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S1 Cloudnet 13 

S1.1 Cloud fractions 14 

Cloudnet produces a cloud fraction variable, 𝐶𝑉, in each model output file, which represents the Cloudnet cloud fraction 15 

calculated from observational data (from radar, lidar etc.) combined with the temperature and humidity profiles defined by the 16 

filename. For example, 𝐶𝑉 in the UM_RA2M output corresponds to model temperature and humidity profiles combined with 17 

retrieved cloud properties from the remote sensing instruments on board Oden to produce a defined cloud fraction. These 𝐶𝑉 18 

variables from the observation, UM_RA2M, and ECMWF_IFS Cloudnet output files are shown in Fig. S1. Obs_Cv represents 19 

the measured/retrieved temperature profiles with reference to the radar vertical grid. Figure S1 therefore demonstrates that the 20 

chosen grid on which the 𝐶𝑉 data are shown have little impact on the mean profile. 21 
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Figure S1: Comparison of cloud fraction (𝐶𝑉) on native radar (Obs), IFS (Obs_IFS), and UM LAM (Obs_UM) 

vertical grid. 

Poor comparisons between modelled and observed cloud fractions is a perennial problem in climate science, and our results 22 

indicate that the large-scale cloud scheme used to represent sub-grid-scale variability in the 𝑅𝐻 field may be responsible for 23 

producing particularly poor comparisons with observations. Cloudnet represents sub-grid-scale variability in observed cloud 24 

fractions by assigning a value of 0 or 1 at each vertical point, dependent on whether there is any form of cloud water present 25 

(including frozen precipitation), before data are averaged from the raw sample frequency to the model grid. This assignment is 26 

not necessarily equivalent to a model’s bulk cloud fraction by volume, 𝐶𝑉, given the parameterisation of sub-grid-scale 27 

processes in models is imposed after the calculation of advected parameters. This discrepancy is not a new finding; Illingworth 28 

et al., (2007) noted the UM – both global and mesoscale variants using the Smith (1990) large-scale cloud scheme – had 29 

difficulty with simulating completely cloudy grid boxes. Similarly, Hogan et al. (2001) have previously shown that the 30 

ECMWF IFS underpredicts the fraction of observed cloud below 7 km. 31 

Cloud fractions are diagnostic for UM_RA2M and UM_CASIM-100 (following Smith, 1990); prognostic for ECMWF_IFS 32 

and UM_RA2T (using PC2 scheme; Wilson et al., 2008). Both diagnostic and prognostic approaches use the instantaneous 33 

condensation assumption applied to a PDF of moisture and temperature (Bush et al., 2020). In the Smith (1990) scheme, the 34 

liquid and ice cloud fractions, 𝐶𝑙𝑖𝑞  and 𝐶𝑖𝑐𝑒 , are diagnosed from prognostic grid-box mean liquid and ice mass mixing ratios, 35 

𝑞𝑙𝑖𝑞´  and 𝑞𝑖𝑐𝑒´  (Wilson et al., 2008; Bush et al., 2020), which are then combined assuming minimum overlap to compute 𝐶𝑉. 36 

The 𝐶𝑙𝑖𝑞  would be 0.5 when the grid-box mean total specific humidity is at saturation for the given temperature, since the 37 

parameterisation PDF of sub-grid-scale variability in 𝑅𝐻 and temperature is symmetric (Wilson et al., 2008). The Smith (1990) 38 

scheme was designed this way to keep the 𝑅𝐻 and bulk cloud fraction at realistic values (less than 1) over large grid-boxes. In 39 

our UM simulations, this cloud fraction is supplemented by an empirical adjustment based on aircraft observations (Wood and 40 

Field, 2000) which affects the rate at which cloud fraction increases once 𝑅𝐻𝑐𝑟𝑖𝑡  is reached, increasing 𝐶𝑉 up to 0.7 at 100% 41 



 

 

𝑅𝐻; however, this adjustment is still insufficient to attain the cloud fractions approximately equal to 1 obtained from our 42 

observations. 43 

Both the PC2 scheme in UM_RA2T and the cloud scheme in ECMWF_IFS are based on Tiedtke (1993); both use prognostic 44 

cloud fraction and condensate variables, with the former calculated directly from condensate sources/sinks rather than being 45 

linked to the grid-box mean liquid water mixing ratio (as in the Smith 1990 scheme; Forbes and Ahlgrimm, 2014). In the 46 

