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Abstract: By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud 13 

product, we evaluate how well the Met Office Unified Model (UM) and European Centre for Medium-Range Weather 14 

Forecasting Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy 15 

balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a four-week 16 

observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions 17 

was measured. Three different cloud schemes were tested within a nested limited area model (LAM) configuration of the UM 18 

– two regionally-operational single-moment schemes (UM_RA2M and UM_RA2T), and one novel double-moment scheme 19 

(UM_CASIM-100) – while one global simulation was conducted with the IFS, utilising its default cloud scheme 20 

(ECMWF_IFS). 21 

Consistent weaknesses were identified across both models, with both the UM and IFS overestimating cloud occurrence below 22 

3 km. This overestimation was also consistent across the three cloud configurations used within the UM framework, with >90% 23 

mean cloud occurrence simulated between 0.15 and 1 km in all model simulations. However, the cloud microphysical structure, 24 

on average, was modelled reasonably well in each simulation, with the cloud liquid water content (𝐿𝑊𝐶) and ice water content 25 

(𝐼𝑊𝐶) comparing well with observations over much of the vertical profile. The key microphysical discrepancy between the 26 

models and observations was in the 𝐿𝑊𝐶 between 1 and 3 km, where most simulations (all except UM_RA2T) overestimated 27 

the observed 𝐿𝑊𝐶.  28 

Despite this reasonable performance in cloud physical structure, both models failed to adequately capture cloud-free episodes: 29 

this consistency in cloud cover likely contributes to the ever-present near-surface temperature bias simulated in every 30 

simulation. Both models also consistently exhibited temperature and moisture biases below 3 km, with particularly strong cold 31 

biases coinciding with the overabundant modelled cloud layers. These biases are likely due to too much cloud top radiative 32 
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cooling from these persistent modelled cloud layers and were interestingly consistent across the three UM configurations tested, 33 

despite differences in their parameterisations of cloud on a sub-grid-scale. Alarmingly, our findings suggest that these biases 34 

in the regional model were inherited from the driving model, thus triggering too much cloud formation within the lower 35 

troposphere. Using representative cloud condensation nuclei concentrations in our double-moment UM configuration, while 36 

improving cloud microphysical structure, does little to alleviate these biases; therefore, no matter how comprehensive we make 37 

the cloud physics in the nested LAM configuration used here, its cloud and thermodynamic structure will continue to be 38 

overwhelmingly biased by the meteorological conditions of its driving model. 39 

1 Introduction 40 

The Arctic is warming at more than twice the global average rate (Serreze and Barry, 2011; Cohen et al., 2014), with recent 41 

evidence suggesting the rate of warming could be up to three times the global average (AMAP 2021). Coupled general 42 

circulation models (GCMs) fail to agree on the magnitude of recent warming and exhibit large biases in surface temperature 43 

and energy balance (Boeke and Taylor, 2016) driven largely by model parameter uncertainties on a decadal scale (Hodson et 44 

al., 2013). Biases in such surface properties are also present in atmosphere-only versions of these models with fixed ocean and 45 

sea ice boundaries, indicating that there is an important atmospheric source of disparity between models and reality (Bourassa 46 

et al., 2013). Arctic clouds have a net warming effect at the surface (Boucher et al., 2013) and are likely a contributing factor 47 

to the spread of surface energy balance estimates obtained from these models, with a large spread in cloud fractions, liquid 48 

water paths (𝐿𝑊𝑃), and ice water paths (𝐼𝑊𝑃) identified in past phases of the Coupled Model Intercomparison Project (CMIP; 49 

Karlsson and Svensson, 2011; Boeke and Taylor, 2016). Early results from the most recent CMIP indicate that high latitude 50 

discrepancies in cloud fraction are still prevalent in recent revisions of these models (Vignesh et al., 2020). 51 

With accelerating Arctic warming, we need to build suitable numerical models to confidently predict how the atmosphere will 52 

change both on short weather prediction and longer climate time scales (Jung et al., 2016). Models such as the Met Office 53 

Unified Model (UM) and European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System 54 

(IFS) are commonly used for assessing future Arctic change; however, recent work has shown that, like other large-scale 55 

models, both exhibit surface energy balance discrepancies with comparison to high Arctic observations. In both the UM and 56 

the IFS, these biases have largely been attributed to incorrect cloud cover (Birch et al., 2012; Sotiropoulou et al., 2016; 57 

Tjernström et al., 2021).  58 

Several studies have considered why such large-scale models fail to reproduce observed cloud cover in the high Arctic. 59 

Observations have shown that during summer, Arctic clouds experience episodes of extremely low concentrations of cloud 60 

condensation nuclei (CCN; < 10 cm-3) approximately 10—30% of the time (Mauritsen et al., 2011; Tjernström et al., 2014), 61 

highlighting that model capability to reproduce cloud free conditions in the Arctic is likely dependent upon representing these 62 

low CCN numbers (Birch et al., 2012; Stevens et al., 2017; Hines and Bromwich, 2017). Such conditions are difficult to 63 

simulate with large-scale numerical models utilising single-moment microphysics schemes with assumed constant droplet 64 

number concentrations, 𝑁𝑑. Both the IFS and the UM make such assumptions in their current global operational configurations: 65 

while climatological aerosol concentrations are referenced in the calculations of the first and second indirect effect, droplet 66 

number cannot evolve independently of cloud liquid mass.  67 
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The operational single-moment microphysics scheme within the UM was found to hinder its ability to reproduce tenuous cloud 68 

periods during the Arctic Summer Cloud Ocean Study (ASCOS); when clouds were modelled, the model produced too thin 69 

cloud layers in a boundary layer (BL) that was often too well-mixed and too shallow (Birch et al., 2012). The prevalence of 70 

too much low-level cloud caused surface energy balance, and hence surface temperature, biases. The new Cloud-Aerosol 71 

Interactive Microphysics (CASIM) double-moment scheme in the UM has enabled improvements in its representation of Arctic 72 

clouds; Stevens et al. (2017) noted it improved the surface net longwave radiation (𝐿𝑊𝑛𝑒𝑡) in both cloudy and cloud-free 73 

conditions. Specifically, inclusion of aerosol processing within CASIM successfully led to cloud dissipation when modelling 74 

the CCN-limited clouds observed during the ASCOS campaign, indicating that this explicit description of double-moment 75 

microphysics (rather than a simplified cloud physics description) is key to modelling these clouds in the high Arctic. 76 

Like the UM, the IFS also failed to capture episodic cloud-free periods observed during ASCOS, leading to similar surface 77 

energy biases (Sotiropoulou et al., 2016). The updated IFS cloud scheme, used operationally since 2013, has improved its 78 

ability to capture mixed-phase Arctic clouds in recent revisions; however, Sotiropoulou et al. (2016) reported that the IFS still 79 

exhibits a persistent positive near-surface temperature bias, despite the improvement to its representation of these clouds. These 80 

Arctic surface biases persist in version Cy45r1 of the model, as shown by Tjernström et al. (2021). Given that reanalysis 81 

products created using the ECMWF IFS (e.g., ERA5; Hersbach et al. 2020) are widely used, both to produce lateral boundary 82 

conditions for process studies with numerical weather prediction (NWP) models and to analyse Arctic atmospheric structure, 83 

we must understand the root of these biases and make recommendations for process improvements. 84 

Here, we evaluate the performance of recent revisions of both the UM and IFS focusing on their ability to capture clouds and 85 

the thermodynamic structure of the BL, highlighting common process relationships between the models which may explain 86 

differences from observations. To achieve this, we compare these models with recent high Arctic observations made during the 87 

Arctic Ocean 2018 (AO2018; Vüllers et al., 2021) expedition, where a suite of remote-sensing instrumentation was active 88 

aboard the Swedish icebreaker Oden measuring summertime cloud and BL properties in the high Arctic. We use Cloudnet 89 

(Illingworth et al., 2007) to compare observations with cloud properties simulated by the models, to test the respective 90 

components in each model simulation with a focus on evaluating the relative contributions of the following on cloud structure: 91 

1. The choice and use of large-scale cloud schemes at high resolution 92 

2. The cloud microphysics scheme chosen to represent resolved clouds 93 

3. Representative CCN concentrations, and thus droplet number concentrations, as a function of altitude 94 

4. The global model analyses used to produce boundary conditions for high resolution nested configurations 95 

By testing these hypotheses with two different atmospheric models, operating on different grid configurations, we assess 96 

whether representative CCN concentrations are indeed the key model development still required to suitably capture Arctic 97 

clouds, or whether other factors are restricting model performance in the high Arctic.  98 
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2 Data and methods 99 

2.1 Arctic Ocean 2018 expedition 100 

During the AO2018 expedition, Oden drifted with an ice floe near the North Pole from 14 August to 14 September 2018 (Fig. 101 

1). Campaign details, instrumentation, and meteorological measurements from the AO2018 expedition are summarised in 102 

Vüllers et al. (2021). Here, we use a subset of the measurements for direct comparison with our model simulations. Key 103 

acronyms, abbreviations, and parameters referenced in this study are listed in Table 1. 104 

Radiosondes (Vaisala RS92) launched at 0000, 0600, 1200, 1800 UTC, provide in situ thermodynamic profiles with a 0.5°C 105 

and 5% manufacturer specified uncertainty associated with temperature and humidity sensors, respectively. The radiosonde 106 

data were distributed via the global telecommunications system and assimilated operationally at the Met Office and ECMWF. 107 

Remote sensing measurements from a Metek MIRA-35 Doppler cloud radar, a Halo Photonics Streamline Doppler lidar, and 108 

an RPG HATPRO microwave radiometer were processed through the Cloudnet algorithm (Illingworth et al., 2007) following 109 

the data preparation steps of Achtert et al. (2020). A Vaisala PWD22 present weather sensor (PWS) measured visibility, 110 

precipitation type, precipitation intensity, and cumulative amount; near surface temperature and relative humidity (RH) were 111 

obtained from an aspirated Rotronic HMP101 sensor. Broadband downwelling solar and infrared radiation were measured on 112 

board the ship by Eppley PSP and PIR radiometers. 3-hourly albedo estimates from surface images were used to calculate 113 

upwelling shortwave radiation (Vuellers et al., 2021).  114 

2.2 Cloudnet 115 

Cloudnet is used to directly compare between our measured and modelled cloud properties (Illingworth et al., 2007). Cloudnet 116 

ingests Doppler cloud radar and lidar, ceilometer, microwave radiometer, and radiosonde data to derive cloud fractions and 117 

cloud water contents on a chosen model grid. A comprehensive description of the algorithm is beyond the scope of this paper 118 

and is provided by Illingworth et al., 2007 (and references therein), but essentially the algorithm first homogenizes 119 

observational data to a common time resolution of 30 s and interpolates data to the radar height grid. Radar reflectivity (𝑍𝑒) and 120 

lidar backscatter (𝛽) profiles are used to determine cloud boundaries. Cloudnet takes advantage of the lidar’s sensitivity to 121 

small particles, such as cloud droplets and aerosol, and the radar’s sensitivity to large particles, such as ice particles, rain, and 122 

drizzle. Cloud phase is determined using 𝑍𝑒 , 𝛽, and thermodynamic information from the radiosondes. Cloud ice water content 123 

(𝐼𝑊𝐶) is derived using 𝑍𝑒  and temperature (Illingworth et al., 2007), while liquid water content (𝐿𝑊𝐶) is derived by 124 

partitioning 𝐿𝑊𝑃 measured by the radiometer to the identified liquid cloud layers from the lidar. Additionally, an 125 

adiabatic 𝐿𝑊𝐶 is calculated from temperature and humidity profiles and the identified cloud top and base height from radar 126 

and lidar measurements.  127 

Cloudnet has already been utilised to study Arctic cloud properties using measurements made aboard Oden both during this 128 

campaign (Vüllers et al., 2021) and during the Arctic Clouds in Summer Experiment in 2014 (Achtert et al., 2020). Potential 129 

errors associated with the Cloudnet procedure are described in Achtert et al. (2020). One particular limitation relevant to this 130 

study is the minimum detection height of 156 m (lowest radar range gate). Low level clouds/fog below this height are hence 131 

missed by Cloudnet (Vüllers et al., 2021) and not included in model comparisons. This limitation also results in problems with 132 
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the 𝐿𝑊𝐶 derived from radiometer measurements; therefore, we use the calculated 𝐿𝑊𝐶 under adiabatic assumption in this 133 

study (for further details see Appendix A)  134 

For comparisons with models, cloud fraction by volume (𝐶𝑉), adiabatic 𝐿𝑊𝐶, and cloud 𝐼𝑊𝐶 from observations are averaged 135 

to a reference model grid; here, we use the UM grid, but we could have equally chosen that of the IFS (Fig. S1). Cloud properties 136 

are calculated using measurement profiles alongside model wind speed and grid-box size, where changes in cloud properties 137 

over time are assumed to be driven primarily by advection and not microphysical changes (Illingworth et al., 2007). This 138 

procedure is applied for 𝐶𝑉, 𝐿𝑊𝐶, and 𝐼𝑊𝐶, with 𝐶𝑉 defined as the fraction of pixels in a 2D slice which are categorised as 139 

liquid, supercooled liquid, or ice (Illingworth et al., 2007).  140 

2.3 Models 141 

A summary of each model simulation is included in Table 2 and detailed in the following sections. 36-hour forecasts were 142 

performed with each model, initialised each day at 1200 UTC with the first 12 hours of spin up discarded, thereby producing 143 

daily forecast products (0000 UTC – 0000 UTC) with hourly diagnostics for analysis. This is common practice for such 144 

forecasts to ensure discrepancies due to spin up are avoided, while maintaining meteorology close to reality; however, as noted 145 

by Tjernström et al. (2021), model error growth is often a function of forecast time and thus the findings of this study may be 146 

related to the time window chosen for each model forecast. 147 

Column diagnostics from the grid cell closest to the position of Oden were extracted from the model domain, updated hourly 148 

to account for the ship’s drifting position. These variables (e.g., temperature, humidity, cloud fraction, condensate variables, 149 

wind versus time) were then used for comparisons with alike variables constructed using Cloudnet (Illingworth et al., 2007) 150 

with measured data (see Sect. 2.1). 151 

2.3.1 Integrated Forecasting System (IFS; ECMWF_IFS) 152 

Cycle 46r1 (Cy46r1) of the IFS (used operationally from Jun 2019 to Jun 2020) was used to create global meteorological 153 

forecasts. The IFS uses a spectral formulation with a wave-number cut off corresponding to a horizontal grid size of 154 

approximately 9 km (Fig. 1b). It has 137 levels in the vertical up to 80 km, the lowest at ≈10 m with 8 levels below ≈200 m 155 

and 20 below 1 km. IFS forecasts were initialised from ECMWF operational analyses. Operational forecasts produced at the 156 

time of the campaign (with Cy45r1) were recently evaluated on a 3-day lead time from a statistical viewpoint for this expedition 157 

