1	Supplementary Information
2	Simulation of the effects of low volatility organic compounds on aerosol number
3	concentrations in Europe
4	David Patoulias ^{1,2} and S. N. Pandis ^{1,2}
5	
6	^[1] Department of Chemical Engineering, University of Patras, Patras, Greece
7	^[2] Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas
8	(FORTH/ICE-HT), Patras, Greece
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

CASE	Anthropogenic	ELVOCs	IVOCs
1		Monoterpene	Yes
(Base case)		oxidation 5%	Aging reaction: $k=4x10^{-11}$ cm ³ molec ⁻¹ s ⁻¹
		molar yield	
2	Aging with OH	No	Yes
	$k=10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$		Aging reaction: $k=4x10^{-11}$ cm ³ molec ⁻¹ s ⁻¹
3		Monoterpene	No
		oxidation 5%	
		molar yield	

Table S2: Boundary and initial conditions of the gases, PM, and number concentration	tion of the
--	-------------

simulation.

		Boundar			
Gas (ppb)	WEST	EAST	SOUTH	NORTH	Initial conditions
	1x10 ⁻²				
Sulfur dioxide (SO ₂)					
Ozone (O ₃)	35	35	35	35	35
Nitric acid (HNO ₃)	0.1	0.1	0.1	0.1	0.1
			5x10 ⁻²		
Formaldehyde (FORM)	5x10 ⁻²	5x10 ⁻²		5x10 ⁻²	5x10 ⁻²
		5x10 ⁻²		5x10 ⁻²	5x10 ⁻²
Ammonia (NH ₃)	5x10 ⁻²		5x10 ⁻²		
	5x10 ⁻³				
Ethene (ETH)					
Carbon monoxide (CO)	50	50	50	50	50
Peroxynitric acid	1x10 ⁻⁶				
(HNO ₄)					
Aerosol (µg m ⁻³)					
	1x10 ⁻⁹				
Dust (2.5 μm-10 μm)					
	1x10 ⁻⁹				
Sulfate (40 nm - 2.5 μm)					
	6.6x10 ⁻⁷				
SOA (40 nm - 2.5 µm)					
Number conc. (cm ⁻³)	50	50	50	50	50

Table S3: Description of atmospheric measurement sites in Europe used in this work. Name Longitude Station Country Latitude Annaberg-Buchholz 50.5717 ANB Germany 12.9989 17.3833 ASP Aspvreten Sweden 58.8000 BRK Birkenes II 58.3885 8.2520 Norway CBW Netherlands 51.9703 Cabauw Zijdeweg 4.9264 DSN Germany Dresden-Nord 13.7414 51.0650 Dresden-DSW Germany Winckelmannstrasse 51.0361 13.7306 **FNK** Finokalia 35.3167 Greece 25.6667 **GDN** Giordan Lighthouse Malta 36.0722 14.2184 HOH Germany Hohenpeissenberg 47.8015 11.0096 HYY Hyytiala Finland 61.8500 24.2833 ISP Italy Ispra 45.8000 8.6333 KPU K-puszta Hungary 46.9667 19.5833 Czech KST Kosetice (NOAK) Republic 49.5734 15.0803 MLP Germany Melpitz 51.5301 12.9339 **MNT** Montseny Spain 41.7667 2.3500 Czech PRG Prague-Suchdol Republic 50.1264 14.3846 Czech USM Usti n.L.-mesto Republic 50.6611 14.0403 VAV Sweden Vavihill 56.0167 13.1500 VRR Varrio Finland 67.7667 29.5833 VSM TMNT09 Vielsalm Belgium 50.3040 6.0013 WLD Germany Waldhof 10.7594 52.8022 Zugspitze-ZUG Germany Schneefernerhaus 10.9796 47.4165 NEO Greece Costa Navarino 36.9932 21.6572 PAT Patra-ICE-HT Greece 38.2980 21.8092 SPC San Pietro Capofiume Italy 44.6553 11.6236 THE Greece 40.6166 23.0333 Thessaloniki

33

34

35

36

Table S4a: AMS PM₁ composition atmospheric measurement sites.

Station	Name	Country	Longitude	Latitude	Altitude (m)
FIN	Finokalia	Greece	35.3167	25.6667	250
PAT	Patra	Greece	38.2980	21.8092	85
BOL	Bologna	Italy	44.4833	11.3333	0
SPC	San Pietro Capofiume	Italy	44.6553	11.6236	11

Table S4b: Filter-based PM2.5 composition measurements sites.

Station	Name	Country	Longitude	Latitude	Altitude (m)
Station	1 vuine	Country	Longitude	Luttuut	
CH02	Payerne	Switzerland	46.8131	6.9447	489
DE44	Melpitz	Germany	51.5301	12.9339	86
ES1778	Montseny	Spain	41.7667	2.3500	700
IT04	Ispra	Italy	45.8000	8.6333	209
PL05	Diabla Gora	Poland	54.1500	22.0667	157
SI08	Iskrba	Slovenia	45.5667	14.8667	520

