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Abstract: By synthesising remote-sensing measurements made in the central Arctic into a model-gridded Cloudnet cloud 

product, we evaluate how well the Met Office Unified Model (UM) and European Centre for Medium-Range Weather 

Forecasting Integrated Forecasting System (IFS) capture Arctic clouds and their associated interactions with the surface energy 

balance and the thermodynamic structure of the lower troposphere. This evaluation was conducted using a four-week 

observation period from the Arctic Ocean 2018 expedition, where the transition from sea ice melting to freezing conditions 20 
was measured. Three different cloud schemes were tested within a nested limited area model (LAM) configuration of the UM 

– two regionally-operational single-moment schemes (UM_RA2M and UM_RA2T), and one novel double-moment scheme 

(UM_CASIM-100) – while one global simulation was conducted with the IFS, utilising its default cloud scheme 

(ECMWF_IFS). 

Consistent weaknesses were identified across both models, with both the UM and IFS overestimating cloud occurrence below 

3 km. This overestimation was also consistent across the three cloud configurations used within the UM framework, with >90% 

mean cloud occurrence simulated between 0.15 and 1 km in all model simulations. However, the cloud microphysical structure, 

on average, was modelled reasonably well in each simulation, with the cloud liquid water content (𝐿𝑊𝐶) and ice water content 

(𝐼𝑊𝐶) comparing well with observations over much of the vertical profile. The key microphysical discrepancy between the 

models and observations was in the 𝐿𝑊𝐶 between 1 and 3 km, where most simulations (all except UM_RA2T) overestimated 30 

the observed 𝐿𝑊𝐶.  
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Despite this reasonable performance in cloud physical structure, both models failed to adequately capture cloud-free episodes: 

this consistency in cloud cover likely contributes to the ever-present near-surface temperature bias in every simulation. Both 

models also consistently exhibited temperature and moisture biases below 3 km, with particularly strong cold biases coinciding 

with the overabundant modelled cloud layers. These biases are likely due to too much cloud top radiative cooling from these 

persistent modelled cloud layers and were consistent across the three UM configurations tested, despite differences in their 

parameterisations of cloud on a sub-grid-scale. Alarmingly, our findings suggest that these biases in the regional model were 

inherited from the global model, driving a cause/effect relationship between the excessive low-altitude cloudiness and 

coincident cold bias. Using representative cloud condensation nuclei concentrations in our double-moment UM configuration, 

while improving cloud microphysical structure, does little to alleviate these biases; therefore, no matter how comprehensive 40 
we make the cloud physics in the nested LAM configuration used here, its cloud and thermodynamic structure will continue to 

be overwhelmingly biased by the meteorological conditions of its driving model. 

1 Introduction 

The Arctic is warming at more than twice the global average rate (Serreze and Barry, 2011; Cohen et al., 2014), with recent 

evidence suggesting the rate of warming could be up to three times the global average (AMAP 2021). Coupled general 

circulation models (GCMs) fail to agree on the magnitude of recent warming and exhibit large biases in surface temperature 

and energy balance (Boeke and Taylor, 2016) driven largely by model parameter uncertainties on a decadal scale (Hodson et 

al., 2013). Biases in such surface properties are also present in atmosphere-only versions of these models with fixed ocean and 

sea ice boundaries, indicating that there is an important atmospheric source of disparity between models and reality (Bourassa 

et al., 2013). Arctic clouds have a net warming effect at the surface (Boucher et al., 2013) and are likely a contributing factor 50 
to the spread of surface energy balance estimates obtained from these models, with a large spread in cloud fractions, liquid 

water paths (𝐿𝑊𝑃), and ice water paths (𝐼𝑊𝑃) identified in past phases of the Coupled Model Intercomparison Project (CMIP; 

Karlsson and Svensson, 2011; Boeke and Taylor, 2016). Early results from the most recent CMIP indicate that high latitude 

discrepancies in cloud fraction are still prevalent in recent revisions of these models (Vignesh et al., 2020). 

With accelerating Arctic warming, we need to build suitable numerical models to confidently predict how the atmosphere will 

change both on short weather prediction and longer climate time scales (Jung et al., 2016). Models such as the Met Office 

Unified Model (UM) and European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System 

(IFS) are commonly used for assessing future Arctic change; however, recent work has shown that, like other large-scale 

models, both exhibit surface energy balance discrepancies with comparison to high Arctic observations. In both the UM and 

the IFS, these biases have largely been attributed to incorrect cloud cover (Birch et al., 2012; Sotiropoulou et al., 2016; 60 
Tjernström et al., 2021).  

Several studies have considered why such large-scale models fail to reproduce observed cloud cover in the high Arctic. 

Observations have shown that during summer, Arctic clouds experience episodes of extremely low concentrations of cloud 

condensation nuclei (CCN; < 10 cm-3) approximately 10—30% of the time (Mauritsen et al., 2011; Tjernström et al., 2014), 

highlighting that model capability to reproduce cloud free conditions in the Arctic is likely dependent upon representing these 

low CCN numbers (Birch et al., 2012; Stevens et al., 2017; Hines and Bromwich, 2017). Such conditions are difficult to 
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simulate with large-scale numerical models utilising single-moment microphysics schemes with assumed constant droplet 

number concentrations, 𝑁!. Both the IFS and the UM make such assumptions in their current global operational configurations: 

while climatological aerosol concentrations are referenced in the calculations of the first and second indirect effect, droplet 

number cannot evolve independently of cloud liquid mass.  70 

The operational single-moment microphysics scheme within the UM was found to hinder its ability to reproduce tenuous cloud 

periods during the Arctic Summer Cloud Ocean Study (ASCOS); when clouds were modelled, the model produced too thin 

cloud layers in a boundary layer (BL) that was often too well-mixed and too shallow (Birch et al., 2012). The prevalence of 

too much low-level cloud caused surface energy balance, and hence surface temperature, biases. The new Cloud-Aerosol 

Interactive Microphysics (CASIM) double-moment scheme in the UM has enabled improvements in its representation of Arctic 

clouds; Stevens et al. (2017) noted it improved the surface net longwave radiation (𝐿𝑊"#$) in both cloudy and cloud-free 

conditions. Specifically, inclusion of aerosol processing within CASIM successfully led to cloud dissipation when modelling 

the CCN-limited clouds observed during the ASCOS campaign, indicating that this explicit description of double-moment 

microphysics (rather than a simplified cloud physics description) is key to modelling these clouds in the high Arctic. 

Like the UM, the IFS also failed to capture episodic cloud-free periods observed during ASCOS, leading to similar surface 80 
energy biases (Sotiropoulou et al., 2016). The updated IFS cloud scheme, used operationally since 2013, has improved its 

ability to capture mixed-phase Arctic clouds in recent revisions; however, Sotiropoulou et al. (2016) reported that the IFS still 

exhibits a persistent positive near-surface temperature bias, despite the improvement to its representation of these clouds. These 

Arctic surface biases persist in version Cy45r1 of the model, as shown by Tjernström et al. (2021). Given that reanalysis 

products created using the ECMWF IFS (e.g., ERA5; Hersbach et al. 2020) are widely used, both to produce lateral boundary 

conditions for process studies with numerical weather prediction (NWP) models and to analyse Arctic atmospheric structure, 

we must understand the root of these biases and make recommendations for process improvements. 

Here, we evaluate the performance of recent revisions of both the UM and IFS focusing on their ability to capture clouds and 

the thermodynamic structure of the BL, highlighting common process relationships between the models which may explain 

differences from observations. To achieve this, we compare these models with recent high Arctic observations made during the 90 
Arctic Ocean 2018 (AO2018; Vüllers et al., 2021) expedition, where a suite of remote-sensing instrumentation was active 

aboard the Swedish icebreaker Oden measuring summertime cloud and BL properties in the high Arctic. We use Cloudnet 

(Illingworth et al., 2007) to compare observations with cloud properties simulated by the models, to test the respective 

components in each model simulation with a focus on evaluating the relative contributions of the following on cloud structure: 

1. The choice and use of large-scale cloud schemes at high resolution 

2. The cloud microphysics scheme chosen to represent resolved clouds 

3. Representative CCN concentrations, and thus droplet number concentrations, as a function of altitude 

4. The global model analyses used to produce boundary conditions for high resolution nested configurations 

By testing these components with two different atmospheric models, operating on different grid configurations, we assess 

whether representative CCN concentrations are indeed the key model development still required to suitably capture Arctic 100 
clouds, or whether other factors are restricting model performance in the high Arctic.  
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2 Data and methods 

2.1 Arctic Ocean 2018 expedition 

During the AO2018 expedition, Oden drifted with an ice floe near the North Pole from 14 August to 14 September 2018 (Fig. 

1). Campaign details, instrumentation, and meteorological measurements from the AO2018 expedition are summarised in 

Vüllers et al. (2021). Here, we use a subset of the measurements for direct comparison with our model simulations.  

Radiosondes (Vaisala RS92) launched at 0000, 0600, 1200, 1800 UTC, provide in situ thermodynamic profiles with a 0.5°C 

and 5% manufacturer specified uncertainty associated with temperature and humidity sensors, respectively. The radiosonde 

data were distributed via the global telecommunications system and assimilated operationally at the Met Office and ECMWF. 

Remote sensing measurements from a Metek MIRA-35 Doppler cloud radar, a Halo Photonics Streamline Doppler lidar, and 110 
an RPG HATPRO microwave radiometer were processed through the Cloudnet algorithm (Illingworth et al., 2007) following 

the data preparation steps of Achtert et al. (2020). A Vaisala PWD22 present weather sensor (PWS) measured visibility, 

precipitation type, precipitation intensity, and cumulative amount; near surface temperature and relative humidity (RH) were 

obtained from an aspirated Rotronic HMP101 sensor. Broadband downwelling solar and infrared radiation were measured on 

board the ship by Eppley PSP and PIR radiometers. 3-hourly albedo estimates from surface images were used to calculate 

upwelling shortwave radiation (Vüllers et al., 2021).  

2.2 Cloudnet 

Cloudnet is used to directly compare between our measured and modelled cloud properties (Illingworth et al., 2007). Cloudnet 

ingests Doppler cloud radar and lidar, ceilometer, microwave radiometer, and radiosonde data to derive cloud fractions and 

cloud water contents on a chosen model grid. A comprehensive description of the algorithm is beyond the scope of this paper 120 
and is provided by Illingworth et al., 2007 (and references therein), but essentially the algorithm first homogenizes 

observational data to a common time resolution of 30 s and interpolates data to the radar height grid. Radar reflectivity (𝑍#)	and 

lidar backscatter (𝛽) profiles are used to determine cloud boundaries. Cloudnet takes advantage of the lidar’s sensitivity to 

small particles, such as cloud droplets and aerosol, and the radar’s sensitivity to large particles, such as ice particles, rain, and 

drizzle. Cloud phase is determined using 𝑍# , 𝛽,	and thermodynamic information from the radiosondes. Cloud ice water content 

(𝐼𝑊𝐶) is derived using 𝑍#	and temperature (Illingworth et al., 2007), while liquid water content (𝐿𝑊𝐶) is derived by 

partitioning 𝐿𝑊𝑃 measured by the radiometer to the identified liquid cloud layers from the lidar. Additionally, an 

adiabatic	𝐿𝑊𝐶 is calculated from temperature and humidity profiles and the identified cloud top and base height from radar 

and lidar measurements.  

Cloudnet has already been utilised to study Arctic cloud properties using measurements made aboard Oden both during this 130 
campaign (Vüllers et al., 2021) and during the Arctic Clouds in Summer Experiment in 2014 (Achtert et al., 2020). Potential 

errors associated with the Cloudnet procedure are described in Achtert et al. (2020). One particular limitation relevant to this 

study is the minimum detection height of 156 m (lowest radar range gate). Low level clouds/fog below this height are hence 

missed by Cloudnet (Vüllers et al., 2021) and not included in model comparisons. This limitation also results in problems with 
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the 𝐿𝑊𝐶 derived from radiometer measurements; therefore, we use the calculated 𝐿𝑊𝐶 under adiabatic assumption in this 

study (for further details see Appendix A)  

For comparisons with models, cloud fraction by volume (𝐶%), adiabatic 𝐿𝑊𝐶, and cloud 𝐼𝑊𝐶 from observations are averaged 

to a reference model grid; here, we use the UM grid, but we could have equally chosen that of the IFS (Fig. S1). Cloud properties 

are calculated using measurement profiles alongside model wind speed and grid-box size, where changes in cloud properties 

over time are assumed to be driven primarily by advection and not microphysical changes (Illingworth et al., 2007). This 140 

procedure is applied for 𝐶%, 𝐿𝑊𝐶, and 𝐼𝑊𝐶, with 𝐶% defined as the fraction of pixels in a 2D slice which are categorised as 

liquid, supercooled liquid, or ice (Illingworth et al., 2007).  

2.3 Models 

A summary of each model simulation is included in Table 1 and detailed in the following sections. 36-hour forecasts were 

performed with each model, initialised each day at 1200 UTC with the first 12 hours of spin up discarded, thereby producing 

daily forecast products (0000 UTC – 0000 UTC) with hourly diagnostics for analysis. This is common practice for such 

forecasts to ensure discrepancies due to spin up are avoided, while maintaining meteorology close to reality; however, as noted 

by Tjernström et al. (2021), model error growth is often a function of forecast time and thus the findings of this study may be 

related to the time window chosen for each model forecast. 

Column diagnostics from the grid cell closest to the position of Oden were extracted from the model domain, updated hourly 150 
to account for the ship’s drifting position. These variables (e.g., temperature, humidity, cloud fraction, condensate variables, 

wind versus time) were then used for comparisons with alike variables constructed using Cloudnet (Illingworth et al., 2007) 

with measured data (see Sect. 2.1). 

2.3.1 Integrated Forecasting System (IFS; ECMWF_IFS) 

Cycle 46r1 (Cy46r1) of the IFS (used operationally from June 2019 to June 2020) was used to create global meteorological 

forecasts. The IFS uses a spectral formulation with a wave-number cut off corresponding to a horizontal grid size of 

approximately 9 km (Fig. 1b). It has 137 levels in the vertical up to 80 km, the lowest at ≈10 m with 8 levels below ≈200 m 

and 20 below 1 km. IFS forecasts were initialised from ECMWF operational analyses. Operational forecasts produced at the 

time of the campaign (with Cy45r1) were recently evaluated on a 3-day lead time from a statistical viewpoint for this expedition 

(Tjernström et al., 2021); in contrast, lead-time averaged verification was conducted in this study using a 1-1 comparison of 160 
a concatenated timeseries of forecast values (T+13—T+36) with hourly observations. 

Cloud properties are parameterised following Forbes and Ahlgrimm (2014). This cloud scheme was implemented in Cy36r4 

and has been previously evaluated for Arctic clouds by Sotiropoulou et al. (2016) using Cy40r1. Five independent prognostic 

cloud variables are included (grid box fractional cloud cover, and specific water contents for liquid, rain, ice, and snow). 

Heterogeneous primary ice formation is diagnosed following Meyers et al. (1992), with a mixed-phase cut-off of –23 °C. 

Liquid cloud formation occurs when the average relative humidity within a grid box exceeds a critical threshold, 𝑅𝐻&'($, 

representing sub-grid-scale variability of moisture. This threshold is 80% in the free troposphere, increasing towards the surface 
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in the boundary layer (Tiedtke, 1993). Once formed, cloud liquid mass is distributed across a fixed cloud droplet number 

concentration, 𝑁!, of 50 cm-3 over the ocean (and 300 cm-3 over land) to act as a threshold for autoconversion from liquid to 

rain. For interactions with the radiation scheme, the IFS follows Martin et al. (1994) for estimating droplet number, using the 170 
prognostic specific liquid water content and a prescribed CCN profile. CCN concentrations are calculated as a function of the 

near-surface wind speed but decreases with altitude to represent the vertical distribution of aerosol within and above the BL. 