(Tjernström et al., 2021); in contrast, lead-time averaged verification was conducted in this study using a 1-1 comparison of 158 

a concatenated timeseries of forecast values (T+13—T+36) with hourly observations. 159 

Cloud properties are parameterised following Forbes and Ahlgrimm (2014). This cloud scheme was implemented in Cy36r4 160 

and has been previously evaluated for Arctic clouds by Sotiropoulou et al. (2016) using Cy40r1. Five independent prognostic 161 

cloud variables are included (grid box fractional cloud cover, and specific water contents for liquid, rain, ice, and snow). 162 

Heterogeneous primary ice formation is diagnosed following Meyers et al. (1992), with a mixed-phase cut-off of –23 °C. 163 

Liquid cloud formation occurs when the average relative humidity within a grid box exceeds a critical threshold, 𝑅𝐻𝑐𝑟𝑖𝑡, 164 

representing sub-grid-scale variability of moisture. This threshold is 80% in the free troposphere, increasing towards the surface 165 
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in the boundary layer (Tiedtke, 1993). Once formed, cloud liquid mass is distributed across a fixed cloud droplet number 166 

concentration, 𝑁𝑑, of 50 cm-3 over the ocean (and 300 cm-3 over land) to act as a threshold for autoconversion from liquid to 167 

rain. For interactions with the radiation scheme, the IFS follows Martin et al. (1994) for estimating droplet number, using the 168 

prognostic specific liquid water content and a prescribed CCN profile. CCN concentrations are calculated as a function of the 169 

near-surface wind speed but decreases with altitude to represent the vertical distribution of aerosol within and above the BL. 170 

Further details regarding the cloud scheme can be found in the ECMWF documentation (IFS Documentation – Chapter 7: 171 

Clouds and large-scale precipitation, https://www.ecmwf.int/node/19308). 172 

The IFS is coupled to a 0.25° resolution dynamic sea-ice model (Louvain-la-Neuve Sea Ice Model, LIM2) which provides sea 173 

ice fractions to the IFS and the surface flux tiling scheme (Buizza et al., 2017; Keeley and Mogensen, 2018). The surface 174 

energy balance over the sea ice fraction is, however, calculated separately from LIM2 using an albedo parameterisation 175 

following Ebert and Curry (1993) with fixed monthly climatology values interpolated to the actual time, and a heat flux 176 

through the ice calculated using a constant sea-ice thickness of 1.5 m. 177 

2.3.2 Unified Model (UM) 178 

The UM was operated as a high-resolution LAM with a 1.5 km × 1.5 km grid (grid is shown in Fig. 1). A rotated pole 179 

configuration provided approximately equal spacing between grid points towards 90 °N. The LAM contained 500 × 500 grid 180 

boxes, spanning from 83.25 °N to 90 °N centred on the 30 °E meridian. In the vertical, there were 70 vertical levels up to 40 181 

km, with 24 levels within the lowest 2 km of the domain (Grosvenor et al., 2017). Lateral boundary conditions were generated 182 

hourly from UM global model 36-hour forecasts at N768 resolution (corresponding to approximately 17 km at 90 °N with the 183 

rotated pole) using the Global Atmosphere 6.1 configuration (Walters et al., 2017; Table 2). Three configurations of the UM 184 

LAM were tested for the main body of this study, each using different combinations of cloud microphysics and large-scale 185 

cloud schemes. Details on the pertinent microphysical processes represented in each simulation are listed in Table 3. 186 

2.3.2.1 Regional Atmosphere model configurations (UM_RA2M and UM_RA2T) 187 

Version 2 of the Regional Atmosphere model within the UM framework has two standard configurations: the mid-latitude 188 

configuration (UM_RA2M) and the tropical configuration (UM_RA2T). Both are used operationally in their respective 189 

geographical regions. The key difference between these configurations can be found in their turbulent mixing processes: 190 

UM_RA2M employs weak turbulent mixing to encourage heterogeneity in model fields to facilitate the triggering of small 191 

convective showers; however, while this weak mixing works well to reproduce conditions often experienced in the mid-192 

latitudes, it triggers convection too early in the tropics. Therefore, these two standard Regional Atmosphere configurations 193 

were designed separately to account for these subtle differences in convection initiation on km-scales (Bush et al., 2020).  194 

Neither configuration has been previously evaluated for use in the Arctic. Note that both UM_RA2M and UM_RA2T use the 195 

default Regional Atmosphere surface albedo thresholds, giving a 50% albedo at an ice surface temperature of 0 °C and 196 

increasing to 80% at –10 °C. Gilbert et al. (2020) tested both configurations for polar cloud modelling over the Antarctic 197 

Peninsula, finding that the mid-latitude scheme performs better than the tropical configuration for capturing polar cloud liquid 198 
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water properties and associated radiative interactions (with the surface albedo modelled to within 2% of observed values), 199 

whereas the tropical scheme enabled a too-efficient ice phase (and associated liquid depletion).  200 

Both UM_RA2M and UM_RA2T include the Wilson and Ballard (1999) description of large-scale precipitation to simulate 201 

resolved cloud microphysics. This microphysics scheme describes prognostic liquid and ice mixing ratios (𝑞𝑙𝑖𝑞  and 𝑞𝑖𝑐𝑒 , 202 

respectively), with an assumed fixed 𝑁𝑑 profile calculated from an aerosol climatology and tapered to 50 cm-3 towards the 203 

surface (between 150 m and 50 m). A single ice species (encapsulating pristine crystals, aggregates, and snow particles) is 204 

represented, with an assumed particle size distribution based on Field et al. (2007). 205 

UM_RA2M uses the Smith (1990) large-scale cloud scheme to parameterise sub-grid-scale fluctuations in humidity and cloud, 206 

designed to ensure coarse grid GCMs do not have entirely cloudy grid boxes. It diagnoses cloud fraction and condensate 207 

variables for input to the microphysics scheme, referencing a prescribed 𝑅𝐻𝑐𝑟𝑖𝑡  profile (based on a symmetric triangular 208 

probability density function of sub-grid-scale variability in temperature and moisture) to permit condensation below 100 % 209 

humidity (Wilson et al., 2008). Condensation cannot occur within a grid box until the grid box mean 𝑅𝐻 exceeds a prescribed 210 

altitude-dependent 𝑅𝐻𝑐𝑟𝑖𝑡 (described in Table 3). 211 

In UM_RA2T, the prognostic cloud fraction and prognostic condensate (PC2; Wilson et al., 2008) large-scale cloud scheme 212 

is used, designed to address the over-sensitive diagnostic links between cloud fraction and cloud condensate in Smith (1990). 213 

Total, liquid, and ice cloud fractions are included as prognostic variables in PC2, allowing cloud fractions and condensate to 214 

vary through other interactions (such as BL processes and cloud microphysics) and not simply diagnosed from temperature and 215 

humidity as in Smith (1990) (Wilson et al., 2008). PC2 prognostic variables are advected by the wind and continually updated 216 

following incremented sources and sinks in the model, with the additional inclusion of sub-grid-scale turbulent production of 217 

liquid in mixed-phase cloud from an analytical model of sub-grid-scale moisture variability (Furtado et al., 2016). Differences 218 

between the methods of representing cloud fraction in the PC2 and Smith schemes are detailed in the Supporting Information. 219 

2.3.2.2 Regional Atmosphere with Cloud-Aerosol Interactive Microphysics scheme (UM_CASIM-100) 220 

UM_CASIM-100 uses the CASIM scheme (detailed by Hill et al., 2015) coupled with the Smith (1990) large-scale cloud 221 

scheme (as in Grosvenor et al., 2017). Stevens et al. (2017) previously tested the CASIM scheme within the UM nesting suite 222 

in an Arctic cloud case study, showing that it performed well in capturing cloud dissipation; however, the authors did not 223 

include sub-grid-scale contributions from Smith (1990) in that study. 224 

CASIM utilises prescribed lognormal aerosol distributions to provide a double-moment representation of cloud particle 225 

processes and is the only double-moment setup included in this study. Particle size distributions of five hydrometeors (liquid 226 

droplets, ice, snow, graupel, and rain) are each described by a gamma distribution, with prognostic mass mixing ratios and 227 

number concentrations. Ice number concentrations are diagnosed via a temperature-number concentration parameterisation 228 

(Cooper, 1986), but require liquid to be present before ice can form; a relationship thought to be important in Arctic mixed-229 

phase clouds (e.g., de Boer et al., 2011; Young et al., 2017). Droplet activation follows Abdul-Razzak and Ghan (2000), 230 

referencing a fixed soluble accumulation mode aerosol number concentration profile of 100 cm-3. This profile was 231 
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approximated based on aerosol concentration profiles previously measured during summertime in the central Arctic 232 

(Kupiszewski et al., 2013).  233 

CASIM offers user flexibility regarding aerosol processing, as described by Miltenberger et al., (2018). Here we do not impose 234 

wet-scavenging processes, likely important for capturing cloud-free conditions, for consistency with the simpler single-moment 235 

liquid microphysics schemes used in the other simulations; however, use of this option will be explored in future work. 236 

For our CASIM simulation, we adapt the warm ice temperature albedo of the LAM to 72% (at 0 °C), with 80% albedo achieved 237 

at –2 °C, to match the parameterisation limits currently used in the Joint UK Land Environment Simulator surface scheme of 238 

the Global Atmosphere 6.0 global model (under the assumption that snow is present on the sea ice surface). For the drift period, 239 

we know that snow was indeed present on the surface from first-hand knowledge and surface imagery; therefore, we use this 240 

simulation to test the effect of such an increased albedo at warmer surface ice temperatures on the modelled surface energy 241 

balance. An example simulation utilising the CASIM scheme with the default Regional Atmosphere albedo settings used in 242 

UM_RA2M and UM_RA2T, to demonstrate the radiative impact of CASIM alone, is described in the Supporting Information 243 

(Sect. S2). 244 

2.4 Comparison methodology and compared parameters 245 

𝐶𝑉, 𝑞𝑙𝑖𝑞 , and 𝑞𝑖𝑐𝑒  from each model simulation were ingested by Cloudnet to calculate 𝐿𝑊𝐶 and 𝐼𝑊𝐶. Within these calculations, 246 

Cloudnet filters model data for values outside the range observable by the instrumentation used; for example, 𝑞𝑖𝑐𝑒  data are 247 

filtered for values which would be beyond the observable range of the radar.  248 

We use an additional metric alongside 𝐶𝑉 based on total condensate for comparisons between our measured and modelled 249 

clouds; a total water content (𝑇𝑊𝐶) mask where the grid-box is considered cloudy; this mask is set to 1, when 𝑇𝑊𝐶 ≥ 1 × 10-250 

6 kg m-3 below 1 km, and 𝑇𝑊𝐶 ≥ 1 × 10-7 kg m-3 above 4 km, with vertical interpolation in between (following Tjernström et 251 

al., 2021; Fig. S3). While this mask will not capture fractional cloud at cloud boundaries, averages of this mask are directly 252 

comparable between the observations and models. It acts as a comparison metric based solely on cloud water contents, which 253 

are prognostic in every simulation, and does not depend on a specific definition of e.g., cloud fraction. 254 

In addition to a full overview of model performance over the drift, we further split our data into sub periods to aid our 255 

interpretation of the comparisons between the measurements and models. The sea ice melt/freeze transition was captured by 256 

the measurements; Vüllers et al. (2021) identified the sea ice freeze onset date as 28 Aug and defined sub-periods throughout 257 

the drift based on consistent meteorology (see Fig. 2g). We concentrate on the sea ice melt and freeze periods separately and 258 

on shorter episodes within these periods; one during the sea ice melt (14—18 Aug) and one during the freeze (4—8 Sept). 259 

3 Results 260 

3.1 Surface radiation 261 

Figure 2 shows measured and modelled time series of net surface shortwave (𝑆𝑊𝑛𝑒𝑡) radiation, 𝐿𝑊𝑛𝑒𝑡 , and the combined 262 

surface net radiation (𝑅𝑛𝑒𝑡) during the AO2018 drift period. All radiative quantities are defined as positive downwards.  263 
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All models overestimate 𝑆𝑊𝑛𝑒𝑡 (Fig. 2a) with respect to measurements, with ECMWF_IFS and UM_CASIM-100 in better 264 

agreement with observations than UM_RA2M and UM_RA2T. From Fig 2d, all simulations fail to capture strong longwave 265 

net emission likely related to cloud-free episodes (e.g., 20—21 Aug) and sporadically predict such cloud-free conditions (and 266 

net longwave emission) when clouds were observed (e.g., 2 Sep).  267 

Considering the melt and freeze periods separately, the measured 𝑅𝑛𝑒𝑡 is often negative after 28 Aug (Fig. 2g) driven by 𝐿𝑊𝑛𝑒𝑡 , 268 

while 𝑆𝑊𝑛𝑒𝑡 decreases with the declining solar elevation angle (Fig. 2a). In contrast, the models’ net radiation is not typically 269 

negative until after 8—9 Sep, excluding a short negative period at 2 Sep driven by the lack of modelled cloud (as suggested by 270 

strong net longwave emission; Fig. 2d). This delay would likely affect the freeze onset if the models were fully coupled to a 271 

sea ice model; as such, this feedback may be active within the (simple) coupled atmosphere-sea ice system of the IFS. 272 

