

1 **Simulation of the effects of low volatility organic compounds on aerosol number**
2 **concentrations in Europe**
3

4 David Patoulias^{1,2} and Spyros N. Pandis^{1,2}
5

6 ^[1] Department of Chemical Engineering, University of Patras, Patras, Greece
7

8 ^[2] Institute of Chemical Engineering Sciences, Foundation for Research and Technology – Hellas
(FORTH/ICE-HT), Patras, Greece
9

10 **Abstract**

11 PMCAMx-UF, a three-dimensional chemical transport model focusing on the simulation of the
12 ultrafine particle size distribution and composition has been extended with the addition of reactions
13 of chemical aging of semi-volatile anthropogenic organic vapors, the emissions and chemical
14 aging by intermediate volatile organic compounds (IVOCs) and the production of extremely low
15 volatility organic compounds (ELVOCs) by monoterpenes. The model is applied in Europe to
16 quantify the effect of these processes on particle number concentrations. The model predictions
17 are evaluated against both ground measurements collected during the PEGASOS 2012 summer
18 campaign across many stations in Europe and airborne observations by a Zeppelin measuring
19 above Po-Valley, Italy. PMCAMx-UF reproduces the ground level daily average concentrations
20 of particles with diameter larger than 100 nm (N_{100}) with normalized mean error (NME) of 45%
21 and normalized mean bias (NMB) close to 10%. For the same simulation, PMCAMx-UF tends to
22 overestimate the concentration of particles larger with diameter than 10 nm (N_{10}) with a daily NMB
23 of 23% and a daily NME of 63%. The model was able to reproduce more than 75% of the N_{10} and
24 N_{100} airborne observations (Zeppelin) within a factor of 2.

25 According to the The results of PMCAMx-UF predictions showed that ~~T~~he ELVOC production
26 by monoterpenes ~~is predicted to~~ leads to surprisingly small changes of the average number
27 concentrations over Europe. The total number concentration decreased due to the ELVOC
28 formation by 0.2%, the N_{10} decreased ~~ds~~ by 1.1%, while N_{50} (particles with diameter larger than 50
29 nm) increased by 3% and N_{100} by 4% due to this new secondary organic aerosol (SOA) source.
30 This small change is due to the nonlinearity of the system with increases predicted in some areas

31 and decreases in others, but also the cancelation of the effects of the various processes like
32 accelerated growth and accelerated coagulation. Locally, the effects can be significant. For
33 example, an increase in N_{100} by 20-50% is predicted over Scandinavia and significant increases
34 (10-20%) over some parts of central Europe. The ELVOCs contributed on average around 0.5 μg
35 m^{-3} and accounted for 10-15% of the $\text{PM}_{2.5}$ OA. The addition of IVOC emissions and their aging
36 reactions led to surprising reduction of the total number of particles (N_{tot}) and N_{10} by 10-15 and 5-
37 10%, respectively, and to an increase of the concentration of N_{100} by 5-10%. These were due to
38 the accelerated coagulation and reduced nucleation rates.

39

40 1. Introduction

41 Two major processes are responsible for the introduction of new particles in the
42 atmosphere: direct emission from numerous sources and nucleation from low-volatility vapors.
43 New particles formed by nucleation can either grow by condensation of vapors (e.g. sulfuric acid,
44 ammonia, nitric acid, and organics) to larger sizes becoming cloud condensation nuclei (CCN) and
45 thereby may increasing the cloud droplet number concentration (CDNC) or affected by
46 coagulation with pre-existing larger particles and be lost (Adams and Seinfeld, 2002). Globally,
47 according to large-scale model simulations, atmospheric new particle formation (NPF) and
48 subsequent particle growth represent the most significant source of atmospheric aerosol particles,
49 at least in terms of their total number concentration (Kulmala et al., 2004; Makkonen et al., 2009;
50 Merikanto et al., 2009; Pierce and Adams, 2009; Wang and Penner, 2009; Yu and Luo, 2009). An
51 increase of the number concentration of particles that ~~can~~ may act as CCN results in higher CDNC
52 and brighter clouds with longer lifetimes.

53 Globally, organic particulate matter makes up more than 50% of the sub-micrometer mass
54 concentration of ambient aerosols in locations throughout the world (Kanakidou et al., 2005;
55 Seinfeld and Pandis, 2006; Zhang et al., 2007). Nearly 70% of this material is thought to be
56 secondary organic aerosol (SOA) formed from the oxidation of volatile organic compounds
57 (VOCs) (Hallquist et al., 2009; Schulze et al., 2017). Many of the relevant precursor VOCs are
58 biogenic in origin, such as monoterpenes ($\text{C}_{10}\text{H}_{16}$) and isoprene (C_5H_8).

59 Several recent field studies have shown that SOA in polluted areas cannot be explained by
60 the simulation- of only the first generation of reactions of “traditional” SOA precursors: biogenic
61 compounds (monoterpenes, sesquiterpenes, and isoprene) and anthropogenic compounds

62 (aromatics, olefins and large alkanes) (de Gouw et al., 2005; Volkamer et al., 2006; Kleinman et
63 al., 2008; Docherty et al., 2008; Matsui et al., 2009; Dzepina et al., 2009). At the same time, it has
64 become clear that organic vapors are responsible for most of the new particle growth in
65 environments with low sulfur dioxide levels (Olenius et al., 2018; Yli-Juuti et al., 2020).

66 Traditional treatment of SOA formation considers only VOCs as the precursors and only
67 semivolatile products (Odum et al., 1996). Robinson et al. (2007) suggested that intermediate
68 volatile organic compounds (IVOCs) either emitted directly or resulting from the evaporation of
69 particles may be an important and previously neglected pool of precursors for SOA formation. In
70 addition, later generations of reactions of the products of VOCs, IVOCs and SVOCs can lead to
71 products of even lower volatility and formation of SOA (Donahue et al., 2006). These chemical
72 reactions can lead to continued SOA production after complete precursor consumption as products
73 undergo further oxidation (Kroll et al, 2006; Ng et al., 2006).

74 Secondary extremely low volatile organic compounds (ELVOCs) have been detected both
75 in the ambient atmosphere and laboratory studies (Donahue et al., 2011). These compounds
76 promote new particle growth and CCN production in the atmosphere (Jokinen et al., 2015; Kirkby
77 et al., 2016). ELVOCs can be produced rapidly in the gas phase during monoterpene oxidation
78 (Ehn et al., 2014), and can enhance atmospheric new particle formation and growth (Jokinen et al.,
79 2015). Due to their exceptionally low volatility, ELVOCs condense essentially irreversibly onto
80 growing particles at a rate controlled by the Fuchs-adjusted particle surface area (Shrivastava et
81 al., 2017). The addition of the ELVOCs in PMCAMx-UFour model increased the effective
82 biogenic SOA yields, becoming an additional source of SOA especially significant at low OA
83 levels. At the same time, the addition of this extra material results in a change in the volatility
84 distribution of the predicted SOA.

85 Fanourgakis et al. (2019) evaluated 16 global chemistry transport models during a 4-year
86 period and compared their prediction to the near-surface observed number concentration of aerosol
87 particles across Europe and Japan. All models tended to underestimate the number concentrations
88 for particles larger with diameter than 50 nm (N_{50}). The normalized mean bias (NMB) was -51%
89 and normalized mean error (NME) was 55% for all stations. Sengupta et al. (2021) used the
90 GLOMAP (Global Model of Aerosol Processes; Spracklen et al., 2005) modal aerosol
91 microphysics model (Mann et al., 2010) simulating the production of six surrogate SOA species
92 from the oxidation of anthropogenic VOCs, monoterpenes, and isoprene. It was assumed They

93 assumed that ELVOCs derive only from biogenic sources and can nucleate to form new particles
94 (Gordon et al., 2016). ~~In this study different values of the ELVOC yield were used and the~~
95 ~~model's predictions were compared to observations of OA mass concentration as well as to the N_3~~
96 ~~(particles with diameter larger than 3 nm) and N_{50} number concentrations. A number of metrics~~
97 ~~were used for model evaluation, but the analysis was based on the Taylor model skill score.~~
98 Concentrations of ~~particles larger than 3 nm (N_3)~~ and ~~particles larger than 50 nm (N_{50})~~ were
99 consistently underestimated, while the best model performance ~~(based on the Taylor model skill~~
100 ~~score)~~ was achieved when the ELVOC yield from precursor VOCs was around 13 %. These studies
101 suggest that the role of organics and especially ELVOCs on particle formation and growth is still
102 not well understood.

103 In this study we extend the three-dimensional regional chemical transport model (CTM),
104 PMCAMx-UF (Jung et al., 2010), with detailed aerosol microphysics (Gaydos et al., 2007; Karydis
105 et al., 2007) that has been used and evaluated for simulations over the US and Europe (Fountoukis
106 et al., 2012). ~~The number concentrations of particles with diameter larger than 10 nm (N_{10}) and~~
107 ~~100 nm (N_{100}) were used for the analysis of the model predictions of as in Fountoukis et al. (2012),~~
108 ~~whereas Gordon et al. (2016) have used relied on N_3 and N_{50} . Different studies have used~~
109 ~~different The cutoffs with N_3 and N_{10} are being connected to some extent, but usually there are with~~
110 ~~N_{10} having more reliable measurements available in more sites for N_{10} . The same applies for the~~
111 ~~N_{50} and N_{100} pair, but the N_{100} is often closer to the CCN sizes at moderate cloud supersaturations.~~
112 ~~Additionally, the N_{10} and N_{100} were chosen as the metrics in this study also for continuity, given~~
113 ~~that they have been used in previous PMCAMx-UF evaluations.~~

114 Originally ~~PMCAMx-UF the model~~ assumed that growth of new particles was exclusively
115 due to sulfuric acid and ammonia condensation while the semivolatile secondary organics
116 condensed only on the accumulation mode thus contributing to the condensation and coagulation
117 sinks. This initial model version was found to reproduce more than 70 % of the hourly number
118 concentrations of ~~particles larger than 10 nm (N_{10})~~ within a factor of 2 (Fountoukis et al., 2012).
119 However, the concentration of ~~particles larger than 100 nm (N_{100})~~ as proxy for the number of
120 particles that can act as CCN was systematically underpredicted. The growth rates were also
121 underpredicted, with smaller errors in sites where the sulfate to organics mass ratio was high. These
122 problems were caused mainly by insufficient organic vapor condensation (Fountoukis et al., 2012)
123 on ultrafine particles. Patoulas et al. (2018) developed an extended version of PMCAMx-UF in

124 which the SOA components were modeled as semi-volatile first-generation products of the
125 oxidation of VOCs. The model predictions were compared against size distribution measurements
126 from 16 stations in Europe during a photochemically active period. Including SOA condensation
127 on ultrafines in PMCAMx-UF improved its ability to reproduce the N_{10} and N_{100} concentration at
128 ground level. The inclusion of SOA decreased the daily normalized mean bias (NMB) of N_{10} from
129 85% to 75% and the daily NMB of N_{100} from 40% to 20%. However, the results suggested that
130 there is a need for additional improvements.

131 The primary goal of this study is to examine the role of IVOCs and ELVOCs on particle
132 number concentrations in Europe. The base case PMCAMx-UF is extended once more to simulate
133 the multiple generations of IVOC gas-phase oxidation and the production of ELVOCs by
134 monoterpenes. This extended version is used for the base case simulations in this study. The model
135 predictions are compared with measurements from 26 sites during the intensive field campaign
136 that took place in Europe, as part of the Pan-European-Gas-AeroSOI-climate-interaction Study
137 (PEGASOS) project, from June 5 to July 8, 2012. The airborne data obtained by a Zeppelin
138 measuring above Po-Valley during the same campaign are also used. An analysis of the Zeppelin
139 measurement can be found by in Lampilahti et al. (2021). Additional simulations are performed
140 neglecting certain processes (e.g., production of ELVOCs) to quantify their role in the model
141 predictions.

142
143
144

145 2. Model description

146 PMCAMx-UF is a three-dimensional chemical transport model (CTM) that simulates the
147 aerosol number size distribution in addition to the mass/composition size distribution (Jung et al.,
148 2010; Fountoukis et al., 2012) and is described in detail in Patoulas et al. (2018). PMCAMx-UF
149 is based on the framework of PMCAMx (Gaydos et al., 2007; Karydis et al., 2007), describing the
150 processes of horizontal and vertical advection, emissions, horizontal and vertical dispersion, wet
151 and dry deposition, aqueous and aerosol phase chemistry, as well as aerosol dynamics and
152 thermodynamics.

153 For the simulation of aerosol microphysics, PMCAMx-UF uses the updated version of
154 DMANx which simulates the processes of coagulation, condensation/evaporation and nucleation

155 (Patoulias et al., 2015) with the two-moment aerosol sectional (TOMAS) algorithm (Adams and
156 Seinfeld, 2002; Jung et al., 2006). A key feature of TOMAS is its ability to track two independent
157 moments of the aerosol size distribution for each size bin: the aerosol number and mass
158 concentration.

