.com/en_us/report/78237537/similarity?dsc=1&source=2257441707&node=3796&id=69&dn=dcfeaf41e4abc92dad5f2e11dbab5c4b27c75cc0d762c58016491eda39e920de0582d2dfe2e123a8b3d28bba55f6749c0fa065dfb8023ded42bf37028d75ed39
https://app.ithenticate.com/en_us/report/78237537/similarity?dsc=1&source=2599597963&node=3796&id=97&dn=acea58b9762b9ef0742111e86b2e2ef6f2ecf6896fa7922a40388ff763bc87c883e039711d21880a6b92cdb57851d600ffe6c8d4ef36faabe62324c4ed982923
https://app.ithenticate.com/en_us/report/78237537/similarity?id=70&node=3796&dsc=1&source=2257441707&dn=8506eede316fd17a925910c68c612dc5cc9874ee6b2ef30025eb1788abbec2efeb8c8a0dcb5e87604094588cf39903cc2c504954e5ced7b64fe896ff51726c16
https://app.ithenticate.com/en_us/report/78237537/similarity?dn=a534a43d61dda9ca1f9466ef2c280b84c91cd1d8b5afbe77763459a912076a818fc0f7f89d3ece79a634794fcfbc9ca552fee4cc7813652e5cbea7d96dfb0690&source=2257441707&dsc=1&node=3796&id=71


12.11.21, 09:37 Similarity Report

https://app.ithenticate.com/en_us/report/78237537/similarity 19/37

3

4

underestimates for fugitive emissions from the oil sector. The total CONUS oil and gas emissions in our inversion are

4.6 and 9.9 Tg 505 a-1, respectively, 109% and 45% higher than the EPA (2016) inventory used here as prior estimate,

and 177% and 65% higher than the most recent EPA (EPA, 2021) inventory for the 2010-2017 mean. The EPA 13 510

inventory reports an uncertainty of -24 to +29% for oil and -15 to +14% for natural gas emissions (EPA, 2021). Our

estimates are also higher than those in Maasakkers et al. (2021), which are 3.6 and 8.0 Tg a-1 respectively for oil and

gas emissions in 2010-2015. They are consistent with the Alvarez et al. (2018) estimates for total CONUS

oil and gas emissions of 13 (11–15) Tg a-1

in 2015 based on �eld measurements within oil and gas basins, scaled up to derive a national value. 515 520 We

mentioned previously that the lower estimates in Maasakkers et al. (2021) could re�ect their use of GOSAT observations

only, the difference in time frame, and their high prior estimate for wetlands, but another factor is their assumption of

normal distributions for prior emission error standard deviations. We �nd from our inversion ensemble that assuming a

log normal distribution (as in our base inversion) rather than a normal distribution increases the resulting posterior oil

and gas emissions by 0.8 and 0.9 Tg a-1 respectively. This is because the lognormal distribution does much better at

capturing the heavy tail of the emission probability density functions for oil/gas production (Zavala-Araiza et al., 2015;

Frankenberg et al., 2016; Alvarez et al., 2018). Adding the in situ observations to the GOSAT-only inversion further

increases the posterior oil and gas emissions by 0.2 and 0.3 Tg a-1, respectively. The assumption of larger uncertainty

of oil than gas emissions in Eq. (8) furthermore attributes larger upward corrections to oil emissions. Thus our base

inversion yields the high end of the estimated range from the inversion ensemble (Table 1a) but still represents our best

estimate. 525 Our inversion increases the oil emissions over Canada by more than a factor of two to 1.8 Tg a-1

compared to the ECCC inventory. The total posterior oil and gas emissions for Canada are 2.9 (1.6-3.3) Tg a-1. This is in

good agreement with a recent inversion study (3.0 Tg a-1) based on 2010-2017 surface methane measurements in

western Canada (Chan et al., 2020). Most of the information for Canada in our base 530 inversion indeed comes from

the in situ measurements (Figure 3), which are relatively dense in Canada (Figure 1), and considering that GOSAT

observations at high latitudes are relatively sparse and seasonally limited (Lu et al., 2021). Maasakkers et al. (2021)

previously found little information for Canadian anthropogenic emissions in their GOSAT-only inversion, although that

was further complicated by their large overestimate of prior wetland emissions that dominate total emissions in