Further details regarding the cloud scheme can be found in the ECMWF documentation (IFS Documentation – Chapter 7: 

Clouds and large-scale precipitation, https://www.ecmwf.int/node/19308). 

The IFS is coupled to a 0.25° resolution dynamic sea-ice model (Louvain-la-Neuve Sea Ice Model, LIM2) which provides sea 

ice fractions to the IFS and the surface flux tiling scheme (Buizza et al., 2017; Keeley and Mogensen, 2018). The surface 

energy balance over the sea ice fraction is, however, calculated separately from LIM2 using an albedo parameterisation 

following Ebert and Curry (1993) with fixed monthly climatology values interpolated to the actual time, and a heat flux 

through the ice calculated using a constant sea-ice thickness of 1.5 m. 

2.3.2 Unified Model (UM) 180 

The UM was operated as a high-resolution LAM with a 1.5 km × 1.5 km grid (grid is shown in Fig. 1). A rotated pole 

configuration provided approximately equal spacing between grid points towards 90 °N. The LAM contained 500 × 500 grid 

boxes, spanning from 83.25 °N to 90 °N centred on the 30 °E meridian. In the vertical, there were 70 vertical levels up to 40 

km, with 24 levels within the lowest 2 km of the domain (Grosvenor et al., 2017). Lateral boundary conditions were generated 

hourly from UM global model 36-hour forecasts at N768 resolution (corresponding to approximately 17 km at 90 °N with the 

rotated pole) using the Global Atmosphere 6.1 configuration (Walters et al., 2017; Table 1). Three configurations of the UM 

LAM were tested for the main body of this study, each using different combinations of cloud microphysics and large-scale 

cloud schemes. Each simulation uses the same boundary layer scheme, where mixing in the vertical is described by Lock et al. 

(2000); however, one must note that turbulent interactions can be influenced by the relationship between cloud top radiative 

cooling and subsequent convective overturning with cloud microphysics. Details on the pertinent microphysical processes 190 
represented in each simulation are listed in Table 2. 

2.3.2.1 Regional Atmosphere model configurations (UM_RA2M and UM_RA2T) 

Version 2 of the Regional Atmosphere model within the UM framework has two standard configurations: the mid-latitude 

configuration (UM_RA2M) and the tropical configuration (UM_RA2T). Both are used operationally in their respective 

geographical regions. The key difference between these configurations can be found in their turbulent mixing processes: 

UM_RA2M employs weak turbulent mixing to encourage heterogeneity in model fields to facilitate the triggering of small 

convective showers; however, while this weak mixing works well to reproduce conditions often experienced in the mid-

latitudes, it triggers convection too early in the tropics. Therefore, these two standard Regional Atmosphere configurations 

were designed separately to account for these subtle differences in convection initiation on km-scales (Bush et al., 2020).  

Neither configuration has been previously evaluated for use in the Arctic. Note that both UM_RA2M and UM_RA2T use the 200 
default Regional Atmosphere surface albedo thresholds, giving a 50% albedo at an ice surface temperature of 0 °C and 
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increasing to 80% at –10 °C. Gilbert et al. (2020) tested both configurations for polar cloud modelling over the Antarctic 

Peninsula, finding that the mid-latitude scheme performs better than the tropical configuration for capturing polar cloud liquid 

water properties and associated radiative interactions (with the surface albedo modelled to within 2% of observed values), 

whereas the tropical scheme enabled a too-efficient ice phase (and associated liquid depletion).  

Both UM_RA2M and UM_RA2T include the Wilson and Ballard (1999) description of large-scale precipitation to simulate 

resolved cloud microphysics. This microphysics scheme describes prognostic liquid and ice mixing ratios (𝑞)(* and 𝑞(&#, 

respectively), with an assumed fixed 𝑁! profile calculated from an aerosol climatology and tapered to 50 cm-3 towards the 

surface (between 150 m and 50 m). A single ice species (encapsulating pristine crystals, aggregates, and snow particles) is 

represented, with an assumed particle size distribution based on Field et al. (2007). 210 

UM_RA2M uses the Smith (1990) large-scale cloud scheme to parameterise sub-grid-scale fluctuations in humidity and cloud, 

designed to ensure coarse grid GCMs do not have entirely cloudy grid boxes. 𝐼𝑊𝐶 is fixed for a given temperature and only 

the total cloud fraction is represented. Smith (1990) diagnoses cloud fraction and condensate variables for input to the 

microphysics scheme, referencing a prescribed 𝑅𝐻&'($ profile (based on a symmetric triangular probability density function of 

sub-grid-scale variability in temperature and moisture) to permit condensation below 100 % humidity (Wilson et al., 2008). 

Condensation cannot occur within a grid box until the grid box mean 𝑅𝐻 exceeds 𝑅𝐻&'($ (described in Table 2).  

In UM_RA2T, the prognostic cloud fraction and prognostic condensate (PC2; Wilson et al., 2008) large-scale cloud scheme 

is used, designed to address the over-sensitive diagnostic links between cloud fraction and cloud condensate in Smith (1990). 

Total, liquid, and ice cloud fractions are included as prognostic variables in PC2; ice cloud fraction is calculated from a 

prognostic ice mass mixing ratio, with a distribution of 𝐼𝑊𝐶 values possible for the same cloud fraction. Cloud fractions and 220 
condensate can vary through other interactions (such as BL processes and cloud microphysics) and are not simply diagnosed 

from temperature and humidity as in Smith (1990) (Wilson et al., 2008). PC2 prognostic variables are advected by the wind 

and continually updated following incremented sources and sinks in the model, with the additional inclusion of sub-grid-scale 

turbulent production of liquid in mixed-phase cloud from an analytical model of sub-grid-scale moisture variability (Furtado 

et al., 2016). Differences between the methods of representing cloud fraction in the PC2 and Smith schemes are detailed in the 

Supporting Information. 

2.3.2.2 Regional Atmosphere with Cloud-Aerosol Interactive Microphysics scheme (UM_CASIM-100) 

UM_CASIM-100 uses the CASIM scheme (detailed by Hill et al., 2015) coupled with the Smith (1990) large-scale cloud 

scheme (as in Grosvenor et al., 2017). Stevens et al. (2017) previously tested the CASIM scheme within the UM nesting suite 

in an Arctic cloud case study, showing that it performed well in capturing cloud dissipation; however, the authors did not 230 
include sub-grid-scale contributions from Smith (1990) in that study. 

CASIM utilises prescribed lognormal aerosol distributions to provide a double-moment representation of cloud particle 

processes and is the only double-moment setup included in this study. Particle size distributions of five hydrometeors (liquid 

droplets, ice, snow, graupel, and rain) are each described by a gamma distribution, with prognostic mass mixing ratios and 

number concentrations. Ice number concentrations are diagnosed via a temperature-number concentration parameterisation 
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(Cooper, 1986), but require liquid to be present before ice can form; a relationship thought to be important in Arctic mixed-

phase clouds (e.g., de Boer et al., 2011; Young et al., 2017). Droplet activation follows Abdul-Razzak and Ghan (2000), 

referencing a fixed soluble accumulation mode aerosol number concentration profile of 100 cm-3. This profile was 

approximated based on aerosol concentration profiles previously measured during summertime in the central Arctic 

(Kupiszewski et al., 2013).  240 

CASIM offers user flexibility regarding aerosol processing, as described by Miltenberger et al., (2018). Here we do not impose 

wet-scavenging processes, likely important for capturing cloud-free conditions, for consistency with the simpler single-moment 

liquid microphysics schemes used in the other simulations; however, use of this option will be explored in future work. 

For our CASIM simulation, we adapt the warm ice temperature albedo of the LAM to 72% (at 0 °C), with 80% albedo achieved 

at –2 °C, to match the parameterisation limits currently used in the JULES (Joint UK Land Environment Simulator) surface 

scheme of the Global Atmosphere 6.0 global model (under the assumption that snow is present on the sea ice surface). For the 

drift period, we know that snow was indeed present on the surface from first-hand knowledge and surface imagery; therefore, 

we use this simulation to test the effect of such an increased albedo at warmer surface ice temperatures on the modelled surface 

energy balance. An example simulation utilising the CASIM scheme with the default Regional Atmosphere albedo settings 

used in UM_RA2M and UM_RA2T, to demonstrate the radiative impact of CASIM alone, is described in the Supporting 250 
Information (Sect. S2). 

2.4 Comparison methodology and compared parameters 

𝐶%, 𝑞)(*, and 𝑞(&# from each model simulation were ingested by Cloudnet to calculate 𝐿𝑊𝐶 and 𝐼𝑊𝐶. Within these calculations, 

Cloudnet filters model data for values outside the range observable by the instrumentation used; for example, 𝑞(&# data are 

filtered for values which would be beyond the observable range of the radar.  

We use an additional metric alongside 𝐶% based on total condensate for comparisons between our measured and modelled 

clouds; a total water content (𝑇𝑊𝐶) mask where the grid-box is considered cloudy; this mask is set to 1, when 𝑇𝑊𝐶 ≥ 1 × 10-

6 kg m-3 below 1 km, and 𝑇𝑊𝐶 ≥ 1 × 10-7 kg m-3 above 4 km, with vertical interpolation in between (following Tjernström et 

al., 2021; Fig. S3). While this mask will not capture fractional cloud at cloud boundaries, averages of this mask are directly 

comparable between the observations and models. It acts as a comparison metric based solely on cloud water contents, which 260 
are prognostic in every simulation, and does not depend on a specific definition of e.g., cloud fraction. 

In addition to a full overview of model performance over the drift, we further split our data into sub periods to aid our 

interpretation of the comparisons between the measurements and models. The sea ice melt/freeze transition was captured by 

the measurements; Vüllers et al. (2021) identified the sea ice freeze onset date as 28 Aug and defined sub-periods throughout 

the drift based on consistent meteorology (see Fig. 2g). We concentrate on the sea ice melt and freeze periods separately and 

on shorter episodes within these periods; one during the sea ice melt (14—18 Aug) and one during the freeze (4—8 Sept). 
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3 Results 

3.1 Surface radiation 

Figure 2 shows measured and modelled time series of net surface shortwave (𝑆𝑊"#$) radiation, 𝐿𝑊"#$, and the combined 

surface net radiation (𝑅"#$) during the AO2018 drift period. All radiative quantities are defined as positive downwards.  270 

All models overestimate 𝑆𝑊"#$ (Fig. 2a) with respect to measurements, with ECMWF_IFS and UM_CASIM-100 in better 

agreement with observations than UM_RA2M and UM_RA2T. From Fig 2d, all simulations fail to capture strong longwave 

net emission likely related to cloud-free episodes (e.g., 20—21 Aug) and sporadically predict such cloud-free conditions (and 

net longwave emission) when clouds were observed (e.g., 2 Sep).  

Considering the melt and freeze periods separately, the measured 𝑅"#$ is often negative after 28 Aug (Fig. 2g) driven by 𝐿𝑊"#$, 

while 𝑆𝑊"#$ decreases with the declining solar elevation angle (Fig. 2a). In contrast, the models’ net radiation is not typically 

negative until after 8—9 Sep, excluding a short negative period at 2 Sep driven by the lack of modelled cloud (as suggested by 

strong net longwave emission; Fig. 2d). This delay would likely affect the freeze onset if the models were fully coupled to a 

sea ice model; as such, this feedback may be active within the (simple) coupled atmosphere-sea ice system of the IFS. 

Probability Density Functions (PDFs) of these data, split between melt and freeze periods (Fig. 2b—c, e—f, h—i), reveal some 280 

clear distinctions in model capability. 𝑆𝑊"#$ PDFs vary substantially between the models during the melt period (Fig. 2b); no 

simulation captures the observation distribution well. Observed 𝑆𝑊"#$ from the ship has a median of +18.2 W m-2, with each 

simulation producing medians at greater values (UM_CASIM-100 = +18.7 W m-2; ECMWF_IFS = +21.6 W m-2; UM_RA2M 

= +40.5 W m-2; and UM_RA2T = +41.9 W m-2). While the medians for UM_CASIM-100 and ECMWF_IFS are in good 

agreement with observations, both exhibit a too-narrow distribution. These too-narrow distributions – which also all lack a very 

high positive tail – suggest that the modelled cloud cover is too consistent, likely related to the lack of cloud-free episodes 

indicated by the 𝐿𝑊"#$ data (Fig. 2d). Median 𝑆𝑊"#$ of both the UM_RA2T and UM_RA2M PDFs is much too high, with 

non-negligible occurrences > +50 W m-2. The improvement of UM_CASIM-100 over UM_RA2T and UM_RA2M indicates 

that the surface albedo used by default in the Regional Atmosphere configurations is too low and the updated cloud physics 

description of CASIM improves the modelled cloud-radiation interactions. A trial simulation utilising the cloud physics setup 290 
of UM_CASIM-100 alongside the default Regional Atmosphere surface albedo parameterisation inputs (as used in UM_RA2M 

and UM_RA2T) shows that the double-moment cloud physics representation alone does improve radiative properties with 

comparison to the standard configurations (see Supporting Information); however, the combination of improved cloud-

radiation interactions and an updated surface albedo (as shown here in UM_CASIM-100) provides the best agreement between 

the UM and our observations. 

During the freeze period, measurement estimates of 𝑆𝑊"#$ peak at +7.9 W m-2, while ECMWF_IFS, UM_CASIM-100, 

UM_RA2M, and UM_RA2T have maxima at +10.0, +10.4, +25.0, and +26.6 W m-2 respectively (Fig. 2c). The peak modelled 

𝑆𝑊"#$ remains too high in all simulations but, in contrast to the melt period, all PDFs are now too broad. ECMWF_IFS and 

UM_CASIM-100 perform best with comparison to observations (both with a positive bias of less than +3 W m-2 at their peaks). 

However, both UM_RA2M and UM_RA2T have a broad bimodal structure, with the secondary peak in better agreement with 300 
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the observations than their maxima. Both UM_RA2T and UM_RA2M are largely in better agreement with observations during 

the freeze period than during the melt; this improved agreement is likely due to either a better representation of incoming 

shortwave radiation or the surface albedo; the surface temperatures decreases through the transition to sea ice freezing 

conditions, and Fig. S4 indeed shows that the albedo modelled during the freeze for UM_RA2M and UM_RA2T is in better 

agreement with observational estimates than that modelled during the melt period.  

During the melt period, 𝐿𝑊"#$ aligns well between the measurements and models; however, all simulations produce a narrower 

PDF than the observations and largely miss the tail < –20 W m-2 (Fig. 2e) resulting from observed cloud-free episodes at 15–

16 Aug, 20 Aug, 22 Aug, and 26 Aug (Fig. 2d). Despite this, each simulation performs well in replicating the median of the 

PDF, with a maximum model-observation difference of –1.9 W m-2 (UM_RA2T). As with 𝑆𝑊"#$, model-observation 

agreement generally improves during the freeze period, with UM_RA2M, UM_RA2T, and ECMWF_IFS producing PDFs 310 
closely matching the shape of the observed PDF, with median values at –9.4, –11.5, and –6.8 W m-2 respectively compared 

with an observation peak of –6.5 W m-2 from the ship estimates. Each of these cases manage to reproduce the negative 

distribution tail missed by all simulations during the melt (Fig. 2f). UM_CASIM-100 displays a narrower distribution with 

fewer negative values, yet still performs well in reproducing the median of the 𝐿𝑊"#$ PDF (with a bias of –5.5 W m-2). With 

the exception of the too-narrow UM_CASIM-100 PDF, this improved agreement in 𝐿𝑊"#$ indicates that cloud cover is indeed 

captured better by the models during the freeze, and remaining discrepancies in the 𝑆𝑊"#$ comparisons may indeed be related 

more so to cloud microphysical structure or surface properties. 