PC2 scheme, 𝐶𝑙𝑖𝑞  is not diagnosed from 𝑞𝑙𝑖𝑞´ ; therefore, autoconversion does not affect 𝐶𝑙𝑖𝑞 , but does alter 𝑞𝑙𝑖𝑞´ , allowing thin 47 

clouds with low 𝑞𝑙𝑖𝑞´  to maintain a high 𝐶𝑙𝑖𝑞  (Wilson et al., 2008; Bush et al., 2020). Given the results described here, it appears 48 

that this functionality is critical to replicating cloud fractions comparable to those calculated from observations using Cloudnet. 49 

UM_RA2T also has the extra source of sub-grid turbulent production of mixed-phase cloud; in a test with this option switched 50 

off it was found that this process does not account for the improved cloud fraction comparison with observations (Fig. S2). 51 

 

Figure S2: 𝐶𝑉 (a) observed and modelled by (b) UM_RA2T without sub-grid turbulent production of mixed-phase cloud 

switched on (UM_RA2T_noTurbMP), (c) UM_RA2T, and (d) UM_RA2M for a subset of the drift period (1 Sep to 6 Sep), 

illustrating that the inclusion of this sub-grid process does not account for the high cloud fractions modelled by the 

UM_RA2T case. 

With 3 separate cloud fractions instead of one total fraction (as represented in Smith, 1990), the PC2 scheme can represent 52 

overlap between the liquid and ice fractions, i.e., a mixed-phase cloud fraction (Wilson et al., 2008). This ability is likely 53 



 

 

important in reproducing the common mixed-phase clouds in the Arctic. The liquid cloud fraction represented by PC2 is 54 

equivalent to the total cloud fraction diagnosed by Smith (1990), whereas the ice cloud fraction is calculated from the 55 

prognostic 𝑞𝑖𝑐𝑒 . The total cloud fraction is then the volume of a grid-box containing cloud, calculated assuming minimum 56 

overlap, between the liquid and ice cloud fractions (Wilson et al., 2008). As such, PC2 can represent a wide range of 𝐼𝑊𝐶 for 57 

the same cloud fraction, whereas this relationship is fixed for a given temperature with the Smith (1990) scheme. 58 

It is important to note that any frozen precipitation measured below an upper cloud layer will also be classed as cloud by 59 

Cloudnet. Some of the discrepancy in cloud fraction may then be due to observed precipitating clouds masking several cloud 60 

layers, while this layering may be captured by our models. However, one must note that the Wilson and Ballard (1999) 61 

microphysics scheme makes this same assumption regarding frozen precipitation. Alternatively, little-to-no precipitation 62 

between layers in our models would negatively affect this cloud fraction comparison. By treating all cloud ice the same, it may 63 

be difficult to distinguish between multi-layered clouds using Cloudnet if any are precipitating. 64 

In summary, our data highlight the difficulty of diagnostic cloud fractions, such as that computed by the Smith (1990) scheme, 65 

to produce fully cloudy grid boxes on fine grid scales and indicate that models represent cloud fractions in different ways; 66 

therefore, cloud water content analyses should be conducted in addition to cloud fraction comparisons when studying Arctic 67 

clouds to provide a more robust model-observation comparison than using cloud fractions alone. Figure S3 demonstrates how 68 

using a 𝑇𝑊𝐶 threshold to define in- and out-of-cloud regions can give a more consistent comparison between the observations 69 

and models. 70 

S1.2 Averaging observations to model grid 71 

Liquid and ice water contents are calculated at Stage 2a of Cloudnet (Illingworth et al., 2007) using the various measured 72 

inputs described in Sect. 2.2 of this study and referencing the radar height grid and time resolution. For comparison with 73 

numerical models, Cloudnet includes several additional functions in Stage 2b to average these observational data on to the 74 

corresponding model grids in a consistent manner.  75 

Observational data are split into each model grid box then statistics are calculated, e.g., grid-box mean liquid water content. To 76 

ensure that there are enough data present in each box, a quality factor is applied: this factor is defined by default to be related 77 

to 90% of the grid box size, designed at Cloudnet’s creation to ensure that there were enough observational data within each > 78 

10 km model grid box for meaningful statistical comparisons. However, we found that this high value for the quality-control 79 

factor was too efficient in filtering out data with our higher spatial resolution (1.5 km) grid boxes.  80 

This factor was reduced to 10% or 30% respectively for the IFS and UM grids utilised in this study to reduce the number of 81 

profiles required for meaningful statistics within each 4D box. Code failures relating to too few data restricted the UM quality 82 

factor being reduced further than 30%, but this is unsurprising given each box is 1.5 × 1.5 km in this study.  83 



 

 

 

Figure S3: Comparison of cloud masks built using the in-cloud 𝑇𝑊𝐶 threshold described in Sect. 2.4. 𝑇𝑊𝐶 is calculated 

using all 𝐿𝑊𝐶 and 𝐼𝑊𝐶 data, then thresholding is applied. 
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S2  Model surface albedo 86 