159 The aerosol size distribution is discretized into 41 sections covering the diameter range from
160 approximately 0.8 nm to 10 μm . The lowest boundary is at 3.75×10^{-25} kg of dry aerosol mass per
161 particle. Each successive boundary has twice the mass of the previous one. The particle
162 components modeled include sulfate, ammonium, nitrate, sodium, chloride, crustal material,
163 water, elemental carbon, primary organic aerosol (POA) and eight surrogate SOA components.

164 In this work, the nucleation rate is calculated using a scaled ternary parameterization based
165 on the original expressions of Napari et al. (2002) with a scaling factor of 10^{-6} following the
166 suggestions of Fountoukis et al. (2012). The binary parameterization of Vehkamäki et al. (2002)
167 is employed if the NH_3 concentration is below a threshold value of 0.01 ppt.

168 Coagulation of particles in the atmosphere is an important sink of aerosol number but is
169 also a mechanism by which freshly nucleated particles grow to larger sizes. Following Adams and
170 Seinfeld (2002), TOMAS assumes that the aerosol particles coagulate via Brownian diffusion and
171 that the effects of coagulation from gravitational settling and turbulence on coagulation are
172 negligible. The calculation of the coagulation coefficients is based on the wet diameters of the
173 particles. These wet diameters are calculated following the approach of Gaydos et al. (2005). For
174 small particles (<100 nm), we use the expression of Dahneke et al. (1983) to correct for non-
175 continuum effects. The coagulation algorithm uses an adaptive time step. The time step is limited
176 so that the aerosol number or mass concentration in any size category does not increase by more
177 than an order of magnitude or decrease by more than 25% in each step.

178 The extended SAPRC (Statewide Air Pollution Research Center) chemical mechanism
179 (Carter, 2000; Environ, 2003), which includes 219 reactions of 64 gases and 18 free radicals, is
180 used for the gas phase chemistry mechanism in PMCAMx-UF. The SAPRC version used for this
181 work includes five lumped alkanes (ALK1-5), two lumped olefins (OLE1-2), two lumped
182 aromatics (ARO1-2), isoprene (ISOP), a lumped monoterpene (TERP) and a lumped sesquiterpene
183 species (SESQ).

184 Condensation of gas-phase species to existing aerosol particles is an important source of
185 aerosol mass and a means by which small particles grow to CCN sizes. Sulfuric acid is assumed

186 to be in pseudo-steady state in DMANxPMCAMx-UF. This pseudo steady-state approximation
187 (PSSA) for sulfuric acid proposed by Pierce and Adams (2009) increases the computational speed
188 with a small loss in accuracy. Jung et al. (2010) evaluated the performance of PSSA for sulfuric
189 acid in DMAN against a 4th order Runge-Kutta algorithm and showed that PSSA was accurate
190 and computationally efficient. Condensation of ammonia was simulated following the approach
191 described by Jung et al. (2006). Ammonia condensation on the ultrafine particles ends when sulfate
192 is fully neutralized to ammonium sulfate.

193 ~~N~~semi volatile nitric acid and hydrochloric acids in DMAN partition to particles (as nitrate
194 and chloride, respectively) in the accumulation mode range in PMCAMx-UF assuming that the
195 system is always in equilibrium. The amounts of nitric acid and hydrochloric acid The PMCAMx-
196 UF uses the bulk equilibrium approach (the most computationally efficient approach) to simulate
197 of inorganic aerosol growth. At each time step the amount of nitric acid and hydrochloric acid
198 transferred at each time step between the gas and aerosol phases is are determined by applying the
199 aerosol thermodynamic equilibrium model ISORROPIA (Nenes et al., 1998). This amount is then
200 distributed over the aerosol size sections by using weighting factors for each size section based on
201 their effective surface area (Pandis et al., 1993).

202 The PMCAMx-UF model assumes that organics and inorganics are in different phases, but
203 in the same particles. Therefore, the condensation of one affects the size distribution of the particles
204 and therefore the condensation rate of the other. The inorganic aerosol thermodynamics including
205 the sulfate/bisulfate split and the water uptake by all inorganic aerosol components are simulated
206 by ISORROPIA. The water content of the organic aerosol is neglected in this version of
207 PMCAMx-UF and the aerosol water is dominated by the inorganic aerosol components. Additional
208 information can be found in previous publications describing the evolution of PMCAMx-UF (Jung
209 et al. 2010; Fountoukis et al. 2012; Patoulias et al. 2018).

210

211 2.1 Secondary organic aerosol formation

212 Gas-phase oxidation of volatile organic compounds (VOCs) produces semi-volatile and
213 low-volatility products that can then condense to the particle phase. The volatility-basis set (VBS)
214 framework used in PMCAMx-UF (Donahue et al., 2006) describes the volatility distribution of
215 the OA compounds. SOA is formed from anthropogenic (aSOA) and biogenic (bSOA) precursors.
216 Each of these types is simulated with 5 volatility bins with saturation concentrations of 10^{-5} , 1, 10,

217 100 and 1000 $\mu\text{g m}^{-3}$. The $10^{-5} \mu\text{g m}^{-3}$ bin was added in this work to describe the ELVOCs. We
218 assumed an average molecular weight of 200 g mol^{-1} for SOA, and an effective enthalpy of
219 vaporization of 30 kJ mol^{-1} (Pathak et al., 2007; Stanier et al., 2007). The SOA yields used in this
220 version of PMCAMx-UF for the semi-volatile components are the NO_x -dependent stoichiometric
221 yields of Murphy et al. (2009).

222 Chemical reactions that change the volatility of the organics in the gas phase will change
223 the OA mass by influencing their partitioning. In PMCAMx-UF all secondary species are treated
224 as chemically reactive. Further gas-phase oxidation of OA vapors (chemical aging) is modeled
225 using a second-order reaction with hydroxyl radicals and a rate constant of $1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson and Arey, 2003). Each reaction is assumed to reduce the volatility of the vapor
226 material by one order of magnitude (i.e., shifting material from a C^* of 100 to 10 $\mu\text{g m}^{-3}$), with a
227 small increase in mass (7.5%) to account for the added oxygen (Lane et al., 2008; Shrivastava et
228 al., 2008). IVOCs were not included in the original emission inventory and therefore have been
229 added to the emissions. The IVOCs emission rate is scaled estimated based on the non-volatile
230 POA emissions included in the inventory and . Their total emission rate is assumed to be 1.5 times
231 the non-volatile POA emissions. Intermediate volatility organic compounds (IVOCs) are
232 distributed in the 10^3 , 10^4 , 10^5 , and $10^6 \mu\text{g m}^{-3}$ saturation concentration bins and their. The
233 emission rates of the IVOCs are assumed to be equal to 0.3, 0.4, 0.5 and 0.8 times the original non-
234 volatile POA emission rate, for the 10^3 - 10^6 bins respectively (Robinson et. 2007).

236 ELVOCs were assumed to be produced by the oxidation of monoterpenes with a molar
237 yield of 5%. For comparison, ELVOCs yields for the α -pinene ozonolysis in Jokinen et al. (2015)
238 were $3.4 \pm 1.7\%$, by Ehn et al. (2014) of $7 \pm 4\%$ and $4.5 \pm 3.8\%$ in Rissanen et al. (2014). An
239 average molecular weight of 200 g mol^{-1} for ELVOCs was assumed in this work.

240 The partitioning of OA between the gas and particulate phases is simulated dynamically in
241 PMCAMx-UF without assuming equilibrium (Patoulas et al., 2015). The driving force for
242 condensation of a vapor to an aerosol particle is the difference between its ambient vapor partial
243 pressure and the equilibrium vapor pressure over the particles, with the latter including the Kelvin
244 effect which is due to the curvature of the particles. The Kelvin effect is larger for the smaller
245 particles and acts as a barrier for the condensation of organic vapors on these particles. In this
246 simulation a surface tension of $\sigma=0.025 \text{ N m}^{-1}$ is assumed for all SOA components (Pierce et al.,
247 2011; Patoulas et al. 2015).

248 Three different chemical aging schemes are used in this work (Table S1). The first scheme
249 (case 1 or base case) includes (i) the aging of SOA components from anthropogenic sources, using
250 a rate constant k (298 K) = 10×10^{-12} cm³ molecule⁻¹ s⁻¹ (anthropogenic SOA aging), (ii) the aging
251 of IVOCs using a rate constant k (298 K) = 40×10^{-12} cm³ molecule⁻¹ s⁻¹, (iii) -production of
252 ELVOCs with saturation concentration of 10^{-5} µg m⁻³ from the oxidation of monoterpenes with a
253 yield of 5%. The aSOA aging rate constant is based on OH oxidation of the products of aromatic
254 VOCs oxidation (Atkinson 2000; 2003). No biogenic SOA aging was simulated in this case, an
255 assumption based on laboratory studies (Presto et al., 2006; Ng et al., 2006) and the results of Lane
256 et al. (2008). In the second simulation (case 2), the ELVOC yield was set to zero thus neglecting
257 their formation. The rest of the parameters were the same as in the base case. Finally, in the third
258 simulation the emissions of IVOCs and the chemical aging reactions of all VOCs were neglected
259 while the production of the ELVOCs was simulated similarly to the base case.

260

261 **2.2 Model application and measurements**

262 The PMCAMx-UF modeling domain in this application covers a 5400×5832 km² region
263 in Europe, with a 36×36 km grid resolution and 14 vertical layers extending up to approximately
264 7.2 km. The modeling period covers 34 days, from June 5 to July 8, 2012 corresponding to the
265 PEGASOS 2012 intensive period. PMCAMx-UF was set to perform simulations on a rotated polar
266 stereographic map projection. The first two days of each simulation were excluded from the
267 analysis to minimize the effect of the initial conditions on the results. For the boundary conditions,
268 constant and relatively low values have been used (Table S12) so that the predicted particle number
269 concentrations over central Europe are determined for all practical purposes by the emissions and
270 corresponding processes simulated by the model. The boundary conditions are identical to those
271 used in Patoulias et al. (2018). The effect of these boundary conditions on the predicted number
272 concentrations are discussed in Patoulias et al. (2018).

273 Meteorological inputs to PMCAMx-UF include horizontal wind components, vertical
274 diffusivity, temperature, pressure, water vapor, clouds and rainfall. The Weather Research and
275 Forecasting (WRF) model (Skamarock et al., 2005) was used to generate the above inputs. WRF
276 was driven by geographical and dynamic meteorological data generated by the Global Forecast
277 System (GFSv15) of the National Oceanic and Atmospheric Administration/
278 National Centers for Environmental Prediction). Each layer of PMCAMx-UF was aligned with the

279 layers used in WRF. The WRF simulation was periodically re-initialized every 3 days with
280 observed conditions to ensure accuracy in the corresponding fields used as inputs in PMCAMx-
281 UF. The measurements were pre-processed by the WPS (WRF Preprocessing System) package,
282 which provides each atmospheric and static field with fidelity appropriate to the chosen grid
283 resolution of the model. The performance of WRF for Europe against observed meteorological
284 variables has been the topic of several recent studies (Jimenez-Guerrero et al., 2008; de Meij et al.,
285 2009; Im et al., 2010; Argueso et al., 2011; Garcia-Diez et al., 2012) demonstrating good
286 performance.

287 The particle emissions were based on the pan-European anthropogenic particle number
288 emission inventory (Denier van der Gon et al., 2009; Kulmala et al., 2011) and the carbonaceous
289 aerosol inventory (Kulmala et al., 2011) developed during the EUCAARI (European Integrated
290 project on Aerosol, Cloud, Climate, and Air Quality Interactions) project. The resulting
291 number/mass inventories includes both number emissions and consistent size-resolved
292 composition for particles over the size range of approximately 10 nm to 10 μm . Hourly gridded
293 anthropogenic and biogenic emissions included both gases and primary particulate matter. The
294 natural emissions include both particulate matter and gases and combine three different data sets:
295 emissions from ecosystems based on the Model of Emissions of Gases and Aerosols from Nature
296 (MEGAN; Guenther et al., 2006), marine emissions based on the model of O'Dowd et al. (2008)
297 as sea surface covers a considerable area of the domain, and wildfire emissions (Sofiev et al.,
298 2008a, b). MEGAN uses as inputs the plant functional type, the leaf area index, various chemical
299 species emission factors and weather data provided by the WRF. Wind speed fields from WRF
300 and chlorophyll-a concentrations were used as inputs of the marine aerosol model. VOCs were
301 speciated based on the approach proposed by Visschedijk et al. (2007). Anthropogenic gas
302 emissions included land emissions from the GEMS (global and regional Earth-system monitoring
303 using satellite and in-situ data) dataset (Visschedijk et al., 2007). The international shipping,
304 industrial, domestic, agricultural and traffic aerosol emission sources were included in the
305 anthropogenic inventory (Denier van der Gon et al., 2009; Kulmala et al., 2011).

306 The model results were compared against measurements in 26 ground sites, which are
307 available in the European Supersites for Atmospheric Aerosol Research (EUSAAR), and EBAS
308 databases (<https://ebas.nilu.no>) and the Aerosols, Clouds and Trace gases Research Infrastructure
309 (ACTRIS) (<https://actris.nilu.no>). Particle size distribution measurements at all sites were made

310 using either a Differential Mobility Particle Sizer (DMPS) or a Scanning Mobility Particle Sizer
311 (SMPS). Information about all stations can be found in Table S²³.