Station	Mean Observed	Mean Predicted	NMB	NME	Mean Observed	Mean Predicted	NMB	NME
	(cm ⁻³)	(cm ⁻³)	(%)	(%)	(cm ⁻³)	(cm ⁻³)	(%)	(%)
		N ₁₀		I		N ₁₀₀		
ANB	8057	6763	-16	37	1518	944	-38	46
ASP	2130	5310	149	149	552	748	36	57
BRK	1878	3158	68	89	607	403	-34	64
CBW	13101	10223	-22	29	1627	1448	-11	16
DSN	10591	6727	-36	39	1976	1144	-42	45
DSW	7706	6364	-17	38	1426	1123	-21	34
FNK	3962	5561	40	42	1760	2275	29	35
GDN	5712	6805	19	33	2492	2695	8	28
HOH	3438	3116	-9	40	1011	630	-38	40
HYY	2207	2488	13	29	677	566	-16	28
ISP	6232	6636	6	45	1775	1227	-31	39
KPU	5269	6069	15	45	1543	1797	16	26
KST	3596	5047	40	51	1123	1100	-2	25
MLP	5583	6223	11	43	1214	1064	-12	28
MNT	6455	8736	35	50	1492	1680	13	44
PRG	7272	7586	4	46	1177	1224	4	27
USM	15171	8764	-42	51	1657	1050	-37	40
VAV	3250	8496	161	161	766	922	20	49
VRR	1107	1107	0	51	324	158	-51	63
VSM	2903	7504	158	158	704	729	3	32
WLD	4956	8079	63	69	1116	993	-11	21
ZUG	1237	2450	98	114	555	497	-11	36
NEO	2864	5179	81	83	1489	1930	30	41
PAT	4705	5305	13	47	1747	1754	0	23
SPC	8301	7451	-10	35	1702	2020	19	35
THE	3894	8830	127	127	1387	2347	69	72
ALL	4820	6125	27	65	1160	1240	5	43

Table S5: Prediction skill metrics of PMCAMx-UF for the case without IVOCs against daily

ground measurements of particle number concentration above 10 nm (N_{10}) and 100 nm (N_{100})

Table S6: Prediction skill metrics of PMCAMx-UF for the simulation without ELVOCs against
 daily PM1 OA measurements.

Station	Mean Predicted (µg m ⁻³)	Mean Observed (μg m ⁻³)	NMB (%)	NME (%)	Factor of 2 (%)
FIN	2.98	2.12	40	44	87
PAT	2.45	3.80	-35	35	90
BOL	4.29	5.68	-24	35	74
SPC	4.32	3.98	9	40	83
ALL	3.56	3.79	-6	38	83

Table S7: Prediction skill metrics of PMCAMx-UF for the simulation without ELVOCs against
 daily PM_{2.5} OA measurements.

Name	Station	Country	Mean Observed	Mean Predicted	NMB	NME	Factor of 2
			(µg m ⁻³)	(µg m ⁻³)	(%)	(%)	(%)
CH02	Payerne	Switzerland	2.54	2.02	-21	70	48
DE44	Melpitz	Germany	2.52	4.25	69	85	66
ES1778	Montseny	Spain	4.52	6.35	40	88	67
IT04	Ispra	Italy	5.13	5.74	12	48	68
PL05	Diabla Gora	Poland	3.64	3.81	5	40	84
SI08	Iskrba	Slovenia	5.98	5.15	-14	34	80
ALL			4.06	4.55	15	61	69

Table S8: Prediction skill metrics of PMCAMx-UF for the simulation without IVOCs against
 daily PM₁ OA measurements.

Station	Mean Predicted (µg m ⁻³)	Mean Observed (µg m ⁻³)	NMB (%)	NME (%)	Factor of 2 (%)
FIN	2.44	2.12	15	26	93
PAT	2.25	3.80	-41	41	80
BOL	3.88	5.68	-32	36	78
SPC	3.80	3.98	-5	34	93
ALL	3.12	3.79	-18	35	87

Table S9: Prediction skill metrics of PMCAMx-UF for the simulation without IVOCs against
 daily PM_{2.5} OA measurements.

Name	Station	Country	Mean Observed	Mean Predicted	NMB	NME	Factor of 2
			(µg m ⁻³)	(µg m ⁻³)	(%)	(%)	(%)
CH02	Payerne	Switzerland	2.54	2.08	-18	51	72
DE44	Melpitz	Germany	2.52	3.70	47	65	69
ES1778	Montseny	Spain	4.52	4.31	-5	61	67
IT04	Ispra	Italy	5.13	3.50	-32	45	65
PL05	Diabla Gora	Poland	3.64	3.56	-2	38	87
SI08	Iskrba	Slovenia	5.98	3.78	-37	37	80
ALL			4.06	3.49	-8	50	73

Figure S1: Comparison of predicted (base case) versus observed (Zeppelin) 3-min particle number concentrations (in cm⁻³) for (a) N_{10} and (b) N_{100} of 25 flights over the Po Valley during the PEGASOS campaign. There are approximately 2000 measurements included in the dataset. Also shown the 1:1, 2:1 and 1:2 lines.

- -

109

Figure S2: Average ground level number concentrations (in cm⁻³) (a-b-c), increase of number concentration (in cm⁻³) (d-e-f) and fractional increase (f_{Nx}) of number concentration (g-h-i) due to the condensation of ELVOCs during 5 June – 8 July 2012 for: (a-d-g) particles between 0.8 nm and 10 nm (N_{1-10}); (b-e-h) particles between 10 nm and 50 nm (N_{10-50}) and (c-f-i) particles between 50 nm and 100 nm (N_{50-100}). Different scales are used.

- 115
- 116
- 117
- 118
- -
- 119

120

Figure S3: Time series of particle number concentrations (in cm⁻³) for (a) N_3 , (b) N_{10} , (c) N_{50} , (d) N_{100} and condensation sink (in sec⁻¹) in Hyytiala site during 5 June – 8 July 2012 with red line the predictions of PMCAMx-UF for the base case, blue lines the prediction of PMCAMx-UF for the case without ELVOCs and the black dots are the measurements.

Figure S4: Average number size distribution in Hyytiala site during 5 June – 8 July 2012. The
red line is the prediction of PMCAMx-UF for the base case simulation, the blue line is the
prediction of PMCAMx-UF for the case without ELVOCs and the black line is the measured
distribution (the smallest particles were not included in these measurements).