Probability Density Functions (PDFs) of these data, split between melt and freeze periods (Fig. 2b—c, e—f, h—i), reveal some 273 

clear distinctions in model capability. 𝑆𝑊𝑛𝑒𝑡 PDFs vary substantially between the models during the melt period (Fig. 2b); no 274 

simulation captures the observation distribution well. Observed 𝑆𝑊𝑛𝑒𝑡 from the ship has a median of +18.2 W m-2, with each 275 

simulation producing medians at greater values (UM_CASIM-100 = +18.7 W m-2; ECMWF_IFS = +21.6 W m-2; UM_RA2M 276 

= +40.5 W m-2; and UM_RA2T = +41.9 W m-2). While the medians for UM_CASIM-100 and ECMWF_IFS are in good 277 

agreement with observations, both exhibit a too-narrow distribution. These too-narrow distributions – which also all lack a very 278 

high positive tail – suggest that the modelled cloud cover is too consistent, likely related to the lack of cloud-free episodes 279 

indicated by the 𝐿𝑊𝑛𝑒𝑡  data (Fig. 2d). Median 𝑆𝑊𝑛𝑒𝑡 of both the UM_RA2T and UM_RA2M PDFs is much too high, with 280 

non-negligible occurrences > +50 W m-2. The improvement of UM_CASIM-100 over UM_RA2T and UM_RA2M indicates 281 

that both the surface albedo used by default in the Regional Atmosphere configurations is too low and the updated cloud physics 282 

description of CASIM improves the modelled cloud-radiation interactions. A trial simulation utilising the cloud physics setup 283 

of UM_CASIM-100 alongside the default Regional Atmosphere surface albedo parameterisation inputs (as used in UM_RA2M 284 

and UM_RA2T) shows that the double-moment cloud physics representation alone does improve radiative properties with 285 

comparison to the standard configurations (see Supporting Information); however, the combination of improved cloud-286 

radiation interactions and an updated surface albedo (as shown here in UM_CASIM-100) provides the best agreement between 287 

the UM and our observations. 288 

During the freeze period, measurement estimates of 𝑆𝑊𝑛𝑒𝑡 peak at +7.9 W m-2, while ECMWF_IFS, UM_CASIM-100, 289 

UM_RA2M, and UM_RA2T have maxima at +10.0, +10.4, +25.0, and +26.6 W m-2 respectively (Fig. 2c). The peak modelled 290 

𝑆𝑊𝑛𝑒𝑡 remains too high in all simulations but, in contrast to the melt period, all PDFs are now too broad. ECMWF_IFS and 291 

UM_CASIM-100 perform best with comparison to observations (both with a positive bias of less than +3 W m-2 at their peaks). 292 

However, both UM_RA2M and UM_RA2T have a broad bimodal structure, with the secondary peak in better agreement with 293 

the observations than their maxima. Both UM_RA2T and UM_RA2M are largely in better agreement with observations during 294 

the freeze period than during the melt; this improved agreement is likely due to either a better representation of incoming 295 

shortwave radiation or the surface albedo; the surface temperatures decreases through the transition to sea ice freezing 296 

conditions, and Fig. S4 indeed shows that the albedo modelled during the freeze for UM_RA2M and UM_RA2T is in better 297 

agreement with observational estimates than that modelled during the melt period.  298 
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During the melt period, 𝐿𝑊𝑛𝑒𝑡  aligns well between the measurements and models; however, all simulations produce a narrower 299 

PDF than the observations and largely miss the tail < —20 W m-2 (Fig. 2e) resulting from observed cloud-free episodes at 15—300 

16 Aug, 20 Aug, 22 Aug, and 26 Aug (Fig. 2d). Despite this, each simulation performs well in replicating the median of the 301 

PDF, with a maximum model-observation difference of —1.9 W m-2 (UM_RA2T). As with 𝑆𝑊𝑛𝑒𝑡, model-observation 302 

agreement generally improves during the freeze period, with UM_RA2M, UM_RA2T, and ECMWF_IFS producing PDFs 303 

closely matching the observations, with median values at —9.4, —11.5, and —6.8 W m-2 respectively compared with an 304 

observation peak of —6.5 W m-2 from the ship estimates. Each of these cases also reproduces the negative distribution tail 305 

missed by all simulations during the melt (Fig. 2f). UM_CASIM-100 displays a narrower distribution with fewer negative 306 

values, yet still performs equally well in reproducing the median of the 𝐿𝑊𝑛𝑒𝑡  PDF (with a bias of —5.5 W m-2). With the 307 

exception of the too-narrow UM_CASIM-100 PDF, this improved agreement in 𝐿𝑊𝑛𝑒𝑡  indicates that cloud cover is indeed 308 

captured better by the models during the freeze, and remaining discrepancies in the 𝑆𝑊𝑛𝑒𝑡 comparisons may indeed be related 309 

more so to cloud microphysical structure or surface properties. 310 

To investigate this relationship in more detail, we split our radiation data into the periods of consistent meteorology indicated 311 

on Fig. 2g. In agreement with Fig. 2, model 𝑆𝑊𝑛𝑒𝑡 and downwelling shortwave radiation (𝑆𝑊↓) biases are at their greatest 312 

during period 3 (Table 4). All simulations similarly exhibit their greatest 𝐿𝑊𝑛𝑒𝑡  biases during period 3 (Table 4); less cloud 313 

cover was observed during this period with relation to other periods during the drift (Vüllers et al., 2021). Both UM_RA2T 314 

and UM_RA2M perform best in terms of 𝑆𝑊↓ during period 3; however, both perform particularly poorly in 𝑆𝑊𝑛𝑒𝑡 , indicating 315 

that their surface albedo is not representative of observations. During period 4, UM_CASIM-100 performs very well in terms 316 

of these 𝑆𝑊↓ biases, suggesting the modelled cloud structure was in good agreement with observations. However, ECMWF_IFS 317 

exhibits the smallest 𝑆𝑊↓ biases of the four simulations during periods 5 and 6; periods when the sea ice was beginning to 318 

freeze.  319 

Each of these simulations highlight that small 𝑆𝑊↓ biases do not necessarily produce similarly small 𝑆𝑊𝑛𝑒𝑡 biases, as both the 320 

modelled cloud properties and surface albedo need to be representative to remedy the 𝑆𝑊𝑛𝑒𝑡 discrepancies. In UM_RA2T and 321 

UM_RA2M, the surface albedo is poorly captured, as indicated by the consistently high 𝑆𝑊𝑛𝑒𝑡 biases; however, ECMWF_IFS 322 

and UM_CASIM-100 perform better in terms of surface albedo, with UM_CASIM-100 performing the best with the smallest 323 

𝑆𝑊𝑛𝑒𝑡 biases across the four sub-periods considered. Further discussion of the surface albedo comparison is included in the 324 

Supporting Information. 325 

𝐿𝑊𝑛𝑒𝑡  biases do not exceed +5.5 W m-2 over periods 4—6; however, biases are greater (up to +16.3 W m-2 during period 3; 326 

Table 4) due to the models’ inability to reproduce cloud-free conditions. This relationship with cloud cover influences the 327 

surface downwelling longwave (𝐿𝑊↓) biases: with the exception of the standard UM configurations during period 5, all LW↓ 328 

biases are positive (Table 4).  329 

Combining these radiative components, we find that 𝑅𝑛𝑒𝑡 is overestimated by all simulations during the melt (with 330 

UM_CASIM-100 and ECMWF_IFS performing better than UM_RA2M and UM_RA2T; Fig. 2h), largely driven by too much 331 

surface 𝑆𝑊𝑛𝑒𝑡 when cloud is present in reality, thus indicating that the model surface albedo is too low and thus does not reflect 332 

enough 𝑆𝑊↓. On the other hand, there are also non-negligible occurrences of too much modelled cloud when the conditions 333 
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should be cloud-free, driving strong 𝐿𝑊𝑛𝑒𝑡  biases at these times. While agreement with observations largely improves during 334 

the freeze period, these discrepancies still exist in the 𝑆𝑊𝑛𝑒𝑡 data. While the 𝑆𝑊𝑛𝑒𝑡 biases may be strongly influenced by errors 335 

in the surface albedo, and thus beyond the scope of this study, the role of cloud structure in 𝑆𝑊↓ biases and the 𝐿𝑊𝑛𝑒𝑡  emission 336 

episodes missed by each simulation are driven by the description of cloud: in the following sections, we investigate the cloud 337 

macro- and microphysical structure and surface properties to explain these radiative differences. 338 

3.2 Cloud properties 339 

To evaluate model performance, we use two metrics for cloud occurrence: the model diagnosed cloud fraction, 𝐶𝑉, and the 340 

cloud occurrence inferred from cloud water contents, the 𝑇𝑊𝐶 cloud mask. Figure 3 shows 𝑇𝑊𝐶 and cloud fraction, 𝐶𝑉, 341 

calculated from observations using Cloudnet and output by models. 𝑇𝑊𝐶 comparisons indicate that each simulation captures 342 

the observed cloud aloft, except for UM_CASIM-100 between 4 and 10 Sep. Below 3 km, observed 𝑇𝑊𝐶 is generally lower 343 

in magnitude than the model simulations. 344 

In contrast, all simulations except UM_RA2T fail to reproduce the observed 𝐶𝑉 aloft. Low-altitude (below 2 km) cloud cover 345 

appears to be captured comparatively better across all simulations. Cloud height simulated by ECMWF_IFS is in reasonable 346 

agreement with the observations; however, there are notable periods where the persistence of clouds aloft is not reproduced. 347 

For example, the altitude and timing of onset of the (likely precipitating) high clouds at 3—4 Sep is initially captured, but the 348 

clouds are not sustained. Cloud layers aloft appear more tenuous also in UM_RA2M and UM_CASIM-100 than in the 349 

observations: there are few cases of cloud fractions > 0.5 at altitudes above 3 km.  350 

Figure 4a shows mean profiles of 𝐶𝑉 over the drift period. Only periods where we have measurement data are included in these 351 

profiles for fair comparison. Note that cloud fraction below 0.15 km is not evaluated against observations here due to low-352 

altitude measurement limit of the cloud radar. Supporting qualitative interpretation of Fig. 3, model-observation agreement of 353 

𝐶𝑉 is best at low altitude (below 1 km); however, all simulations produce too much very low (between 0.15 and 0.5 km) cloud. 354 

Modelled near-surface 𝐶𝑉 (between 0.15 and 0.5 km) is up to 16% too high (UM_RA2T). However, we can speculate that the 355 

frequent fog episodes reported during the ice drift (Vüllers et al., 2021) may be somewhat captured by the models, as indicated 356 

by mean values of 𝐶𝑉 below 0.15 km of 82%, 72%, 53%, and 39% respectively for UM_RA2T, UM_RA2M, UM_CASIM-357 

100, and ECMWF_IFS. All simulations except UM_RA2T perform poorly aloft: ECMWF_IFS, UM_RA2M, and 358 

UM_CASIM-100 strongly underestimate 𝐶𝑉 between 1 km and 8 km, with UM_CASIM-100 and UM_RA2M reproducing less 359 

than 20% of the observed 𝐶𝑉 at 4.5 km. Only the UM_RA2T 𝐶𝑉 profile agrees well at altitude, with particularly good agreement 360 

between 0.5 and 2 km. In fact, 𝐶𝑉 between 2 km and 5.5 km agrees best with observations out of the four simulations considered.  361 

Figure 3 highlights that the observations, UM_RA2T, and (to an extent) ECMWF_IFS have a 𝐶𝑉 field scaling largely as either 362 

0 or 1, whereas UM_RA2M and UM_CASIM-100 are more likely to have a fractional cloud cover aloft, thus producing a poor 363 

comparison with our observations (Fig. 4a). Despite this, qualitative model-observation comparisons of 𝑇𝑊𝐶 indicate that the 364 

models are performing well. Further discussion of these differences is included in the Supporting Information. In summary, 365 

the Cloudnet calculation of 𝐶𝑉 from observations is not directly equivalent to our model cloud fractions and such comparisons, 366 

in isolation, should be approached with caution in the Arctic. To bypass this issue, we also use a cloud mask built from 𝑇𝑊𝐶 367 
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data to aid interpretation of our results. The observed 𝑇𝑊𝐶 cloud mask (Fig. 4b) differs from the mean 𝐶𝑉 profile, with a subtle 368 

bimodal structure peaking at approximately 0.5 and 4.5 km (with a minimum around 2 km).  369 

All simulations overestimate cloud occurrence below 2.5 km (Fig. 4b), in contrast to the underestimation between 1 and 2.5 370 

km shown in the 𝐶𝑉 data (Fig. 4a). Mean observed cloud occurrence only reaches 75% between 0.15 km (lowest radar range 371 

gate) and 0.5 km, while UM_RA2M and UM_CASIM-100 have more than 98% cloud occurrence at 0.2 km. UM_RA2T 372 

performs slightly better, peaking to only 92% at 0.2 km; however, the improvement is not as significant between UM_RA2T 373 

and UM_RA2M/UM_CASIM-100 as is suggested by the mean 𝐶𝑉 profiles (Fig. 4a). ECMWF_IFS peaks at a slightly higher 374 

altitude, overestimating cloud occurrence by 33% at approximately 0.5 km (Fig. 4b).  375 