312 An intensive field campaign took place in Europe, as part of the Pan-European-Gas-
313 AeroSOl-climate-interaction Study (PEGASOS) project, from June 5 to July 8, 2012.
314 Measurements of aerosol mass concentration PM₁ (particulate matter particles of diameter less
315 than 1 micrometer) from the PEGASOS project are also available for the same period for Patras
316 (Greece), Finokalia (Greece), San Pietro Capofiume (Italy) and Bologna (Italy) (Table S^{3a4}) and
317 filter PM_{2.5} (particulate matter particles of diameter less than 2.5 micrometer) measurements from
318 6 additional stations in Europe (Table S^{3b5}). The organic aerosol mass concentration was
319 estimated from the organic carbon measurements assuming an For the calculation of organic mass
320 from filter, we used from measurements an average organic mass to organic-carbon ratio value
321 equal to 1.8 (Kostenidou et al., 2015).

322 The measurement of organic carbon and therefore the estimated OA using filters is
323 characterized by two main artifacts: a positive one involving adsorption of organic vapors on the
324 quartz filters used for the sampling and a negative one related to the evaporation of some of the
325 semi-volatile material (Turpin et al., 2000; Mikuška et al., 2011). There is a rich literature on the
326 magnitude of these artifacts and on ways to minimize them or correct for them (involving denuders
327 for removal of organic vapors and after-filters). In this work, we use the reported measurements
328 for the model evaluation keeping in mind their uncertainty.

329 The airborne measurements acquired by the PEGASOS Zeppelin were acquired during the
330 simulation period over the Po Valley. The Po Valley region is situated between the Alps in the
331 north and the Apennines Mountains in the south-southwest. The mountains surround the valley on
332 three sides and high levels of pollutants are often observed in the region due to the industrial,
333 agricultural, and other anthropogenic emissions. In addition, emissions from ship traffic on the
334 Adriatic Sea (Hamed et al., 2007) and long-range transport from central-eastern Europe also
335 contribute pollutants to the region (Sogacheva et al., 2007). A SMPS was used to measure the
336 number size distribution of particles in the size range of 10 to 430 nm. Details of the relevant
337 PEGASOS Zeppelin measurements can be found in Lampilahti et al. (2021).

338
339
340

341 **3. Results**

342 **3.1 Base case**

343 The average predicted ground level average number concentrations for the total number of
344 particles (N_{tot}) and for particles with diameters above 10 nm (N_{10}), 50 nm (N_{50}) and 100 nm (N_{100}),
345 during June 5 to July 8, 2012 are shown in Figure 1. The N_{50} and N_{100} concentrations are often
346 used as proxies for CCN number concentrations (Fountoukis et al., 2012). On a domain average
347 basis, the model predicted for the ground level 4780 cm^{-3} for N_{tot} , 3630 cm^{-3} for N_{10} , 1990 cm^{-3}
348 for N_{50} , and 820 cm^{-3} for N_{100} during the simulated period. The highest N_{tot} average concentrations
349 (more than 15000 cm^{-3}) were predicted over Bulgaria, southern Romania, Turkey, Poland,
350 Holland, Portugal, Northern Spain, Eastern UK and Russia. On the other hand, the highest N_{50} and
351 N_{100} are predicted over the Mediterranean, mainly in areas near Southern Spain, Southern Italy,
352 and the Balkans. The N_{tot} and N_{10} are high in areas of frequent nucleation events and areas with
353 high particle number emissions, whereas the N_{50} and N_{100} levels are affected significantly by
354 secondary particulate matter production. The high photochemical activity over the Eastern
355 Mediterranean leads to the corresponding high levels of N_{50} and N_{100} during this period.

356

357 **3.2 Evaluation of PMCAMx-UF predictions**

358 **3.2.1 Comparison of PMCAMx-UF predictions to ground aerosol number observations**

359 The prediction skill metrics of PMCAMx-UF, for the daily average ground measurements
360 from the 26 stations, are summarized in Tables 24 and 32 for both the base case and the case in
361 which the ELVOCs are neglected.

362 For the base case simulation, the model has a tendency to overestimate the N_{10} levels. The
363 normalized mean bias (NMB) for the daily average concentrations is 23% and the normalized
364 mean error (NME) 63%. The N_{10} was overpredicted in 18 sites, underpredicted in 7 and there was
365 practically zero bias (less than 0.1%) in the last station~~no bias in one~~. The NMB in 8 sites (Prague-
366 Suchdol, Ispra, Melpitz, Patras, ~~K~~-Puszta, Hohen-peissenberg, Hyttiala and San Pietro
367 Capofiume) was less than $\pm 15\%$, and for another 8 stations ~~between~~ $\pm 15\%$ and $\pm 40\%$ (Annaberg-
368 Buchholz, Cabauw, Dresden Nord and Winckelmannstrasse, Finokalia, Giordan Lighthouse,
369 Kosecice, Montseny and Varrio). The highest discrepancies with the measurements of N_{10} were
370 found in Aspvreten, Birkness II, Usti n.L.-mesto, Vavihill, Vielsalm, Zugspitze-Schneefernerhaus,
371 Waldhof, Costa Navarino, and Thessaloniki with NMB higher than $\pm 40\%$.

372 The model performed better for N_{100} . There was little bias in the corresponding predictions
373 on average (the NMB was -10%) and the NME was 45%. The NMB for 10 sites (Cabauw, Giordan
374 Lighthouse, Hyytiala, Kosetice, Melpitz, Patras, Prague-Suchdol, Vielsalm, Waldhof and
375 Zugspitze) was less than $\pm 15\%$ and for another 12 (Annaberg-Buchholz, Birkenes II, Dresden
376 Nord and Winckelmannstrasse, Finokalia, Hohenpeissenberg, Ispra, K-Puszta, Montseny, Costa
377 Navarino, San Pietro Capofiume, Usti n.L-mesto. and Vavihill) between $\pm 15\%$ and $\pm 40\%$ (Table
378 [32](#)). The absolute NMB for N_{100} exceeded 40% only in Aspvreten, Varrio and Thessaloniki.

379 **3.3.2 Evaluation of aerosol composition predictions**

380 The PMCAMx-UF predictions can be evaluated during that period using available PM_1
381 measurements from Aerosol Mass Spectrometers at four stations (Bologna and San Pietro
382 Capofiume, in Italy and Finokalia and Patras, in Greece) that were part of the PEGASOS
383 campaign.

384 In Italy and Greece, the model reproduces the observations of the PM_1 concentrations of
385 the major inorganic aerosol components (sulfate, ammonium, nitrate) reasonably well (Table [43](#)).
386 The model tends to underpredict the organic aerosol concentrations in Patras and Bologna, while
387 it overpredicts the OA in Finokalia and San Pietro Capofiume (Table [54](#)). The OA NMB is -2%
388 and the NME is 38%, with the Finokalia site presenting the higher NMB value (50%) and San
389 Pietro Capofiume, Bologna the lower ($\pm 20\%$) (Table [54](#)).

390 For the rest of Europe, $PM_{2.5}$ filter measurements have been used, available in the European
391 Supersites for Atmospheric Aerosol Research (EUSAAR) and EBAS databases
392 (<http://ebas.nilu.no/>) for stations that had available data for more than 15 days during the simulated
393 period (6 additional stations in Europe: Payerne, Melpitz, Montseny, Ispra, Diabla Gora, and
394 Iskrba; Table [65](#)). For the calculation of OA mass concentration, we assumed OA:OC=1.8
395 (Kostenidou et al., 2015). For these sites, the model has a tendency towards overestimating the
396 $PM_{2.5}$ OA concentration for 4 out of 6 stations, presenting an average NMB of 20% and NME of
397 62% (Table [65](#)).

398 **3.3.3 Comparison of PMCAMx-UF predictions to Zeppelin measurements**

399 One of the challenges of the PMCAMx-UF evaluation using airborne measurements is that
400 the model predictions are available every 15 min while the corresponding measurements by the
401 Zeppelin were taken every 3 min in different heights. For comparison purposes, the model output

402 was interpolated to the times of the Zeppelin measurement periods. PMCAMx-UF reproduced
403 more than 75% of the 2000 3-min N_{10} and N_{100} measurements by the Zeppelin with a factor of 2
404 (Figure S1). The vertical profiles shown in Fig.2, are averages of different flights that collected
405 data in different days and different altitudes each time. The number of samples at different altitudes
406 changed for each flight creating additional variability in the measured profiles.

407 To facilitate the comparison between measurements and predictions the corresponding
408 average profiles (matched in space and time) were calculated using 80 m altitude bins for all the
409 PEGASOS flights. PMCAMx-UF reproduced on average the N_{10} measurements over Po Valley at
410 the lower 160 m and above 400 m, but underestimated the higher N_{10} levels measured in the
411 residual layer at heights between 160-400 m at several of the flights that started several hours
412 before sunrise (Fig. 2a). The average measured N_{10} at all heights was $6,000 \text{ cm}^{-3}$, while the
413 predicted concentration was equal to $4,700 \text{ cm}^{-3}$.

414 PMCAMx-UF reproduced well the N_{100} concentration at all heights (Fig 2b). The model
415 also reproduced 80% of the 3-min N_{100} Zeppelin measurements within a factor of 2. The measured
416 average N_{100} at all heights was $1,500 \text{ cm}^{-3}$ and the average predicted by PMCAMx-UF was $1,800$
417 cm^{-3} . The ability of the revised model to reproduce reasonably well the high-time resolution (3-
418 minute) Zeppelin measurements at multiple altitudes and locations is encouraging.

419 The predictions of PMCAMx-UF for the aerosol mass concentration were compared to the
420 Zeppelin PM₁ composition measurements obtained by an AMS (each 3 minutes, 9 flights; ~1300
421 points-data points). The average vertical profiles of organics, sulfate, ammonium, and nitrate are
422 shown in Fig. S2. Overall, the model performance aloft was quite similar with that at the ground
423 level. For example, for the 9 Zeppelin flights the OA normalized mean bias was -4% and the
424 normalized mean error equal to 40% (Table S4). The measured and the predicted OA mean values
425 are close to each other (4.6 and 4.4 $\mu\text{g m}^{-3}$, respectively).

426

427 **3.2 Effect of ELVOC production on particle number and OA concentrations**

428 An additional simulation was performed neglecting the production of ELVOCs from
429 terpenes (case 2). The addition of ELVOCs, increased the PM_{2.5} OA mass by approximately as
430 much as $0.5 \mu\text{g m}^{-3}$ in Central/Eastern Europe and Russia, accounting for approximately 10-15%
431 of the OA (Fig. 3). In these areas a combination of high terpene emissions and high photochemical
432 reaction rates existed during the simulated period. The highest relative predicted increase of OA

433 was 15-25% in northern Europe. In central Europe the ELVOC formation increased average OA
434 by approximately 10%.

435 The average fractional increase of N_x , due to the production of ELVOCs is calculated as:

436
$$f_{Nx} = \frac{N_x(\text{with ELVOCs}) - N_x(\text{without ELVOCs})}{N_x(\text{without ELVOCs})} \quad (1)$$

437 where, x , is 10, 50, 100 nm or zero (total number). Rather surprisingly, the average fractional
438 change for all number concentrations (N_{tot} , N_{10} , N_{50} and N_{100}) is small ranging between 1% and -
439 4% (Fig. 4) (N_{tot} : -8 cm^{-3} or -0.14%, N_{10} : 40 cm^{-3} or -1.14%, N_{50} : 60 cm^{-3} or 3 %, N_{100} : 35 cm^{-3} or
440 4%). One reason for the small average change is that both increases and decreases are predicted
441 for different areas in Europe. These mixed results are due to the fact that the ELVOC condensation
442 accelerates the growth of new and preexisting particles to larger sizes, but at the same time
443 accelerates their losses due to the increase of the coagulation sink and decreases the nucleation
444 rate due to the increase of the condensation sink.

445 The formation of ELVOCs resulted in a predicted decrease of N_{tot} by 20% (300-600 cm^{-3})
446 in parts of the Nordic countries and by 5% in central Europe (Fig. 4). The decreases are predicted
447 for most Europe with the exception of a few areas in which increases are predicted (northern
448 Iberian Peninsula, parts of France, areas in the Balkans with high sulfur dioxide levels, etc.) (Fig.
449 5). The predicted N_{10} increased by 5-15% (150-400 cm^{-3}) over Finland, northwestern Russia,
450 France, Ireland and northern Portugal. At the same time there were small decreases of a few percent
451 over several areas in Europe especially in the south and in the east as well over the Baltic Sea. N_{50}
452 increased over almost of Europe by 50 to 300 cm^{-3} . This N_{50} increase corresponds to 20-40% over
453 Scandinavia and northwestern Russia, and 10% for central Europe. Finally, the ELVOCs caused
454 an increase in N_{100} of 20-50% over Scandinavia and 10-20% increases over central Europe. The
455 absolute corresponding N_{100} changes in these areas are 100-200 cm^{-3} .