Canada. 535

We further compared our oil/gas inversion results for CONUS, Canada, and Mexico to the TRACE

bottom-up inventory aggregating data from individual assets up to the country level (Climate TRACE,

2021). This inventory uses lifecycle assessment emissions models for production, processing, re�ning, and

shipping (Gordon et al., 2015; Masnadi et al., 2018; Gordon and Reuland, 2021). The TRACE oil/gas 540

total emission estimates for CONUS (9.6 Tg a-1), Canada (1.8 Tg a-1), and Mexico (0 .8 Tg a-1) are

similar to the prior estimates from EPA, ECCC, and INECC respectively (Table 1) and correspondingly lower

than our best posterior estimates of 14.5 Tg a-1 for CONUS, 3.2 Tg a-1 for Canada, and 1.3 Tg a-1 for

Mexico. The bottom-up oil and
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gas modeling in TRACE assesses routine methane emissions from normal operations, assuming normal fugitive

emissions. Recent �yover work, however, shows that methane 545 emissions are highly intermittent (Cusworth, et. al.,

2021) and this is not well captured in bottom-up estimates. 550 Figure 8 shows the spatial distributions of posterior

correction to the gridded version of national inventories for the oil, gas, livestock, and land�ll sectors. We �nd large

upward corrections for the major oil/gas production basins in the US including the Permian, Barnett Shale, Eagle Ford,

Bakken Shale, 555 Marcellus Shale, and Anadarko basins, consistent with previous reports based on �eld

measurements and satellite observations (Miller et al., 2013; Karion et al., 2015; Peischl et al., 2015; Lyon et al., 2015;

Ren et al., 2019; Robertson et al., 2020; Zhang et al., 2020). Upward corrections in Canada are concentrated over the

oil/gas production regions of Alberta and Saskatchewan, again consistent with previous studies (Johnson et al., 2017;

Baray et al., 2018; Chan et al., 2020). For Mexico the upward correction is 560 concentrated in the onshore Sureste

Basin which is the largest oil �eld in the

country, but with a downward correction for offshore operations. This is consistent with aircraft and TROPOMI satellite

observations, which attributed the low offshore emissions to piping of the gas onshore followed by ine�cient �aring

(Zavala-Araiza et al., 2021; Shen et al., 2021). In addition, methane released to the ocean could be oxidized to CO2 in the

oxic water and hence not reach the atmosphere. 565 The spatial distribution of posterior corrections to livestock

emissions indicates that the national inventories are too low for most regions, although there are exceptions in

particular in the western US (Fig. 8). The highest emissions in the gridded version of the EPA (2016) GHGI are for the

Upper Midwest and our inversion results suggest that these are too low, possibly re�ecting higher-emitting manure

management systems from con�ned animal feeding operations than included in the GHGI calculations (Sheng et al.,

2018a). Yu et al. (2021) also found from an aircraft-based inversion that livestock emissions from the EPA inventory

over the US Corn Belt and Upper Midwest region are underestimated by 25% during summer and winter. 570 Our

inversion �nds CONUS methane emissions from land�lls of 7.2 (6.0-7.6) Tg a-1, 24% higher than the prior EPA (2016)

estimate of 5.8 Tg a-1. The most recent EPA (2021) inventory gives 4.5 Tg a-1 for land�ll emissions with an uncertainty

of ±22%. The organic decay rate and methane production potential used in the GHGI calculation may be too low (Wang

et al., 2013; Sun et al., 2019). 575 580 3.3 2010-2017

trends in anthropogenic methane emissions Our inversion optimizes emissions for

individual years in 2010-2017, allowing investigation of

emission trends. Figure 9 shows the 2010-2017 time series of total anthropogenic

methane emissions from CONUS, Canada, and Mexico, and the
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contributions from the dominant sectors (oil, gas, coal, livestock, and land�lls). We include no trend in the prior

estimates so that the trends in Figure 9 are solely driven by the observations. Table 3 gives the corresponding 2010-

2017 linear trends in emissions inferred from ordinary linear regression, and compares to the trends reported in the

most recent national inventories for the US (EPA, 2021) and Canada (ECCC, 2021). Mexico only reports emissions up to

2015. 585 Our inversion shows that over the time frame of 2010 to 2017, total anthropogenic methane emissions in

CONUS peaked in 2014 and then decreased, resulting in no net trend for the 2010-2017 period (+0.1 (- 0.1 - +0.3) % a-1).