To investigate this relationship in more detail, we split our radiation data into periods of consistent meteorology, indicated on 

Fig. 2g, based on similarity of equivalent potential temperature and relative humidity profiles measured as defined in Vüllers 

et al., (2021). In agreement with Fig. 2, model 𝑆𝑊"#$ and downwelling shortwave radiation (𝑆𝑊↓) biases are at their greatest 320 
during period 3 (Table 3).  

Each of these simulations highlight that small 𝑆𝑊↓ biases do not necessarily produce similarly small 𝑆𝑊"#$ biases, as both the 

modelled cloud properties and surface albedo need to be representative to remedy the 𝑆𝑊"#$ discrepancies. In UM_RA2T and 

UM_RA2M, the surface albedo is poorly captured, as indicated by the consistently high 𝑆𝑊"#$ biases; however, ECMWF_IFS 

and UM_CASIM-100 perform better in terms of surface albedo, with UM_CASIM-100 performing the best with the smallest 

𝑆𝑊"#$ biases across the four sub-periods considered. Further discussion of the surface albedo comparison is included in the 

Supporting Information. 

All simulations exhibit their greatest 𝐿𝑊"#$ biases during period 3 (Table 3); less cloud cover was observed during this period 

with relation to other periods during the drift (Vüllers et al., 2021). 𝐿𝑊"#$ biases do not exceed +5.5 W m-2 over periods 4–6; 

however, biases are greater (up to +16.3 W m-2 during period 3; Table 3) due to the models’ inability to reproduce cloud-free 330 
conditions.  

Combining these radiative components, we find that 𝑅"#$ is overestimated by all simulations during the melt (with 

UM_CASIM-100 and ECMWF_IFS performing better than UM_RA2M and UM_RA2T; Fig. 2h), largely driven by too much 

surface 𝑆𝑊"#$ modelled when cloud is present in reality, thus indicating that the model surface albedo is too low and thus does 

not reflect enough 𝑆𝑊↓. On the other hand, there are also non-negligible occurrences of too much modelled cloud when the 
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conditions should be cloud-free, driving strong 𝐿𝑊"#$ biases at these times. While agreement with observations largely 

improves during the freeze period, these discrepancies still exist in the 𝑆𝑊"#$ data. While the 𝑆𝑊"#$ biases may be strongly 

influenced by errors in the surface albedo, and thus beyond the scope of this study, the role of cloud structure in 𝑆𝑊↓ biases 

and the 𝐿𝑊"#$ emission episodes missed by each simulation are driven by the description of cloud: in the following sections, 

we investigate the cloud macro- and microphysical structure to explain these radiative differences. 340 

3.2 Cloud properties 

To evaluate model performance, we use two metrics for cloud occurrence: the model diagnosed cloud fraction, 𝐶%, and the 

cloud occurrence inferred from cloud water contents, the 𝑇𝑊𝐶 cloud mask. Figure 3 shows 𝑇𝑊𝐶 and cloud fraction, 𝐶%, 

calculated from observations using Cloudnet and output by models. 𝑇𝑊𝐶 comparisons indicate that each simulation captures 

the observed cloud aloft, except for UM_CASIM-100 between 4 and 10 Sep. Below 3 km, observed 𝑇𝑊𝐶 is generally lower 

in magnitude than the model simulations. 

In contrast, all simulations except UM_RA2T fail to reproduce the observed 𝐶%	aloft. Low-altitude (below 2 km) cloud cover 

appears to be captured comparatively better across all simulations. Cloud height simulated by ECMWF_IFS is in reasonable 

agreement with the observations; however, there are notable periods where the persistence of clouds aloft is not reproduced. 

For example, the altitude and timing of onset of the (likely precipitating) high clouds at 3–4 Sep is initially captured, but the 350 
clouds are not sustained. Cloud layers aloft appear more tenuous also in UM_RA2M and UM_CASIM-100 than in the 

observations: there are few cases of cloud fractions > 0.5 at altitudes above 3 km.  

Figure 4a shows mean profiles of 𝐶% over the drift period. Only periods where we have measurement data are included in these 

profiles for fair comparison. Note that cloud fraction below 0.15 km is not evaluated against observations here due to low-

altitude measurement limit of the cloud radar. Supporting qualitative interpretation of Fig. 3, model-observation agreement of 

𝐶% is best at low altitude (below 1 km); however, all simulations produce too much very low (between 0.15 and 0.5 km) cloud. 

Modelled near-surface 𝐶% (between 0.15 and 0.5 km) is up to 16% too high (UM_RA2T). However, we can speculate that the 

frequent fog episodes reported during the ice drift (Vüllers et al., 2021) may be somewhat captured by the models, as indicated 

by mean values of 𝐶% below 0.15 km of 82%, 72%, 53%, and 39% respectively for UM_RA2T, UM_RA2M, UM_CASIM-

100, and ECMWF_IFS. All simulations except UM_RA2T perform poorly aloft: ECMWF_IFS, UM_RA2M, and 360 

UM_CASIM-100 strongly underestimate 𝐶% between 1 km and 8 km, with UM_CASIM-100 and UM_RA2M reproducing less 

than 20% of the observed 𝐶% at 4.5 km. Only the UM_RA2T 𝐶% profile agrees well at altitude, with particularly good agreement 

between 0.5 and 2 km – in fact, 𝐶% between 2 km and 5.5 km agrees best with observations out of the four simulations 

considered.  

Figure 3 highlights that the observations, UM_RA2T, and (to an extent) ECMWF_IFS have a 𝐶% field scaling largely as either 

0 or 1, whereas UM_RA2M and UM_CASIM-100 are more likely to have a fractional cloud cover aloft, thus producing a poor 

comparison with our observations (Fig. 4a). Despite this, qualitative model-observation comparisons of 𝑇𝑊𝐶 indicate that the 

models are performing well. Further discussion of these differences is included in the Supporting Information. In summary, 

the Cloudnet calculation of 𝐶% from observations is not directly equivalent to our model cloud fractions and such comparisons, 
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in isolation, should be approached with caution in the Arctic. To bypass this issue, we also use a cloud mask built from 𝑇𝑊𝐶 370 

data to aid interpretation of our results. The observed 𝑇𝑊𝐶 cloud mask (Fig. 4b) differs from the mean 𝐶% profile, with a subtle 

bimodal structure peaking at approximately 0.5 and 4.5 km (with a minimum around 2 km).  

All simulations overestimate cloud occurrence below 2.5 km (Fig. 4b), in contrast to the underestimation between 1 and 2.5 

km shown in the 𝐶% data (Fig. 4a). Mean observed cloud occurrence only reaches 75% between 0.15 km (lowest radar range 

gate) and 0.5 km, while UM_RA2M and UM_CASIM-100 have more than 98% cloud occurrence at 0.2 km. UM_RA2T 

performs slightly better, peaking to only 92% at 0.2 km; however, the improvement is not as significant between UM_RA2T 

and UM_RA2M/UM_CASIM-100 as is suggested by the mean 𝐶% profiles (Fig. 4a). ECMWF_IFS peaks at a slightly higher 

altitude, overestimating cloud occurrence by 33% at approximately 0.5 km (Fig. 4b).  

Above 2 km, each model simulation underestimates the observed cloud occurrence, in line with the 𝐶% metric comparison. 

ECMWF_IFS, UM_RA2M, and UM_RA2T perform similarly; the greatest difference aloft occurs at 4.5 km, where there is a 380 
minor peak in the mean observed cloud occurrence (up to 41%; Fig. 4b). ECMWF_IFS produces only 28% cloud cover at this 

altitude. UM_CASIM-100 cloud occurrence monotonically decreases with altitude above 3.5 km, producing only 20% cloud 

cover at 4.5 km, in agreement with the qualitative findings of Fig. 3. Therefore, with the exception of UM_CASIM-100, the 

𝑇𝑊𝐶 cloud mask indicates that modelled cloud occurrence aloft is, in fact, in reasonable agreement with observations, in 

contrast to the trends indicated by the 𝐶% data (Fig. 4a). These data suggest that the 𝐶% comparisons are misleading if used in 

isolation, likely due to the different methods for representing cloud fractions and associated sub-grid-scale variability in models 

(see Supporting Information). Cloud masks constructed from cloud water contents provide a more consistent metric between 

observations and models. 

Averaged in-cloud water content profiles are shown in Fig. 4c—d. Adiabatic 𝐿𝑊𝐶 calculated from observations with Cloudnet 

is shown in Fig. 4c. This adiabatic assumption was used in place of the HATPRO 𝐿𝑊𝑃 due to the data quality issues introduced 390 
to the latter because of the frequent occurrence of fog at altitudes below the lowest radar range gate (0.15 km; discussed further 

in Appendix A). However, we must note that this assumption likely overestimates the observed 𝐿𝑊𝐶 as these clouds are likely 

sub-adiabatic. 

The adiabatic 𝐿𝑊𝐶 peaks between 0.5 and 1 km then decreases steadily with altitude between 1 and 3 km. All simulations 

overestimate in-cloud 𝐿𝑊𝐶 between 1 and 3 km; however, below 1 km, each simulation (except UM_RA2T) performs 

reasonably well. At 0.5 km, UM_RA2T underestimates by 47 %, while UM_CASIM-100 overestimates by just 10 % and 

UM_RA2M and ECMWF_IFS are in reasonable agreement with observations. UM_RA2T and UM_RA2M have bimodal 

distributions, with peaks below 0.5 km and around 2 km, perhaps linked to their common use of the Wilson and Ballard (1999) 

microphysics scheme. The increase in 𝐿𝑊𝐶 towards the surface in UM_RA2M is suggestive of fog, and UM_RA2M is the 

only simulation to display this vertical structure. The mean 𝐿𝑊𝐶 calculated for ECMWF_IFS does not vary greatly between 400 
0.5 and 2 km; however, there is more spread in the data at 2 km than at lower altitudes, indicating that this may be a more 

dominant liquid cloud layer occurring at some time periods. Only UM_CASIM-100 displays a similar shape to the observations, 

yet its 𝐿𝑊𝐶 is often greater than the observed 𝐿𝑊𝐶 at all altitudes above 1 km. Considering that we employ an adiabatic 
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assumption for our observations, thereby giving an upper limit for the observed 𝐿𝑊𝐶, these model 𝐿𝑊𝐶 biases are likely 

greater in reality than shown here. 

All simulations agree with the Cloudnet-calculated mean 𝐼𝑊𝐶 above 4 km (Fig. 4d); in fact, UM_RA2M performs particularly 

well across the entire vertical profile. ECMWF_IFS and UM_CASIM-100 also agree well for most of the profile apart from 

slight overestimations below 1.5 km (though still within one standard deviation of the observed mean). UM_RA2T 

overestimates below 4 km, producing almost seven times the observed 𝐼𝑊𝐶 (0.019 g m-3 versus 0.003 g m-3) at 0.5 km. Shaded 

areas, depicting ± one standard deviation from the mean, also indicate that UM_RA2T is also more variable than the three other 410 
simulations and the measurements, consistent with previous studies showing its ice phase is more active than UM_RA2M in 

polar mixed-phase clouds (Gilbert et al., 2020). 

Column-integrated metrics and surface measurements provide an additional perspective for evaluating model performance with 

regards to clouds. Measured 𝐿𝑊𝑃 and precipitation fluxes are shown alongside corresponding model diagnostics in Fig. 5. 

Cloudnet-filtered 𝐿𝑊𝑃 is included in Fig. 5a, b for comparison; these data are HATPRO measurements filtered by Cloudnet 

for bad points (e.g., strong precipitation events). ECMWF_IFS, UM_RA2M, and UM_CASIM-100 produce 𝐿𝑊𝑃𝑠 in 

reasonable agreement with measurements throughout the full drift period, with the PDFs of Fig. 5b indicating that these 𝐿𝑊𝑃𝑠 

are overestimated slightly with respect to the measurements/Cloudnet data. UM_RA2M overestimates in some periods, for 

example the 𝐿𝑊𝑃 peak during the storm of 12 Sep is 230 g m-2 more than measured (Fig. 5a). In contrast, UM_RA2T 

underestimates the 𝐿𝑊𝑃 overall, with few occurrences of > 200 g m-3 (Fig. 5b). This underestimation of 𝐿𝑊𝐶 (Fig. 4c) and 420 

𝐿𝑊𝑃 (Fig. 5a, b) by UM_RA2T aligns with its overestimation of 𝐼𝑊𝐶 below 4 km; with too much ice in mixed-phase cloud, 

liquid is depleted too efficiently via the Wegener-Bergeron-Findeisen mechanism.  

Each simulation broadly captures the notable precipitation events measured (Fig. 5c—d). UM_CASIM-100 and UM_RA2T 

reproduce the measured total precipitation flux well and capture the short episodes where more precipitation was observed at 

22 Aug, 3 Sep, and 12 Sep. ECMWF_IFS and UM_RA2M also capture some precipitation events; however, the magnitude of 

these events is best reproduced by UM_CASIM-100. No simulation reproduces the precipitation intensity measured at 8 Sep. 

While the key precipitation events are largely captured by the models, with each model producing precipitation as 

predominantly snow rather than rain, the precipitation rates simulated are low and likely contribute to the lack of cloud-free 

periods as indicated by the 𝐿𝑊"#$ comparisons shown previously (Fig. 2d, e, f). 

These results therefore indicate that the modelled microphysical structure is positively biased in terms of cloud liquid with 430 
respect to observations (Figs. 4c, d—5). There is a consistent model-observation bias, with all simulations producing too much 

cloud (Fig. 4a, b) below 2.5 km. In ECMWF_IFS, UM_RA2M, and UM_CASIM-100, this cloud contains too much liquid (as 

indicated by positive biases in 𝐿𝑊𝐶 and 𝐿𝑊𝑃). Only UM_RA2T underestimates the cloud liquid properties due to its active 

ice phase. Figure 6 links the radiation, 𝐿𝑊𝑃, and 𝐶% biases of our four model simulations with respect to observations. 𝐶% 

biases are calculated as the model-observation bias between 0.15 and 3 km. Here, 𝐶% is used in place of the 𝑇𝑊𝐶 cloud mask 

as the latter is calculated from in-cloud 𝐿𝑊𝐶 and is therefore not strictly independent of 𝐿𝑊𝑃. Positive 𝐶% biases often coincide 

with positive 𝐿𝑊𝑃 biases, negative 𝑆𝑊↓ biases (Fig. 6a, d, g, j), and positive 𝐿𝑊↓ biases (Fig. 6b, e, h, k), and vice versa, 

indicating that too much cloud cover, and too much cloud liquid water, is tied to the radiative biases shown. The correlation 
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with 𝐿𝑊𝑃 bias is weaker for 𝑅"#$ than for 𝑆𝑊↓ or 𝐿𝑊↓, likely due to the additional influence of other factors (e.g., surface 

albedo) on the net radiative properties. 440 

3.2.1 Influence of CCN concentration 

Each simulation overestimates cloud occurrence below 2.5 km and struggles to maintain cloud-free conditions, problems 

previously identified for earlier versions of these models. Both Sotiropoulou et al. (2016) and Birch et al. (2012) commented 

on the need for variable, representative cloud nuclei concentrations in the IFS and the UM to enable cloud-free periods to be 

captured. A fixed accumulation-mode aerosol number and mass concentration profile was used in UM_CASIM-100; however, 

such consistency with altitude is unlikely to occur in reality. While the concentration chosen was based on previous 

measurements in the Arctic (Kupiszewski et al., 2013), aerosol number concentrations are typically very low and 

heterogeneous within the BL during the Arctic summer (Mauritsen et al., 2011; Tjernström et al., 2014) while long-range 

transport provides comparatively greater, more homogeneous concentrations aloft. 