456 The corresponding changes of the number concentrations for particles with diameters
457 between 1 and 10 nm (N_{1-10}), 10 and 50 nm (N_{10-50}) and (iii) 50 and 100 nm (N_{50-100}) are
458 summarized in Fig. S32. These figures illustrate the complex effect of the ELVOCs on different
459 parts of the aerosol number distribution. Decreases in the concentrations of the 1-10 nm particles
460 (decreasing nucleation rate due to increased condensation sink, increasing coagulation with larger
461 particles), increases in the concentrations of the particles with diameter larger than 100 nm (due to
462 accelerated growth of the sub-100 nm particles to larger sizes) and both increases and decreases in
463 the 10-50 nm size range depending on the magnitude of the different competing processes in each

464 area. The effect of the ELVOCs in this PMCAMx simulation is clearly a lot more complex than a
465 uniform increase of particle number concentrations.

466 Figure S4 shows the spatial variability of the fractional change in the number
467 concentration of N_{1-10} (reflecting nucleation rates); up to 60%), sulfuric acid concentration(30%),
468 condensational sink (CS) and coagulation sink due to the ELVOCs is depicted in Figure S4. This
469 figure supports quantitatively that In areas such as the Scandinavian Peninsula the production of
470 ELVOCs is predicted to lead to a 20-30% average increase of the coagulation and condensational
471 sinks and a corresponding decrease of nucleation rates and sulfuric acid levels and N_{1-10} decrease,
472 and coagulation/condensational sinks increase when ELVOCs are added to the model. Similar
473 changes are predicted for several other areas (e.g., Central Europe) but are less These changes are
474 especially pronounced in the Scandinavian Peninsula.

475 The results in the Hyytiala station in Finland were examined in more detail because the
476 predicted number concentrations in Finland are quite sensitive, according to PMCAMx-UF, to the
477 addition of the ELVOCs. The predicted N_3 , N_{10} , N_{50} and N_{100} concentrations for the base case are
478 in reasonable agreement with the field measurements in this area (Figure S53), with a tendency of
479 the model to overpredict the N_3 levels during a few nucleation events. For all concentrations the
480 simulation with the ELVOCs (base case) reproduces the measurements better than the simulation
481 in which they are neglected. The condensation sink-CS for Hyytiala increases by a few percent
482 due to the additional mass of the ELVOCs (Figure S53). The average measured and predicted
483 number size distributions in Hyytiala site (Finland) are shown in Figure S64. The addition of the
484 ELVOCs leads to increased levels in the part of the size distribution above 50 nm. A decrease of
485 the concentration of particles with diameter below 7 nm is predicted due to the addition of the
486 ELVOCs because of both increased coagulation losses but also lower nucleation rates. The
487 difference in the predictions of the two simulations (with and without ELVOCs) in n this Hyytiala
488 site isare modest. The discrepancy between model predictions and measurements is due to both
489 the weaknesses of the measurements (particles smaller than 3 nm were not measured) and a
490 tendency of the model to overpredict nucleation event intensity in this area.

491 The ELVOC addition played a minor role on the overall performance of PMCAMx-UF. The
492 NMB for N_{10} decreased (in absolute terms) by 1%, it increased by 5% for N_{100} due to the addition
493 of the ELVOCs in the simulation (Table 2-31-2). The addition of the ELVOCs affects mainly the
494 PMCAMx-UF predictions in northern Europe and especially Finland, where the predictions of

495 N_{100} significantly improve. In Hyytiala site the NMB decreases from -34% to -14% and in Varrio
496 drops from -72% to -49% (Table 3). The corresponding normalized mean errors changed by 1-2%.
497 These small changes in the performance metrics are consistent with the small overall changes
498 caused by the ELVOC addition.

499 The small change in the OA mass concentration due to the addition of the ELVOCs has a
500 modest impact on the performance of PMCAMx-UF for OA (Table S56 and S67). For example,
501 the PM_1 OA bias improves from -6% to 2% while the $PM_{2.5}$ OA bias increases from 15% to 20%.
502 The changes in normalized error are 1% or less.

503

504 3.3 Effect of IVOCS on particle number concentrations

505 The emissions of IVOCS ($C^* \geq 10^{-3} \mu\text{g m}^{-3}$) were set to zero in a sensitivity test (Case 3) to
506 quantify their effect on the predicted particle number concentration and size distribution. The
507 SOA formed by the IVOCS (SOA-iv) exceeds $1 \mu\text{g m}^{-3}$ in southern Europe, over the Mediterranean
508 Sea, but also in large areas over central and eastern Europe (Fig. 6). The high SOA-iv levels over
509 the Mediterranean are due to the oxidation of IVOCS emitted from large wildfires that occurred
510 during the simulation period. The corresponding SOA-iv is 10-25% of the total OA over
511 continental Europe and even higher (about 60%) over parts of the marine atmosphere.

512 The average fractional increase of N_x , due to emission and aging of IVOCS is calculated
513 as:

$$514 f_{Nx} = \frac{N_x(\text{with IVOCS}) - N_x(\text{without IVOCS})}{N_x(\text{without IVOCS})} \quad (2)$$

515 where, x , is 10, 50, 100 nm or zero (total number).

516 According to PMCAMx-UF the addition of the emissions of IVOCS and their aging
517 reactions lead to a reduction of N_{tot} by 5-10% and N_{10} by 5% (Fig. 7) for continental Europe. On
518 the other hand, this addition of IVOCS leads to an increase of N_{50} by 5% and N_{100} by 5-10% mainly
519 in central Europe and the Mediterranean Sea (Fig. 7). The corresponding changes of the number
520 concentrations for the various size ranges N_{1-10} , N_{10-50} and N_{50-100} are summarized in Fig. 8. The
521 predicted N_{1-10} decreases approximately 15-20% for most of Europe except for the Scandinavian
522 peninsula due to the IVOCS. N_{10-50} decreases 10-15% mainly in southern Europe and N_{50-100}
523 changes less than $\pm 5\%$ or $\pm 100 \text{ cm}^{-3}$ in the simulated domain.

524 The atmospheric oxidation of the emitted IVOCS produces semi-volatile organic
525 compounds, which condense preferentially on particles in the accumulation mode and not so much

526 on the smallest particles due to the Kelvin effect. This results in an increase of both the
527 condensation and coagulation sinks, which then lead to a decrease of the nucleation rate but also
528 on the coagulation rate of the smaller with the larger particles.

529 The effect of the addition of the IVOCs on the performance of PMCAMx-UF is modest and
530 mixed. The NMB for N_{10} increased by 4% (from 23% to 27%) and decreased by 5% for N_{100} (from
531 10% to 5%) (Table S⁷⁵). The corresponding NME for both N_{10} and N_{100} changed slightly
532 (approximately 1%). The modest overall changes on the number distribution of the ultrafine
533 particles caused by the addition of IVOCs and the corresponding aging reactions are consistent
534 with the small changes in the PMCAMx-UF performance metrics.

535 The addition of the IVOCs and the resulting SOA-iv from their oxidation also had mixed
536 results in the PMCAMx-UF performance for OA in Europe. This added SOA removed the
537 underprediction of OA against the AMS measurements in Italy and Greece; the NMB changed
538 from -18% when IVOCs were neglected to 2% when IVOCs were included (Table S8). The NME
539 ~~increased~~ a little (from 385% to 35%) with the IVOC addition. The performance against the OA
540 measurements in the other European sites became a little worse when IVOCs were included in the
541 model (Table S9). The small underprediction (NMB=-8%) in OA became a larger overprediction
542 (NMB=20%) and the NME increased from 50% to 62%. These results are characteristic of the
543 uncertainties in primary OA emissions but also SOA production from the various VOCs and
544 IVOCs emitted by anthropogenic and biogenic sources.

545

546 **4. Conclusions**

547 A new version of PMCAMx-UF was developed with the ability to simulate the formation
548 and dynamic condensation of ELVOCs during the oxidation of the monoterpenes and the
549 emissions and multi-generational chemistry of IVOCs. The model was applied to the PEGASOS
550 summer intensive period campaign during the summer of 2012. The available measurements
551 included both ground stations across Europe and airborne measurements from a Zeppelin over the
552 Po Valley.

553 The number concentration predictions of PMCAMx-UF, are compared against ground
554 measurements from 26 stations in Europe. The model tends to overestimate daily average N_{10} with
555 a normalized bias of 35% and an average error of 64%. PMCAMx-UF performed well for N_{100}
556 with a low bias (-2 %) and an error of 41%. The performance of the model in the lowest 1 km of

557 the atmosphere above Po Valley for both N_{10} and N_{100} was even better than its average performance
558 over Europe. The model's predicted PM₁ and PM_{2.5} concentrations and composition had NMB of
559 15% and errors less than 60% depending on the PM component. These results suggest that
560 PMCAMx-UF does a reasonable job reproducing the aerosol mass and number concentrations over
561 Europe during the simulated period.

562 The ELVOCs produced by the monoterpene oxidation contributed, according to the
563 PMCAMx-UF predictions on average around 0.5 $\mu\text{g m}^{-3}$ and accounted for 10-15% of the PM_{2.5}
564 OA. The highest relative predicted increase of OA was 15-25% in northern Europe, while the
565 ELVOC formation increased average OA by approximately 10% in central Europe.

566 The ELVOC production by monoterpenes led to surprisingly small changes of the average
567 number concentrations over Europe. The total number concentration decreased by 0.2%, the N_{10}
568 decreases by 1.1%, while N_{50} increased by 3% and N_{100} by 4% due to this new SOA source. One
569 of the reasons for these small average increases is the nonlinearity of the system leading to both
570 increases and decreases in different parts of Europe. Even if ELVOCs accelerate the growth of the
571 newly formed particles to larger sizes increasing in this way their lifetime, at the same time they
572 increase the aerosol mass and surface area as they mostly condense on the accumulation mode.
573 Therefore, they increase the condensation sink, decreasing the sulfuric acid supersaturation and
574 the corresponding nucleation rate. They also increase the coagulation sink and thus accelerate the
575 removal of all nanoparticles.

576 Locally the effects of the ELVOC production could be higher. For example, it is estimated
577 that the ELVOC production leads to a decrease of the total particle concentration N_{tot} by 20% in
578 parts of the Nordic countries and by 5% in central Europe. At the same time, the predicted N_{10}
579 increased by 5-15% (150-400 cm^{-3}) over Finland, northwestern Russia, France, Ireland and
580 northern Portugal due to these secondary organic compounds. The predicted N_{50} increased almost
581 everywhere in continental Europe by 50-300 cm^{-3} . This is 10% increase of N_{50} over central Europe
582 and 20-40% over Scandinavia and northwestern Russia.

583 The addition of IVOC emissions and their aging reactions led to surprising reduction of the
584 total number of particles (N_{tot}) and N_{10} by 10-15 and 5-10%, respectively, and to an increase of the
585 concentration of N_{100} by 5-10%. In this case semi-volatile organic mass is produced, which
586 condenses preferentially on particles in the accumulation mode, increasing the condensation and
587 coagulation sinks and leading to a decrease in the concentration of the sub-10 nm particles.

588

589 **Data and code availability.** Field measurement data are available in ebas.nilu.no and
590 <https://actris.nilu.no/>. The Zeppelin-relevant, San Pietro Capofume and Bologna data are available
591 in <https://doi.org/10.5281/zenodo.4660145> (Lampilahti et al. 2021). The field datasets for Patras,
592 Thessaloniki and Costa Navarino can be obtained after request to the authors. The PMCAMx-UF
593 is available from the authors (spyros@chemeng.upatras.gr).

594

595 **Supplement.**

596

597 **Author contributions.** DP wrote the code, conducted the simulations, analyzed the results, and
598 wrote the paper. SNP was responsible for the design of the study and the synthesis of the results
599 and contributed to the writing of the paper.

600

601 **Competing interests.** The authors declare that they have no conflict of interest.

602

603 **Acknowledgments:** The authors would like to thank the PEGASOS team and the members and
604 personnel of ACTRIS measurement sites. The ACTRIS project has received funding from
605 the European Union Seventh Framework Programme (ACTRIS, FP7/2007-2013, grant agreement
606 no. 262254) and the ACTRIS-2 project has received funding from the European Union's Horizon
607 2020 research and innovation programme under grant agreement No 654109. We would like to
608 especially thank: Pasi Aalto, Andres Alastuey, Benjamin Bergmans, Wolfram Birmili, Miroslav
609 Bitter, Raymond Ellul, Markus Fiebig, Harald Flentje, Spiridon Bezantakos, George Biskos,
610 Evangelos Gerasopoulos, Johannes Groess, Bas Henzing, Nikos Kalivitis, Hans Karlsson,
611 Evangelia Kostenidou, Giorgos Kouvarakis, Markku Kulmala, Fabian Lenartz, Gunter Loeschau,
612 Chris Lunder, Nikos Mihalopoulos, Marcel Moerman, David Munao, Colin O'Dowd, Noemi
613 Perez, Helena Placha, Jean-Philippe Putaud, Alexander Schladitz, Franz Rohrer, Erik Swietlicki,
614 Ralf Tillmann, Thomas Tuch, Kay Weinhold, Alfred Wiedensohler, Vladimir Zdimal, Hans-
615 Christen Hansson, Peter Tunved and Radovan Krejci for the results of the field measurements.