As mentioned in the main body of this study, the IFS is coupled to a simple 0.25° resolution sea-ice model (Louvain-la-Neuve 87 

Sea Ice Model, LIM2) which provides sea ice fractions to the IFS and the surface flux tiling scheme (Buizza et al., 2017; 88 

Keeley and Mogensen, 2018). The surface energy balance over the sea ice fraction is, however, calculated separately from 89 

LIM2 using an albedo parameterisation following Ebert and Curry (1993) with fixed monthly climatology values interpolated 90 

to the actual time, and a heat flux through the ice calculated using a constant sea-ice thickness of 1.5 m. 91 

The surface albedo parameterisation used within the global and regional UM is dependent on ice surface temperature, where 92 

the relationship itself is unchanged from Birch et al. (2009). Both UM_RA2M and UM_RA2T use the default Regional 93 

Atmosphere surface albedo thresholds, giving a 50% albedo at 0 °C which increases to 80% at –10 °C. Gilbert et al. (2020) 94 

tested both configurations for polar cloud modelling over the Antarctic Peninsula, finding that the surface albedo was modelled 95 

to within 2% of observed values. 96 

For UM_CASIM-100, we adapted the warm ice temperature albedo of the LAM to 72% (at 0 °C), with 80% albedo achieved 97 

at –2 °C, to match the parameterisation limits currently used in the JULES (Joint UK Land Environment Simulator) surface 98 

scheme of the Global Atmosphere 6.0 global model (under the assumption that snow is present on the sea ice surface). For the 99 

drift period, we know that snow was indeed present on the surface from first-hand knowledge and surface imagery.  100 

 

Figure S4: Surface albedo estimated from surface images of ice cover taken from the ship (Obs, black crosses) and 

diagnosed by the models. 

Figure S4 shows model surface albedo as a function of time throughout the drift period, with estimations from ship-based 101 

observations shown as black crosses. The largest discrepancy between the models is during the melt period of the drift (before 102 

28 Aug): UM_CASIM-100 performs well with comparison to our estimations, however the other three simulations 103 

underestimate by approximately 20%. Agreement between the models improves during the freeze when the surface temperature 104 

begins to fall; however, our few observational data points during this period suggest that the models are still underestimating 105 

albedo by approximately 10-15%. 106 



 

 

While this comparison suggests that the models are performing poorly with regards to surface reflectivity, one must note that 107 

the models are representing the albedo of a 1.5/9 km grid box (UM/IFS, respectively) while the observed estimates are taken 108 

from the area immediately surrounding the ship. Therefore, any reduction in model albedo due to e.g., melt ponds or leads 109 

would not be accounted for in our observational estimates. 110 

 

Figure S5: 𝑆𝑊𝑛𝑒𝑡, 𝐿𝑊𝑛𝑒𝑡 , and 𝑅𝑛𝑒𝑡 simulated by UM_CASIM-100 with albedo options for the Regional Atmosphere 

version 2 (UM_CASIM-100_RA2-alb; grey), updated Global Atmosphere version 6.0 (UM_CASIM-100_GA6-alb; 

green) used in the main body of this study, and UM_RA2M (dark blue) for reference. Hourly-averaged measurements on 

board the ship (black) shown for comparison. LHS: timeseries; RHS: PDFs. PDFs are split between melting and re-

freezing sea ice conditions using a threshold of 28 Aug as indicated by the grey vertical dashed line in panels (a), (d), and 

(g). Radiation terms are defined as positive downwards. Sub-periods used in subsequent sections are marked (red) in 

panel (g). 

Figure S5 shows the surface radiative balance modelled in UM_CASIM-100 (as Fig. 2, here labelled UM_CASIM-100_GA6-111 

alb) and UM_CASIM-100 with the default Regional Atmosphere limits for the surface albedo parameterisations used (labelled 112 

UM_CASIM-100_RA2-alb, as used in UM_RA2M and UM_RA2T). Figure S5 therefore shows that the cloud physics 113 

representation of UM_CASIM-100 does still improve radiative interactions, with comparison with our observations, over 114 

UM_RA2M (and UM_RA2T, not shown). Thus, the surface albedo updates are not the sole cause of its improved performance 115 

over the operational UM schemes; however, the combination of the updated surface albedo (to represent snow on sea ice) and 116 



 

 

improved cloud microphysical representation (from the CASIM scheme) yields the best UM comparison with observations (as 117 

presented in the main body of this study). 118 

S3  UK Chemistry and Aerosol (UKCA) model 119 

UKCA simulates gas and aerosol chemistry and transport in the atmosphere using the GLObal Model of Aerosol Processes 120 