The increasing trend for 2010-2015 is +0.9 (+0.4 - +1.8) % a-1, higher than +0.4 % a-1 in the GOSAT-only inversion by

Maasakkers et al. (2021) and more consistent with the 0.7±0.3 % a-1 for 15 590 595 600 2006-2015

estimated by Lan et al. (2019 ). Inspection of CONUS trends for

different emission sectors in the base inversion indicates that the 2014 maximum largely re�ects opposite trends

between oil and land�ll emissions, which increased by +2.9 (+1.0 - +2.9) % a-1 and +1.7 (+1.0 - +1.8) % a-1 respectively

over the 2010-2017 period, and gas emissions, which decreased by 1.8 % a-1 over the 2010-2017 period, with livestock

and coal emissions showing no signi�cant trend (Figure 9). In contrast, the most recent EPA GHGI inventory reports a

steady decreasing trend of -0.8 % a-1 in US

anthropogenic methane emissions over the 2010-2017 period mostly driven by

coal (-5.4% a-1) and land�lls (-1.6% a-1) (EPA, 2021). The decrease for gas is more pronounced in our inversion than in

the EPA inventory (-0.4% a-1). The EPA inventory reports no signi�cant trend for oil emissions, and attributes the

decrease in gas emissions to gas exploration (80% decrease from 2010 level) and distribution (12% decrease from 2010

level), with �at emission from gas production. However, both oil and natural gas productions have increased

signi�cantly over the period (https://www.eia.gov/). More work is required to understand the discrepancies in oil and

gas trend estimates between the inversion and EPA reports. We cannot exclude the possibility that oil and gas

emissions are not adequately separated in the EPA inventory and/or the inversion at this stage. 605 Figure 10 shows the

spatial distributions of the linear regression �ts to the 2010-2017 trends for the major anthropogenic sectors, i.e., the

equivalent linear trends over the period. We �nd that the oil increases are mostly driven by major basins in the south-

central US including the Permian and Eagle Ford basins. The gas decreases are mostly driven by �elds in the western US

(Niobrara) and southeastern US (Haynesville). Livestock emissions show variable regional patterns of increase and

decrease that could re�ect variations 610 in animal populations. The increase in Iowa is consistent with a previous

study of GOSAT trends by Sheng et al. (2018a), who attributed it to an increase in the number of swine (Iowa

Department of Natural Resources, 2017). Land�lls also show variable patterns of increase and decrease. 615 620 The

ECCC reports no signi�cant trends of Canadian anthropogenic methane emissions over 2010-2017, but notes some

decreases of oil emissions, in particular after 2014 (ECCC, 2021). Here we �nd a decreasing trend in Canadian

anthropogenic emissions of -2.3 (-2.5 - -1.6) % a-1 from the inversion, mainly driven by gas (-3.8 (-3.9 - -1.7) % a-1) and oil

(-1.7 (-2.0 - -0.4) % a-1). This may re�ect reductions in livestock and oil/gas emissions over this period (ECCC, 2020b)

and the ongoing regulation of methane released from the oil/gas sectors following the Pan-Canadian Framework on
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Clean Growth and Climate Change, which aims to reduce methane emissions by 40-45% by 2025 relative to the 2012

level (ECCC, 2017). The inversion also suggests a decreasing trend in total Mexican anthropogenic methane emissions

by -3.3 (-3.4 - -1.7) % a-1, but this

is mainly driven by a decrease from 2010 to

2011in particular for offshore Sureste oil emissions and consistent with the increasing utilization of associated gas

(Zhang et al., 2019). 625 3.4 2010-2017 wetland methane emissions and trends Our inversion shows strong ability to

optimize wetland emissions over CONUS and Canada (averaging kernel sensitivity of 0.57). Wetland emissions in