616

617 **Financial support:** This work was supported by the project FORCeS funded from the European
618 Union's Horizon 2020 research and innovation programme under grant agreement No 821205. We
619 also acknowledge support by the project by the Greek PERAN project MIS 5002358.

620

621 **References**

622 Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation
623 models, *J. Geophys. Res.*, 107, 4370, <https://doi.org/10.1029/2001JD001010>, 2002.

624 Argueso, D., Hidalgo-Munoz, J. M., Gamiz-Fortis, S. R., and Esteban-Parra, M. J.: Evaluation of
625 WRF parameterizations for climate studies over Southern Spain using a multistep regional-
626 ization, *J. Climate*, 24, 5633–5651, 2011.

627 Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, *Atmos. Environ.*, 34, 2063–2101, 2000.

628 Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, *Chem. Rev.*,
629 103, 4605–4638, doi:10.1021/cr0206420, 2003.

630 Carter, W. P. L.: Programs and files implementing the SAPRC-99 mechanism and its associates
631 emissions processing procedures for Models-3 and other regional models, January 31, 2000.

632 Dahneke, B.: Simple Kinetic Theory of Brownian Diffusion in Va- pors and Aerosols, *Theory of
633 Dispersed Multiphase Flow*, edited by Meyer, R. E., Academic Press, New York, 97–133 pp.,
634 1983.

635 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P., and Lehtinen, K. E.
636 J.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution
637 data from SMEAR II, Hyytiälä, Finland, *Boreal Environ. Res.*, 10, 323–336, 2005.

638 de Gouw, J. A., et al.: Budget of organic carbon in a polluted atmosphere: Results from the New
639 England Air Quality Study in 2002, *J. Geophys. Res.*, 110, D16305, doi:10.1029/
640 2004JD005623, 2005.

641 de Meij, A., Gzella, A., Cuvelier, C., Thunis, P., Bessagnet, B., Vinuesa, J. F., Menut, L., and
642 Kelder, H. M.: The im- pact of MM5 and WRF meteorology over complex terrain on
643 CHIMERE model calculations, *Atmos. Chem. Phys.*, 9, 6611– 6632, 2009.

644 Denier van der Gon, H. A. C., Visschedijk, A. J. H., Johansson, C., Hedberg Larsson, E., Harrison,
645 R., and Beddows, D.: Size resolved pan European anthropogenic particle number inventory,
646 EUCAARI Deliverable report D141 (available on request from EUCAARI project office),
647 TNO, the Netherlands, 2009.

648 Docherty, K. S. et al.: Apportionment of Primary and Secondary Organic Aerosols in Southern
649 California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1), *Environ. Sci.
650 Technol.*, 42, 7655–7662, 2008.

651 Donahue, N. M., Robinson, A. L., Stanier, C. O., Pandis, S. N.: Coupled partitioning, dilution, and
652 chemical aging of semivolatile organics, *Environ. Sci. Technol.*, 40, 2635–2643, 2006.

653 Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility
654 basis set: 1. organic-aerosol mixing thermodynamics, *Atmos. Chem. Phys.*, 11, 3303–3318,
655 doi:10.5194/acp-11-3303-2011, 2011.

656 Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D.,
657 Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently-proposed secondary organic aerosol
658 models for a case study in Mexico City, *Atmos. Chem. Phys.*, 9, 5681–5709, 2009.

659 Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach,
660 F., Tillmann, R., Lee, B., Lopez- Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen,
661 T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L.
662 B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T., Petäjä, T.,
663 Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A
664 large source of low-volatility secondary organic aerosol, *Nature*, 506, 476–479, 2014.

665 Environ, User's guide to the comprehensive air quality model with extensions (CAMx), version
666 4.02, report, ENVIRON Int. Corp., Novato, Calif, 2003.

667 Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini,
668 A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U.,
669 Luo, G., Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P.,
670 Tsigaridis, K., van Noije, T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y.,
671 Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald,
672 N. M., Myrokefalitakis, S., Schrödner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu,
673 F.: Evaluation of global simulations of aerosol particle and cloud condensation nuclei number,
674 with implications for cloud droplet formation, *Atmos. Chem. Phys.*, 19, 8591–8617, 2019.

675 Fountoukis, C., Riipinen, I., Denier Van Der Gon, H. A. C., Charalampidis, P. E., Pilinis, C.,
676 Wiedensohler, A., O'Dowd, C., Putaud, J. P., Moerman, M. and Pandis, S. N.: Simulating
677 ultrafine particle formation in Europe using a regional CTM: Contribution of primary
678 emissions versus secondary formation to aerosol number concentrations, *Atmos. Chem. Phys.*,
679 12, 8663–8677, 2012.

680 Garcia-Diez, M., Fernandez, J., Fita, L., and Yague, C.: Sea- sonal dependence of WRF model
681 biases and sensitivity to PBL schemes over Europe, *Q. J. Roy. Meteor. Soc.*, 139, 501–514,
682 2012.

683 Gaydos, T. M., Stainer, C. O., and Pandis, S. N.: Modeling of in-situ ultrafine atmospheric particle
684 formation in the eastern United State, *J. Geophys. Res.*, 110, D07S12, <https://doi.org/10.1029/2004JD004683>, 2005.

685 Gaydos, T., Pinder, R., Koo, B., Fahey, K., Yarwood, G., and Pan- dis, S. N.: Development and
686 application of a three-dimensional Chemical Transport Model, *PMCAMx*, *Atmos. Environ.*,
687 41, 2594–2611, 2007.

688 Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon,
689 M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M.,
690 Adamov, A., Amorim, A., Bernhammer, A.-K., Bianchi, F., Breitenlechner, M., Brilke, S.,
691 Chen, X., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs,
692 C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J.,
693 Kirkby, J., Krapf, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,
694 Molteni, U., Monks, S. A., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T., Praplan, A. P., Pringle,
695 K. J., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C.
696 E., Seinfeld, J. H., Sharma, S., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A.,
697 Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D.,
698 Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dom- men, J., Donahue, N. M., Worsnop, D.
699 R., Baltensperger, U., Kulmala, M., Curtius, J., and Carslaw, K. S.: Reduced anthropogenic
700 aerosol radiative forcing caused by biogenic new particle formation, *P. Natl. Acad. Sci. USA*,
701 113, 12053–12058, 2016.

702 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
703 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
704 Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181–3210, 2006.

705 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen,
706 J., Donahue, N. M., George, C., Goldstein, a. H., Hamilton, J. F., Herrmann, H., Hoffmann,
707 T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, a., Maenhaut, W.,
708 McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,

710 Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary organic
711 aerosol: current and emerging issues, *Atmos. Chem. Phys.*, 9, 5155–5236, 2009.

712 Hamed, A., Joutsensaari, J., Mikkonen, S., Sogacheva, L., Dal Maso, M., Kulmala, M., Cavalli,
713 F., Fuzzi, S., Facchini, M. C., Decesari, S., Mircea, M., Lehtinen, K. E. J., and Laaksonen, A.:
714 Nucleation and growth of new particles in Po Valley, Italy, *Atmos. Chem. Phys.*, 7, 355–376,
715 2007.

716 Im, U., Markakis, K., Unal, A., Kindap, T., Poupkou, A., Incecik, S., Yenigun, O., Melas, D.,
717 Theodosi, C., and Mihalopoulos, N.: Study of a winter PM episode in Istanbul using the high
718 resolution WRF/CMAQ modeling system, *Atmos. Environ.*, 44, 3085–3094, 2010.

719 Jimenez-Guerrero, P., Jorba, O., Baldasano, J. M., and Gasso, S.: The use of a modelling system
720 as a tool for air quality management: Annual high-resolution simulations and evaluation, *Sci.
721 Total Environ.*, 390, 323–340, 2008.

722 Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Jun- ninen, H., Paasonen, P., Stratmann,
723 F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipilä, M.:
724 Production of extremely low volatile organic com- pounds from biogenic emissions: Measured
725 yields and atmospheric implications, *P. Natl. Acad. Sci. USA*, 112, 7123–7128, 2015.

726 Jung, J., Adams, P. J., and Pandis, S. N.: Simulating the size distribution and chemical composition
727 of ultrafine particles during nucleation events, *Atmos. Environ.*, 40, 2248–2259, 2006.

728 Jung, J. G., Fountoukis, C., Adams, P. J. and Pandis, S. N.: Simulation of in situ ultrafine particle
729 formation in the eastern United States using PMCAMx-UF, *J. Geophys. Res.*, 115, D03203,
730 doi: 10.1029/2009jd012313, 2010.

731 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van
732 Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y.,
733 Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati,
734 E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review,
735 *Atmos. Chem. Phys.*, 5, 1053–1123, 2005.

736 Karydis, V. A., Tsimpidi, A. P., and Pandis, S. N.: Evaluation of a three-dimensional chemical
737 transport model (PMCAMx) in the eastern United States for all four seasons, *J. Geophys. Res.*,
738 112, D14211, <https://doi.org/10.1029/2006JD007890>, 2007.

739 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon,
740 M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A.,

741 Amorim, A., Bernhammer, A.-K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X.,
742 Craven, J., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J.,
743 Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M., Kürten, A.,
744 Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Onnela, A., Peräkylä,
745 O., Piel, F., Petäjä, T., Praplan, A. P., Pringle, K., Rap, A., Richards, N. A. D., Riipinen, I.,
746 Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipilä,
747 M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner,
748 A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel,
749 A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw,
750 K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic particles, *Nature*, 533, 521–526,
751 <https://doi.org/10.1038/nature17953>, 2016.

752 Kleinman, L. I., Springston, S. R., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Senum, G. I.,
753 Wang, J., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Canagaratna, M. R.,
754 and Jayne, J.: The time evolution of aerosol composition over the Mexico City plateau, *Atmos.*
755 *Chem. Phys.*, 8, 1559–1575, doi:10.5194/acp-8-1559-2008, 2008.

756 Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S., Eleftheriadis, K., and
757 Pandis, S. N.: Sources and chemical characterization of organic aerosol during the summer in
758 the eastern Mediterranean, *Atmos. Chem. Phys.*, 15, 11355–11371, 2015.

759 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., Seinfeld, J. H.: Secondary organic aerosol
760 formation from isoprene photooxidation, *Environ. Sci. Technol.*, 40, 155-162, 2006.

761 Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W.,
762 and McMurry, P. H.: Formation and growth of ultrafine atmospheric particles: A review of
763 observations, *J. Aerosol Sci.*, 35, 143–176, 2004.

764 Kulmala, M., Asmi, A., Lappalainen, H. K., Baltensperger, U., Brenguier, J.-L., Facchini, M. C.,
765 Hansson, H.-C., Hov, Ø., O'Dowd, C. D., Pöschl, U., Wiedensohler, A., Boers, R., Ammann, M.,
766 Arabas, S., Artaxo, P., Baars, H., Beddows, D. C. S., Bergström, R., Beukes, J. P., Bilde, M.,
767 Burkhardt, J. F., Canonaco, F., Clegg, S. L., Coe, H., Crumeyrolle, S., D'Anna, B., Decesari, S.,
768 Gilardoni, S., Fischer, M., Fjaeraa, A. M., Fountoukis, C., George, C., Gomes, L., Halloran, P.,
769 Hamburger, T., Harrison, R. M., Herrmann, H., Hoffmann, T., Hoose, C., Hu, M., Hyvärinen, A.,
770 Hörrak, U., Iinuma, Y., Iversen, T., Josipovic, M., Kanakidou, M., Kiendler-Scharr, A.,
771 Kirkevåg, A., Kiss, G., Klimont, Z., Kolmonen, P., Komppula, M., Kristjánsson,

772 J.-E., Laakso, L., Laaksonen, A., Labonnote, L., Lanz, V. A., Lehtinen, K. E. J., Rizzo, L. V.,
773 Makkonen, R., Manninen, H. E., McMeeking, G., Merikanto, J., Minikin, A., Mirme, S.,
774 Morgan, W. T., Nemitz, E., O'Donnell, D., Panwar, T. S., Pawlowska, H., Petzold, A., Pienaar,
775 J. J., Pio, C., Plass-Duelmer, C., Prévôt, A. S. H., Pryor, S., Reddington, C. L., Roberts, G.,
776 Rosenfeld, D., Schwarz, J., Seland, Ø., Sellegrí, K., Shen, X. J., Shiraiwa, M., Siebert, H.,
777 Sierau, B., Simpson, D., Sun, J. Y., Topping, D., Tunved, P., Vaattovaara, P., Vakkari, V.,
778 Veefkind, J. P., Visschedijk, A., Vuollekoski, H., Vuolo, R., Wehner, B., Wildt, J., Woodward,
779 S., Worsnop, D. R., van Zadelhoff, G.-J., Zardini, A. A., Zhang, K., van Zyl, P. G., Kerminen,
780 V.-M., Carslaw, K., and Pandis, S. N.: General overview: European Integrated project on
781 Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research
782 from nano to global scales, *Atmos. Chem. Phys.*, 11, 13061–13143,
783 <https://doi.org/10.5194/acp-11-13061-2011>, 2011.