Above 2 km, ECMWF_IFS, UM_RA2M, and UM_RA2T perform similarly; the greatest difference aloft occurs at 4.5 km, 376 

where there is a minor peak in the mean observed cloud occurrence (up to 41%; Fig. 4b). ECMWF_IFS produces only 28% 377 

cloud cover at this altitude. UM_CASIM-100 cloud occurrence monotonically decreases with altitude above 3.5 km, producing 378 

only 20% cloud cover at 4.5 km, in agreement with the qualitative findings of Fig. 3. Therefore, with the exception of 379 

UM_CASIM-100, the 𝑇𝑊𝐶 cloud masks indicate that modelled cloud occurrence aloft is, in fact, in reasonable agreement with 380 

observations, in contrast to the trends indicated by the 𝐶𝑉 data (Fig. 4a). These data suggest that the 𝐶𝑉 comparisons may be 381 

misleading if used in isolation, likely due to the different methods for representing cloud fractions and associated sub-grid-382 

scale variability in models (see Supporting Information).  383 

Averaged in-cloud water content profiles are shown in Fig. 4c—d. Adiabatic 𝐿𝑊𝐶 calculated from observations with Cloudnet 384 

is shown in Fig. 4c. This adiabatic assumption was used in place of the HATPRO 𝐿𝑊𝑃 due to the data quality issues introduced 385 

to the latter because of the frequent occurrence of fog at altitudes below the lowest radar range gate (0.15 km; discussed further 386 

in Appendix A). 387 

The adiabatic 𝐿𝑊𝐶 peaks between 0.5 and 1 km then decreases steadily with altitude between 1 and 3 km. All simulations 388 

overestimate in-cloud 𝐿𝑊𝐶 between 1 and 3 km; however, below 1 km, each simulation (except UM_RA2T) performs 389 

reasonably well. At 0.5 km, UM_RA2T underestimates by 47 %, while UM_CASIM-100 overestimates by just 10 % and 390 

UM_RA2M and ECMWF_IFS are in reasonable agreement with observations. UM_RA2T and UM_RA2M have bimodal 391 

distributions, with peaks below 0.5 km and around 2 km, perhaps linked to their common use of the Wilson and Ballard (1999) 392 

microphysics scheme. The increase in 𝐿𝑊𝐶 towards the surface in UM_RA2M is suggestive of fog, and UM_RA2M is the 393 

only simulation to display this vertical structure. The mean 𝐿𝑊𝐶 calculated for ECMWF_IFS is consistent with altitude 394 

between 0.5 and 2 km; however, there is more variability at 2 km than at lower altitudes, indicating that this may be a more 395 

dominant liquid cloud layer at some time periods. Only UM_CASIM-100 displays a similar shape to the observations, yet its 396 

𝐿𝑊𝐶 is often greater than the observed 𝐿𝑊𝐶 at all altitudes above 1 km. 397 

All simulations agree with the Cloudnet-calculated 𝐼𝑊𝐶 above 4 km (Fig. 4d); in fact, UM_RA2M performs particularly well 398 

across the entire vertical profile. ECMWF_IFS and UM_CASIM-100 also agree well for most of the profile apart from slight 399 

overestimations below 1.5 km (though still within one standard deviation of the observed mean). UM_RA2T overestimates 400 

below 4 km, producing almost seven times the observed 𝐼𝑊𝐶 (0.019 g m-3 versus 0.003 g m-3) at 0.5 km. Shaded standard 401 

deviations also indicate that UM_RA2T is also more variable than both the three other simulations and the measurements, 402 
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consistent with previous studies showing its ice phase is more active than UM_RA2M in polar mixed-phase clouds (Gilbert 403 

et al., 2020). 404 

Column-integrated metrics and surface measurements provide an additional perspective for evaluating model performance with 405 

regards to clouds. Measured 𝐿𝑊𝑃 and precipitation fluxes are shown alongside corresponding model diagnostics in Fig. 5. 406 

Cloudnet-filtered 𝐿𝑊𝑃 is included in Fig. 5a,b for comparison; these data are HATPRO measurements filtered by Cloudnet 407 

for bad points (e.g., strong precipitation events). ECMWF_IFS, UM_RA2M, and UM_CASIM-100 produce 𝐿𝑊𝑃𝑠 in 408 

reasonable agreement with measurements throughout the full drift period, with the PDFs of Fig. 5b indicating that these 𝐿𝑊𝑃𝑠 409 

are overestimated slightly with respect to the measurements/Cloudnet data. UM_RA2M overestimates in some periods, for 410 

example the 𝐿𝑊𝑃 peak during the storm of 12 Sep is 230 g m-2 more than measured (Fig. 5a). In contrast, UM_RA2T 411 

underestimates the 𝐿𝑊𝑃 overall, with few occurrences of > 200 g m-3 (Fig. 5b). This underestimation of 𝐿𝑊𝐶 (Fig. 4c) and 412 

𝐿𝑊𝑃 (Fig. 5a, b) by UM_RA2T aligns with its overestimation of 𝐼𝑊𝐶 below 4 km; with too much ice in mixed-phase cloud, 413 

liquid is depleted too efficiently via the Wegener-Bergeron-Findeisen mechanism.  414 

Each simulation broadly captures the notable precipitation events measured (Fig. 5c—d). UM_CASIM-100 and UM_RA2T 415 

reproduce the measured total precipitation flux well and capture the short episodes of increased precipitation at 22 Aug, 3 Sep, 416 

and 12 Sep. ECMWF_IFS and UM_RA2M also capture some precipitation events; however, the magnitude of these events is 417 

best reproduced by UM_CASIM-100. No simulation reproduces the precipitation intensity measured at 8 Sep. While the key 418 

precipitation events are largely captured by the models, with each model producing precipitation as predominantly snow rather 419 

than rain, the precipitation rates simulated are low and likely contribute to the lack of cloud-free periods as indicated by the 420 

𝐿𝑊𝑛𝑒𝑡  comparisons shown previously (Fig. 2d, e, f). 421 

These results therefore indicate that the modelled microphysical structure is positively biased in terms of cloud liquid with 422 

respect to observations (Figs. 4c, d—5). There is a consistent model-observation bias, with all simulations producing too much 423 

cloud (Fig. 4a, b) below 2.5 km. In ECMWF_IFS, UM_RA2M, and UM_CASIM-100, this cloud contains too much liquid (as 424 

indicated by positive biases in 𝐿𝑊𝐶 and 𝐿𝑊𝑃). Only UM_RA2T underestimates the cloud liquid properties due to its active 425 

ice phase. Figure 6 links the radiation, 𝐿𝑊𝑃, and 𝐶𝑉 biases of our four model simulations with respect to observations. 𝐶𝑉 426 

biases are calculated as the model-observation bias below 3 km, where model data below the height of the lowest radar range 427 

gate (0.15 km) are excluded from the bias calculation. Here, 𝐶𝑉 is used in place of the 𝑇𝑊𝐶 cloud mask as the latter is calculated 428 

from in-cloud 𝐿𝑊𝐶 and is therefore not strictly independent of 𝐿𝑊𝑃. These linear regressions demonstrate that the positive 429 

downwelling radiative biases are indeed tied to too much cloud cover within the models, and too much liquid within the 430 

modelled clouds. The correlations are weaker for 𝑅𝑛𝑒𝑡, likely due to the additional influence of other factors (e.g., surface 431 

albedo) on the net radiative properties. 432 

3.2.1 Influence of CCN concentration 433 

Each simulation overestimates cloud occurrence below 2.5 km and struggles to maintain cloud-free conditions, problems 434 

previously identified for earlier versions of these models. Both Sotiropoulou et al. (2016) and Birch et al. (2012) commented 435 

on the need for variable, representative cloud nuclei concentrations in the IFS and the UM to enable cloud-free periods to be 436 

captured. A fixed accumulation-mode aerosol number and mass concentration profile was used in UM_CASIM-100; however, 437 
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such consistency with altitude is unlikely to occur in reality. While the concentration chosen was based on previous 438 

measurements in the Arctic (Kupiszewski et al., 2013), aerosol number concentrations are typically very low and 439 

heterogeneous within the BL during the Arctic summer (Mauritsen et al., 2011; Tjernström et al., 2014) yet long-range 440 

transport provides comparatively greater, more homogeneous concentrations aloft. 441 

An additional simulation with the CASIM scheme was tested, using a more representative CCN vertical profile guided by 442 

output from the UK Chemistry and Aerosol (UKCA; Morgenstern et al., 2009; O’Connor et al., 2014) global model. Details 443 

on the UKCA model configuration used to obtain these aerosol data are included in the Supporting Information. Using 444 

representative aerosol profiles as input to the CASIM scheme (with lower CCN concentrations within the lower troposphere 445 

and greater concentrations within the free troposphere; denoted UM_CASIM-AeroProf) can affect the 𝑆𝑊↓ as expected via the 446 

associated influence on 𝑁𝑑 and 𝑞𝑙𝑖𝑞  (Fig. 7). Low altitude (below 1 km) clouds have a significantly lower 𝑁𝑑 , < 25 cm-3, in 447 

UM_CASIM-AeroProf than in UM_CASIM-100. This low 𝑁𝑑 is expected from periodic episodes of low CCN in the Arctic 448 

BL (Mauritsen et al., 2011); cloud residual concentrations of up to 10 cm-3 were measured on board Oden during the AO2018 449 

expedition (Baccarnini et al., 2021). However, despite the differences in 𝑁𝑑 between these two CASIM simulations, 𝑞𝑙𝑖𝑞  does 450 

not differ much as the simulated clouds are not heavily precipitating (and thus cloud lifetime is largely unaffected).). This 451 

similarity is also displayed in the diagnosed cloud fractions, related to the comparatively unaffected 𝑞𝑙𝑖𝑞 . Despite the 452 

consistency in cloud fractions and 𝑞𝑙𝑖𝑞 , the cloud albedo is subtly lowered (as fewer CCN are available) in UM_CASIM-453 

AeroProf, as shown by the 𝑆𝑊↓ comparisons in Fig. 7a—b. 454 

3.3 Thermodynamic structure 455 

Differences between modelled and observed cloud properties are likely related to the thermodynamic structure of the 456 

atmosphere and how well this is modelled. Figure 8 shows temperature (𝑇) and water vapour specific humidity (𝑞) from 457 

radiosondes and anomalies of each simulation with respect to these measurements. The altitude of the main inversion base 458 

identified from the radiosondes is shown in black.  459 

Each simulation is typically too cold with respect to observations at altitudes just above the main inversion (left column; Fig. 460 

8): this anomaly is a consistent feature throughout the drift period and across models, however it is most prominent at the 461 

beginning of the drift. These trends indicate that the altitude of the modelled temperature inversion capping the BL is too high, 462 

likely driven by too much BL mixing and the associated too-deep cloud layers modelled in each simulation (Fig. 4b). Below 463 

the observed inversion, the simulations are typically warmer than measured; for example, at 18 Aug all UM simulations have 464 

a particularly strong bias (> 3 K) below the observed main inversion, with ECMWF_IFS exhibiting a similar, but smaller, bias. 465 

Above approximately 3 km the 𝑇 biases are typically smaller in magnitude and variable in sign. All UM simulations display 466 

similar differences with respect to the radiosonde measurements; for example, each UM simulation exhibits a strong 𝑇 bias up 467 

to 4.4 K at 6.5 km during 9 Sep.  468 

𝑞 biases are typically small throughout much of the atmospheric column (right column; Fig. 8), with some instances of larger 469 

biases. These stronger biases are not confined to the lowest 3 km as with the temperature data. Radiosonde humidity data up to 470 

22 Aug are variable aloft, and this noise affects the biases calculated over this period. However, a strong moisture bias of > 471 
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0.90 g m-3 is evident between 2 km and 4 km over 20—22 Aug in all UM simulations. Similarly, the dry bias (of up to 1.86 g 472 

m-3) across the UM simulations from 2—4 Sep is notable and is also present, to a lesser extent, in ECMWF_IFS (up to 0.82 g 473 

m-3).  474 

When these data are simplified into median profiles (Fig. 9), the characteristic biases exhibited by the models become clearer. 475 

Figure 9(a, c) shows that the 𝑇 biases are small above 4 km, with all UM simulations exhibiting a slight warm bias and 476 

ECMWF_IFS exhibiting a slight cold bias. Similarly, moisture biases are negligible above 4 km in all simulations (Fig. 9b, d). 477 

However, below 4 km strong biases emerge.  478 

From the surface up to 0.5 km, there is a decreasing positive 𝑇 bias in all simulations. However, the positive surface 𝑇 bias is 479 

reduced during the freeze period for UM_RA2M and UM_RA2T (from +0.28/+0.31 K to +0.20/+0.14 K, respectively) while 480 

it intensifies from +0.52 K (+0.46 K) to +0.90 K (+0.56 K) for ECMWF_IFS (UM_CASIM-100) (Fig. 9c).  481 

During the melt period, all simulations underestimate the temperature between 1 and 3 km, yet there is a clear bimodal structure 482 

evident in each profile with secondary negative peaks at lower altitudes (Fig. 9a). ECMWF_IFS remains too cold across a 483 

deeper layer than the UM simulations, between 0.4 and 3 km. Both the IFS and the UM exhibit strong (up to –1.54 K) biases 484 

at 1.75 km. The negative 𝑇 bias layers at lower altitudes differ in height between the models, with ECMWF_IFS reaching –485 

0.94 K at 0.85 km while the UM simulations exhibit negligible positive biases at this height. The secondary peak in the UM 486 

simulations is in fact lower in altitude, at 0.4—0.5 km. 𝑇 biases are smaller than during the melt period, reaching up to –1.06 487 