Mexico are much smaller and are not e�ciently optimized by the inversion, as shown in Table 1c. Posterior

wetland emissions are 8.4 (6.4-10.6) Tg a-1 16 630 for CONUS

and 9.9 (7.8-12.0) Tg a-1 for Canada, compared to 7.5 and 12.0 Tg a-1 in the prior estimate from the WetCHARTs v1.3.1

high-performance subset for North America (Ma et al., 2021). There are larger regional upward (southeast US) and

downward (Upper Midwest) corrections even with this high- performance subset, as shown in Figure 11, pointing to

major gaps in our understanding. 635 Figures 11 and 12 show the 2010-2017 trends of wetland emissions for CONUS

and Canada. We �nd a signi�cant increase of +2.6 (+1.7 - +3.8) % a-1 in wetland methane emissions over CONUS in

2010-2017, in particular after 2014, and this is consistent with but higher than the WetCHARTs trend estimates of 1.3 %

a-1 (not used in the inversion). The trends over CONUS are mostly driven by increases in the southeast US (Fig.11b).

Fluctuations in emissions for temperate and boreal wetlands are mostly 640 modulated by temperature, snow melt,

precipitation, and drought events (Watts et al., 2014). We �nd a signi�cant correlation of 0.89 between the CONUS

wetland emissions and annual precipitation in the CONUS wetland regions, and a strong 2010-2017 increase in

precipitation that may drive the wetland trends (Fig.12c). Wetland emissions over Canada do not show signi�cant trends

in the inversion. The 2016 peak is consistent with WetCHARTs and may be explained by high precipitation (Fig.12d). 645

650 655 4 Conclusions We estimated mean methane emissions and trends for 2010-2017

in the contiguous United States (CONUS), Canada, and Mexico by inversion of in situ

(GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric methane observations . Our

inversion

used gridded versions of the national anthropogenic emission inventories reported to the UNFCCC by EPA (CONUS),

ECCC (Canada) and INECC (Mexico) as prior estimates. It optimized a 600-member Gaussian mixture model (GMM) of

emissions for individual years at up to 0.5×0.625° resolution, using log-normal prior error statistics on emissions to

account for the heavy tail in the probability distribution. The inversion solved for the minimum of the Bayesian cost

function with log-normal prior statistics analytically, thus enabling a large inversion ensemble to test the sensitivity of

results to a range of assumptions, and providing
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closed-form expressions of posterior error covariance and information content

.

We �nd that GOSAT and in situ observations make comparable and complementary

contributions to the optimization of methane emissions for North America

, and that they show overall consistent corrections to prior methane emissions. 660

We estimate from our base inversion a mean 2010-2017 methane emission for CONUS

of

46.3 (40.2-48.4 ensemble range) Tg a-1, of which 36.9 (32.5-37.8) Tg a-1 is anthropogenic. This anthropogenic emission

is 30% higher than the EPA inventory of 28.7 Tg a-1 used as prior estimate (EPA, 2016), and 42% higher than the 2010-

2017 mean of 26.0 Tg a-1 in the most recent version of the EPA inventory (EPA, 2021). These upward corrections are

largely attributed to the oil (4.6 Tg a-1) and gas (9.9 Tg a-1) sectors, which 665 are respectively 177% and 65% higher

than the EPA (2021) estimates, and are mainly in large basins of the south-central US. The inversion also shows upward

corrections of livestock emissions to 10.6 Tg a-1, 15% higher than the EPA estimate (9.2 Tg a-1), and of land�ll

emissions to 7.2 Tg a-1, 24% higher than the EPA estimate (5.8 Tg a-1). 670 We estimate a mean 2010-2017 emission

for Canada of 16.2 (13.5-17.4) Tg a-1, of which 5.3 (3.6-5.7) Tg a-1 is anthropogenic. This anthropogenic emission is

43% higher than the 3.7 Tg a-1 in the ECCC (2020) national inventory used as prior estimate. Most of this difference is

due to oil emissions which we estimate at 1.8 Tg a-1, more than twice the ECCC estimate, and mainly from production in

Alberta and Saskatchewan. 675 680 We estimate a mean 2010-2017 emission for Mexico of 6.8 (5.4-6.9) Tg a-1, of

which 6.0 (4.7-6.1) Tg a-1 is anthropogenic. This anthropogenic emission is 20% higher than the 5.0 Tg a-1 in the INECC