784 Lampilahti, J., Manninen, H. E., Nieminen, T., Mirme, S., Ehn, M., Pullinen, I., Leino, K.,
785 Schobesberger, S., Kangasluoma, J., Kontkanen, J., Järvinen, E., Väänänen, R., Yli-Juuti, T.,
786 Krejci, R., Lehtipalo, K., Levula, J., Mirme, A., Decesari, S., Tillmann, R., Worsnop, D. R.,
787 Rohrer, F., Kiendler-Scharr, A., Petäjä, T., Kerminen, V.-M., Mentel, T. F., and Kulmala, M.:
788 Zeppelin-led study on the onset of new particle formation in the planetary boundary layer,
789 *Atmos. Chem. Phys. Discuss. [preprint]*, <https://doi.org/10.5194/acp-2021-282>, in review,
790 2021.

791 Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation
792 using the volatility basis-set approach in a chemical transport model, *Atmos. Environ.*, 42,
793 7439–7451, 2008.

794 Makkonen, R., Asmi, A., Korhonen, H., Kokkola, H., Järvenoja, S., Räisänen, P., Lehtinen, K. E.
795 J., Laaksonen, A., Kerminen, V.-M., Järvinen, H., Lohmann, U., Bennartz, R., Feichter, J.,
796 and Kulmala, M.: Sensitivity of aerosol concentrations and cloud properties to nucleation and
797 secondary organic distribution in ECHAM5-HAM global circulation model, *Atmos. Chem. Phys.*, 9, 1747–1766, <https://doi.org/10.5194/acp-9-1747-2009>, 2009.

798 Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield,
799 M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: A
800 modal global aerosol microphysics model for the UKCA composition-climate model. *Geosci.*
801 *Model Dev.*, 3, 519–551, 2010.

803 Matsui, H., et al.: Secondary organic aerosol formation in urban air: Temporal variations and
804 possible contributions from unidentified hydrocarbons, *J. Geophys. Res.*, 114, D04201,
805 doi:10.1029/2008JD010164, 2009.

806 Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of
807 nucleation on global CCN, *Atmos. Chem. Phys.*, 9, 8601–8616, <https://doi.org/10.5194/acp-9-8601-2009>, 2009.

809 [Mikuška, P., Večeřa, Z., Bartošíková, A., Maenhaut, W.: Annular diffusion denuder for](#)
810 [simultaneous removal of gaseous organic compounds and air oxidants during sampling of](#)
811 [carbonaceous aerosols, Anal Chim Acta., 714, 68-75. 2012.](#)

812 Murphy, B. N., Pandis, S. N. and Ave, F.: Simulating the formation of semivolatile primary and
813 secondary organic aerosol in a regional chemical transport model gas-phase chemistry of OA
814 species, *Environ. Sci. Technol.*, 43, 4722–4728, 2009.

815 Napari, I., Noppel, M., Vehkamaki, H., and Kulmala, M.: Parameterization of ternary nucleation
816 rates for $\text{H}_2\text{SO}_4\text{-NH}_3\text{-H}_2\text{O}$ vapors, *J. Geophys. Res.*, 107, AAC 6-1–AAC 6-6,
817 <https://doi.org/10.1029/2002JD002132>, 2002.

818 Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V., Flagan, R. C., Seinfeld,
819 J. H.: Contribution of first- versus second-generation products to secondary organic aerosols
820 formed in the oxidation of biogenic hydrocarbons, *Environ. Sci. Technol.*, 40, 2283-2297,
821 2006.

822 [Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: a new thermodynamic equilibrium model](#)
823 [for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.](#)

824 Odum, J. R., Hoffmann, T., Bowman, F. A., Collins, D., Flagan, R. C., Seinfeld, J. H.: Gas/particle
825 partitioning and secondary organic aerosol yields, *Environ. Sci. Technol.*, 30, 2580-2585,
826 1996.

827 O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and Facchini, M. C.: A
828 combined organic-inorganic sea-spray source function, *Geophys. Res. Lett.*, 35, L01801,
829 <https://doi.org/10.1029/2007GL030331>, 2008.

830 Olenius, T., Yli-Juuti, T., Elm, J., Kontkanen, J., and Riipinen I. New particle formation and
831 growth: creating a new atmospheric phase interface. In *Physical Chemistry of Gas-Liquid*
832 *Interfaces* (eds. Faust, J. A. & House, J. E.), 315–352, Elsevier, 2018.

833 [Pandis, S. N., Wexler, A. S., and Seinfeld, J. H.: Secondary organic aerosol formation and](#)
834 [transport. 2. Predicting the ambient secondary organic aerosol size distribution, Atmos.](#)
835 [Environ., 27A, 2403–2416, 1993.](#)

836 Pathak, R. K., Presto, A. A., Lane, T. E., Stanier, C. O., Donahue, N. M., Pandis, S. N.: Ozonolysis
837 of α -pinene: parameterization of secondary organic aerosol mass fraction, *Atmos. Chem.*
838 *Phys.*, 7, 3811–3821, 2007.

839 Patoulias, D., Fountoukis, C., Riipinen, I., and Pandis, S. N.: The role of organic condensation on
840 ultrafine particle growth during nucleation events, *Atmos. Chem. Phys.*, 15, 6337–6350,
841 <https://doi.org/10.5194/acp-15-6337-2015>, 2015.

842 Patoulias, D., Fountoukis, C., Riipinen, I., Asmi, A., Kulmala, M., and Pandis, S. N.: Simulation
843 of the size-composition distribution of atmospheric nanoparticles over Europe, *Atmos. Chem.*
844 *Phys.*, 18, 13639–13654, <https://doi.org/10.5194/acp-18-13639-2018>, 2018.

845 Pierce, J. R. and Adams, P. J.: A computationally efficient aerosol nucleation/condensation
846 method: Pseudo-steady state sulfuric acid, *Aerosol Sci. Tech.*, 43, 216–226, 2009

847 Pierce, J. R., Riipinen, I., Kulmala, M., Ehn, M., Petäjä, T., Junninen, H., Worsnop, D. R., and
848 Donahue, N. M.: Quantification of the volatility of secondary organic compounds in ultrafine
849 particles during nucleation events, *Atmos. Chem. Phys.*, 11, 9019–9036,
850 <https://doi.org/10.5194/acp-11-9019-2011>, 2011.

851 Presto, A. A., Donahue, N. M.: Investigation of α -pinene+ozone secondary organic aerosol
852 formation at low total aerosol mass. *Environ. Sci. Technol.*, 40, 3536–3543, 2006.

853 Rissanen, M. P., Kurtén, T., Sipilä, M., Thornton, J. A., Kangasluoma, J., Sarnela, N., Junninen,
854 H., Jørgensen, S., Schallhart, S., Kajos, M. K., Taipale, R., Springer, M., Mentel, T. F., Ruuska-
855 nen, T., Petäjä, T., Worsnop, D. R., Kjaergaard, H. G., and Ehn, M.: The formation of highly
856 oxidized multifunctional products in the ozonolysis of cyclohexene, *J. Am. Chem. Soc.*, 136,
857 15596–15606, 2014.

858 Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop,
859 A. P., Lane, T. E., Pandis, S. N., Pierce, J. R.: Rethinking organic aerosols: semivolatile
860 emissions and photochemical aging, *Science*, 315, 1259–1262, 2007.

861 Schulze, B. C., Wallace, H. W., Flynn, J. H., Lefer, B. L., Erickson, M. H., Jobson, B. T., Dusanter,
862 S., Griffith, S. M., Hansen, R. F., Stevens, P. S., VanReken, T., and Griffin, R. J.: Differences

863 in BVOC oxidation and SOA formation above and below the forest canopy, *Atmos. Chem.*
864 *Phys.*, 17, 1805–1828, <https://doi.org/10.5194/acp-17-1805-2017>, 2017.

865 Seinfeld, J. H.; Pandis S. N. *Atmospheric Chemistry and Physics: From Air Pollution to Climate*
866 *Change*, 2nd ed.; John Wiley and Sons, Hoboken, NJ, 2006.

867 Sengupta, K., Pringle, K., Johnson, J. S., Reddington, C., Browne, J., Scott, C. E., and Carslaw,
868 K.: A global model perturbed parameter ensemble study of secondary organic aerosol
869 formation, *Atmos. Chem. Phys.*, 21, 2693–2723, <https://doi.org/10.5194/acp-21-2693-2021>,
870 2021.

871 Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of
872 gas-particle partitioning and aging of primary emissions on urban and regional organic aerosol
873 concentrations, *J. Geophys. Res.*, 113, D18301, doi:10.1029/2007JD009735, 2008.

874 Shrivastava, M., Thornton, J., Cappa, C., Fan, J., Goldstein, A., Guenther, A., Jimenez, J. L.,
875 Kuang, C., Laskin, A., Martin, S., Ng, N. L., Petaja, T., Pierce, J., Rasch, P., Roldin, P.,
876 Seinfeld, J., Shilling, J., Smith, J., Volkamer, R., Wang, J., Worsnop, D., Zaveri, R., Zelenyuk,
877 A., and Zhang, Q.: Recent advances in understanding secondary organic aerosols: implications
878 for global climate forcing, *Rev. Geophys.*, 55, 509-559, 2017.

879 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J.
880 G.: A Description of the Advanced Research WRF Version 2, NCAR Technical Note, available
881 at: http://www2.mmm.ucar.edu/wrf/users/docs/arw_v2_070111.pdf (last access: 12
882 September 2018), 2005.

883 Sofiev, M., Vankevich, R., Lanne, M., Koskinen, J., and Kukkonen, J.: On integration of a Fire
884 Assimilation System and a chemical transport model for near-real-time monitoring of the
885 impact of wild-land fires on atmospheric composition and air quality, *Modelling, Monitoring*
886 *and Management of Forest Fires*, *WIT Trans. Ecol. Envir.*, 119, 343–351, 2008a.

887 Sofiev, M., Lanne, M., Vankevich, R., Prank, M., Karppinen, A., and Kukkonen, J.: Impact of
888 wild-land fires on European air quality in 2006–2008, *Modelling, Monitoring and Management*
889 *of Forest Fires*, *WIT Trans. Ecol. Envir.*, 119, 353–361, 2008b.

890 Sogacheva, L., Hamed, A., Facchini, M. C., Kulmala, M., and Laaksonen, A.: Relation of air mass
891 history to nucleation events in Po Valley, Italy, using back trajectories analysis, *Atmos. Chem.*
892 *Phys.*, 7, 839–853, <https://doi.org/10.5194/acp-7-839-2007>, 2007.

893 Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W.: A global
894 off-line model of size- resolved aerosol microphysics: I. Model development and prediction of
895 aerosol properties, *Atmos. Chem. Phys.*, 5, 2227– 2252, doi:10.5194/acp-5-2227-2005, 2005.
896 Stanier, C. O., Pathak, R. K. and Pandis, S. N.: Measurements of the volatility of aerosols from a-
897 pinene ozonolysis, *Environ. Sci. Technol.*, 41, 2756–2763, 2007.
898 [Turpin, B. J., Saxena, P., and Andrews, E.: Measuring and simulating particulate organics in the](#)
899 [atmosphere: problems and prospects, *Atmos. Environ.*, 34, 2983-3013, 2000.](#)
900 Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and
901 Laaksonen, A.: An improved parameterization for sulfuric acid-water nucleation rates for
902 tropospheric and stratospheric conditions, *J. Geophys. Res.*, 107, 4622–4632, 2002.
903 Visschedijk, A. J. H., Zandveld, P., and Denier van der Gon, H. A. C.: TNO Report 2007 A-
904 R0233/B: A high resolution gridded European emission database for the EU integrated project
905 GEMS, Organization for Applied Scientific Research, the Netherlands, 2007.
906 Volkamer, R., Jimenez, J. L., San Martini, F., et al.: Secondary organic aerosol formation from
907 anthropogenic air pollution: Rapid and higher than expected, *Geophys. Res. Lett.*, 33, L17811,
908 doi:10.1029/2006GL026899, 2006.
909 Wang, M. and Penner, J. E.: Aerosol indirect forcing in a global model with particle nucleation,
910 *Atmos. Chem. Phys.*, 9, 239–260, <https://doi.org/10.5194/acp-9-239-2009>, 2009.
911 Yli-Juuti, T., Mohr, C., and Riipinen, I. Open questions on atmospheric nanoparticle
912 growth. *Commun. Chem.* 3, 106, <https://doi.org/10.1038/s42004-020-00339-4>, 2020.
913 Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model:
914 contribution of nucleation to aerosol and CCN number concentrations, *Atmos. Chem. Phys.*,
915 9, 7691– 7710, doi:10.5194/acp-9-7691-2009, 2009.
916 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,
917 Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo,
918 P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S.,
919 Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian,
920 K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y.,
921 Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic
922 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, *Geophys. Res.*
923 *Lett.*, 34, L13801, doi:10.1029/2007GL029979, 2007.