An additional simulation with the CASIM scheme was tested, using a more representative CCN vertical profile guided by 450 
output from the UK Chemistry and Aerosol (UKCA; Morgenstern et al., 2009; O’Connor et al., 2014) global model. Details 

on the UKCA model configuration used to obtain these aerosol data are included in the Supporting Information. Using 

representative aerosol profiles as input to the CASIM scheme (with lower CCN concentrations within the lower troposphere 

and greater concentrations within the free troposphere; denoted UM_CASIM-AeroProf) affects the 𝑆𝑊↓ as expected via the 

associated influence on 𝑁! and 𝑞)(* (Fig. 7). UM_CASIM-AeroProf has a mean accumulation mode number concentration of 

18.5 ± 11.4 cm-3 below 500 m which, with comparison to the 100 cm-3 specified for UM_CASIM-100, is more appropriate for 

the region. As a result, low altitude (below 1 km) clouds have a significantly lower 𝑁! than in UM_CASIM-100: UM_CASIM-

AeroProf has a mean 𝑁! of 20.9 ± 15.9 cm-3 below 500 m, compared with 101.0 ± 40.2 cm-3 in this altitude range for 

UM_CASIM-100. Such a low 𝑁! is expected from periodic episodes of low CCN in the Arctic BL (Mauritsen et al., 2011); 

cloud residual concentrations of up to 10 cm-3 were measured on board Oden during the AO2018 expedition (Baccarnini et 460 
al., 2021).  

However, despite the differences in 𝑁! between these two CASIM simulations, 𝑞)(* does not differ much as the simulated 

clouds are not heavily precipitating (and thus cloud lifetime is largely unaffected). This similarity is also displayed in the 

diagnosed cloud fractions, related to the comparatively unaffected 𝑞)(*. Despite the consistency in cloud fractions and 𝑞)(*, the 

cloud albedo is subtly lowered (as fewer CCN are available) in UM_CASIM-AeroProf, as shown by the 𝑆𝑊↓ comparisons in 

Fig. 7a—b.  

3.3 Thermodynamic structure 

Differences between modelled and observed cloud properties are likely related to the thermodynamic structure of the 

atmosphere and how well this is modelled. Figure 8 shows temperature (𝑇) and water vapour specific humidity (𝑞) from 

radiosondes and anomalies of each simulation with respect to these measurements. Specific humidity is considered here as a 470 
relative humidity comparison would require a calculation involving temperature: Tjernström et al. (2021) note that the errors 

in temperature and humidity compensate to produce a <±3% error in relative humidity (for work with the IFS operational 
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analyses comparing also with measurements from this campaign). This error was found to be positive below 1 km and negative 

around 3–5 km, and the magnitude of these errors are within the measurement accuracy.  

Each simulation is typically too cold with respect to observations at altitudes just above the main inversion (left column; Fig. 

8): this anomaly is a consistent feature throughout the drift period and across models, however it is most prominent at the 

beginning of the drift. These trends indicate that the altitude of the modelled temperature inversion capping the BL is too high, 

likely driven by too much BL mixing and the associated too-deep cloud layers modelled in each simulation (Fig. 4b). Below 

the observed inversion, the simulations are typically warmer than measured; for example, at 18 Aug all UM simulations have 

a strong bias (> 3 K) below the observed main inversion, with ECMWF_IFS exhibiting a similar, but smaller, bias. Above 480 

approximately 3 km the 𝑇 biases are typically smaller in magnitude and variable in sign. All UM simulations display similar 

differences with respect to the radiosonde measurements; for example, each UM simulation exhibits a strong 𝑇 bias up to 4.4 

K at 6.5 km during 9 Sep.  

𝑞 biases are typically small throughout much of the atmospheric column (right column; Fig. 8), with some instances of larger 

biases. These stronger biases are not confined to the lowest 3 km as with the temperature data. Radiosonde humidity data up to 

22 Aug are variable aloft, and this variability affects the biases calculated over this period. However, a strong moisture bias of 

> 0.90 g kg-1 is evident between 2 km and 4 km over 20—22 Aug in all UM simulations. Similarly, the dry bias (of up to 1.86 

g kg-1) across the UM simulations from 2—4 Sep is notable and is also present, to a lesser extent, in ECMWF_IFS (up to 0.82 

g kg-1).  

When these data are simplified into median profiles (Fig. 9), the characteristic biases exhibited by the models become clearer. 490 

Figure 9(a, c) shows that the 𝑇 biases are small above 4 km, with all UM simulations exhibiting a slight warm bias and 

ECMWF_IFS exhibiting a slight cold bias. Similarly, moisture biases are negligible above 4 km in all simulations (Fig. 9b, d). 

However, below 4 km strong biases emerge.  

From the surface up to 0.5 km, there is a decreasing positive 𝑇 bias in all simulations. However, the positive surface 𝑇 bias is 

reduced during the freeze period for UM_RA2M and UM_RA2T (from +0.28/+0.31 K to +0.20/+0.14 K, respectively) while 

it intensifies from +0.52 K (+0.46 K) to +0.90 K (+0.56 K) for ECMWF_IFS (UM_CASIM-100) (Fig. 9c).  

During the melt period, all simulations underestimate the temperature between 1 and 3 km, yet there is a clear bimodal structure 

evident in each profile with secondary negative peaks at lower altitudes (Fig. 9a). ECMWF_IFS remains too cold across a 

deeper layer than the UM simulations, between 0.4 and 3 km. Both the IFS and the UM exhibit strong (up to –1.54 K) biases 

at 1.75 km. The negative 𝑇 bias layers at lower altitudes differ in height between the models, with ECMWF_IFS reaching –500 
0.94 K at 0.85 km while the UM simulations exhibit negligible positive biases at this height. The secondary peak in the UM 

simulations is in fact lower in altitude, at 0.4—0.5 km. 𝑇 biases are smaller than during the melt period, reaching up to –1.06 

K (ECMWF_IFS) between 0.65 km and 1 km, and the negative bias peak at 2 km seen previously is no longer present (Fig. 

9c). 

Similarly, each simulation exhibits a positive 𝑞 bias towards the surface. These biases change little between the melt and freeze 

periods (Fig. 9b, d); ECMWF_IFS produces the greatest bias in both periods (+0.31 g m-3 during both the melt and freeze), 
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while UM_RA2T produce the lowest (+0.24 g m-3 and +0.10 g m-3 during the melt and freeze, respectively). ECMWF_IFS is 

too dry, as well as too cold, between 0.5 and 4 km, while the UM simulations are typically too moist (though variable; Fig. 

9b).  

There is less variability in the 𝑞 biases during the freeze period. The UM simulations in particular exhibit only small 𝑞 biases 510 
above 0.5 km (Fig. 9d). ECMWF_IFS performs well above 2 km; however, similar to trends identified during the melt, it is 

again too dry between 0.5 and 2km.  

Figure 10 similarly shows the median 𝑇 and 𝑞 biases modelled by UM_CASIM-100 and UM_CASIM-AeroProf over the 

whole AO2018 drift period. Even though the clouds are likely more representative of the high Arctic environment in 

UM_CASIM-AeroProf than UM_CASIM-100, the thermodynamic biases are largely unchanged from the approximated 

aerosol input of UM_CASIM-100. A minor reduction in 𝑞)(* between approximately 500 m and 1.5 km in UM_CASIM-

AeroProf is reflected in the thermodynamic biases exhibited by these two simulations – UM_CASIM-100 has a stronger 

negative temperature bias at 500 m than UM_CASIM-AeroProf, and a warmer BL towards the surface, likely caused by the 

warming effect from an overestimated cloud 𝐿𝑊𝐶 and amount of cloud cover. We speculate that these biases would perhaps 

differ more so if the modelled clouds were precipitating strongly in either simulation, thus affecting 𝑞)(* and cloud lifetime.  520 

However, considering each of the UM LAM configurations shown here, there is little variability in their thermodynamic biases 

despite the differences in their representation of aerosol inputs, cloud microphysics, and large-scale cloud scheme. Interestingly, 

these biases are shared by the UM global model (UM_GLM, shown in grey; Fig. 9) used to generate lateral boundary conditions 

for each LAM. UM_GLM exhibits similar biases as its high-resolution LAM counterparts, suggesting that these 

thermodynamic biases are sourced from the driving model itself. 

3.3.1 Influence of the UM driving model 

To investigate how the large-scale forcing is influencing the UM biases, an additional test was performed over a subset of the 

drift (31 Aug to 5 Sep) using ERA-Interim to initialise the UM global model (labelled UM_RA2M-ERAI-GLM; Fig 11). This 

test was designed to evaluate whether the initial conditions of the global driving model, and therefore the associated data 

assimilation (DA) systems used to derive the operational analyses used for its initialisation, are responsible for the LAM 530 
thermodynamic biases we have found in this study. For this test, we used the UM_RA2M configuration for the LAM, and all 

global model physics options remained the same as in previous simulations (as described in Table 1); the only difference was 

in the initial conditions of the global model. As with the other UM LAM simulations, lateral boundary conditions are generated 

hourly from the global model. 

We find that UM_RA2M-ERAI-GLM exhibits 𝑇 biases following ECMWF_IFS between the surface and 3 km, inheriting the 

ECMWF_IFS near-surface temperature bias discussed previously (Fig. 11a). Over this short time period, the UM simulations 

do not have this bias. Above 3 km, UM_RA2M-ERAI-GLM follows UM_RA2M and UM_GLM, exhibiting a slight warm 

bias (0.45 K at 5.5 km) in contrast to the cold bias of ECMWF_IFS (–0.65 K at the same altitude). UM_RA2M-ERAI-GLM 𝑞 

biases track the ECMWF_IFS biases below 1 km and between 2.5 and 9 km, with clearer alignment with UM_GLM and 



 

17 of 53 
 

UM_RA2M between 1 and 1.5 km. In particular, there is a shift towards a stronger (positive) moisture bias towards the surface 540 
when the driving model is initialised with ERA-Interim. 

These results confirm that the UM LAM biases within the lower atmosphere shown in Figs. 8 and 9 are driven by biases in the 

large-scale forcing from the global model, which is likely a combined result of the model physics and the DA used to produce 

the operational analyses. Given that the Arctic lacks good in-situ observational data coverage, DA systems still rely heavily on 

their model components when creating the analysis products used for model initialisation. The comparatively comprehensive 

spatial coverage from satellites does not compensate for good in-situ observations from radiosoundings and does little to correct 

a biased model DA input (Naaka et al., 2019). Therefore, improved in-situ data coverage may improve these DA system biases 

and thus global model initial conditions. In the meantime, a different LAM configuration, with a larger nested domain with 

lateral boundaries further from the science region of interest may break the relationship between global model and LAM biases 

shown here. 550 

3.4 Links between cloud properties and thermodynamic biases 

To better understand how the model thermodynamic biases relate to cloud properties in each simulation, we split our drift 

period further into four subsections – periods 3 to 6, as illustrated in Figs. 2 and 8 – to study periods of consistent meteorology. 

Mean equivalent potential temperature (𝛩#) and 𝑞 profiles measured by radiosondes during these periods are shown in Fig. 12. 

Of the four periods considered, period 3 had cloud-free conditions most often and the clouds which were present most typically 

occurred in a single layer. Periods 5 and 6 were similar; both were cloudy and influenced synoptically by three different low-

pressure systems over their duration (Vüllers et al., 2021). 

Cloud properties and thermodynamic biases during periods 3 and 6 are shown in Fig. 13 (with similar analysis for periods 4 

and 5 included as Fig. S7). As mentioned previously, mean observed cloud occurrence was lower for period 3 than in any other 

period during the drift. All simulations overestimate the 𝑇𝑊𝐶 cloud mask below 2 km, with each UM case producing a bimodal 560 

mean profile peaking below 0.5 km and at 1.8 km (Fig. 13a). Such bimodality is less clear with ECMWF_IFS; it exhibits a 

lower layer with cloud top at 1 km and a more prominent secondary layer at 1.6 km, although the separation of these layers is 

not as distinct as in the UM cases. The secondary layer at 1.6 km has a greater 𝐿𝑊𝐶 than the lower layer, with a peak of 0.14 

g m-3 (Fig. 13b). The bimodal cloud structure is also liquid dominated in the UM simulations, where both peaks reach around 

0.1 g m-3 (and even exceed this magnitude in the 1.8 km layer), across all three configurations.  

Considering the corresponding median 𝑇 biases (Fig. 13d), there are clear correlations between negative biases and modelled 

cloud height, suggesting that cloud top 𝐿𝑊 cooling is a contributing source of these biases. The lower layer (0.75 km) bias in 

ECMWF_IFS is particularly striking, reaching –4.45 K, and corresponds with the top of a large fraction of liquid-dominated 

cloud (Fig. 13a, b). The mean 𝐿𝑊𝐶 modelled at this altitude is over three times greater than was observed, with cloud frequency 

overestimated by 73%. q biases (Fig. 13e) are negligible for ECMWF_IFS between 0.75 and 1 km, yet positive below and 570 
above this altitude range. The coinciding overestimation of cloud at these heights indicates that the IFS has simulated too much 

condensation, driven by the availability of too much moisture. Similarly, all UM simulations exhibit a moist bias between 0.5 

and 1.6 km, between the modelled cloud layers, and exhibit small dry biases where too much cloud is modelled (e.g., 0.5 km). 

These results indicate that both models have an excess of water vapour, particularly below 3 km, where negligible/dry biases 
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with comparison to observations are in fact an artefact of too much condensation and resulting cloud cover. This excessive 

cloud cover, on the other hand, has a negative effect on the temperature bias profile, resulting in strong cold biases. 

The models are in good agreement with the observed 𝐿𝑊𝐶 during period 6, with the exception of UM_CASIM-100 which 

produces double the observed 𝐿𝑊𝐶 at 0.7 km (Fig. 13g). In particular, ECMWF_IFS performs well below 2.5 km in terms of 

𝐿𝑊𝐶, 𝐼𝑊𝐶, and cloud occurrence, with the largest difference in the latter occurring at approximately 0.7 km (100% in 

ECMWF_IFS in comparison to 79% observed). Consequently, the 𝑇 biases are smaller during period 6 than period 3 for 580 

ECMWF_IFS. However, these 𝑇 biases are still present (Fig. 13i), peaking at –0.96 K at 0.65 km, likely caused by this minor 

overestimation in cloud cover, albeit with representative microphysics. 

The magnitude of the 𝑇 biases for the UM simulations is similar between both periods, likely caused by this model producing 

up to 100 % cloud cover at low altitude. All UM simulations exhibit stronger 𝑇 and 𝑞 biases below 1 km than ECMWF_IFS 

during period 6 (Fig. 13i—j). Strong negative 𝑇 biases accompany the overestimation of cloud cover in each UM case, and the 

improved model-observation agreement of 𝐿𝑊𝐶 by UM_RA2M and UM_RA2T does little to alleviate these biases with 

comparison to the overestimated 𝐿𝑊𝐶 of UM_CASIM-100. Simply, there is too much low-altitude (below 1 km) cloud causing 

too much cloud-top radiative cooling in the model, no matter which representation of cloud microphysics or large-scale cloud 

is used.  