(2018) national inventory used as prior estimate. Again, most of the underestimate is due the oil sector and speci�cally

to oil production in the Sureste onshore region. Offshore oil emissions are lower than the INECC estimate. 685 We �nd

from the inversion that anthropogenic emissions in CONUS peaked in 2014 and had no net trend over the 2010-2017

period (+0.1 (-0.1 - +0.3) % a-1), in contrast with the EPA inventory that reports a steady decreasing trend of -0.8 % a-1

over the period. The overall US emission trend re�ects increases in the oil and land�ll sectors, decreases in the gas

sector, and �at emissions in the livestock and coal sectors. We �nd a decreasing trend in Canadian anthropogenic

emissions of -2.3 (-2.5 - -1.6) % a-1

over the 2010- 2017 period, mainly driven by oil and gas

production. We also �nd a decreasing trend in Mexican anthropogenic methane emissions (-3.3 (-3.4 - -1.7) % a-1)
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over the 2010-2017 period , mostly driven by the oil sector and

in particular by offshore operations. 690 695 Wetlands are the main natural source of methane in all three countries.

Starting from the high-performance subset of the WetCHARTs inventory ensemble as prior estimate, our inversion yields

mean wetland emission estimates for 2010-2017 of 8.4 (6.

4-10.6) Tg a-1 for CONUS, 9.9 (7.8-12.0) Tg a-1 for Canada, and 0.6 (0.4-0.6) Tg a-1 for Mexico.

Wetland emissions in CONUS show a signi�cant increase of 2.6 (1.7- 3.8) % a-1 over 2010-2017

correlated with precipitation

. 700

Data availability. The GLOBALVIEWplus CH4 ObsPack v1.0 data product is available at https ://gml.

noaa.gov/ccgg/obspack/data.php?id=obspack_ch4_1_GLOBALVIEWplus_v1.0_2019-01

- 08. The University of Leicester GOSAT Proxy v9.0 XCH4 data is available from the Centre for Environmental Data

Analysis data repository at http://dx.doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb (Parker and Boesch, 2020).

The WetCHARTs v1.3.1 is available at the ORNL DAAC, https://doi.org/10.3334/ORNLDAAC/1915.

Modeling data can be accessed by contacting the corresponding author Xiao Lu

(luxiao25@mail.sysu. edu
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emission inventory and its interpretation.
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contiguous US (CONUS). Prior a Posterior b Sensitivity c Total sources [Tg a-1] 36.8 46.3 (40.2-48.4) 0.72 Anthropogenic

sources 28.7d 36.9 (32.5-37.8) 0.55 Livestock 9.2 10.6 (9.2-11.8) 0.43 Oil 2.3 4.6 (3.0-4.7) 0.43 Natural gas 6.8 9.9 (8.1-

10.5) 0.42 Coal mining 2.9 2.8 (2.4-3.5) 0.44 Land�lls 5.8 7.2 (6.0-7.6) 0.34 Wastewater 0.70 0.63 (0.56-0.74) 0.57 Rice

cultivation 0.48 0.65 (0.49-0.68) 0.33 Other Anthropogenic 0.46 0.45 (0.44-0.54) 0.30 Natural Sources 8.6 9.5 (7.4-11.5)

0.64 Wetlands 7.5 8.4 (6.4-10.6) 0.57 Open �res 0.16 0.17 (0.15-0.24) 0.43 Termites 0.59 0.63 (0.57-0.76) <0.1 Seeps

0.28 0.27 (0.23-0.35) 0.14 1010 a Prior estimates for the inversion. Anthropogenic emissions are from the

Environmental Protection Agency (EPA) Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHGI) for year 2012 as

reported by EPA (2016). Wetland emissions are the 2010-2017 mean of the high-performance subset of the WetCHARTs

ensemble (Ma et al., 2021). Open �re emissions area

from GFEDv4s (van der Werf et al., 2017

). Termite and seep emissions are as described in Lu et al. 1015 (2021). b Results from the base inversion of GOSAT and

GLOBALVIEWplus data, with the range from the inversion ensemble and from the two sectoral attribution methods (66

total ensemble members)

in parentheses. c Sensitivity of the posterior estimate to the observations as diagnosed by the

diagonal elements of the

averaging kernel matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full sensitivity,

posterior fully determined by the 1020 observations
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). Values are from the base inversion for year 2015. Results for other years show similar values. See section 2.6 for

more details. d The most recent EPA GHGI report (EPA, 2021) gives a mean anthropogenic emission of 26.0 Tg a-1 for