925

Table 1: Summary of parameters used for each simulation

<u>CASE</u>	<u>Anthropogenic Aging of anthropogenic IVOCs and SVOCs</u>	<u>Source of ELVOCs</u>	<u>Emission of IVOCs</u>
<u>1</u> (Base case)	<u>Aging with OH</u> $k=10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	<u>Monoterpene oxidation 5% molar yield</u>	<u>Yes</u> <u>Aging reaction: $k=4 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$</u>
<u>2</u>		<u>None</u>	<u>Yes</u> <u>Aging reaction: $k=4 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$</u>
<u>3</u>		<u>Monoterpene oxidation 5% molar yield</u>	<u>No</u>

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955 **Table 21:** Prediction skill metrics of PMCAMx-UF against daily ground measurements of particle
 956 number concentration above 10 nm (N_{10}) during 5 June – 8 July 2012.
 957

Station	Mean Observed (cm^{-3})	Mean Predicted (cm^{-3})		NMB (%)		NME(%)	
		Base case	Without ELVOCs	Base case	Without ELVOCs	Base case	Without ELVOCs
N_{10}							
ANB	8057	6617	6585	-18	-18	39	39
ASP	2130	5233	5202	146	144	144	144
BRK	1878	3144	3053	67	63	86	86
CBW	13101	9913	9817	-24	-25	31	31
DSN	10591	6508	6504	-39	-39	41	41
DSW	7706	6111	6091	-21	-21	40	40
FNK	3962	5466	5466	38	38	40	40
GDN	5712	6652	6731	16	18	32	32
HOH	3438	3070	2906	-11	-15	38	38
HYY	2207	2536	2265	15	3	31	31
ISP	6232	6449	6203	3	0	43	43
KPU	5269	5855	5937	11	13	43	43
KST	3596	4881	4834	36	34	46	46
MLP	5583	6034	6003	8	8	42	42
MNT	6455	8364	8273	30	28	45	45
PRG	7272	7281	7273	0	0	44	44
USM	15171	8335	8413	-45	-45	52	52
VAV	3250	8291	8283	155	155	155	155
VRR	1107	1491	1190	35	7	69	57
VSM	2903	7281	7011	151	141	151	141
WLD	4956	7903	7783	59	57	66	64
ZUG	1237	2405	2287	94	85	111	103
NEO	2864	5085	5039	78	76	79	78
PAT	4705	5151	5148	9	9	45	44
SPC	8301	7198	7180	-13	-14	35	35
THE	3894	8577	8530	120	119	120	119
ALL	4820	5957	5889	23	22	63	63

958

959

960

961

962 **Table 32:** Prediction skill metrics of PMCAMx-UF against daily ground measurements of particle
 963 number concentration above 100 nm (N_{100}) during 5 June – 8 July 2012.

964

Station	Mean Observed (cm^{-3})	Mean Predicted (cm^{-3})		NMB (%)		NME(%)	
		Base case	Without ELVOCs	Base case	Without ELVOCs	Base case	Without ELVOCs
N_{100}							
ANB	1518	939	934	-38	-38	47	47
ASP	552	789	694	43	26	61	51
BRK	607	419	397	-31	-35	65	62
CBW	1627	1550	1441	-5	-11	18	16
DSN	1976	1178	1052	-40	-47	44	49
DSW	1426	1156	1050	-19	-26	35	37
FNK	1760	2383	2330	35	32	39	36
GDN	2492	2797	2826	12	13	34	33
HOH	1011	697	656	-31	-35	37	40
HYY	677	579	445	-14	-34	26	38
ISP	1775	1334	1283	-25	-28	37	38
KPU	1543	1898	1861	23	21	29	28
KST	1123	1138	1061	1	-6	26	21
MLP	1214	1111	977	-9	-20	30	33
MNT	1492	1871	1799	25	21	49	50
PRG	1177	1256	1167	7	-1	26	25
USM	1657	1091	985	-34	-41	40	44
VAV	766	942	899	23	17	48	48
VRR	324	166	90	-49	-72	63	77
VSM	704	747	643	6	-9	34	34
WLD	1116	1063	955	-5	-14	20	23
ZUG	555	555	546	0	-2	44	44
NEO	1489	2041	1971	37	32	45	42
PAT	1747	1765	1766	1	1	21	23
SPC	1702	2051	1978	21	16	36	36
THE	1387	2420	2384	74	72	78	76
ALL	1198	1326	1258	10	5	45	45

965

966

967

968

969 **Table 43:** Predicted (PMCAMx-UF) and observed (AMS) average PM₁ concentrations of sulfate,
 970 ammonium and nitrate in different locations for base case simulation.

Station	Sulfate		Ammonium		Nitrate	
	Predicted ($\mu\text{g m}^{-3}$)	Observed ($\mu\text{g m}^{-3}$)	Predicted ($\mu\text{g m}^{-3}$)	Observed ($\mu\text{g m}^{-3}$)	Predicted ($\mu\text{g m}^{-3}$)	Observed ($\mu\text{g m}^{-3}$)
FIN	4.44	3.50	1.82	1.06	1.00	0.07
PAT	2.83	3.35	1.34	0.95	0.84	0.10
BOL	2.11	2.79	1.08	1.00	0.90	0.60
SPC	2.31	1.81	1.16	0.88	0.99	1.20
ALL	2.99	2.82	1.37	0.97	0.94	0.52

971

972

973

974

975

976

977

978

979

980

981

982

983

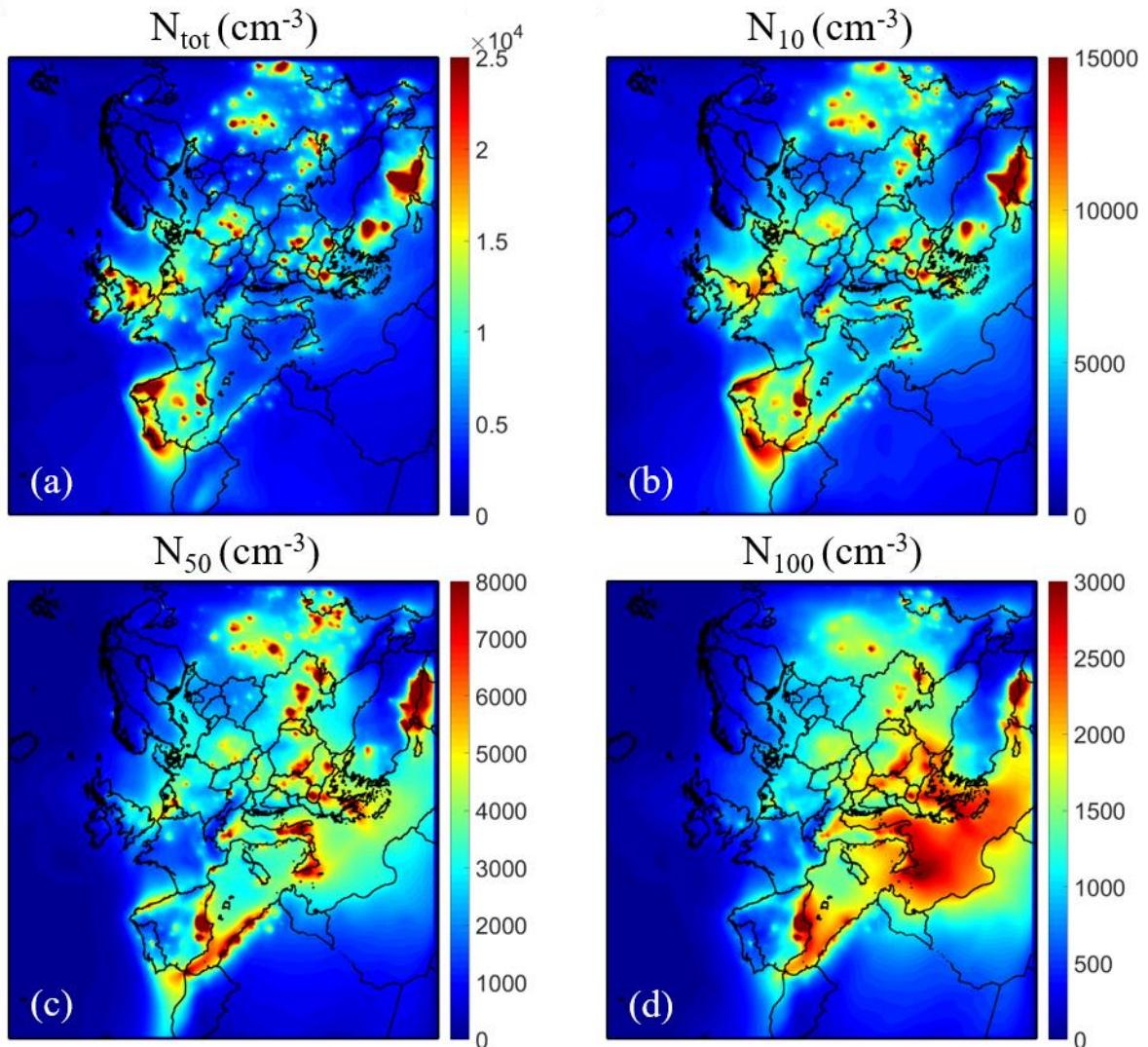
984

985

986

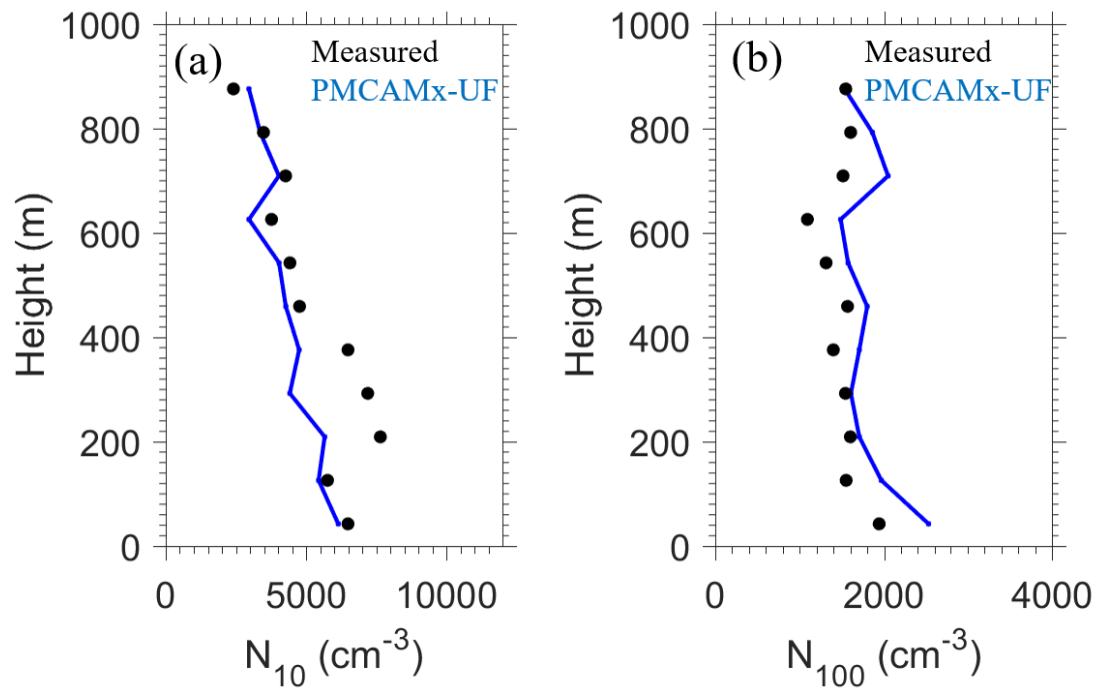
987 **Table 54:** Prediction skill metrics of PMCAMx-UF base case simulation against daily PM₁ OA
988 measurements.