K (ECMWF_IFS) between 0.65 km and 1 km, and the negative bias peak at 2 km seen previously is no longer present (Fig. 488 

9c). 489 

Similarly, each simulation exhibits a positive 𝑞 bias towards the surface. These biases change little between the melt and freeze 490 

periods (Fig. 9b, d); ECMWF_IFS produces the greatest bias in both periods (+0.31 g m-3 during both the melt and freeze), 491 

while UM_RA2T produce the lowest (+0.24 g m-3 and +0.10 g m-3 during the melt and freeze, respectively). ECMWF_IFS is 492 

too dry, as well as too cold, between 0.5 and 4 km, while the UM simulations are typically too moist (though variable; Fig. 493 

9b).  494 

There is less variability in the 𝑞 biases during the freeze period. The UM simulations in particular exhibit only small 𝑞 biases 495 

above 0.5 km (Fig. 9d). ECMWF_IFS performs well above 2 km; however, similar to trends identified during the melt, it is 496 

again too dry between 0.5 and 2km.  497 

Figure 10 similarly shows the median 𝑇 and 𝑞 biases modelled by UM_CASIM-100 and UM_CASIM-AeroProf over the 498 

whole AO2018 drift period. Even though the clouds are likely more representative of the high Arctic environment in 499 

UM_CASIM-AeroProf than UM_CASIM-100, the thermodynamic biases are largely unchanged from the approximated 500 

aerosol input of UM_CASIM-100. We speculate that these biases would perhaps differ more so if the modelled clouds were 501 

precipitating strongly in either simulation, thus affecting 𝑞𝑙𝑖𝑞 and cloud lifetime. However, considering each of the UM LAM 502 

configurations shown here, there is little variability in their thermodynamic biases despite the differences in their representation 503 

of aerosol inputs, cloud microphysics, and large-scale cloud scheme. Interestingly, these biases are shared by the UM global 504 

model (UM_GLM, shown in grey; Fig. 9) used to generate lateral boundary conditions for each LAM. UM_GLM exhibits 505 
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similar biases as its high-resolution LAM counterparts, suggesting that these thermodynamic biases are sourced from the 506 

driving model itself. 507 

3.3.1 Influence of the UM driving model 508 

To investigate how much the large-scale forcing is influencing the UM biases, an additional test was performed over a subset 509 

of the drift (31 Aug to 5 Sep) using ERA-Interim to initialise the UM global model (labelled UM_RA2M-ERAI-GLM; Fig 510 

11). This test was designed to evaluate whether the initial conditions of the global driving model, and therefore the associated 511 

data assimilation (DA) systems used to derive the operational analyses used for initialisation, are largely responsible for the 512 

LAM thermodynamic biases we have found in this study. For this test, we used the UM_RA2M configuration for the LAM, 513 

and all global model physics options remained the same as in previous simulations (as described in Table 2); the only difference 514 

was in the initial conditions of the global model. 515 

We find that UM_RA2M-ERAI-GLM exhibits 𝑇 and 𝑞 biases following ECMWF_IFS between the surface and 3 km, inheriting 516 

the ECMWF_IFS near-surface temperature bias discussed previously (Fig. 11a). Over this short time period, the UM 517 

simulations do not have this bias. Above 3 km, UM_RA2M-ERAI-GLM follows UM_RA2M and UM_GLM, exhibiting a 518 

slight warm bias (0.45 K at 5.5 km) in contrast to the cold bias of ECMWF_IFS (–0.65 K at the same altitude).  519 

These results confirm that the UM LAM biases within the lower atmosphere shown in Figs. 8 and 9 are driven by biases in the 520 

large-scale forcing from the global model, which may be a result of the model physics itself or the DA used to produce the 521 

operational analyses. Given that the Arctic lacks good observational data coverage, DA systems still rely heavily on their model 522 

components when creating the analysis products used for model initialisation; therefore, improved observational data coverage 523 

may improve these biases in the DA systems and thus global model initial conditions. In the meantime, a different LAM 524 

configuration, with a larger nested domain with lateral boundaries further from the science region of interest may break the 525 

relationship between global model and LAM biases shown here. 526 

3.4 Links between cloud properties and thermodynamic biases 527 

To better understand how the model thermodynamic biases relate to cloud properties in each simulation, we split our drift 528 

period further into four subsections – periods 3 to 6, as illustrated in Figs. 2 and 8 – to study periods of consistent meteorology. 529 

Mean equivalent potential temperature (𝛩𝑒) and 𝑞 profiles measured by radiosondes during these periods are shown in Fig. 12. 530 

Of the four periods considered, period 3 had cloud-free conditions most often. Periods 5 and 6 were similar; both were cloudy 531 

and influenced synoptically by three different low-pressure systems over their duration. 532 

Cloud properties and thermodynamic biases during periods 3 and 6 are shown in Fig. 13 (with similar analysis for periods 4 533 

and 5 included as Fig. S7). As mentioned previously, mean observed cloud occurrence was lower for period 3 than in any other 534 

period during the drift. All simulations overestimate the 𝑇𝑊𝐶 cloud mask below 2 km, with each UM case producing a bimodal 535 

mean profile peaking below 0.5 km and at 1.8 km (Fig. 13a). Such bimodality is less clear with ECMWF_IFS; it exhibits a 536 

lower layer with cloud top at 1 km and a more prominent than a secondary layer at 1.6 km, although the separation of these 537 

layers is not as distinct as in the UM cases. The secondary layer at 1.6 km has a greater 𝐿𝑊𝐶 than the lower layer, with a peak 538 
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of 0.14 g m-3 (Fig. 13b). The bimodal cloud structure is also liquid dominated in the UM simulations, where both peaks reach 539 

around 0.1 g m-3 (and even exceed this magnitude in the 1.8 km layer), across all three configurations.  540 

Considering the corresponding median 𝑇 biases (Fig. 13d), there are clear correlations between negative biases and modelled 541 

cloud height, suggesting that cloud top 𝐿𝑊 cooling is a contributing source of these biases. The lower layer (0.75 km) bias in 542 

ECMWF_IFS is particularly striking, reaching –4.45 K, and corresponds with the top of a large fraction of liquid-dominated 543 

cloud (Fig. 13a, b). The mean 𝐿𝑊𝐶 modelled at this altitude is over three times greater than was observed, with cloud frequency 544 

overestimated by 73%. q biases (Fig. 13e) are negligible for ECMWF_IFS between 0.75 and 1 km, yet positive below and 545 

above this altitude range. The coinciding overestimation of cloud at these heights indicates that the IFS has simulated too much 546 

condensation, driven by the availability of too much moisture. Similarly, all UM simulations exhibit a moist bias between 0.5 547 

and 1.6 km, between the modelled cloud layers, and exhibit small dry biases where too much cloud is modelled (e.g., 0.5 km). 548 

These results indicate that both models have an excess of water vapour, particularly below 3 km, where negligible/dry biases 549 

with comparison to observations are in fact an artefact of too much condensation and resulting cloud cover. This excessive 550 

cloud cover, on the other hand, has a negative effect on the temperature bias profile, resulting in strong cold biases. 551 

The models are in good agreement with the observed 𝐿𝑊𝐶 during period 6, with the exception of UM_CASIM-100 which 552 

produces double the observed 𝐿𝑊𝐶 at 0.7 km (Fig. 13g). In particular, ECMWF_IFS performs well below 2.5 km in terms of 553 

𝐿𝑊𝐶, 𝐼𝑊𝐶, and cloud occurrence, with the largest difference in the latter occurring at approximately 0.7 km (100% in 554 

ECMWF_IFS in comparison to 79% observed). Consequently, the 𝑇 biases are smaller during period 6 than period 3 for 555 

ECMWF_IFS. However, these 𝑇 biases are still present (Fig. 13i), peaking at –0.96 K at 0.65 km, likely caused by this minor 556 

overestimation in cloud cover, albeit with representative microphysics. 557 

The magnitude of the 𝑇 biases for the UM simulations is similar between both periods, likely caused by this model producing 558 

up to 100 % cloud cover at low altitude. All UM simulations exhibit stronger 𝑇 and 𝑞 biases below 1 km than ECMWF_IFS 559 

during period 6 (Fig. 13i—j). Strong negative 𝑇 biases accompany the overestimation of cloud cover in each UM case, and the 560 

improved model-observation agreement of 𝐿𝑊𝐶 by UM_RA2M and UM_RA2T does little to alleviate these biases with 561 

comparison to the overestimated 𝐿𝑊𝐶 of UM_CASIM-100. Simply, there is too much low-altitude (below 1 km) cloud causing 562 

too much cloud-top radiative cooling in the model, no matter which representation of cloud microphysics or large-scale cloud 563 

is used.  564 

However, while the 𝑞 biases were negligible when ECMWF_IFS exhibited particularly strong 𝑇 biases during period 3, 𝑞 565 

biases for the UM become notably negative for the same effect during period 6; this is the largest dry bias simulated over the 566 

four periods considered (with periods 4 and 5 included in the Supporting Information). The surface 𝑞 bias for the UM 567 

simulations is smaller during period 6 than during period 3, and the tropospheric 𝑞 bias is positive less often, suggesting the 568 

positive moisture bias hypothesised previously (leading to too much condensation and cloud cover) is not ubiquitous in the 569 

model. In fact, results shown in Fig. 13, and Fig. S7 for periods 4 and 5, suggest that either the increased synoptic activity or 570 

freezing sea ice conditions (or both) of periods 5 and 6 acts to reduce this moist bias in the UM. 571 

In summary, both models exhibit strong negative 𝑇 biases at altitudes coinciding with too much liquid-dominated cloud (e.g., 572 

Fig. 13a, b, d), likely caused by the consequent enhancement of cloud-top radiative cooling. 𝑞 biases improve where cloud is 573 
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modelled during the melt period (Fig. 13a, e), suggesting that the 𝑞 field was perhaps too moist below 3 km to begin with, 574 

leading to too much condensation and excessive cloud cover. However, this hypothesis does not appear to be valid during the 575 

freeze nor at altitude, as indicated by the negative 𝑞 biases above 2.5 km which occur where more cloud was observed than 576 

modelled: for example, 2.5 to 4 km during period 3 for all simulations (Fig. 13a, e), or 2.5 to 3.5 km for the UM simulations 577 

during period 6 (Fig. 13f, j). In these instances, our models produce too little cloud as they are too dry to facilitate cloud 578 

formation. With underestimated cloud formation, the models are also slightly too warm (approximately 0.3 K) due to the 579 

missing radiative cooling occurring at these altitudes in reality. 580 

While the model 𝑇 biases align well with their overestimation of cloud cover, our analysis thus far does not account for the 581 

height of the capping inversion. Therefore, incorrect placement of cloud in the models, or a too-deep or too-shallow modelled 582 

BL, could be contributing to these biases and thus could affect the interpretation of our results. 583 

Figure 14 shows the strongest temperature inversion base identified from each model simulation and the radiosonde 584 

measurements. In each dataset, the strongest inversion below 3 km was identified (following Vüllers et al., 2021); if a weaker 585 

inversion was modelled at a lower altitude which was closer to the inversion base identified from the radiosonde, the model 586 

inversion height was adjusted accordingly. In keeping with previous analysis, radiosonde and IFS data were interpolated to the 587 

UM vertical grid for fair comparison; this procedure smooths some high-altitude detail in the radiosonde profiles, such that the 588 

strength of some higher-altitude inversions is reduced causing weaker low-altitude inversions to be identified as the primary 589 

inversion instead. 590 

These results indicate that the strongest (unadjusted) inversion in each simulation is often too high (grey points, Fig. 14), and 591 

weaker inversions at lower altitude are typically in better agreement with identified inversions from radiosondes. Low inversion 592 

bases (below approximately 0.5 km) are consistently overestimated in each simulation, particularly during the melt period (not 593 

shown), supporting our previous deduction that the model inversions were often too high. The detection algorithm does fail to 594 

capture some inversions, predominantly during the freeze period, and instead underestimates the modelled inversion base 595 

during this time window with comparison to measurements (lower right-hand points in each panel). 596 

Modelled and observed temperature profiles were scaled using these identified inversions to remove the differences in inversion 597 

height from our interpretation of the model biases (Fig. 15). When averaged over the full drift, the models are largely biased 598 

warm below the inversion and cold above (up to 3 km; Fig. 15a), with the exception of UM_CASIM-100 which also exhibits 599 

a subtle cold bias just below the inversion. This warm below/cold above signal is more consistent between the models during 600 

the melt period (Fig. 15b). Above the inversion, ECMWF_IFS exhibits a stronger cold bias than the UM simulations. The 601 

shape of the scaled profile is rather consistent between the melt and freeze with ECMWF_IFS; the model is consistently too 602 

warm below the inversion, and too cold above, with comparison to radiosonde measurements. However, the UM simulations, 603 

particularly UM_RA2M, are partially biased cold below the inversion during the freeze. As previously mentioned, biases during 604 

the freeze period must be interpreted with caution as the inversion detection algorithm performed less well during this time 605 

window, with several modelled inversions missed. However, these scaled 𝑇 bias profiles support our previous hypothesis that 606 

cloud longwave cooling is producing colder thermodynamic conditions in the models than were observed, irrespective of the 607 
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differences between modelled and observed inversion heights. Similarly, the warm surface bias indicated previously can be 608 

interpreted to span most of the lower troposphere below the main inversion base, rather than solely near the surface. 609 