2010-2017. Anthropogenic US emissions outside CONUS (mostly Alaska) account for only 0.3 Tg a-1 according to the

EPA (Maasakkers et al., 2016) and are not optimized in the inversion. Table 1b. Mean 2010-2017 methane emissions for

Canada. Prior a Posterior b Sensitivity c Total sources [Tg a-1] 17.1 16.2 (13.5-17.4) 0.60 Anthropogenic sources 3.7 5.3

(3.6-5.7) 0.59 Livestock 1.1 1.4 (1.0-1.6) 0.48 Oil 0.75 1.8 (0.81-1.9) 0.48 Natural gas 0.80 1.1 (0.76-1.6) 0.54 Coal

mining <0.1 <0.1 0.51 Land�lls 0.66 0.69 (0.45-0.74) 0.33 Wastewater <0.1 <0.1 0.20 Rice cultivation 0 0 / Other

Anthropogenic 0.27 0.31 (0.26-0.36) 0.18 Natural Sources 13.5 10.9 (8.7-13.2) 0.54 Wetlands 12.0 9.9 (7.8-12.0) 0.57

Open �res 1.1 0.67 (0.48-0.95) 0.54 Termites 0.28 0.29 (0.24-0.30) <0.1 Seeps <0.1 <0.1 <0.1 1025 1030 a Prior

estimates for the inversion. Anthropogenic emissions are from the Environment and Climate Change Canada (ECCC)

National Inventory Report (NIR) for year 2018 (ECCC, 2020). Wetland emissions are the 2010-2017 mean of the high-

performance subset of the WetCHARTs ensemble (Ma et al., 2021). Open �re emissions area

from GFEDv4s (van der Werf et al., 2017

). Termite and seep emissions are as described in Lu et al. (2021). b Results from the base inversion of GOSAT and

GLOBALVIEWplus in situ data, with the range from the inversion ensemble and from the two sectoral attribution

methods (66 total ensemble members)

in parentheses. c Sensitivity of the posterior estimate to the observations as diagnosed by the

diagonal elements of the

averaging kernel matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full sensitivity,

posterior fully determined by the observations

). Values are from the base inversion for year 2015. Results for other years show similar values. See section 2.6 for

more details. Table 1c. Mean 2010-2017 methane emissions for Mexico. Prior a Posterior b Sensitivity c Total sources

[Tg a-1] 5.8 6.8 (5.4-6.9) 0.40 Anthropogenic sources 5.0 6.0 (4.7-6.1) 0.41 Livestock 2.3 2.5 (2.0-2.6) 0.24 Oil 0.44 0.84

(0.42-0.85) 0.20 Natural gas 0.34 0.42 (0.36-0.53) 0.44 Coal mining 0.28 0.26 (0.26-0.52) 0.80 Land�lls 0.77 1.0 (0.67-

1.0) 0.30 Wastewater 0.69 0.80 (0.65-0.86) 0.14 Rice cultivation <0.1 <0.1 <0.1 Other Anthropogenic 0.13 0.14 (0.12-

0.16) 0.10 Natural Sources 0.79 0.83 (0.64-0.89) 0.10 Wetlands 0.52 0.57 (0.43-0.60) <0.1 Open �res 0.14 0.14 (0.10-

0.16) <0.1 Termites 0.13 0.12 (0.10-0.14) <0.1 Seeps <0.1 <0.1 <0.1 1035 a Prior estimates for the inversion.

Anthropogenic emissions are from the National Inventory of Greenhouse Gases and Compounds constructed by the

Instituto Nacional de Ecología y Cambio Clim′atico (INECC). Wetland emissions are the 2010-2017 mean of the high-

performance subset of the WetCHARTs ensemble (Ma et al., 2021). Open �re emissions area
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from GFEDv4s (van der Werf et al., 2017

). Termite and seep emissions are as described in Lu et al. (2021). b Results from the base inversion of GOSAT and

GLOBALVIEWplus data, with the range from the inversion ensemble 1040 and from the two sectoral attribution methods

(66 total ensemble members)

in parentheses. c Sensitivity of the posterior estimate to the observations as diagnosed by the

diagonal elements of the

averaging kernel matrix, ranging from 0 (no sensitivity, posterior equal to prior) to 1 (full sensitivity,

posterior fully determined by the observations

). Values are from the base inversion for year 2015. Results for other years show similar values. See section 2.6 for

more details. 1045 Table 2. Settings for generation of the 33-member inversion ensemble a. Observations