However, while the 𝑞 biases were negligible when ECMWF_IFS exhibited particularly strong 𝑇 biases during period 3, 𝑞 590 
biases for the UM become notably negative for the similarly strong cold bias during period 6; this is the largest dry bias 

simulated over the four periods considered (with periods 4 and 5 included in the Supporting Information). The surface 𝑞 bias 

for the UM simulations is smaller during period 6 than during period 3, and the tropospheric 𝑞 bias is positive less often, 

suggesting the positive moisture bias hypothesised previously (leading to too much condensation and cloud cover) is not 

ubiquitous in the model. In fact, results shown in Fig. 13, and Fig. S7 for periods 4 and 5, suggest that either the increased 

synoptic activity or freezing sea ice conditions (or both) of periods 5 and 6 acts to reduce this moist bias in the UM. 

In summary, both models exhibit strong negative 𝑇 biases at altitudes coinciding with too much liquid-dominated cloud (e.g., 

Fig. 13a, b, d), likely caused by the consequent enhancement of cloud-top radiative cooling and subsequent feedback on low-

altitude cloudiness. 𝑞 biases improve where cloud is modelled during the melt period (Fig. 13a, e), suggesting that the 𝑞 field 

was perhaps too moist below 3 km to begin with, leading to too much condensation and excessive cloud cover. However, this 600 

hypothesis does not appear to be valid during the freeze nor at altitude, as indicated by the negative 𝑞 biases above 2.5 km 

which occur where more cloud was observed than modelled: for example, 2.5 to 4 km during period 3 for all simulations (Fig. 

13a, e), or 2.5 to 3.5 km for the UM simulations during period 6 (Fig. 13f, j). In these instances, our models produce too little 

cloud as they are too dry to facilitate cloud formation. With underestimated cloud formation, the models are also slightly too 

warm (approximately 0.3 K) due to the missing radiative cooling occurring at these altitudes in reality. 

While the model 𝑇 biases align well with their overestimation of cloud cover, our analysis thus far does not account for the 

height of the capping inversion. Therefore, incorrect placement of cloud in the models, or a too-deep or too-shallow modelled 

BL, could be contributing to these biases and thus could affect the interpretation of our results. 
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Figure 14 shows the strongest temperature inversion base identified from each model simulation and the radiosonde 

measurements. In each dataset, the strongest inversion below 3 km was identified (following Vüllers et al., 2021); if a weaker 610 
inversion was modelled at a lower altitude which was closer to the inversion base identified from the radiosonde, the model 

inversion height was adjusted accordingly. In keeping with previous analysis, radiosonde and IFS data were interpolated to the 

UM vertical grid for fair comparison; this procedure smooths some high-altitude detail in the radiosonde profiles, such that the 

strength of some higher-altitude inversions is reduced causing weaker low-altitude inversions to be identified as the primary 

inversion instead. 

These results indicate that the strongest (unadjusted) inversion in each simulation is often too high (grey points, Fig. 14), and 

weaker inversions at lower altitude are typically in better agreement with identified inversions from radiosondes. Low inversion 

bases (below approximately 0.5 km) are consistently overestimated in each simulation, particularly during the melt period (not 

shown), supporting our previous deduction that the model inversions were often too high. The detection algorithm does fail to 

capture some inversions, predominantly during the freeze period, and instead underestimates the modelled inversion base 620 
during this time window with comparison to measurements (lower right-hand points in each panel). 

Modelled and observed temperature profiles were scaled using these identified inversions to remove the differences in inversion 

height from our interpretation of the model biases (Fig. 15). When averaged over the full drift, the models are largely biased 

warm below the inversion and cold above (up to 3 km; Fig. 15a), with the exception of UM_CASIM-100 which also exhibits 

a subtle cold bias just below the inversion. This warm below/cold above signal is more consistent between the models during 

the melt period (Fig. 15b). Above the inversion, ECMWF_IFS exhibits a stronger cold bias than the UM simulations. The 

shape of the scaled profile is rather consistent between the melt and freeze with ECMWF_IFS; the model is consistently too 

warm below the inversion, and too cold above, with comparison to radiosonde measurements. However, the UM simulations, 

particularly UM_RA2M, are partially biased cold below the inversion during the freeze. As previously mentioned, biases during 

the freeze period must be interpreted with caution as the inversion detection algorithm performed less well during this time 630 

window, with several modelled inversions missed. However, these scaled 𝑇 bias profiles support our previous hypothesis that 

cloud longwave cooling is producing colder thermodynamic conditions in the models than were observed, irrespective of the 

differences between modelled and observed inversion heights. Similarly, the warm surface bias indicated previously can be 

interpreted to span most of the lower troposphere below the main inversion base, rather than solely near the surface. 

4 Discussion 

4.1 Surface radiative balance 

4.1.1 Shortwave 

The small 𝑆𝑊↓ biases exhibited by the standard UM configurations concurrent with a more significant 𝑆𝑊"#$ bias indicate that 

the modelled surface albedo is  too low. While the observed albedo may be biased high due to its calculation from a spatially 

small sample of sea ice (directly surrounding the ship), the UM surface albedo parameterisation has previously been shown to 640 
be too low in the high Arctic (Birch et al., 2009; 2012). The temperature and albedo limits used in the standard Regional 

Atmosphere parameterisation have been increased since Birch et al. (2009, 2012); however, Fig. 2 demonstrates that the snow-
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on-sea-ice parameterisation limits tested here with ECMWF_IFS and UM_CASIM-100  produce a better comparison with our 

high Arctic measurements. 

4.1.2 Longwave 

The root of the 𝐿𝑊 error in each simulation is likely the >90% liquid-dominated low cloud occurrence which is not 

representative of the observations (Fig. 4b). This problem has been previously identified in the high Arctic with both models 

used in this study (Birch et al., 2012; Sotiropoulou et al., 2016) and recent model improvements/microphysical changes have 

not sufficiently improved model performance in this regard. The positive 𝐿𝑊 biases are consistent with the too-warm surface 

𝑇 biases in all simulations (Figs. 9, 10), which is also consistent with previous findings with both models (Birch et al., 2009; 650 
Sotiropoulou et al., 2016) and with the ERA-Interim reanalysis product (Jakobson et al., 2012; Wesslén et al., 2014). Figures 

9 and 10 suggest that the UM simulations are perhaps better at capturing the near-surface 𝑇 over the freeze, while ECMWF_IFS 

consistently has a warm surface bias regardless of season. The overestimation of cloud cover and 𝐿𝑊𝐶, which drives too much 

radiative cooling at cloud top, will contribute an excess 𝐿𝑊↓ flux which would act to warm the lower BL and thus contribute 

this warm bias. Tjernström et al. (2021) suggest that surface is warmed by the atmosphere in the IFS, not the opposite, as 

indicated by the enhanced downward sensible heat flux, in combination with diminished 𝑆𝑊↓ with comparison to observations. 

Given these results, we suggest that excessive cloudiness is likely a contributing factor to the warm surface bias in all 

simulations. In particular, it is noteworthy that UM_CASIM-100 performs most poorly of the UM simulations. This result is 

disappointing given the improvement of UM_CASIM-100 over the standard Regional Atmosphere configurations in both 𝑆𝑊↓ 

and 𝑆𝑊"#$. Including CASIM aerosol processing through wet scavenging – thus enabling cloud dissipation (e.g., Stevens et 660 
al., 2017) – may rectify this issue, or the representation of prognostic ice nucleating particles in place of a simple diagnostic 

relationship between temperature and cloud ice number concentrations (e.g., Varma et al., 2021). These pathways will be 

explored in future work; however, it is highly likely that other meteorological factors (e.g., mean sea level pressure anomalies, 

and subsequent influence on cloud dynamics) and incorrect model processes (e.g., turbulent flux biases) are contributing to this 

warm surface bias across all our simulations, in addition to cloudiness (Tjernström et al., 2021). 

4.2 Lower troposphere 

4.2.1 Temperature  

Temperature biases are strongest within the lowest 3 km of our model domains (Figs. 9, 13); this is also the altitude range over 

which the models overestimate cloud occurrence. With too much cloud, cloud top radiative cooling likely lowers the 

temperature too efficiently; this, coupled with incorrect cloud positioning (e.g., period 3; Fig 13), gives a cold bias above the 670 
observed main capping inversion. Where the liquid (and ice) phase is modelled more effectively – e.g., ECMWF_IFS during 

period 6 (Fig. 13) – the associated median biases are smaller (< ±1 K), supporting this conclusion. Turner et al. (2018) note 

that the presence of cloud aloft can significantly modulate the radiative cooling response of low-level Arctic clouds – in period 

6, multi-layered clouds were prevalent, thereby potentially muting the radiative impact. In period 3, however, few clouds were 

observed and those which were present often occurred in single layers (Vüllers et al., 2021); during this period, we found the 

greatest thermodynamic biases in our models with respect to our observations. 
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The dipole in 𝑇 errors shown in Figs. 8 and 9, with a positive bias towards the surface below a negative bias between 0.5 and 

3 km, suggests that heat and moisture are not being sufficiently transported upwards from the surface or downwards from 

cooling at cloud top. This 𝑇 bias is present in all simulations during both the melt and freeze periods and could result from the 

models failing to reproduce the structure of more than one strong observed inversion, instead exhibiting comparatively smooth 680 

𝑇 profiles. As shown by Fig. 14, the height of low-altitude 𝑇 inversions are often overestimated by the models, particularly 

during the melt period (not shown): this too-deep surface mixed layer likely results in incorrect cloud placement, leading to 

thermodynamic model-observation biases on a 1-to-1 comparison. Our scaled thermodynamic analysis (Figs. 14, 15) indicates 

that, while the models are often incorrectly placing the temperature inversion (consistent with previous findings; Birch et al., 

2012), the relationship between too much cloud and strong negative 𝑇 biases suggested by Fig. 13 appears to be robust under 

these scaled height adjustments by the inversion base, and that the simulations are still largely too warm below the inversion. 

Both Sotiropoulou et al. (2016) and Tjernström et al. (2021) found a similar vertical structure of the temperature biases with 

the IFS model, with positive biases within the lower 0.5 km of the atmosphere and a consistent cold bias present around 1 km. 

Tjernström et al. (2021) found that this cold bias intensifies with time during 3-day forecasts, indicating that it is made worse 

by processes within the model. They hypothesised the mid-level convection parameterisation triggering too-efficiently within 690 
the IFS could be transporting water vapour out of the BL, resulting in too much condensation to form cloud. While our UM 

LAM simulations do not employ such a convection scheme, the global driving model does. Given the apparent close 

relationship between the biases exhibited by the LAM and global model (Fig. 9, 11), we conducted a short 6-day test with the 

global mid-level convection scheme switched off; this test caused over an order of magnitude increase in the UM_GLM cold 

biases shown in Fig. 11 (not shown). More investigation into vertical transport and mixing of scalars (temperature, moisture 

and clouds) is needed; however, such an investigation is beyond the scope of this paper. 

4.2.2 Moisture 

During the melt period, our results indicate that the UM is particularly moist throughout much of the troposphere (Fig. 9b), 

suggesting that the melting ice is enabling a too-great moisture source from the surface to the atmosphere. However, this 

tropospheric bias appears to be rectified during the freeze, while the surface bias remains (Fig. 9d); therefore, the hypothesised 700 
melting ice source is likely not the only contributor of this moisture bias. Latent heat fluxes measured during the expedition 

indicate no significant change between the melt and freeze periods (not shown); therefore, the hypothesised increased moisture 

flux during the melt is unlikely.  

Given the close relationship between our UM LAM and global model biases (Figs. 9, 11), increased poleward moisture 

transport introduced at the lateral boundary conditions from the mid-latitudes could partly explain these biases. This 

phenomenon has been previously identified to be a consequence of climate change and may promote increased cloudiness in 

the polar regions (e.g., Held and Soden, 2006; Vavrus et al., 2009; Allen et al., 2012; Bender et al., 2012). The moist surface 

bias is also present over both the melt and freeze in ECMWF_IFS; however, ECMWF_IFS is routinely too dry between 0.5 

and 4 km, in contrast to the UM. Instead, the IFS traps too much moisture in the lowest 0.5 km, suggesting that the upward 

transport of moisture may be insufficient, the cloud sink above 0.5 km is too great, or there are consistent biases introduced via 710 
assimilation of data other than the radiosonde data (e.g., satellite).  
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The moist bias exhibited by ECMWF_IFS towards the surface has previously been highlighted by Sotiropoulou et al. (2016), 

who suggested that this problem may explain why this model struggles to reproduce humidity inversions above the BL. There 

are instances where negative 𝑇 biases coincide with negative q biases at altitudes just above the main temperature inversion 

(for example, at 27 Aug; Fig. 9). Moisture inversions have often been observed during the Arctic summertime (Sedlar et al., 

2012; Nygård et al., 2014); ECMWF_IFS fails to reproduce such inversions observed during AO2018. This dry bias above 

the observed capping inversion around 27 Aug is not as strong in the UM simulations, but the UM does successfully reproduce 

a small humidity inversion. 

4.3 Cloud macro- and microphysics 

The UM simulations have >98% cloud occurrence around 0.2 km over all four periods. Reduced 𝑆𝑊↓ biases with respect to the 720 
standard Regional Atmosphere configurations indicate that UM_CASIM-100 does improve agreement with our high Arctic 

observations (Table 3), though there are still clear deficiencies in model capability.  

The ice phase differs more between the models than the liquid phase, likely due to its strong relationship with temperature: 

UM_RA2M and UM_RA2T use the Fletcher (1962) parameterisation for primary ice formation, while ECMWF_IFS uses 

Meyers et al. (1992) and UM_CASIM-100 uses Cooper (1986). Each of these parameterisations is inherently temperature-

dependent, with Meyers et al., (1992) producing the largest ice number concentration, and Fletcher (1962) producing the 

smallest. Given that each simulation does not reproduce the observed temperature profile well below 3 km, the onset of ice 

nucleation (occurring below a threshold of –10 °C in the UM, for example) will be affected. If ice production is triggered 

prematurely, cloud liquid properties should be dampened via the Wegener-Bergeron-Findeisen mechanism; evidence of this 

can be seen in UM_RA2T during period 3, where an overestimation of ice below 2 km corresponds with a smaller mean 730 

𝐿𝑊𝐶than the other simulations (Fig. 13b—c).  

When considering the drift as a whole, 𝐼𝑊𝐶 is overestimated by all simulations (except UM_RA2M) below 1.5 km, where our 

𝑇 and 𝑞 biases are at their greatest. To test whether the method of parameterising primary ice itself has any effect on these 

biases, we used the Fletcher (1962), Cooper (1986), and Meyers et al. (1992) parameterisations over a short test period within 

the CASIM framework; however, we found little difference in the tropospheric ice with the different parameterisation methods 

(Fig. S8). Given the spread in 𝐼𝑊𝐶 results shown here, further investigation into the best methods to represent primary ice 

production in such global and NWP models should be considered in future, with specific focus on employing prognostic ice 

nucleating particles or a diagnostic temperature-dependent function based on Arctic measurements (Li and Wieder et al., 2022) 

to facilitate ice formation   

Below 3 km, the mean modelled 𝐿𝑊𝐶 often exceeds the observed value (Fig. 4, 13). This overestimation of cloud liquid is also 740 

evident from the 𝐿𝑊𝑃 data, with each simulation exhibiting a greater 𝐿𝑊𝑃 than was measured (Fig. 5) when averaged over 

each period (not shown). The exception to this is UM_RA2T; this is the only simulation which often underestimates 𝐿𝑊𝑃, due 

to its increased cloud ice mass within the lower troposphere in comparison to the other simulations (Fig. 4d).The mean 

measured 𝐿𝑊𝑃 during period 3 is 122.8 g m-2, yet UM_RA2T only produces 70.4 g m-2. In contrast, UM_RA2T reproduces 

the mean measured 𝐿𝑊𝑃 well during period 6 (48.5 g m-2 measured versus 43.2 g m-2 modelled), with agreement improving 

with time throughout the drift. This efficient ice-producing simulation suggests that the ice phase influences cloud properties 
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as time progresses more so in reality, while the other UM cases, with less dominant ice microphysics, retain too much liquid 

in comparison to the measurements. To an extent, ECMWF_IFS also behaves in this way, retaining too much cloud liquid; 

however, it performs much better than UM_RA2M and UM_CASIM-100 in reproducing the mean 𝐿𝑊𝐶 and 𝐼𝑊𝐶 during 

period 6 (Fig. 13g, h). 750 

These simulations suggest that the model development community has effectively reduced the ice phase efficiency too much 

in central Arctic mixed-phase clouds. The surface 𝐿𝑊 balance is positively biased, and these excessive low-level clouds are a 

contributing factor: by enabling too much liquid to form,  these clouds efficiently absorb and re-emit upwelling 𝐿𝑊 radiation 

back towards the surface. Our results show that we have made great improvements in the 𝑆𝑊, driven by the improvements we 

have made to our cloud physics representation in these models (in addition to a better estimation of the surface albedo). 

