Impact of firework on nitrooxy-organosulfates in urban aerosols during Chinese New Year Eve

5 Qiaorong Xie^{1,2}, Sihui Su¹, Jing Chen³, Yuqing Dai⁴, Siyao Yue^{2,5}, Hang Su⁵, Haijie Tong⁶, Wanyu Zhao², Lujie Ren¹, Yisheng Xu⁷, Dong Cao⁸, Ying Li^{2,9}, Yele Sun², Zifa Wang², Cong-Qiang Liu¹, Kimitaka Kawamura¹⁰, Guibin Jiang⁸, Yafang Cheng⁵, and Pingqing Fu^{1*}

¹Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China ²LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

- ³School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China ⁴School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK ⁵Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany ⁶Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong ⁷Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- ⁸State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
 ⁹Department of Chemistry, California University, Irvine, California 92697-2025, United States
 ¹⁰Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan *Correspondence to*: Pingqing Fu (fupingqing@tju.edu.cn)

20

This supplementary information document contains 11 pages including 6 figures, 3 tables, and references.

Figure S1: Number, and intensity percentages of CHO, CHNO, CHOS and CHNOS compound categories in WSOC isolated from aerosol samples detected in ESI⁻ FT-ICRMS. D=daytime; N=nighttime.

Figure S2: Intensity of nitrooxy-OSs species in different subgroups according to the numbers of N, S and O atoms in their molecules.

Figure S3: The weighted mean elemental ratio of total nitrooxy-OSs for each sample.

Figure S4: Van Krevelen plots for samples LNY D (a) and LNY N (b), and samples Normal D (c) and Normal N (d). The color bar denotes the number of DBE. Black lines show class identification. The stoichiometric ranges set as boundaries of the classifications are showed in Table S3. The size of the symbols reflects the relative peak intensities of molecular formulae on a logarithmic scale.

Figure S5: The number and intensity contribution of $N_1O_nS_1$ and $N_2O_nS_1$ species of nitrooxy-OSs in VK classes in samples. The bar diagrams in top right represent the relative contribution of them.

Figure S6: The carbon chain length (a and e), H/C (b and f)) and O/C (c and g) ratios, different groups (d and h) distributions via molecular weights of nitrooxy-OSs in NYE D (during the before-FW periods) and NYE N (during the FW periods) aerosols. Group A includes the aliphatic nitrooxy-OSs with DBE≤2; Group B includes the aromatic-like nitrooxy-OSs with X_c>2.5; Group C includes the biogenic derived nitrooxy-OSs.

Table S1. Sampling date of the Beijing aerosol collected in January 2012.

Sample ID	Sampling Date and Time	
Normal D	21 st Jan 7:00 ~ 18:00	
Normal N	$21^{st}18{:}30\sim 22^{nd}Jan6{:}30$	
NYE D	22^{nd} Jan 7:00 ~ 18:00	
NYE N	$22^{nd}18{:}30{\sim}23^{th}Jan6{:}30$	
LNY D	23^{th} Jan 7:00 ~ 18:00	
LNY N	$23^{th}18:30 \sim 24^{th}$ Jan 6:30	

Table S2. The stoichiometric classification ranges of VK classes (Bianco et al., 2018; Wozniak et al., 2008).

Class	H/C	O/C
Lipids-like	1.5 <h c≤2.0<="" td=""><td>0≤O/C≤0.3</td></h>	0≤O/C≤0.3
Aliphatic/peptides-like	1.5 <h c≤2.2<="" td=""><td>0.3<o c≤0.67<="" td=""></o></td></h>	0.3 <o c≤0.67<="" td=""></o>
CRAMs-like / lignin-like	0.67 <h c≤1.5<="" td=""><td>0.1≤O/C<0.67</td></h>	0.1≤O/C<0.67
Carbohydrates-like	1.5 <h c≤2.5<="" td=""><td>0.67<o c<1.2<="" td=""></o></td></h>	0.67 <o c<1.2<="" td=""></o>
Unsaturated hydrocarbons	0.67 <h c≤1.5<="" td=""><td>O/C<0.1</td></h>	O/C<0.1
Aromatic structures	0.2≤H/C≤0.67	O/C<0.67
tannins-like / HOC	0.6 <h c≤1.5<="" td=""><td>0.67≤O/C≤1.2</td></h>	0.67≤O/C≤1.2

Relative Intensity (%) Potential Formula Proposed structure NYE NYE LNY LNY Normal Normal precursor D Ν D Ν D Ν .OSO₃H Pinene (Surratt et al., (1) C₁₀H₁₇NO₇S 26 95 16 37 17 86 ONO₂ 2008) ,OSO₃H ONO₂ (2) Limonene (Surratt et 79 9.7 95 20 25 8.4 C₉H₁₅NO₈S al., 2008) OSO₃H (3) C₁₈H₃₅NO₉S ((CH)₂)₆ 7.3 21 8.5 15 7.5 10 Oleic acid ((CH)₂)₆ нó ONO₂ ONO₂ (4) C₁₂H₂₅NO₇S 4.1 11 4.2 3.1 5.2 5.5 Alkane ÓSO₃H OSO₃H /—OH O₂NO-(5) HO Aromatics 0 0 1.8 0 0 0 HO ОН C₁₈H₁₅NO₁₁S /PAHs HO₃SO ŅН O₂NO Aromatics (6) C₁₆H₁₃NO₉S 1.1 3.3 2.2 2.5 1.4 2.2 HQ /PAHs OH OSO3H Aromatics (7) C₁₁H₁₅NO₈S 2.4 19 14 3.0 12 3.8 /PAHs ΟNO₂

Table S3. The relative intensities of seven different nitrooxy-OSs in each sample.

References

10

Bianco, A., Deguillaume, L., Vaïtilingom, M., Nicol, E., Baray, J. L., Chaumerliac, N., and Bridoux, M. C.: Molecular Characterization of Cloud Water Samples Collected at the puy de Dôme (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., acs.est.8b01964, 2018.

5 Surratt, J. D., Gómez-González, Y., Chan, A. W., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., and Jaoui, M.: Organosulfate formation in biogenic secondary organic aerosol, J. Phys. Chem. A, 112, 8345-8378, 2008.

Wozniak, A. S., Bauer, J. E., Sleighter, R. L., Dickhut, R. M., and Hatcher, P. G.: Technical Note: Molecular characterization of aerosolderived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Atmos. Chem. Phys., 8, 5099-5111, 10.5194/acp-8-5099-2008, 2008.