4 Discussion 610 

4.1 Surface radiative balance 611 

4.1.1 Shortwave 612 

The small 𝑆𝑊↓ biases exhibited by the standard UM configurations concurrent with a more significant 𝑆𝑊𝑛𝑒𝑡 bias indicate that 613 

the modelled surface albedo is likely too low. While the observed albedo may be biased high due to its calculation from a 614 

spatially small sample of sea ice (directly surrounding the ship), the UM surface albedo parameterisation has previously been 615 

shown to be too low in the high Arctic (Birch et al., 2009; 2012). The temperature and albedo limits used in the standard 616 

Regional Atmosphere parameterisation have been increased since Birch et al. (2009, 2012); however, it is clear from Fig. 2 617 

that the snow-on-sea-ice parameterisation limits tested here with ECMWF_IFS and UM_CASIM-100 (currently used in the 618 

Global Atmosphere model configuration) produce a better comparison with our high Arctic measurements. 619 

4.1.2 Longwave 620 

The root of the 𝐿𝑊 error in each simulation is likely the >90% liquid-dominated low cloud occurrence which is not 621 

representative of the observations (Fig. 4b). This problem has been previously identified in the high Arctic with both models 622 

used in this study (Birch et al., 2012; Sotiropoulou et al., 2016) and recent model improvements/microphysical changes have 623 

not sufficiently improved model performance in this regard. The positive 𝐿𝑊 biases are consistent with the too-warm surface 624 

𝑇 biases in all simulations (Figs. 9, 10), which is also consistent with previous findings with both models (Birch et al., 2009; 625 

Sotiropoulou et al., 2016) and with the ERA-Interim reanalysis product (Jakobson et al., 2012; Wesslén et al., 2014). Figures 626 

9 and 10 suggest that the UM simulations are perhaps better at capturing the near-surface 𝑇 over the freeze, while ECMWF_IFS 627 

consistently has a warm surface bias regardless of season. Tjernström et al. (2021) suggest that surface is actually warmed by 628 

the atmosphere in the IFS, not the opposite, as indicated by the enhanced downward sensible heat flux, in combination with 629 

diminished 𝑆𝑊↓ with comparison to observations. 630 

Given these results, we suggest that excessive cloudiness is likely a contributing factor to the warm surface bias in all 631 

simulations. In particular, it is noteworthy that UM_CASIM-100 performs most poorly of the UM simulations. This result is 632 

disappointing given the improvement of UM_CASIM-100 over the standard Regional Atmosphere configurations in both 𝑆𝑊↓ 633 

and 𝑆𝑊𝑛𝑒𝑡. Including CASIM aerosol processing through wet scavenging – thus enabling cloud dissipation (e.g., Stevens et 634 

al., 2017) – may rectify this issue, or the representation of prognostic ice nucleating particles in place of a simple diagnostic 635 

relationship between temperature and cloud ice number concentrations (e.g., Varma et al., 2021). These pathways will be 636 

explored in future work; however, it is highly likely that other meteorological factors and incorrect model processes are 637 

contributing to this warm surface bias across all of our simulations, in addition to cloudiness. 638 
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4.2 Lower troposphere 639 

4.2.1 Temperature  640 

Temperature biases are strongest within the lowest 3 km of our model domains (Figs. 9, 13); this is also the altitude range over 641 

which the models overestimate cloud occurrence. With too much cloud, cloud top radiative cooling likely lowers the 642 

temperature too efficiently; this, coupled with incorrect cloud positioning (e.g., period 3; Fig 13), gives a cold bias with respect 643 

to our observations, above the observed main capping inversion. Where the liquid (and ice) phase is modelled more effectively 644 

– e.g., ECMWF_IFS during period 6 (Fig. 13) – the associated median biases are smaller (< ±1 K), supporting this conclusion. 645 

The dipole in 𝑇 errors shown in Figs. 8 and 9, with a positive bias towards the surface below a negative bias between 0.5 and 646 

3 km, suggests that heat and moisture are not being sufficiently transported upwards from the surface or downwards from 647 

cooling at cloud top. This 𝑇 bias is present in all simulations during both the melt and freeze periods and could result from the 648 

models failing to reproduce the structure of more than one strong observed inversion, instead exhibiting comparatively smooth 649 

𝑇 profiles. As shown by Fig. 14, low-altitude 𝑇 inversions are often overestimated by the models, particularly during the melt 650 

period (not shown): this too-deep surface mixed layer likely results in incorrect cloud placement, leading to thermodynamic 651 

model-observation biases on a 1-to-1 comparison. Our scaled thermodynamic analysis (Figs. 14, 15) indicates that, while the 652 

models are often incorrectly placing the temperature inversion (consistent with previous findings; Birch et al., 2012), the 653 

relationship between too much cloud and strong negative 𝑇 biases suggested by Fig. 13 appears to be robust under these scaled 654 

height adjustments by the inversion base, and that the simulations are still largely too warm below the inversion. 655 

Both Sotiropoulou et al. (2016) and Tjernström et al. (2021) found a similar vertical structure of the temperature biases with 656 

the IFS model, with positive biases within the lower 0.5 km of the atmosphere and a consistent cold bias present around 1 km. 657 

Tjernström et al. (2021) found that this cold bias intensifies with time during 3-day forecasts, indicating that it is made worse 658 

by processes within the model. They hypothesised the mid-level convection parameterisation triggering too-efficiently within 659 

the IFS could be transporting water vapour out of the BL, resulting in too much condensation to form cloud. While our UM 660 

LAM simulations do not employ such a convection scheme, the global driving model does: this parameterisation acts in addition 661 

to shallow convection, e.g., representing convection in mid-latitude storms, or above the BL where the surface layer is stable. 662 

Given the apparent close relationship between the biases exhibited by the LAM and global model (Fig. 9, 11), we conducted a 663 

short 6-day test with the global mid-level convection scheme switched off; this test caused over an order of magnitude increase 664 

in the UM_GLM cold biases shown in Fig. 11 (not shown). Given the short duration and extreme “on-off" nature of this test, 665 

these results do not provide conclusive evidence that the mid-level convection scheme is not contributing to the thermodynamic 666 

biases shown here. Further investigation into vertical transport and mixing of scalars (temperature, moisture and clouds) is 667 

needed to confirm the origin of these thermodynamic biases. Specifically, more investigation into vertical transport and mixing 668 

of scalars (temperature, moisture and clouds) is needed; however, this investigation is beyond the scope of this paper. 669 

4.2.2 Moisture 670 

During the melt period, our results indicate that the UM is particularly moist throughout much of the troposphere (Fig. 9b), 671 

suggesting that the melting ice is enabling a too-great moisture source from the surface to the atmosphere. However, this 672 

https://doi.org/10.5194/acp-2021-662
Preprint. Discussion started: 9 September 2021
c© Author(s) 2021. CC BY 4.0 License.



 

21 of 54 
 

tropospheric bias appears to be rectified during the freeze, while the surface bias remains (Fig. 9d); therefore, the hypothesised 673 

melting ice source is likely not the only contributor of this moisture bias. Latent heat fluxes measured during the expedition 674 

indicate no significant change between the melt and freeze periods (not shown); therefore, the hypothesised increased moisture 675 

flux during the melt is unlikely.  676 

Given the close relationship between our UM LAM and global model biases (Figs. 9, 11), increased poleward moisture 677 

transport introduced at the lateral boundary conditions from the mid-latitudes could partly explain these biases. This 678 

phenomenon has been previously identified to be a consequence of climate change and may promote increased cloudiness in 679 

the polar regions (e.g., Held and Soden, 2006; Vavrus et al., 2009; Allen et al., 2012; Bender et al., 2012). The moist surface 680 

bias is also present over both the melt and freeze in ECMWF_IFS; however, ECMWF_IFS is routinely too dry between 0.5 681 

and 4 km, in contrast to the UM. Instead, the IFS traps too much moisture in the lowest 0.5 km, suggesting that the upward 682 

transport of moisture may be insufficient, the cloud sink above 0.5 km is too great, or there are consistent biases introduced via 683 

assimilation of data other than the radiosonde data (e.g., satellite).  684 

The moist bias exhibited by ECMWF_IFS towards the surface has previously been highlighted by Sotiropoulou et al. (2016), 685 

who suggested that this problem may explain why this model struggles to reproduce humidity inversions above the BL. There 686 

are instances where negative 𝑇 biases coincide with negative q biases at altitudes just above the main temperature inversion 687 

(for example, at 27 Aug; Fig. 9). Moisture inversions have often been observed during the Arctic summertime (Sedlar et al., 688 

2012; Nygård et al., 2014); ECMWF_IFS fails to reproduce such inversions observed during AO2018. This dry bias above 689 

the observed capping inversion around 27 Aug is not as strong in the UM simulations, but the UM does successfully reproduce 690 

a small humidity inversion. 691 

4.3 Cloud macro- and microphysics 692 

The UM simulations have >98% cloud occurrence around 0.2 km over all four periods. Reduced 𝑆𝑊↓ biases with respect to the 693 

standard Regional Atmosphere configurations indicate that UM_CASIM-100 does improve agreement with our high Arctic 694 

observations (Table 4). In particular, the comparison between UM_CASIM-100 and UM_RA2M (which use the same large-695 

scale cloud scheme and differ only in their representation of resolved cloud physics) shows that the new CASIM scheme 696 

reproduces the observed Arctic clouds better on a microphysical level. 697 

The ice phase differs more between the models than the liquid phase, likely due to its strong relationship with temperature: 698 

UM_RA2M and UM_RA2T use the Fletcher (1962) parameterisation for primary ice formation, while ECMWF_IFS uses 699 

Meyers et al. (1992) and UM_CASIM-100 uses Cooper (1986). Each of these parameterisations is inherently temperature-700 

dependent, with Meyers et al., (1992) producing the largest ice number concentration, and Fletcher (1962) producing the 701 

smallest. Given that each simulation does not reproduce the observed temperature profile well below 3 km, the onset of ice 702 

nucleation (occurring below a threshold of –10 °C in the UM, for example) will be affected. If ice production is triggered 703 

prematurely, cloud liquid properties should be dampened via the Wegener-Bergeron-Findeisen mechanism; evidence of this 704 

can be seen in UM_RA2T during period 3, where an overestimation of ice below 2 km corresponds with a smaller mean LWC 705 

than the other simulations (Fig. 13b—c).  706 
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When considering the drift as a whole, 𝐼𝑊𝐶 is overestimated by all simulations (except UM_RA2M) below 1.5 km, where our 707 

T and q biases are at their greatest. To test whether the method of parameterising primary ice itself has any effect on these 708 

biases, we used the Fletcher (1962), Cooper (1986), and Meyers et al. (1992) parameterisations over a short test period within 709 

the CASIM framework; however, we found little difference in the tropospheric ice with the different parameterisation methods 710 

(Fig. S8). Given the spread in 𝐼𝑊𝐶 results shown here, further investigation into the best methods to represent primary ice 711 

production in such global and NWP models should be considered in future, with specific focus on employing prognostic ice 712 

nucleating particles (similar to the CCN used here in UM_CASIM-100) to facilitate ice formation rather than simply using a 713 

temperature-dependent function (e.g., Varma et al., 2021). The primary ice parameterisations used here do affect the clouds 714 

modelled – for example, with a large spread in modelled 𝐼𝑊𝐶 aloft during period 3 (Fig. 13c) – and a more realistic 715 

representation of the ice phase would likely contribute to improved cloud liquid properties. In particular, it is likely that ice 716 

formation at warm supercooled temperatures (> –10 °C) will be of importance given the overestimated dominance of cloud 717 

liquid at low altitude in our simulations.  718 

Below 3 km, the mean modelled 𝐿𝑊𝐶 often exceeds the observed value, with better agreement between 0.15 and 1 km than 719 

between 1 and 3 km (Fig. 4, 13). This overestimation of cloud liquid is also evident from the 𝐿𝑊𝑃 data, with each simulation 720 

exhibiting a greater 𝐿𝑊𝑃 than was measured (Fig. 5) when averaged over our meteorological periods (not shown). At first 721 

glance, the simulations agree reasonably well with measurements (Fig. 5a), but this subtle overestimation is clear from the 722 

PDFs (Fig. 5b). The exception to this is UM_RA2T; this is the only simulation which often underestimates 𝐿𝑊𝑃, due to its 723 

increased cloud ice mass within the lower troposphere in comparison to the other simulations (Fig. 4d). For example, the mean 724 

measured 𝐿𝑊𝑃 during period 3 is 122.8 g m-2, yet UM_RA2T only produces 70.4 g m-2. In contrast, UM_RA2T reproduces 725 

the mean measured 𝐿𝑊𝑃 well during period 6 (48.5 g m-2 measured versus 43.2 g m-2 modelled), with agreement improving 726 

with time throughout the drift. This efficient ice-producing simulation suggests that the ice phase influences cloud properties 727 

as time progresses more so in reality, while the other UM cases, with less dominant ice, retain too much liquid in comparison 728 

to the measurements. To an extent, ECMWF_IFS also behaves in this way, retaining too much cloud liquid; however, it 729 

performs much better than UM_RA2M and UM_CASIM-100 in reproducing the mean 𝐿𝑊𝐶 and 𝐼𝑊𝐶 during period 6 (Fig. 730 

13g, h). 731 

These simulations suggest that the model development community has effectively gone too far with the reduction of the ice 732 

phase in central Arctic mixed-phase clouds. The surface 𝐿𝑊 balance is positively biased, and these excessive low-level clouds 733 

are a contributing factor: by enabling too much liquid to form, and restricting the ice too efficiently, these clouds efficiently 734 

absorb and re-emit upwelling 𝐿𝑊 radiation back towards the surface. Our results show that we have made great improvements 735 

in the 𝑆𝑊, driven by the improvements we have made to our cloud physics representation in these models (in addition to a 736 

better estimation of the surface albedo). However, the too-consistent cloud cover coupled with too much cloud liquid is 737 

hampering our model capability, and further developments (such as the inclusion of representative CCN and INP inputs to 738 

double-moment cloud schemes to facilitate cloud dissipation) will likely go some way to tackle this issue. 739 
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5 Conclusions 740 