However, the too-consistent cloud cover coupled with too much cloud liquid is hampering our model capability, and further 

developments (such as the inclusion of representative CCN and INP inputs to double-moment cloud schemes to facilitate cloud 

dissipation) will likely go some way to tackle this issue. 

5 Conclusions 

Met Office UM and ECMWF IFS model performance was evaluated using observations made in the high Arctic during the 760 
Arctic Ocean 2018 expedition, with particular focus on modelled clouds and the surface radiative balance. Four key simulations 

were considered: a global configuration with the IFS and three nested configurations with the UM (each using different 

combinations of large-scale cloud and microphysics schemes but driven by the same global model setup). These four 

simulations were compared with observations by using Cloudnet to build model-comparable cloud fractions and water contents 

and thus identify consistent model weaknesses between the configurations chosen.  

Modelled BLs are often too deep (Fig. 9, 14), particularly during the melt period, and thermodynamic biases, cloud occurrence, 

and cloud microphysics are consequently in poor agreement with observations below 3 km. Excessive low-cloud occurrence is 

prevalent in both models (Fig. 3) and no simulation adequately reproduced cloud-free periods and associated increases in 

longwave net emission (Fig. 2). Strong negative temperature biases (Figs. 8, 9, 13) coincide with too-frequent liquid-dominated 

cloud layers (Fig. 13a, b, f, g), likely associated with over productive cloud-top radiative cooling and subsequent feedbacks on 770 
low-level cloudiness in the models. Cloud liquid and ice water contents, especially below 1 km, were within an order of 

magnitude of the observations (Fig. 4), but clouds occurred too frequently, contained too much liquid between 1 and 3 km, and 

were often at too-high an altitude (Fig. 13a—c). 

Radiative interactions are in better agreement with observations and all models capture the observed distribution of 𝑆𝑊"#$ and 

𝐿𝑊"#$ better during the sea ice freeze period in comparison to the melt period (Fig. 9). Improved radiative interactions and 

thermodynamic biases during the freeze can be linked with improved agreement of cloud occurrence and microphysics (Fig. 

13, S7). The surface albedo in each model configuration is underestimated with respect to observational estimates (see 

Supporting Information), but this is unsurprising given the models are representing an average albedo over a 1.5 / 9 km grid 

box while our observed estimates are from the area immediately surrounding the ship. Updating the surface albedo 

parameterisation limits used within the UM Regional Atmosphere configurations (UM_RA2M/UM_RA2T) to those used in 780 
the Global Atmosphere GA6.0/6.1 configuration (UM_CASIM-100) greatly improves our surface albedo comparison with 
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observational estimates (see Supporting Information) and thus contributes to the good comparison of UM_CASIM-100 with 

measured shortwave radiation data. 

We propose that four factors are important to failings in our model simulations:  

1. The choice and use of large-scale cloud schemes at high resolution: 

o Both the UM and IFS poorly capture Cloudnet-calculated cloud fractions from observations over Aug—Sep 

2018 in the central Arctic, particularly at altitudes between 2 km and 8 km (Fig. 4a). Building a comparable 

mask based on 𝑇𝑊𝐶 shows that the cloud modelled aloft is actually in good agreement with observations 

(Fig. 4b), while highlighting that the over prediction of cloud occurrence below 3 km is in fact much worse 

than suggested by the 𝐶% comparison. As such, we suggest that cloud fractions should not be used in isolation 790 
as a model comparison metric over the Arctic as models represent this parameter differently at the present 

time (as detailed in the Supporting Information) and we would advocate for the use of cloud water contents 

to derive comparable cloud occurrence metrics between observations and models. 

2. The cloud microphysics scheme chosen to represent resolved clouds: 

o UM_CASIM-100 performs best in terms of 𝑆𝑊"#$ (Fig. 2, Table 3), but it struggles to capture cloud-free 

episodes, thus producing a 𝐿𝑊"#$ PDF which is too narrow in comparison to our measurements. 

ECMWF_IFS shares the too-narrow 𝐿𝑊"#$ PDF of UM_CASIM-100; however, it often produces a IWC in 

reasonable agreement with observations, and its mean 𝐿𝑊𝐶 profile does agree particularly well with the 

observations at times (e.g., period 6; Fig. 13g). Of the UM simulations considered, UM_CASIM-100 is in 

best agreement with both ECMWF_IFS and observations in terms of net radiation, 𝑆𝑊"#$ and 𝑆𝑊↓. This 800 
improved radiative agreement can be linked to its better cloud microphysical agreement with our Cloudnet-

derived cloud liquid water content over the standard Regional Atmosphere configurations (Figs. 4, 5, 13); 

however, UM_CASIM-100 produces even poorer cloud fractions aloft than either UM_RA2M or 

UM_RA2T.  

3. Representative CCN concentrations, and thus droplet number concentrations, as a function of altitude: 

o Representative CCN concentrations in UM_CASIM-AeroProf somewhat improves the overestimation of 𝑞)(* 

within low level clouds in UM_CASIM-100. However, the 𝑞)(* decrease is not sufficient to trigger an 

increase in liquid precipitation, which would thus decrease cloud lifetime, and so the modelled 𝐶% is 

essentially unchanged (Fig. 7). Crucially, thermodynamic biases with respect to observations are not 

improved through this enhanced complexity (Fig. 10), highlighting that these biases may not be fixed by a 810 
more comprehensive representation of cloud physics. Further work is required, with the inclusion of wet 

scavenging of aerosols and prognostic INP, to rule out whether such processes could improve the model 

biases over and above the inclusion of representative aerosol concentrations alone. 

4. The global model analyses used to produce boundary conditions for high resolution nests: 

o The thermodynamic biases identified in our models differ only a little between the UM simulations despite 

differences in their cloud configurations. Comparisons with the global model show that the biases within the 

LAM are largely inherited from the global model and its initial conditions (Fig. 9, 11); therefore, for LAM 
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configurations such as that tested here, we will not obtain the true benefit of more sophisticated cloud 

microphysics schemes in NWP simulations until we address the large-scale biases in their driving models/DA 

system. 820 

While representative CCN concentrations are indeed important for properly reproducing Arctic cloud structure and its 

consequential impact on the net surface radiation, our findings indicate that such representative cloud nuclei inputs still have 

only a small impact on thermodynamic biases in the lower troposphere. For our given LAM configuration, we speculate that 

these biases will always be inherited from the driving model/DA and will continually bias cloud formation processes and BL 

depth; however, using an increased domain size, with the science area of interest as far from the lateral boundaries as possible, 

may help to reduce the influence of the driving model/DA. The issue of inherited thermodynamic biases is concerning as both 

the UM global model and IFS are both used within the community to drive NWP configurations of the same model (UM) or 

others (IFS).  For example, the IFS configuration tested here is similar to that used by ERA5; therefore, these biases could 

influence future high Arctic NWP simulations if these reanalyses are used for initialisation.  

Our recommendations are thus twofold. To improve our Arctic cloud modelling capability, we must continue to improve the 830 
cloud physics description striving for an optimum complexity, such as the introduction of representative CCN concentrations 

and double-moment cloud liquid illustrated here, in addition to the inclusion of prognostic INP and associated aerosol 

processing mechanisms. However, we must concurrently address the overabundant occurrence of a too-well-mixed and too-

cloudy lower troposphere, and tackle the resultant thermodynamic biases, in our global driving models and their respective DA 

systems. 
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Appendix A Cloudnet mishandling of fog data 

𝐿𝑊𝑃 measurements from the HATPRO microwave radiometer were used in this study; this instrument provides measurements 

of microwave brightness temperatures, from which 𝐿𝑊𝑃 is derived for the full atmospheric column above the instrument (here 

located approximately 13 m above the surface). This includes measurement of liquid clouds at altitudes below the radar’s first 840 
range gate at 156 m. Fog periods occurred frequently throughout the expedition (Vüllers et al., 2021); therefore, we had several 

instances where liquid fog was measured with the HATPRO with small quantities of liquid, or none, detected in the clouds 

above (from lidar/radar). 

Cloudnet calculates an offset to be deducted from the 𝐿𝑊𝑃 time series dependent upon its categorisations of cloud to ensure 

that liquid is partitioned throughout the cloud column only if liquid clouds were present. This offset is non-uniform, calculated 

as a given fraction of the 𝐿𝑊𝑃 signal on a daily basis, and is deducted from the 𝐿𝑊𝑃 data to ensure liquid partitioning is 

conducted correctly within the Cloudnet algorithm. Given the frequency of fog occurrence, this offset was often overestimated 

and too much liquid data were removed, thus negatively impacting the 𝐿𝑊𝑃 and 𝐿𝑊𝐶 comparisons with our model simulations. 

To rectify this problem, we removed the 𝐿𝑊𝑃 offset calculation from the Cloudnet procedure, enabling all ingested data to be 

used by Cloudnet. We then compared these adapted Cloudnet 𝐿𝑊𝐶 data to a 𝐿𝑊𝐶 calculated under an adiabatic assumption to 850 

test whether the latter could be used as an approximation of the true 𝐿𝑊𝐶 if there was not as much fog present during the 

expedition. Figure A1 shows this comparison using all data from the drift period and indicates that, by keeping all fog liquid 

data in the time series, Cloudnet artificially partitions these data to liquid cloud layers identified by the lidar, leading to too 

much liquid in clouds within the lowest 1 km of the atmosphere (with comparison to the adiabatic profile). These data also 

indicate that we can safely use the adiabatic 𝐿𝑊𝐶 as this artificial liquid enhancement is confined to the lowest 1 km and does 

not significantly affect the comparison for higher altitudes. Following these comparisons, we chose to include the adiabatic 

𝐿𝑊𝐶 in our comparisons with model simulations to exclude the artificial enhancement of cloud liquid at low altitudes in our 

measurement data. However, it must be noted that it is unlikely that these clouds are truly adiabatic and therefore we are 

potentially overestimating the observed cloud liquid water content in this study. 
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Tables 

Table 1: Summary of the four model configurations to simulate cloud and thermodynamic conditions observed over the full AO2018 

drift period in this study. Three additional simulations included for further investigation of results are listed in shaded sections below. 

Simulation Details References 

ECMWF_IFS Cy46r1; cloud and large-scale precipitation following update to Cy36r4. 

Snow included in all cloud fraction and cloud ice water content analyses. 

Forbes and Ahlgrimm 

(2014) 

UM_CASIM-100 UM with LAM using CASIM scheme operating with 100 cm-3 

accumulation mode aerosol particles over the full model column and across 

the entire LAM. Droplet activation: Abdul-Razzak and Ghan (2000); 

primary ice formation: Cooper (1986). Diagnostic cloud fraction and 

condensate from large-scale cloud (Smith, 1990) scheme. 

Smith (1990); Hill et al. 

(2015); Grosvenor et al., 

(2017); Kupiszewski et al. 

(2013) 

UM_RA2T UM with LAM operating with the tropical regional atmosphere 

configuration (RA2T). Prognostic cloud and prognostic condensate (PC2) 

cloud scheme used with cloud microphysics based on Wilson and Ballard 

(1999). 

Wilson and Ballard 

(1999); Wilson et al. 

(2008); Bush et al. (2020) 

UM_RA2M UM with LAM operating with the mid-latitude regional atmosphere 

configuration (RA2M). Wilson and Ballard (1999) cloud microphysics 

scheme with diagnostic cloud fraction and condensate from large-scale 

cloud (Smith, 1990) scheme. 

Smith (1990); Wilson and 

Ballard (1999); Bush et 

al. (2020) 

UM_GLM UM global model operating a N768 resolution (corresponding to 

approximately 17 km at the mid-latitudes) using the Global Atmosphere 6.1 

configuration with a rotated pole. Uses 70 quadratically-spaced vertical 

levels up to 80 km with PC2 large-scale cloud and cloud microphysics 

based on Wilson and Ballard (1999). Data over the full drift period are 

included to contextualise thermodynamic profiles extracted from the UM 

LAMs. 

Walters et al. (2017); 

Wilson et al. (2008); 

Wilson and Ballard 

(1999) 

UM_CASIM-AeroProf As UM_CASIM-100, except day-averaged soluble coarse- and 

accumulation-mode concentrations from UKCA are input in place of the 

constant profile (see Supporting Information for details) to indicate role 

of realistic aerosol number concentrations. 

Morgenstern et al. (2009); 

O’Connor et al. (2014); 

Mann et al. (2010) 

UM_RA2M-ERAI-GLM As UM_RA2M LAM configuration, except using ERA-Interim data to 

initialise the UM global model instead of standard global start dumps. Data 

only included from a short subset of the drift period (31 Aug to 5 Sep) for 

further analysis of temperature and moisture profiles. 

Dee et al. (2011) 
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Table 2: Summary of cloud microphysical process representation in each simulation setup. Chosen processes are highlighted as key 

differences between the schemes. k = model level; Z = altitude. 

 Model 

Physical 

process 

ECMWF_IFS 

 

UM_CASIM-100 UM_RA2T UM_RA2M 

Prognostic cloud 

variables  

Cloud fraction, vapour, 

cloud liquid, cloud ice, 

rain, and snow  

(single moment) 

 

Vapour, cloud liquid, cloud 

ice, graupel, rain, and snow 

mixing ratios and number 

concentrations (double 

moment) 

Liquid, ice, and total 

cloud fractions; vapour, 

cloud liquid, cloud ice (all 

ice, includes snow), and 

rain (single moment). 

Vapour, cloud liquid, 

cloud ice (all ice, includes 

snow), and rain  

(single moment). 

Large-scale 

cloud fraction 

(described in) 

Prognostic  

(Tiedtke, 1993) 

 

Diagnostic  

(Smith, 1990) 

Prognostic  

(Wilson et al., 2008) 

Diagnostic  

(Smith, 1990) 

Droplet number 

concentration 

Diagnostic. Wind-speed 

dependent function for 

radiation calculations 

(following Martin et al., 

1994). For auto-

conversion, diagnosed by 

land-surface mask (ocean 

surface, fixed); 50cm-3. 

 

Prognostic; Abdul-

Razzak and Ghan (2000), 

referencing an 

accumulation mode aerosol 

profile of 100cm-3 at all Z. 

Diagnosed by land-

surface mask (ocean 

surface, fixed); 100 cm-3. 

Tapered to 50 cm-3 at Z ≤ 

50 m from 150 m. 

 

Diagnosed by land-surface 

mask (ocean surface, 

fixed); 100 cm-3. Tapered 

to 50 cm-3 at Z ≤ 50 m from 

150 m. 

Critical grid-box 

mean RH for 

condensation 

𝑅𝐻&'($ = 0.8, increasing 

towards the BL as a 

function of height. 