Regularization Prior error standard deviation parameter γ Emissions Boundary conditions GOSAT + in situ 1 50% (log

normal) 10 ppb GOSAT + in situ (long-term)c 0.5 (GOSAT) quadrature sum (log normal)d 5 ppb GOSAT 50% (normal) In

situ 95% (normal) In situ (long-term) c quadrature sum (normal) d a Settings for the base inversion are in bold. The 33-

member inversion ensemble uses the different combinations of settings to probe the effects of different choices in

observations and in inversion parameters. The GOSAT + in situ inversion includes the following 7-member ensemble: (1)

base inversion with γ = 1 for in situ and GOSAT observations , 1050 𝜎i?𝐴i? = 50% (log normal) for emissions, and 𝜎i?𝐴i?

= 10 ppb for boundary conditions; (2) the same as (1) except that γ= 0.5 for GOSAT observations; (3)-(6) the same as

(1), except that 𝜎i?𝐴i? for emissions uses the other 4 options in the Table; and (7) is the same as (1), except that 𝜎i?𝐴i? =

5 ppb for boundary conditions. Similarly, the GOSAT + in situ (long-term) and GOSAT inversions have 7 ensemble

members, respectively. The in situ and in situ (long-term) inversion have 6 ensemble members, respectively. This adds

up to 33 inversion ensemble members. Sectoral attribution is done by two alternative 1055 methods (see text in Section

2.6), resulting in a total of 66 members. c Including only long-term surface and tower sites with observations for all

years of the 2010-2017 record. d Adding the errors from individual sectors in quadrature following Maasakkers et al.

(2021). 1060 Table 3. 2010-2017 trends in methane anthropogenic emissions (percent per year)a. Inversion ensembleb

National inventoriesc CONUS 1065 1070 Total anthropogenic Livestock Oil Natural gas Coal mining Land�lls +0.10

(-0.11 - +0.34) -0.25 (-0.61 - +0.09) +2.9* (+1.0 - +2.9) -1.8* (-1.8 - -0.48) -1.0 (-1.9 - -0.04) +1.7*(+1.0 - +1.8) -0.8* +0.5

-0.4 -0.4* -5.4* -1.6* Canada Total anthropogenic Livestock Oil Natural gas Land�lls -2.3 (-2.5 - -1.6) -2.2 (-2.7 - -1.5) -1.7

(-2.0 - -0.42) -3.8 (-3.9 - -1.7) -2.3 (-3.9 - -1.7) -0.3 -0.3 -1.2 -0.1 -0.4* Mexico Total anthropogenic -3.3 (-3.4 - -1.7) NA Oil

-11.6* (-15.0 - -3.5) NA Natural gas -3.1 (-6.1 - -1.0) NA aFrom ordinary linear regression of emissions in individual years,

reported in % a-1 relative to the 2010-2017 mean. Figure 9 shows the time series for the base inversion. Trends marked

with * are signi�cant with p-value<0.1. bTrends from the
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base inversion, with the range of trends from the inversion ensemble members in

parentheses

. cFrom national inventory emissions in individual years

reported by the Environmental Protection Agency (EPA , 2021) and Environment and Climate

Change Canada (ECCC

, 2021). INECC in Mexico only reports emissions up to 2015 hence the Not Available (NA) entries. Figure 1. Methane

observations over North America used in the inversion. The observations are from the in situ 1075 GLOBALVIEWplus

CH4 ObsPack data product and from the GOSAT satellite instrument. Mixing ratios shown for surface, tower, and GOSAT

observations are means for 2010-2017. Aircraft and shipboard observation locations are shown as additional symbols.

The GOSAT data are

dry column mixing ratios from the University of Leicester version 9 Proxy XCH4 retrieval (Parker et al

., 2020a) and are averaged here on the 0.5° × 0.625° GEOS-Chem model grid. Figure 2. Prior estimates of methane

emissions from individual sectors. Anthropogenic emissions are from spatially explicit versions of the EPA, ECCC, and

INECC o�cial national inventories. Wetland emissions are from the mean of 1085 the high-performance subset of the

WetCHARTs inventory ensemble. Figure 3. Optimization of mean 2010–2017 methane emissions over North America.