Model simulations with the Met Office UM and the ECMWF IFS were compared with observations made during the Arctic 741 

Ocean 2018 expedition to evaluate model performance in the high Arctic, with particular focus on modelled clouds and the 742 

surface radiative balance. Four key simulations were considered: a global configuration with the IFS and three nested 743 

configurations with the UM (each using different combinations of large-scale cloud and microphysics schemes yet driven by 744 

the same global model setup). These four simulations were compared with observations by using Cloudnet to build model-745 

comparable cloud fractions and water contents and thus identify consistent process weaknesses between the model 746 

configurations chosen.  747 

We found that key issues identified in previous studies, such as positive near-surface temperature biases (Sotiropoulou et al., 748 

2016), remain problems in recent releases of both the UM and IFS. Modelled BLs are often too deep (Fig. 9, 14), particularly 749 

during the melt period, and thermodynamic biases, cloud occurrence, and cloud microphysics are consequently in poor 750 

agreement with observations below 3 km. Excessive low-cloud occurrence is prevalent in both models (Fig. 3) and no 751 

simulation adequately reproduces cloud-free periods and associated increases in longwave net emission (Fig. 2), consistent 752 

with previous UM and IFS evaluations in the Arctic (Birch et al., 2012; Sotiropoulou et al., 2016). Strong negative 753 

temperature biases (Figs. 8, 9, 13) coincide with too-frequent liquid-dominated cloud layers (Fig. 13a, b, f, g), likely associated 754 

with over productive cloud-top radiative cooling in the models. Cloud liquid and ice water contents, especially below 1 km, 755 

were within an order of magnitude of our observations (Fig. 4), but clouds occurred too frequently, contained too much liquid 756 

between 1 and 3 km, and were often at too-high an altitude (Fig. 13a—c). 757 

Radiative interactions are in better agreement with observations and all models capture the observed distribution of 𝑆𝑊𝑛𝑒𝑡 and 758 

𝐿𝑊𝑛𝑒𝑡  better during the sea ice freeze period in comparison to the melt period (Fig. 9). Improved radiative interactions and 759 

thermodynamic biases during the freeze can be linked with improved agreement of cloud occurrence and microphysics (Fig. 760 

13, S7). We found that the surface albedo in each model configuration is underestimated with respect to observational estimates 761 

(see Supporting Information), but this is unsurprising given the models are representing an average albedo over a 1.5 / 9 km 762 

grid box while our observed estimates are from the area immediately surrounding the ship. Updating the surface albedo 763 

parameterisation limits used within the UM Regional Atmosphere configurations (UM_RA2M/UM_RA2T) to those used in 764 

the Global Atmosphere GA6.0/6.1 configuration (UM_CASIM-100) greatly improves our surface albedo comparison with 765 

observational estimates (see Supporting Information) and thus contributes to the good comparison of UM_CASIM-100 with 766 

measured shortwave radiation data. 767 

We propose that four factors are important to failings in our model simulations:  768 

1. The choice and use of large-scale cloud schemes at high resolution: 769 

o Both the UM and IFS poorly capture Cloudnet-calculated cloud fractions from observations over Aug—Sep 770 

2018 in the central Arctic, particularly at altitudes between 2 km and 8 km (Fig. 4a). Building a comparable 771 

mask based on 𝑇𝑊𝐶  shows that the cloud modelled aloft is actually in good agreement with observations 772 

(Fig. 4b), while highlighting that the over prediction of cloud occurrence below 3 km is in fact much worse 773 

than suggested by the 𝐶𝑉 comparison. As such, we suggest that cloud fractions should not be used in isolation 774 
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as a model comparison metric over the Arctic as models represent this parameter differently at the present 775 

time (as detailed in the Supporting Information). 776 

2. The cloud microphysics scheme chosen to represent resolved clouds: 777 

o UM_CASIM-100 performs best in terms of 𝑆𝑊𝑛𝑒𝑡 (Fig. 2, Table 4), but it struggles to capture cloud-free 778 

episodes, thus producing a 𝐿𝑊𝑛𝑒𝑡  PDF which is too narrow in comparison to our measurements.  779 

o ECMWF_IFS shares the too-narrow 𝐿𝑊𝑛𝑒𝑡PDF of UM_CASIM-100; however, it often produces a IWC in 780 

reasonable agreement with observations, and its mean 𝐿𝑊𝐶 profile does agree particularly well with the 781 

observations at times (e.g., period 6; Fig. 13g).  782 

o Of the UM simulations considered, UM_CASIM-100 is in best agreement with both ECMWF_IFS and 783 

observations in terms of net radiation, 𝑆𝑊𝑛𝑒𝑡 and 𝑆𝑊↓. This improved radiative agreement can be linked to 784 

its better cloud microphysical agreement with our Cloudnet-derived cloud liquid water content over the 785 

standard Regional Atmosphere configurations (Figs. 4, 5, 13); however, UM_CASIM-100 produces even 786 

poorer cloud fractions aloft than either UM_RA2M or UM_RA2T.  787 

3. Representative CCN concentrations, and thus droplet number concentrations, as a function of altitude: 788 

o Representative CCN concentrations in UM_CASIM-AeroProf somewhat improves the overestimation of 𝑞𝑙𝑖𝑞  789 

within low level clouds in UM_CASIM-100. However, the 𝑞𝑙𝑖𝑞  decrease is not sufficient to trigger an 790 

increase in liquid precipitation, which would thus decrease cloud lifetime, so the modelled 𝐶𝑉 is essentially 791 

unchanged (Fig. 7). Crucially, thermodynamic biases with respect to observations are not improved through 792 

this enhanced complexity (Fig. 10), highlighting that these biases may not be fixed by a more comprehensive 793 

representation of cloud physics. Further work is required, with the inclusion of wet scavenging of aerosols 794 

and prognostic INP, to rule out whether such processes could improve the model biases over and above the 795 

inclusion of representative aerosol concentrations alone. 796 

4. The global model analyses used to produce boundary conditions for high resolution nests: 797 

o The thermodynamic biases identified in our models differ only a little between the UM simulations despite 798 

differences in their cloud configurations. Comparisons with the global model show that the biases within the 799 

LAM are largely inherited from the global model and associated DA system (Fig. 9, 11); therefore, for LAM 800 

configurations such as that tested here, we will not obtain the true benefit of more sophisticated cloud 801 

microphysics schemes in NWP simulations until we address the large-scale biases in their driving models/DA 802 

system. 803 

While representative CCN concentrations are indeed important for properly reproducing Arctic cloud structure and its 804 

consequential impact on the net surface radiation, our findings indicate that such representative cloud nuclei inputs still have 805 

little impact on thermodynamic biases in the lower troposphere. For our given LAM configuration, we speculate that these 806 

biases will always be inherited from the driving model/DA and will continually bias cloud formation processes and BL depth; 807 

however, using an increased domain size, with the science area of interest as far from the lateral boundaries as possible, may 808 

help to reduce the influence of the driving model/DA. The issue of inherited thermodynamic biases is concerning as both the 809 

UM global model and IFS are both used within the community to drive NWP configurations of the same model (UM) or others 810 
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(IFS).  For example, the IFS configuration tested here is similar to that used by ERA5; therefore, these biases could influence 811 

future high Arctic NWP simulations if these reanalyses are used for initialisation.  812 

Our recommendations are thus twofold. To improve our Arctic cloud modelling capability, we must continue to improve the 813 

cloud physics description striving for an optimum complexity, such as the introduction of representative CCN concentrations 814 

and double-moment cloud liquid illustrated here, in addition to the inclusion of prognostic INP and associated aerosol 815 

processing mechanisms. However, we must concurrently address the overabundant occurrence of a too-well-mixed and too-816 

cloudy lower troposphere, and tackle the resultant thermodynamic biases, in our global driving models and their respective DA 817 

systems. 818 

  819 
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Appendix A Cloudnet mishandling of fog data 820 

𝐿𝑊𝑃 measurements from the HATPRO microwave radiometer were used in this study; this instrument provides measurements 821 

of microwave brightness temperatures, from which 𝐿𝑊𝑃 is derived for the full atmospheric column above the instrument (here 822 

located approximately 13 m above the surface). This includes measurement of liquid clouds at altitudes below the radar’s first 823 

range gate at 156 m. Fog periods occurred frequently throughout the expedition (Vüllers et al., 2021); therefore, we had several 824 

instances where liquid fog was measured with the HATPRO with small quantities of liquid, or none, detected in the clouds 825 

above (from lidar/radar). 826 

Cloudnet calculates an offset to be deducted from the 𝐿𝑊𝑃 time series dependent upon its categorisations of cloud to ensure 827 

that liquid is partitioned throughout the cloud column only if liquid clouds were present. This offset is non-uniform, calculated 828 

as a given fraction of the 𝐿𝑊𝑃 signal on a daily basis, and is deducted from the 𝐿𝑊𝑃 data to ensure liquid partitioning is 829 

conducted correctly within the Cloudnet algorithm. Given the frequency of fog occurrence, this offset was often overestimated 830 

and too much liquid data were removed, thus negatively impacting the 𝐿𝑊𝑃 and 𝐿𝑊𝐶 comparisons with our model simulations. 831 

To rectify this problem, we removed the 𝐿𝑊𝑃 offset calculation from the Cloudnet procedure, enabling all ingested data to be 832 

used by Cloudnet. We then compared these adapted Cloudnet 𝐿𝑊𝐶 data to a 𝐿𝑊𝐶 calculated under an adiabatic assumption to 833 

test whether the latter could be used as an approximation of the true 𝐿𝑊𝐶 if there was not as much fog present during the 834 

expedition. Figure A1 shows this comparison using all data from the drift period and indicates that, by keeping all fog liquid 835 

data in the time series, Cloudnet artificially partitions these data to liquid cloud layers identified by the lidar, leading to too 836 

much liquid in clouds within the lowest 1 km of the atmosphere (with comparison to the adiabatic profile). These data also 837 

indicate that we can safely use the adiabatic 𝐿𝑊𝐶 as this artificial liquid enhancement is confined to the lowest 1 km and does 838 

not significantly affect the comparison for higher altitudes. Following these comparisons, we chose to include the adiabatic 839 

𝐿𝑊𝐶 in our comparisons with model simulations to exclude the artificial enhancement of cloud liquid at low altitudes in our 840 

measurement data. 841 

  842 
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Tables 843 

Table 1: List of key abbreviations, acronyms, and parameters referenced in this study. 

Label used Description 

𝛽 Lidar backscatter 

BL Boundary layer 

𝐶𝑉 Cloud fraction by volume, determined using Cloudnet 

CASIM Cloud-AeroSol Interacting Microphysics 

CCN Cloud condensation nuclei 

ECMWF European Centre for Medium-Range Weather Forecasting 

GCM General Circulation Model 

IFS Integrated Forecasting System 

𝐼𝑊𝐶 Cloud ice water content 

LAM Limited Area Model 

𝐿𝑊𝑛𝑒𝑡  Net longwave radiation at surface 

𝐿𝑊↓ Downwelling longwave radiation at surface 

𝐿𝑊𝐶 Cloud liquid water content 

𝐿𝑊𝑃 Liquid water path 

𝑁𝑑 Cloud droplet number concentration 

𝑞 Specific humidity 

𝑞𝑖𝑐𝑒  Cloud ice mixing ratio 

𝑞𝑙𝑖𝑞  Cloud liquid mixing ratio 

𝑅𝑛𝑒𝑡 Net total radiation at surface 

𝑅𝐻 Relative humidity 

𝑅𝐻𝑐𝑟𝑖𝑡 Critical relative humidity for condensation in models 

𝑆𝑊𝑛𝑒𝑡 Net shortwave radiation at surface 

𝑆𝑊↓ Downwelling shortwave radiation at surface 

𝜃𝑒 Equivalent potential temperature 

𝑇 Temperature 

𝑇𝑊𝐶 Total cloud water content 

UM Unified Model 

𝑍𝑒 Radar reflectivity 
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 844 

Table 2: Summary of the four model configurations to simulate cloud and thermodynamic conditions observed over the full 

AO2018 drift period in this study. Three additional simulations included for further investigation of results are listed in 

shaded sections below. 

Simulation Details References 

ECMWF_IFS Cy46r1; cloud and large-scale precipitation following update to 

Cy36r4. Snow included in all cloud fraction and cloud ice water 

content analyses. 

Forbes and Ahlgrimm 

(2014) 

UM_CASIM-100 UM with LAM using CASIM scheme operating with 100 cm-3 

accumulation mode aerosol particles over the full model column 

and across the entire LAM. Droplet activation: Abdul-Razzak 

and Ghan (2000); primary ice formation: Cooper (1986). 

Diagnostic cloud fraction and condensate from large-scale 

cloud (Smith, 1990) scheme. 

Smith (1990); Hill et al. 

(2015); Grosvenor et al., 

(2017); Kupiszewski et al. 

(2013) 

UM_RA2T UM with LAM operating with the tropical regional atmosphere 

configuration (RA2T). Prognostic cloud and prognostic 

condensate (PC2) cloud scheme used with cloud microphysics 

based on Wilson and Ballard (1999). 

Wilson and Ballard (1999); 

Wilson et al. (2008); Bush et 

al. (2020) 

UM_RA2M UM with LAM operating with the mid-latitude regional 

atmosphere configuration (RA2M). Wilson and Ballard (1999) 

cloud microphysics scheme with diagnostic cloud fraction and 

condensate from large-scale cloud (Smith, 1990) scheme. 

Smith (1990); Wilson and 

Ballard (1999); Bush et al. 