0.96 at the surface and 

decreases monotonically 

upwards to 0.80 at 0.85 km, 

above which it remains 

constant with altitude (k >= 

15) (Grosvenor et al., 

2017) 

0.96 at the surface and 

decreases monotonically 

upwards to 0.80 at 0.85 

km, above which it 

remains constant with 

altitude (k >= 15) 

(Grosvenor et al., 2017) 

0.96 at the surface and 

decreases monotonically 

upwards to 0.80 at 0.85 

km, above which it 

remains constant with 

altitude (k >= 15) 

(Grosvenor et al., 2017) 
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Table 3: Mean surface radiation biases (model-observations) over periods 3—6, with mean measured values for reference. 

Observations included are hourly-integrated values for consistency with the models. All values are in W m-2. Smallest biases are 

highlighted in bold. 

Component Observations ECMWF_IFS UM_CASIM-100 UM_RA2T UM_RA2M 

𝑆𝑊"#$ 

P3 24.35 16.41 6.09 39.69 38.02 

P4 19.45 4.23  0.85 24.74  20.77 

P5 9.87 9.75  7.88 19.81  18.09  

P6 7.37 6.75  5.11 16.67  15.3  

𝑆𝑊↓ 

P3 117.39 -20.4  -10.93 7.44 4.08 

P4 72.86 -6.84  -1.49  14.68  6.99  

P5 55.55 0.9  9.7  16.43  12.66  

P6 41.66 -0.3  -2.21  11.86 7.48  

𝐿𝑊"#$ 

P3 -21.38 9.56 16.32 10.48 10.71 

P4 -9.48 3.16 4.85 2.71 3.25 

P5 -11.77  -2.96 1.89 -3.77 -3.65 

P6 -13.22 -0.27 5.46 -3.6 -0.29 

𝐿𝑊↓ 

P3 285.82 19.0 22.41 18.42 18.66 

P4 303.12 6.0 6.5 5.04 5.54 

P5 291.53 0.31 2.6 -2.25 -2.15 

P6 286.88 5.02 9.6 0.28 5.13 
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Figures 

 
Figure 1: LHS: Map of cruise track and sea ice cover during AO2018 expedition from Vüllers et al. (2021), with drift period (red) 

in inset. RHS: Ship position during the drift period (red), with grid outline for UM_CASIM-100, UM_RA2T, and UM_RA2M shown 

in blue and mid-points of ECMWF_IFS grid indicated by yellow crosses. Note grid size difference for illustrative purposes and not 

to scale: UM grid boxes are 1.5 × 1.5 km, IFS grid boxes are 9 × 9 km in size.  
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Figure 2: 𝑆𝑊"#$, 𝐿𝑊"#$, and 𝑅"#$ simulated by UM_RA2M (dark blue), UM_RA2T (light blue), UM_CASIM-100 (green), and 

ECMWF_IFS (yellow). Hourly-averaged measurements on board the ship (black) shown for comparison. LHS: time series; RHS: 

PDFs. PDFs are split between melting and freezing sea ice conditions using a threshold of 28 Aug as indicated by the red vertical 

dashed line in panels (a), (d), and (g). Radiation terms are defined as positive downwards. Sub-periods used in subsequent sections 

are marked (grey) in panel (g). 
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Figure 3: Total water content (left, 𝑇𝑊𝐶) and cloud fraction (right, 𝐶%). (a—b)	calculated from observations using Cloudnet and 

diagnosed by (c—d) ECMWF_IFS, (e—f) UM_CASIM-100, (g—h) UM_RA2T, and (i—j) UM_RA2M. Missing measurement data 

are indicated by hatched areas; times where data are missing from the observations are removed from the model data to provide a fair 

comparison. Missing data periods differ between the 𝑇𝑊𝐶 and 𝐶% products due to the different instrumentation requirements within 

Cloudnet for each. 
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Figure 4: Comparison between (a) mean 𝐶% observed (black, calculated using Cloudnet) and modelled (UM_RA2M = dark blue; 

ECMWF_IFS = yellow; UM_CASIM-100 = green; UM_RA2T = light blue) over the AO2018 drift period. (b) 𝑇𝑊𝐶 cloud mask 

comparison, where masks are calculated using only in-cloud data as described in Sect. 2.4. (c—d) Same comparison for liquid and 

ice cloud water contents respectively, using in-cloud data only. 𝐿𝑊𝐶 data from the observations are calculated using Cloudnet by 

assuming an adiabatic profile (see Appendix A). Lines indicate the mean profiles of each dataset, shaded areas depict ± one standard 

deviation from the mean. Uncertainties associated with the retrieval process are not shown. 
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Figure 5: Time series of (a—b) liquid water path (𝐿𝑊𝑃) and (c—d) total precipitation flux at the surface over the full drift period. 

(a—b) HATPRO measurements (grey) are included for comparison with the model data (coloured markers). 𝐿𝑊𝑃 data averaged on 

to the UM grid by Cloudnet are shown in black (Obs_UMgrid). (c—d) Weather sensor (PWS) measurements of total precipitation 

from the 7th deck (grey) are included for comparison with model rain and snow fields. (a, c) model data shown every 3 hours for 

clarity; (b, d) all model data included for comparison. 
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Figure 6:  Model biases in radiation terms (𝑆𝑊↓ (left), 𝐿𝑊↓ (middle), and 𝑅"#$ (right)), 𝐿𝑊𝑃, and 𝐶%. Model-observation biases are 

calculated hourly for the radiation and 𝐿𝑊𝑃 terms using measurements from the ship-based radiometers and HATPRO microwave 

radiometer, respectively. Shading: model-observation difference between mean 𝐶% below 3 km, where model data below the height 

of the lowest radar range gate (156 m) is excluded from the comparison with observations. Correlation coefficients for the radiation-

LWP (top) and radiation-𝐶% regressions (bottom) are noted in the top right of each panel. 
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Figure 7: Comparison of UM_CASIM-100 and UM_CASIM-AeroProf, demonstrating the influence of representative aerosol 

concentrations on the modelled cloud structure. (a—b) downwelling shortwave radiation (𝑆𝑊↓) at the surface, with observations 

(black) shown for comparison; (c—e) 𝐶%; (f—h) cloud droplet number concentration (𝑁!); and (i—k) liquid water mixing ratio (𝑞)(*). 

(c, f, i): UM_CASIM-100; (d, g, j): UM_CASIM-AeroProf; (e, h, k): mean profiles with ± one standard deviation shown in shading. 

Radiative differences are only notable between 22 Aug and 27 Aug. Slight differences in 𝑞)(* and cloud fraction can also be identified 

during this period; for example, UM_CASIM-100 produces a larger cloud fraction below 2 km at 23 Aug 

 

 



 

37 of 53 
 

 

Figure 8: 𝑇 (left) and 𝑞 (right) measured by the radiosondes over the AO2018 drift period. (a—b): radiosonde data re-

gridded to the UM vertical grid for model comparisons. (c—d): biases of IFS data, re-gridded to the UM vertical grid, with 

respect to observations. (e—j) UM_CASIM-100, UM_RA2T, and UM_RA2M biases, with no vertical re-gridding. The 

common vertical grid (from the UM) provides 50 vertical levels below 10 km, with 21 of these below 2 km. The black line 

in all panels depicts the altitude of the main inversion base as identified using the radiosonde measurements, and 

meteorological time periods with common characteristics are indicated with grey dashed lines (see Vüllers et al., 2021 for 

details). 

 



 

38 of 53 
 

 

Figure 9: Median profiles of modelled (a, c) 𝑇 and (b, d) 𝑞 biases with respect to the radiosonde measurements over the sea ice melt 

(top) and freeze (bottom) periods (using 28 Aug as a threshold). Model data are coloured as previous (ECMWF_IFS: yellow; 

UM_CASIM-100: green; UM_RA2T: light blue; and UM_RA2M: dark blue) and ± one standard deviation shown to illustrate 

variability. Median anomalies from the UM global model (UM_GLM; grey) are also included for reference; variability is not shown 

for these data.  
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Figure 10: Temperature (left) and moisture (right) biases exhibited by the UM_CASIM-100 (green) and UM_CASIM-AeroProf 

(purple) simulations with respect to radiosonde measurements made over the entire drift period.  ± one standard deviation shown in 

shading to illustrate variability. 
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Figure 11: Median 𝑇 (left) and 𝑞 (right) biases from a subset of the drift (31 Aug to 5 Sep) for ECMWF_IFS (yellow), UM_RA2M-

ERAI-GLM (red), UM_RA2M (dark blue), and UM_GLM (grey). UM_RA2M-ERAI-GLM biases follow ECMWF_IFS biases up 

to approximately 1 km, above which they largely behave more like the other UM cases.  ± one standard deviation shown in shading 

to illustrate variability. 
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Figure 12: Mean profiles of (a) equivalent potential temperature (𝜃#) and (b) 𝑞 measured by radiosondes launched during periods 

3—6 of the expedition, with ± one standard deviation shown in shading. 
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Figure 13: Comparison of mean cloud mask, 𝐿𝑊𝐶, and 𝐼𝑊𝐶 profiles with median biases in 𝑇 and 𝑞 with respect to radiosondes for 

period 3 (a—e, top row) and period 6 (f—j, bottom row). Again, observed 𝐿𝑊𝐶 calculated assuming adiabatic conditions using 

Cloudnet. ± one standard deviation shown in shading to illustrate variability. 
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Figure 14: Model temperature inversion base as a function of the identified inversion base from radiosonde (RS) measurements. org. 

inv: strongest inversion below 3 km, identified following Vüllers et al. (2021). adj. inv: where models exhibit a secondary weaker 

inversion at lower altitude in better agreement with identified radiosonde inversions, these identified inversions are adjusted 

accordingly. unadj.inv: unadjusted primary inversions, not used for further analysis and shown for reference only. Correlation 

coefficients for the combined adj. inv plus org. inv data are quoted in red in at the top of each panel. 
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Figure 15: Scaled median model-observation 𝑇 bias profiles for the full drift (left), melt (middle), and freeze (right) periods. Profiles 

are scaled such that –1 is the surface, 0 is the main inversion base, and 1 is 3 km.   
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Figure A1: Comparison of mean 𝐿𝑊𝐶profiles calculated using an adiabatic assumption (black, ± one standard deviation shown in 

dark grey shading) and from HATPRO 𝐿𝑊𝑃 measurements (grey, ± one standard deviation shown in light grey) without the Cloudnet 

offsetting procedure. 

Data availability 

UK contributions, as well as selected other data, are available within the MOCCHA (Microbiology-Ocean-Cloud Coupling in 

the High Arctic) data collection in the Centre for Environmental Data Analysis (CEDA) archives (http://archive.ceda.ac.uk/). 

Other cruise data are available from the Bolin Centre for Climate Research MOCCHA/AO2018 holdings 

(http://bolin.su.se/data). 

Author Contributions 

GY led the model data analysis, aided by PF, RP, JD, and RF. JV led the measurement and Cloudnet data analysis, with 

contributions from PA, IMB, MT, and EO. IMB, PA, MT, and JP performed the measurements during AO2018. IMB, MT, JD, 900 
PF, RN, GY and JV all contributed to the study design. All authors contributed to the discussion of results and writing of the 

manuscript. 

Competing Interests 

The authors declare that they have no conflict of interest. 



 

46 of 53 
 

Acknowledgements 

This work was supported by the UK Natural Environment Research Council (NERC; grant no. NE/R009686/1) and the Knut 

and Alice Wallenberg Foundation (grant no. 2016-0024). The Swedish Polar Research Secretariat (SPRS) provided access to 

the icebreaker Oden and logistical support. We are grateful to the Chief Scientists Caroline Leck and Patricia Matrai for 

planning and coordination of AO2018, to the SPRS logistical staff and to I/B Oden's Captain Mattias Peterson and his crew.  

The Atmospheric Measurements and Observations Facility (AMOF) of the UK National Centre for Atmospheric Science 910 
(NCAS) provided the cloud radar, HALO lidar, RPG HATPRO radiometer, Campbell ceilometer, Kipp & Zonen radiometers, 

and Vaisala radiosounding station. The soundings were supported by Environment and Climate Change Canada in collaboration 

with the Year of Polar Prediction, Polar Prediction Project.  

We acknowledge use of the Monsoon2 system, a collaborative facility supplied under the Joint Weather and Climate Research 

Programme, a strategic partnership between the Met Office and the Natural Environment Research Council. This work also 

used JASMIN, the UK collaborative data analysis facility, and was achieved in part with help from the Centre for 

Environmental Modelling and Computation (CEMAC), University of Leeds. 

References 

Abdul-Razzak and Ghan: A Parameterization of Aerosol Activation, Part II: Multiple Aerosol Types, J. Geophys. Res., 105, 

6837–6844, doi:10.1029/1999JD901161, 2000 920 

Acosta Navarro, et al.: Link between autumnal Arctic sea ice and Northern Hemisphere winter forecast skill. Geophysical 

Research Letters, 47, e2019GL086753. https://doi.org/10.1029/2019GL086753, 2020. 

Abel and Boutle: An improved representation of the raindrop size distribution for single‐moment microphysics schemes. 

Q.J.R. Meteorol. Soc., 138: 2151-2162. doi:10.1002/qj.1949, 2012. 

Achtert, P., O'Connor, E. J., Brooks, I. M., Sotiropoulou, G., Shupe, M. D., Pospichal, B., Brooks, B. J., and Tjernström, M.: 

Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014, Atmos. Chem. 

Phys., https://doi.org/10.5194/acp-20-14983-2020 , 2020. 

Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily 

driven by black carbon and tropospheric ozone. Nature, 485, 350–354, https://doi.org/10.1038/nature11097, 2012. 

AMAP, 2021. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers. Arctic Monitoring 930 
and Assessment Programme (AMAP), Tromsø, Norway. 16 pp 

Bender, F.A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983-2008: 

Observational support for a poleward shift. Clim. Dyn., 38, 2037-2053, doi:10.1007/s00382-011-1065-6. 

Bigg, E. K.: The formation of atmospheric ice crystals by the freezing of droplets, Quarterly Journal of the Royal 

Meteorological Society, 79, 510–519, doi: 10.1002/qj.49707934207, 1953. 



 

47 of 53 
 

Birch, C. E., Brooks, I. M., Tjernström, M., Milton, S. F., Earnshaw, P., Söderberg, S., and Persson, P. O. G. (2009), The 

performance of a global and mesoscale model over the central Arctic Ocean during late summer, J. Geophys. Res., 114, 

D13104, doi:10.1029/2008JD010790. 

Birch, et al.: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies, 

Atmos. Chem. Phys., 12, 3419–3435, https://doi.org/10.5194/acp-12-3419-2012, 2012. 940 

Boeke and Taylor: Evaluation of the Arctic surface radiation budget in CMIP5 models, J. Geophys. Res. Atmos., 121, 8525–

8548, doi:10.1002/2016JD025099, 2016. 

Boucher, et al.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group 

I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, 

G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, doi:10.1017/CBO9781107415324.016, 2013. 

Buizza, R., J.-R. Bidlot, M. Janousek, S. Keeley, K. Mogensen & D. Richardson, 2017: New IFS cycle brings sea-ice coupling 

and higher ocean resolution, ECMWF Newsletter No. 150, 14–17. 

Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Lean, H., Lock, A., Manners, 

J., Mittermaier, M., Morcrette, C., North, R., Petch, J., Short, C., Vosper, S., Walters, D., Webster, S., Weeks, M., Wilkinson, 950 
J., Wood, N., and Zerroukat, M.: The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, 

RAL1, Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, 2020. 

Bourassa, et al.: High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research. Bull. Amer. Meteor. Soc., 

94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1, 2013. 