Results are from the base inversion

using both GOSAT and GLOBALVIEWplus in situ observations , the GOSAT -only

inversion

, and the in-situ only 1090 inversion. The left panels show the posterior correction factors, i.e., the multiplicative factors

applied to the total prior emissions in Figure 2, and the right panels show the

averaging kernel sensitivities (diagonal elements of the averaging kernel matrix). The

degrees of freedom for signal (DOFS , de�ned as the trace of the averaging kernel matrix )

are shown inset

. 1095 Figure 4. Comparison of posterior correction factors to prior methane emissions on the 0.5o × 0.625o grid

between
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GOSAT-only and in-situ-only inversions. The comparisons are

for 9 regions with relatively high averaging kernel 1100 sensitivities for both inversions. Each point represents the

posterior correction factors from both inversions in a 0.5ox0.625o grid cell (Fig.3). Correlation coe�cients for each of

the nine regions are shown inset. Percentiles in each quadrant show the fraction of the total points in that quadrant.

Figure 5. Ability of the base inversion to �t the in situ (surface and tower) and GOSAT observations for 2010-2017. The

�gure shows the mean differences between GEOS-Chem simulations and the observations using either prior or posterior

methane emissions. Mean bias (MB) and root-mean square error (RMSE) are shown inset, calculated from the

temporally averaged differences for each in situ site or GOSAT grid cell. 1110 Figure 6. Posterior error correlation

coe�cients (r) between sectoral methane emissions in the contiguous US (CONUS), Canada, and Mexico, using the

sector-aggregated error covariance matrix as described in Section 2.6. Error correlation coe�cients indicate

the ability of the inversion to separate emissions between sectors

(0 = perfectly, ± 1 = not at all). 1115 Results are from the base inversion for year 2015. Results for other years show

similar patterns. Figure 7. Mean 2010–2017 anthropogenic

methane emissions by source sectors for the contiguous US (CONUS ), 1120 Canada,

and Mexico , displaying values and ranges from the

corresponding Tables 1a-c. The o�cial UNFCCC-reported national inventories for the US (EPA), Canada (ECCC) and

Mexico (INECC) are used as prior estimates for the inversion. Inversion results

are from the base inversion of GOSAT + in situ

observations and the ranges are for the ensemble of 66 sensitivity inversions (Table 2) and sectoral attribution methods

(Section 2.6). 1125 Figure 8. Posterior correction for mean 2010-2017 methane

emissions from the oil , gas, livestock, and land�ll sectors as given by the

base inversion. The correction factors for anthropogenic emissions are relative to the national emission inventories

used as prior estimates (EPA GHGI for the US, ECCC NIR for Canada, INECC for Mexico). 1130 Figure 9. 2010-2017

trends in anthropogenic methane emissions in CONUS, Canada, and Mexico as inferred from the base inversion. The left

panels show the total national anthropogenic methane emissions and the right panels show changes relative to 2010
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for major sectors. 1135 Figure 10. 2010-2017 linear trends in emissions from major anthropogenic sectors on the

0.5ox0.625o grid as inferred from the base inversion. The linear trends are �tted by linear regression to the inversion

results for individual years. Areas in white have no emissions from the corresponding sector. 1140 Figure 11. Posterior

correction and linear trends for 2010-2017 wetland emissions in North America. The posterior correction factors are

relative to the 2010-2017 mean of the high-performance subset

of the WetCHARTs inventory ensemble (Ma et al ., 2021). The linear trends are from

ordinary linear regression to base inversion results for individual 1145 years. 1150 Figure 12. 2010-2017 trends of

wetland methane emissions and precipitation in CONUS and Canada. The left panels show the results

from the base inversion and the mean annual emissions from the high-performance

ensemble of the

WetCHARTs v1.3.1 inventory (Ma et al., 2021), The 8-year WetCHARTs average is used as prior estimate for the inversion

so that the trend in the inversion results is solely from the atmospheric observations. The right panels show the 1155

annual precipitation over the wetland regions of CONUS and Canada, as determined by weighting precipitation amounts

with the WetCHARTs wetland emission �uxes on their native 0.5ox0.5o grid. The gridded precipitation data are from the

ERA-Interim re-analyses (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim/, 0.5°×0.5°).
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