(GLOMAP-Mode, Mann et al., 2010) and an atmospheric chemistry scheme, with an additional boundary layer nucleation 121 

scheme used to simulate gas-to-particle conversion of sulphuric acid to sulphate aerosol (Spracklen et al., 2010). To generate 122 

the aerosol input files for CASIM, UKCA was one-way coupled to the UM at version 11.2 using the Global Atmosphere 7.1 123 

dynamical core (Walters et al., 2019). Daily averaged soluble accumulation- and coarse-mode aerosol number and mass 124 

concentrations calculated from UKCA grid points north of 88.125 °N (Fig. S2) were used as input to the UM. 125 

 

Figure S6: Soluble (a) coarse- and (b) accumulation-mode aerosol number concentrations simulated by UKCA and used 

as input for the CASIM scheme in the UM_CASIM-AeroProf simulation. Aerosol profiles are kept constant over each 

daily forecast, with no aerosol processing by cloud. 

S4  Periods of consistent meteorology 126 

To better understand how the model thermodynamic biases relate to cloud properties in each simulation, we split our drift 127 

period further into four subsections – periods 3 to 6, as illustrated in Figs. 2 and 8 – to study periods of consistent meteorology. 128 

Mean equivalent potential temperature (𝜃𝑒) and 𝑞 profiles measured by radiosondes during these periods are shown in Fig. 12. 129 

Of the four periods considered, period 3 had cloud-free conditions most often. Periods 5 and 6 were similar; both were cloudy 130 

and influenced synoptically by three different low-pressure systems over their duration. 131 
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Figure S7: (As Fig. 13) Comparison of mean cloud mask, LWC, and IWC profiles with median biases in T and q with 

respect to radiosondes for period 4 (a—e, top row) and period 5 (f—j, bottom row). Again, observed LWC calculated 

assuming adiabatic conditions using Cloudnet. ± one standard deviation shown in shading to illustrate variability. 

Figure S7 shows comparisons of the 𝑇𝑊𝐶 cloud mask, in-cloud 𝐿𝑊𝐶 and 𝐼𝑊𝐶, and associated 𝑇 and 𝑞 biases over periods 4 133 

and 5. Both periods 4 and 5 support the findings of periods 3 and 6. During period 4, the models overpredict cloud occurrence 134 

below 2 km similar to period 3; however, both the 𝐿𝑊𝐶 and 𝐼𝑊𝐶 are in better agreement with observations during period 4. 135 

Similarly, all simulations agree better with observed cloud occurrence during period 5 (consistent with our result for period 6), 136 

and both the 𝐿𝑊𝐶 and 𝐼𝑊𝐶 are again in reasonable agreement during this time window. Consequently, the model 137 

thermodynamic biases with respect to radiosonde measurements are weaker (though still present) during periods 4 and 5 than 138 

during periods 3 and 6.  139 

S5  Primary ice nucleation parameterisation 140 

UM_RA2M and UM_RA2T use the Fletcher (1962) parameterisation for primary ice formation, while ECMWF_IFS uses 141 

Meyers et al. (1992) and UM_CASIM-100 uses Cooper (1986). Each of these parameterisations is inherently temperature-142 

dependent, with Meyers et al., (1992) producing the largest ice number concentration, and Fletcher (1962) producing the 143 

smallest, at e.g., –10 °C. To test whether the method of parameterising primary ice itself has any effect on these biases, we 144 

trialled the use of each of the Fletcher (1962), Cooper (1986), and Meyers et al. (1992) parameterisations within the CASIM 145 

framework; however, we found little difference in our tropospheric ice due to the different parameterisation methods (Fig. S7).  146 



 

 

Changing the primary ice parameterisation alters biases slightly within the lowest 3 km of the domain, with a maximum 147 

difference of 0.06 g kg-1 between the UM_CASIM-100_Cooper and UM_CASIM-100_Meyers median 𝑞 biases at 1.3 km. 148 

Differences shown here are much smaller than the more significant UM configurations changes/IFS comparison shown in Figs. 149 

9, 11, 13. 150 

 

Figure S8: Comparison of 𝑇 and 𝑞 biases (with respect to radiosonde measurements) of CASIM-100 runs with different 

primary ice production parameterisations imposed (green: Cooper, 1986; purple: Fletcher, 1962; gold: Meyers et al., 1992), 

over the drift subset of 31 Aug to 5 Sep. Here, UM_CASIM-100_Cooper is equivalent to UM_CASIM-100 data shown in 

the main body of the paper.  
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