Chylek, P., T. J. Vogelsang, J. D. Klett, N. Hengartner, D. Higdon, G. Lesins, and M. K. Dubey, 2016: Indirect Aerosol Effect 

Increases CMIP5 Models’ Projected Arctic Warming. J. Climate, 29, 1417–1428, https://doi.org/10.1175/JCLI-D-15-0362.1. 

Cohen, J., Screen, J., Furtado, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci 7, 627–

637 (2014). https://doi.org/10.1038/ngeo2234 

Cooper, W. A.: Ice Initiation in Natural Clouds, Meteorological Monographs, 21, 29–32, doi:10.1175/0065-9401-21.43.29, 

1986. 960 

Cuxart, J., Holtslag, A.A.M., Beare, R.J. et al. Single-Column Model Intercomparison for a Stably Stratified Atmospheric 

Boundary Layer. Boundary-Layer Meteorol 118, 273–303 (2006). https://doi.org/10.1007/s10546-005-3780-1 

de Boer, G., Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of liquid dependent ice nucleation in high-latitude 

stratiform clouds from surface remote sensors, Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016, 2011. 

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., 

Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, 



 

48 of 53 
 

A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, 

A.P., Monge‐Sanz, B.M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N. and Vitart, F. 

(2011), The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 

137: 553-597. https://doi.org/10.1002/qj.828 970 

Ebert and Curry (1993), An intermediate one‐dimensional thermodynamic sea ice model for investigating ice‐atmosphere 

interactions, J. Geophys. Res., 98( C6), 10085– 10109, doi:10.1029/93JC00656. 

Field, et al.: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Royal Meterol. Soc., 

131, pp 1997-2017, 2005. 

Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow Size Distribution Parameterization for Midlatitude and Tropical 

Ice Clouds. J. Atmos. Sci., 64, 4346–4365, https://doi.org/10.1175/2007JAS2344.1. 

Fletcher: The Physics of Rain Clouds. Cambridge Univ Press, Cambridge, UK, 1962. 

Forbes and Ahlgrimm, 2014: On the Representation of High-Latitude Boundary Layer Mixed-Phase Cloud in the ECMWF 

Global Model. Mon. Wea. Rev., 142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1 

Furtado, K., P. R. Field, I. A. Boutle, C. J. Morcrette, and J. M. Wilkinson, 2016: A Physically Based Subgrid Parameterization 980 
for the Production and Maintenance of Mixed-Phase Clouds in a General Circulation Model. J. Atmos. Sci., 73, 279–

291, https://doi.org/10.1175/JAS-D-15-0021.1. 

Gilbert, et al.: Summertime cloud phase strongly influences surface melting on the Larsen C ice shelf, Antarctica. Q J R 

Meteorol Soc.; 1– 16. https://doi.org/10.1002/qj.3753, 2020 

Grosvenor, D. P., Field, P. R., Hill, A. A., and Shipway, B. J.: The relative importance of macrophysical and cloud albedo 

changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study, Atmos. 

Chem. Phys., 17, 5155–5183, https://doi.org/10.5194/acp-17-5155-2017, 2017 

Held and Soden, 2006. Robust responses of the hydrological cycle to global warming. J. Climate 19: 5686–5699 

Hersbach, et al.: The ERA5 Global Reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, 

DOI:10.1002/qj.3803. 990 

Hill, et al.: How sensitive are aerosol-precipitation interactions to the warm rain representation?, J. Adv. Model. Earth Syst., 7, 

987–1004, doi:10.1002/2014MS000422, 2015. 

Hines and Bromwich: Simulation of Late Summer Arctic Clouds during ASCOS with Polar WRF. Mon. Wea. Rev., 145, 521–

541, https://doi.org/10.1175/MWR-D-16-0079.1, 2017. 

Hodson, et al.: Identifying uncertainties in Arctic climate change projections. Clim Dyn 40, 2849–2865. 

https://doi.org/10.1007/s00382-012-1512-z, 2013. 



 

49 of 53 
 

Hogan, R. J., C. Jakob, and A. J. Illingworth, 2001: Comparison of ECMWF Winter-Season Cloud Fraction with Radar-

Derived Values. J. Appl. Meteor., 40, 513–525, https://doi.org/10.1175/1520-0450(2001)040<0513:COEWSC>2.0.CO;2. 

Illingworth, et al.: Cloudnet, Bull. Am. Meteorol. Soc., 88(6), 883–898, doi:10.1175/BAMS-88-6-883, 2007. 

Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., and Jaagus, J. (2012), Validation of atmospheric reanalyses over 1000 
the central Arctic Ocean, Geophys. Res. Lett., 39, L10802, doi:10.1029/2012GL051591. 

Jung, T., and Coauthors, 2016: Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales. Bull. Amer. Meteor. 

Soc., 97, 1631–1647, https://doi.org/10.1175/BAMS-D-14-00246.1. 

Karlsson and Svensson: The simulation of Arctic clouds and their influence on the winter surface temperature in present-day 

climate in the CMIP3 multi-model dataset. Clim Dyn 36, 623–635 (2011). https://doi.org/10.1007/s00382-010-0758-6 

Keeley and Mogensen, 2018: Dynamic sea ice in the IFS, ECMWF Newsletter No. 156, 23—29. 

Kupiszewski, et al.: Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer, Atmos. 

Chem. Phys., 13, 12405–12431, 2013. 

Lawrence, H, Bormann, N, Sandu, I, Day, J, Farnan, J, Bauer, P. Use and impact of Arctic observations in the ECMWF 

Numerical Weather Prediction system. Q J R Meteorol Soc. 2019; 145: 3432– 3454. https://doi.org/10.1002/qj.3628. 1010 

Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B. (2000). A New Boundary Layer Mixing Scheme. 

Part I: Scheme Description and Single-Column Model Tests. Monthly Weather Review 128, 9, 3187-3199, doi:10.1175/1520-

0493(2000)128<3187:ANBLMS>2.0.CO;2 

Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and 

Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA 

composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010. 

Martin, G. M., D. W. Johnson, and A. Spice, 1994: The Measurement and Parameterization of Effective Radius of Droplets 

in Warm Stratocumulus Clouds. J. Atmos. Sci., 51, 1823–1842, https://doi.org/10.1175/1520-

0469(1994)051<1823:TMAPOE>2.0.CO;2. 

Mauritsen, T., G. Svensson, S. S. Zilitinkevich, I. Esau, L. Enger, and B. Grisogono, 2007: A Total Turbulent Energy Closure 1020 
Model for Neutrally and Stably Stratified Atmospheric Boundary Layers. J. Atmos. Sci., 64, 4113–4126, 

https://doi.org/10.1175/2007JAS2294.1. 

Mauritsen, et al.: An Arctic CCN-limited cloud-aerosol regime, Atmos. Chem. Phys., 11, 165–173, 

https://doi.org/10.5194/acp-11-165-2011, 2011. 

Meyers, et al.: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol. 31:708–721, 1992. 



 

50 of 53 
 

Miltenberger, A. K., Field, P. R., Hill, A. A., Rosenberg, P., Shipway, B. J., Wilkinson, J. M., Scovell, R., and Blyth, A. M.: 

Aerosol–cloud interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations, Atmos. Chem. Phys., 18, 3119–

3145, https://doi.org/10.5194/acp-18-3119-2018, 2018. 

Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of 

the new UKCA climate-composition model – Part 1: The stratosphere, Geosci. Model Dev., 2, 43–57, 1030 
https://doi.org/10.5194/gmd-2-43-2009, 2009. 

Naakka, T., Nygård, T., & Vihma, T. (2018). Arctic Humidity Inversions: Climatology and Processes, Journal of Climate, 

31(10), 3765-3787. Retrieved Apr 13, 2021, from https://journals.ametsoc.org/view/journals/clim/31/10/jcli-d-17-0497.1.xml 

Naakka, T., Nygård, T., Tjernström, M.,Vihma, T., Pirazzini, R., & Brooks, I. M.(2019). The impact of radiosounding 

observations on numerical weather prediction analyses in the Arctic. Geophysical Research Letters, 46. 

https://doi.org/10.1029/2019GL083332 

Nygård, T., Valkonen, T., and Vihma, T.: Characteristics of Arctic low-tropospheric humidity inversions based on radio 

soundings, Atmos. Chem. Phys., 14, 1959–1971, https://doi.org/10.5194/acp-14-1959-2014, 2014. 

O'Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi, M., Folberth, G. A., Sanderson, M. 

G., Telford, P. J., Voulgarakis, A., Young, P. J., Zeng, G., Collins, W. J., and Pyle, J. A.: Evaluation of the new UKCA climate-1040 
composition model – Part 2: The Troposphere, Geosci. Model Dev., 7, 41–91, https://doi.org/10.5194/gmd-7-41-2014, 2014. 

Rogers and Yau. A short course in cloud physics. Pergamon Press, Oxford, 3rd edition, 1989. 

Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., and Balsamo, G., Why is it so difficult to represent stably stratified 

conditions in numerical weather prediction (NWP) models?, J. Adv. Model. Earth Syst., 5, 117– 133, doi:10.1002/jame.20013. 

Sedlar, et al.: On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the 

Arctic. J. Climate, 25, 2374–2393, https://doi.org/10.1175/JCLI-D-11-00186.1, 2012. 

Seidel, et al.: Climatology of the planetary boundary layer over the continental United States and Europe, J. Geophys. Res., 

117, D17106, doi:10.1029/2012JD018143, 2012. 

Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global Planet. Change, 

77, 85–96, doi:10.1016/j.gloplacha.2011.03.004, 2011. 1050 

Shupe et al.: Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA. J. Atmos. Sci., 63, 697–

711, https://doi.org/10.1175/JAS3659.1, 2006. 

Shupe, M. D., Daniel, J. S., de Boer, G., Eloranta, E. W., Kollias, P., Long, C. N., Luke, E. P., Turner, D. D., and Verlinde, J.: 

A Focus On Mixed-Phase Clouds, Bulletin of the American Meteorological Society, 89, 1549–1562, 

doi:10.1175/2008BAMS2378.1, 2008. 



 

51 of 53 
 

Smith: A scheme for predicting layer clouds and their water content in a general circulation model. Q.J.R. Meteorol. Soc., 116: 

435-460. doi:10.1002/qj.49711649210, 1990. 

Solomon, A., Shupe, M. D., Persson, P. O. G., and Morrison, H.: Moisture and dynamical interactions maintaining decoupled 

Arctic mixed-phase stratocumulus in the presence of a humidity inversion, Atmos. Chem. Phys., 11, 10127–10148, 

https://doi.org/10.5194/acp-11-10127-2011, 2011. 1060 

Solomon, A., Feingold, G., and Shupe, M. D.: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-

phase stratocumulus, Atmos. Chem. Phys., 15, 10631–10643, https://doi.org/10.5194/acp-15-10631-2015, 2015. 

Sotiropoulou, et al.: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface, 

Atmos. Chem. Phys., 14, 12573–12592, https://doi.org/10.5194/acp-14-12573-2014, 2014. 

Sotiropoulou, et al.: Summer Arctic clouds in the ECMWF forecast model: an evaluation of cloud parametrization schemes. 

Q.J.R. Meteorol. Soc., 142: 387-400. doi:10.1002/qj.2658. 2016 

Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., 

Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N., Komppula, M., 

Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., 

Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., and Sun, J.: Explaining 1070 
global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 

4775–4793, https://doi.org/10.5194/acp-10-4775-2010, 2010. 

Stevens, R. G., Loewe, K., Dearden, C., Dimitrelos, A., Possner, A., Eirund, G. K., Raatikainen, T., Hill, A. A., Shipway, B. 

J., Wilkinson, J., Romakkaniemi, S., Tonttila, J., Laaksonen, A., Korhonen, H., Connolly, P., Lohmann, U., Hoose, C., Ekman, 

A. M. L., Carslaw, K. S., and Field, P. R.: A model intercomparison of CCN-limited tenuous clouds in the high Arctic, Atmos. 

Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, 2018. 

Sundqvist: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. 

J. R. Met. Soc. 104, pp. 677490, 1978. 

Tiedtke: Representation of Clouds in Large-Scale Models. Mon. Wea. Rev., 121, 3040–3061, https://doi.org/10.1175/1520-

0493(1993)121<3040:ROCILS>2.0.CO;2, 1993. 1080 

Tjernström et al.: The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design, Atmos. Chem. Phys., 

14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, 2014. 

Tjernström, M, Svensson, G, Magnusson, L, et al. Central Arctic weather forecasting: Confronting the ECMWF IFS with 

observations from the Arctic Ocean 2018 expedition. Q J R Meteorol Soc. 2021; 1– 22. https://doi.org/10.1002/qj.3971 

Turner, D. D., Shupe, M. D., & Zwink, A. B. (2018). Characteristic Atmospheric Radiative Heating Rate Profiles in Arctic 
Clouds as Observed at Barrow, Alaska, Journal of Applied Meteorology and Climatology, 57(4), 953-968. Doi: 
10.1175/JAMC-D-17-0252.1. 
 



 

52 of 53 
 

Vignesh et al.: Assessment of CMIP6 cloud fraction and comparison with satellite observations. Earth and Space Science, 7, 

e2019EA000975. https://doi.org/10.1029/2019EA000975, 2020. 1090 

Vihma et al.: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate 

system: a review, Atmos. Chem. Phys., 14, 9403–9450, doi:10.5194/acp-14-9403-2014, 2014. 

Vüllers, J., Achtert, P., Brooks, I. M., Tjernström, M., Prytherch, J., Burzik, A., and Neely III, R.: Meteorological and cloud 

conditions during the Arctic Ocean 2018 expedition, Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-

2021, 2021. 

Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, 

A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., 

Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, 

A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office 

Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1100 
1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017. 

Walters et al.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. 

Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. 

Wesslén, C., Tjernström, M., Bromwich, D. H., de Boer, G., Ekman, A. M. L., Bai, L.-S., and Wang, S.-H.: The Arctic summer 

atmosphere: an evaluation of reanalyses using ASCOS data, Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-

14-2605-2014, 2014. 

Wilson and Ballard: A microphysically based precipitation scheme for the UK meteorological office unified model. Q.J.R. 

Meteorol. Soc., 125: 1607-1636. doi:10.1002/qj.49712555707, 1999. 

Wilson, D.R., Bushell, A.C., Kerr‐Munslow, A.M., Price, J.D. and Morcrette, C.J. (2008), PC2: A prognostic cloud fraction 

and condensation scheme. I: Scheme description. Q.J.R. Meteorol. Soc., 134: 2093-2107. doi:10.1002/qj.333 1110 

Wood and Field: Relationships between Total Water, Condensed Water and Cloud Fraction in Stratiform Clouds Examined 

Using Aircraft Data, J. Atmos. Sci., 57, 1888–1905, 2000. 

Varma, V., Morgenstern, O., Furtado, K., Field, P., and Williams, J.: Introducing Ice Nucleating Particles functionality into 

the Unified Model and its impact on the Southern Ocean short-wave radiation biases, Atmos. Chem. Phys. Discuss. [preprint], 

https://doi.org/10.5194/acp-2021-438, in review, 2021. 

Vavrus, S., D. Waliser, A. Schweiger, and J. Francis, 2009: Simulations of 20th and 21st century Arctic cloud amount in the 

global climate models assessed in the IPCC AR4. Clim. Dyn., 33, 1099–1115 

Young, G., Connolly, P. J., Jones, H. M., and Choularton, T. W.: Microphysical sensitivity of coupled springtime Arctic 

stratocumulus to modelled primary ice over the ice pack, marginal ice, and ocean, Atmos. Chem. Phys., 17, 4209–4227, 

https://doi.org/10.5194/acp-17-4209-2017, 2017. 1120 



 

53 of 53 
 

Zuidema, P., et al., 2005: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 

62, 160–176. 