(2020) 

UM_GLM UM global model operating a N768 resolution (corresponding 

to approximately 17 km at the mid-latitudes) using the Global 

Atmosphere 6.1 configuration with a rotated pole. Uses 70 

quadratically-spaced vertical levels up to 80 km with PC2 large-

scale cloud and cloud microphysics based on Wilson and 

Ballard (1999). Data over the full drift period are included to 

contextualise thermodynamic profiles extracted from the UM 

LAMs. 

Walters et al. (2017); 

Wilson et al. (2008); Wilson 

and Ballard (1999) 

UM_CASIM-AeroProf As UM_CASIM-100, except day-averaged soluble coarse- and 

accumulation-mode concentrations from UKCA are input in 

place of the constant profile (see Supporting Information for 

details) to indicate role of realistic aerosol number 

concentrations. 

Morgenstern et al. (2009); 

O’Connor et al. (2014); 

Mann et al. (2010) 
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UM_RA2M-ERAI-GLM As UM_RA2M LAM configuration, except using ERA-Interim 

data to initialise the UM global model instead of standard global 

start dumps. Data only included from a short subset of the drift 

period (31 Aug to 5 Sep) for further analysis of temperature and 

moisture profiles. 

Dee et al. (2011) 

  845 
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Table 3: Summary of cloud microphysical process representation in each simulation setup. Chosen processes are highlighted 

as key differences between the schemes. k = model level; Z = altitude. 

 Model simulation 

Physical 

process 

ECMWF_IFS 

 

UM_CASIM-100 UM_RA2T UM_RA2M 

Prognostic 

cloud variables  

Cloud fraction, vapour, 

cloud liquid, cloud ice, 

rain, and snow  

(single moment) 

 

Vapour, cloud liquid, 

cloud ice, graupel, rain, 

and snow mixing ratios 

and number 

concentrations (double 

moment) 

Liquid, ice, and total 

cloud fractions; vapour, 

cloud liquid, cloud ice 

(all ice, includes snow), 

and rain (single 

moment). 

Vapour, cloud liquid, 

cloud ice (all ice, 

includes snow), and rain  

(single moment). 

Large-scale 

cloud fraction 

(described in) 

Prognostic  

(Tiedtke, 1993) 

 

Diagnostic  

(Smith, 1990) 

Prognostic  

(Wilson et al., 2008) 

Diagnostic  

(Smith, 1990) 

Droplet 

number 

concentration 

Diagnostic. Wind-speed 

dependent function for 

radiation calculations 

(following Martin et al., 

1994). For auto-

conversion, diagnosed 

by land-surface mask 

(ocean surface, fixed); 

50cm-3. 

 

Prognostic; Abdul-

Razzak and Ghan 

(2000), referencing an 

accumulation mode 

aerosol profile of 100cm-

3 at all Z. 

Diagnosed by land-

surface mask (ocean 

surface, fixed); 100 cm-

3. Tapered to 50 cm-3 at 

Z ≤ 50 m from 150 m. 

 

Diagnosed by land-

surface mask (ocean 

surface, fixed); 100 cm-

3. Tapered to 50 cm-3 at 

Z ≤ 50 m from 150 m. 

Critical grid-

box mean RH 

for 

condensation 

𝑅𝐻𝑐𝑟𝑖𝑡 = 0.8, increasing 

towards the BL as a 

function of height. 

0.96 at the surface and 

decreases monotonically 

upwards to 0.80 at 0.85 

km, above which it 

remains constant with 

altitude (k >= 15) 

(Grosvenor et al., 2017) 

0.96 at the surface and 

decreases 

monotonically upwards 

to 0.80 at 0.85 km, 

above which it remains 

constant with altitude 

(k >= 15) (Grosvenor 

et al., 2017) 

0.96 at the surface and 

decreases monotonically 

upwards to 0.80 at 0.85 

km, above which it 

remains constant with 

altitude (k >= 15) 

(Grosvenor et al., 

2017) 

 846 
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Table 4: Mean surface radiation biases (model-observations) over periods 3—6, with mean measured values for reference. 

Observations included are hourly-integrated values for consistency with the models. All values are in W m-2. Smallest biases 

are highlighted in bold. 

Component Observations ECMWF_IFS UM_CASIM-100 UM_RA2T UM_RA2M 

𝑆𝑊𝑛𝑒𝑡 

P3 24.35 16.41 6.09 39.69 38.02 

P4 19.45 4.23  0.85 24.74  20.77 

P5 9.87 9.75  7.88 19.81  18.09  

P6 7.37 6.75  5.11 16.67  15.3  

𝑆𝑊↓ 

P3 117.39 -20.4  -10.93 7.44 4.08 

P4 72.86 -6.84  -1.49  14.68  6.99  

P5 55.55 0.9  9.7  16.43  12.66  

P6 41.66 -0.3  -2.21  11.86 7.48  

𝐿𝑊𝑛𝑒𝑡  

P3 -21.38 9.56 16.32 10.48 10.71 

P4 -9.48 3.16 4.85 2.71 3.25 

P5 -11.77  -2.96 1.89 -3.77 -3.65 

P6 -13.22 -0.27 5.46 -3.6 -0.29 

𝐿𝑊↓ 

P3 285.82 19.0 22.41 18.42 18.66 

P4 303.12 6.0 6.5 5.04 5.54 

P5 291.53 0.31 2.6 -2.25 -2.15 

P6 286.88 5.02 9.6 0.28 5.13 
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Figures 849 

 

Figure 1: LHS: Map of cruise track and sea ice cover during AO2018 expedition from Vüllers et al. (2021), with drift 

period (red) in inset. RHS: Ship position during the drift period (red), with grid outline for UM_CASIM-100, UM_RA2T, 

and UM_RA2M shown in blue and mid-points of ECMWF_IFS grid indicated by yellow crosses. Note grid size difference 

for illustrative purposes and not to scale: UM grid boxes are 1.5 × 1.5 km, IFS grid boxes are 9 × 9 km in size.  
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Figure 2: 𝑆𝑊𝑛𝑒𝑡, 𝐿𝑊𝑛𝑒𝑡 , and 𝑅𝑛𝑒𝑡 simulated by UM_RA2M (dark blue), UM_RA2T (light blue), UM_CASIM-100 (green), 

and ECMWF_IFS (yellow). Hourly-averaged measurements on board the ship (black) shown for comparison. LHS: 

timeseries; RHS: PDFs. PDFs are split between melting and freezing sea ice conditions using a threshold of 28 Aug as 

indicated by the grey vertical dashed line in panels (a), (d), and (g). Radiation terms are defined as positive downwards. Sub-

periods used in subsequent sections are marked (red) in panel (g). 
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Figure 3: Total water content (left, 𝑇𝑊𝐶) and cloud fraction (right, 𝐶𝑉). (a—b) calculated from observations using Cloudnet 

and diagnosed by (c—d) ECMWF_IFS, (e—f) UM_CASIM-100, (g—h) UM_RA2T, and (i—j) UM_RA2M. Missing 

measurement data are indicated by hatched areas; times where data are missing from the observations are removed from the 

model data to provide a fair comparison. Missing data periods differ between the 𝑇𝑊𝐶 and 𝐶𝑉 products due to the different 

instrumentation requirements within Cloudnet for each. 
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Figure 4: Comparison between (a) mean 𝐶𝑉 observed (black, calculated using Cloudnet) and modelled (UM_RA2M = dark 

blue; ECMWF_IFS = yellow; UM_CASIM-100 = green; UM_RA2T = light blue) over the AO2018 drift period. (b) 𝑇𝑊𝐶 

cloud mask comparison, where masks are calculated using only in-cloud data as described in Sect. 2.4. (c—d) Same 

comparison for liquid and ice cloud water contents respectively, using in-cloud data only. 𝐿𝑊𝐶 data from the observations 

are calculated using Cloudnet by assuming an adiabatic profile (see Appendix A). Lines indicate the mean profiles of each 

dataset, shaded areas depict ± one standard deviation from the mean. Uncertainties associated with the retrieval process are 

not shown. 
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Figure 5: Timeseries of (a—b) liquid water path (𝐿𝑊𝑃) and (c—d) total precipitation flux at the surface over the full drift 

period. (a—b) HATPRO measurements (grey) are included for comparison with the model data (coloured markers). 𝐿𝑊𝑃 

data averaged on to the UM grid by Cloudnet are shown in black (Obs_UMgrid). (c—d) Weather sensor (PWS) 

measurements of total precipitation from the 7th deck (grey) are included for comparison with model rain and snow fields. 

(a, c) model data shown every 3 hours for clarity; (b, d) all model data included for comparison. 
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Figure 6:  Model biases in radiation terms (𝑆𝑊↓ (left), 𝐿𝑊↓ (middle), and 𝑅𝑛𝑒𝑡 (right)), 𝐿𝑊𝑃, and 𝐶𝑉. Model-observation 

biases are calculated hourly for the radiation and 𝐿𝑊𝑃 terms using measurements from the ship-based radiometers and 

HATPRO microwave radiometer, respectively. Shading: model-observation difference between mean 𝐶𝑉 below 3 km, where 

model data below the height of the lowest radar range gate (156 m) is excluded from the comparison with observations. 

Correlation coefficients for the radiation-LWP (top) and radiation-𝐶𝑉 regressions (bottom) are noted in the top right of each 

panel. 
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Figure 7: Comparison of UM_CASIM-100 and UM_CASIM-AeroProf, demonstrating the influence of representative 

aerosol concentrations on the modelled cloud structure. (a—b) downwelling shortwave radiation (𝑆𝑊↓) at the surface, 

with observations (black) shown for comparison; (c—e) 𝐶𝑉; (f—h) cloud droplet number concentration (𝑁𝑑); and (i—k) 

liquid water mixing ratio (𝑞𝑙𝑖𝑞). (c, f, i): UM_CASIM-100; (d, g, j): UM_CASIM-AeroProf; (e, h, k): mean profiles with 

± one standard deviation shown in shading. Radiative differences are only notable between 22 Aug and 27 Aug. Slight 

differences in 𝑞𝑙𝑖𝑞  and cloud fraction can also be identified during this period; for example, UM_CASIM-100 produces a 

larger cloud fraction below 2 km at 23 Aug 
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 859 

 

Figure 8: 𝑇 (left) and 𝑞 (right) measured by the radiosondes over the AO2018 drift period. (a—b): radiosonde data re-

gridded to the UM vertical grid for model comparisons. (c—d): biases of IFS data, re-gridded to the UM vertical grid, with 

respect to observations. (e—j) UM_CASIM-100, UM_RA2T, and UM_RA2M biases, with no vertical re-gridding. The 

common vertical grid (from the UM) provides 50 vertical levels below 10 km, with 21 of these below 2 km. The black line 

in all panels depicts the altitude of the main inversion base as identified using the radiosonde measurements, and 

meteorological time periods with common characteristics are indicated in white (see Vüllers et al., 2021 for details). 
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Figure 9: Median profiles of modelled (a, c) 𝑇 and (b, d) 𝑞 biases with respect to the radiosonde measurements over the sea 

ice melt (top) and freeze (bottom) periods (using 28 Aug as a threshold). Model data are coloured as previous (ECMWF_IFS: 

yellow; UM_CASIM-100: green; UM_RA2T: light blue; and UM_RA2M: dark blue) and ± one standard deviation shown 

to illustrate variability. Median anomalies from the UM global model (UM_GLM; grey) are also included for reference; 

variability is not shown for these data.  
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Figure 10: Temperature (left) and moisture (right) biases exhibited by the UM_CASIM-100 (green) and UM_CASIM-

AeroProf (purple) simulations with respect to radiosonde measurements made over the entire drift period.  ± one standard 

deviation shown in shading to illustrate variability. 
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Figure 11: Median 𝑇 and 𝑞 biases from a subset of the drift (31 Aug to 5 Sep) for ECMWF_IFS (yellow), UM_RA2M-

ERAI-GLM (red), UM_RA2M (dark blue), and UM_GLM (grey). UM_RA2M-ERAI-GLM biases follow ECMWF_IFS 

biases up to approximately 1 km, above which they largely behave more like the other UM cases.  ± one standard deviation 

shown in shading to illustrate variability. 
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 867 

 

Figure 12: Mean profiles of (a) equivalent potential temperature (𝜃𝑒) and (b) 𝑞 measured by radiosondes launched during 

periods 3—6 of the expedition, with ± one standard deviation shown in shading. 
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Figure 13: Comparison of mean cloud mask, 𝐿𝑊𝐶, and 𝐼𝑊𝐶 profiles with median biases in 𝑇 and 𝑞 with respect to 

radiosondes for period 3 (a—e, top row) and period 6 (f—j, bottom row). Again, observed 𝐿𝑊𝐶 calculated assuming 

adiabatic conditions using Cloudnet. ± one standard deviation shown in shading to illustrate variability. 
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Figure 14: Model temperature inversion base as a function of the identified inversion base from radiosonde (RS) 

measurements. org. inv: strongest inversion below 3 km, identified following Vüllers et al. (2021). adj. inv: where models 

exhibit a secondary weaker inversion at lower altitude in better agreement with identified radiosonde inversions, these 

identified inversions are adjusted accordingly. unadj.inv: unadjusted primary inversions, not used for further analysis and 

shown for reference only. Correlation coefficients are quoted in red in at the top of each panel. 
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Figure 15: Scaled median model-observation 𝑇 bias profiles for the full drift (left), melt (middle), and freeze (right) periods. 

Profiles are scaled such that –1 is the surface, 0 is the main inversion base, and 1 is 3 km.   
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Figure A1: Comparison of mean 𝐿𝑊𝐶profiles calculated using an adiabatic assumption (black, ± one standard deviation 

shown in dark grey shading) and from HATPRO 𝐿𝑊𝑃 measurements (grey, ± one standard deviation shown in light grey) 

without the Cloudnet offsetting procedure. 
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