Station	Mean Predicted ($\mu\text{g m}^{-3}$)	Mean Observed ($\mu\text{g m}^{-3}$)	NMB (%)	NME (%)	Factor of 2 (%)
FIN	3.19	2.12	50	51	83
PAT	2.75	3.80	-28	28	95
BOL	4.62	5.68	-19	33	74
SPC	4.74	3.98	19	44	77
ALL	3.87	3.79	2	38	82


989

990

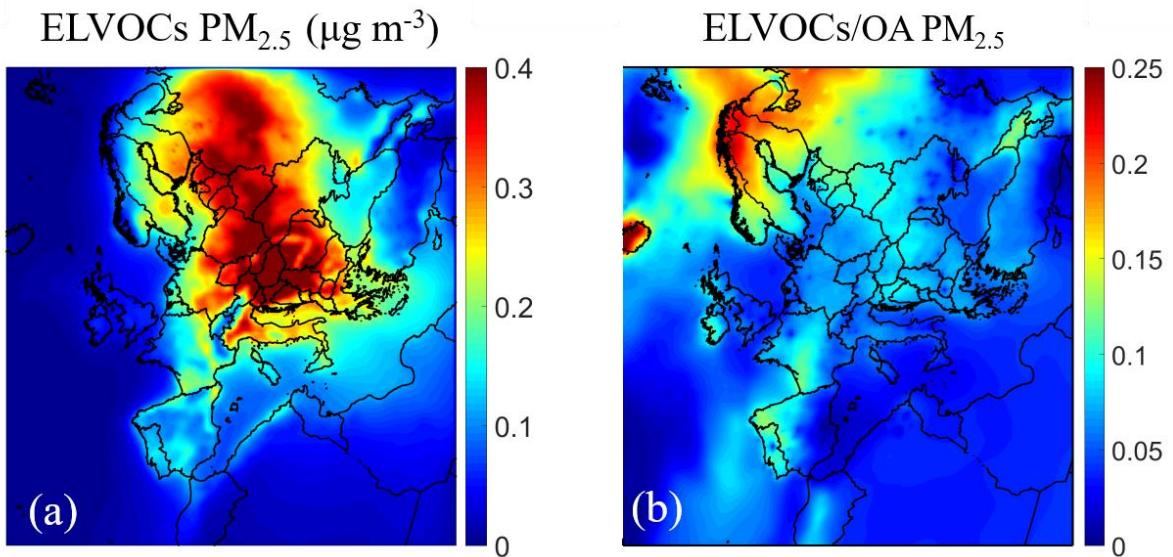
991 **Table 65:** Prediction skill metrics of PMCAMx-UF against daily PM_{2.5} OA measurements.


Name	Station	Country	Mean Observed ($\mu\text{g m}^{-3}$)	Mean Predicted ($\mu\text{g m}^{-3}$)	NMB (%)	NME (%)	Factor of 2 (%)
			($\mu\text{g m}^{-3}$)	(%)	(%)	(%)	(%)
CH02	Payerne	Switzerland	2.54	2.98	17	73	72
DE44	Melpitz	Germany	2.52	4.42	76	88	66
ES1778	Montseny	Spain	4.52	6.28	39	89	59
IT04	Ispra	Italy	5.13	4.41	-14	46	71
PL05	Diabla Gora	Poland	3.64	4.22	16	43	84
SI08	Iskrba	Slovenia	5.98	5.07	-15	33	80
ALL			4.06	4.56	20	62	72

992

993

994 **Figure 1:** Average ground level number concentrations (in cm^{-3}) for the base case simulation
 995 during 5 June – 8 July 2012 for: (a) all particles (N_{tot}); and particles above (b) 10 nm (N_{10}); (c) 50
 996 nm (N_{50}); and (d) 100 nm (N_{100}). Different scales are used.

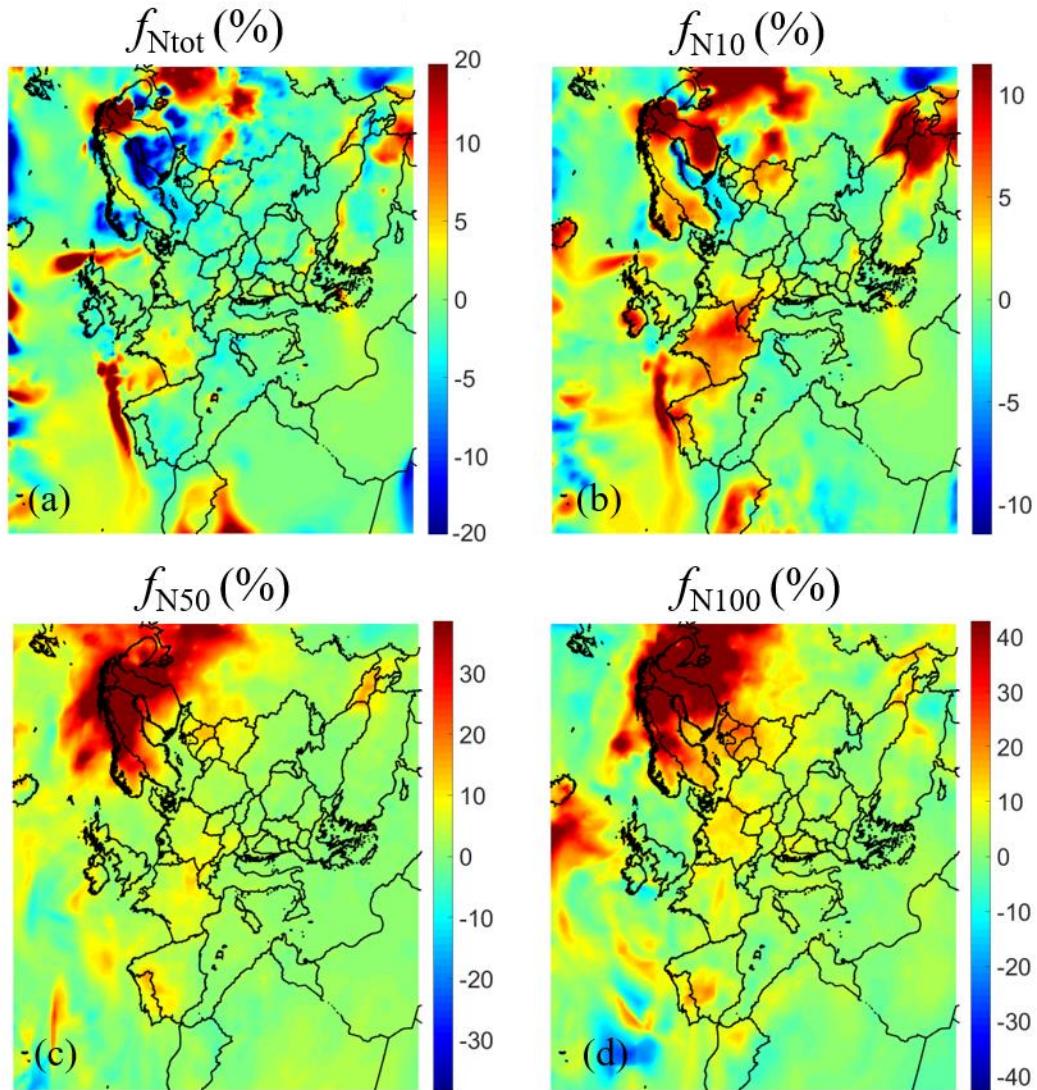


997

998 **Figure 2:** Comparison of predicted PMCAMx-UF (blue line) vs. observed (black dots) vertical
999 profiles of averaged particle number concentrations for (a) N_{10} and (b) N_{100} of 25 flights over the
1000 Po Valley during the PEGASOS campaign.

1001

1002



1003

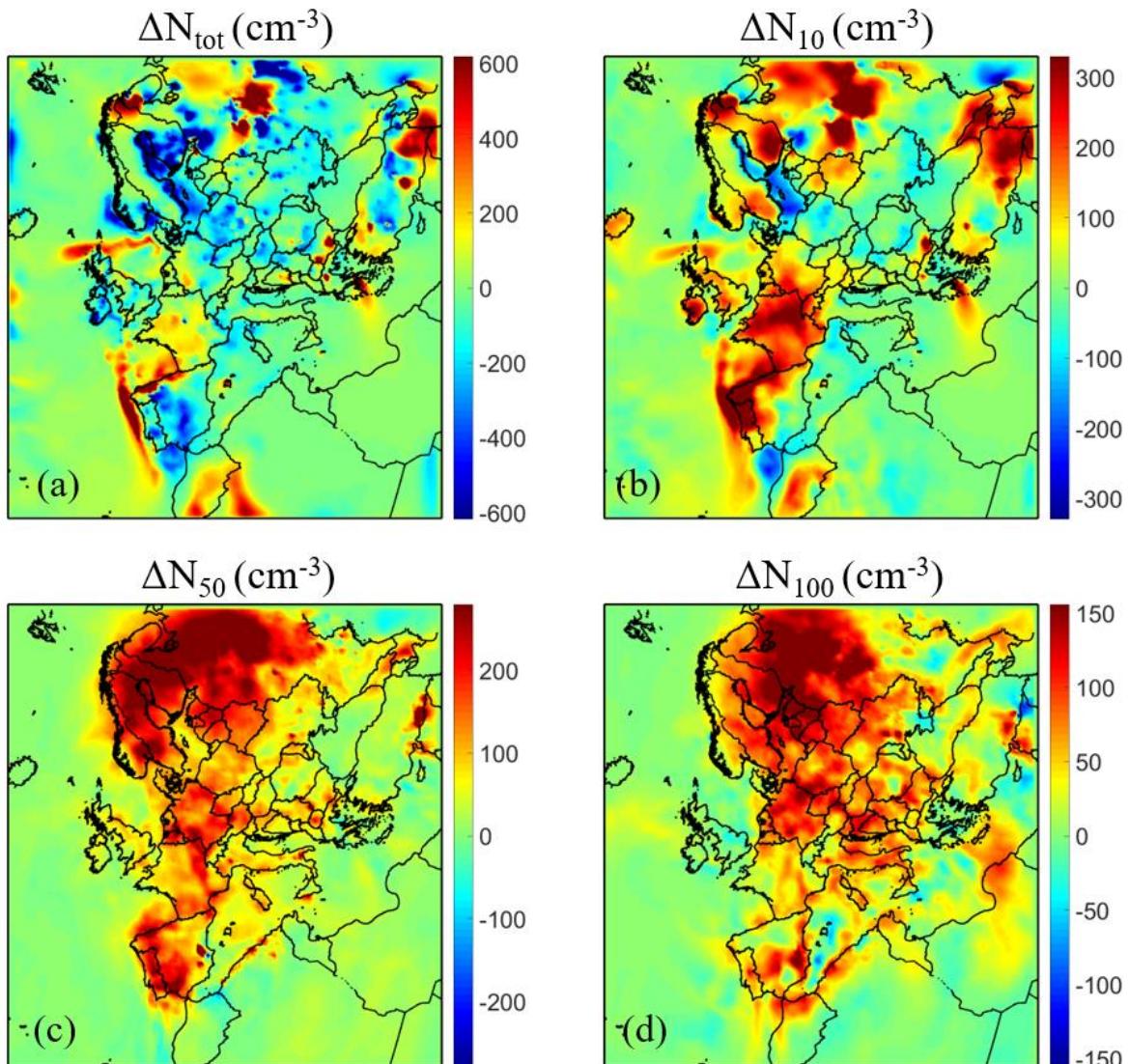
1004 **Figure 3:** Average ground level (a) PM_{2.5} ELVOCs mass concentration (in $\mu\text{g m}^{-3}$) and (b) the
1005 ratio of the PM_{2.5} mass of ELVOCs to OA during the simulation. Different scales are used.

1006

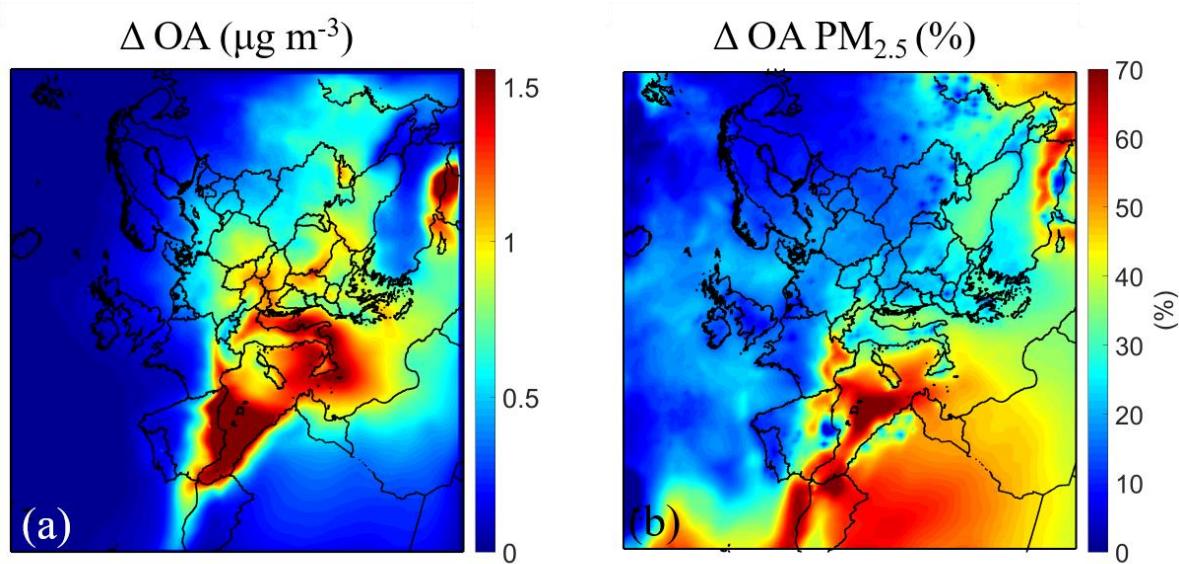
1007

1008

1009 **Figure 4:** Average ground level fractional increase (f_{Nx}) of number concentration due to the
1010 condensation of ELVOCs for: (a) all particles (f_{Ntot}); (b) particles above 10 nm (f_{N10}); (c) above 50
1011 nm (f_{N50}); and (d) above 100 nm (f_{N100}). Different scales are used.


1012

1013


1014

1015

1016

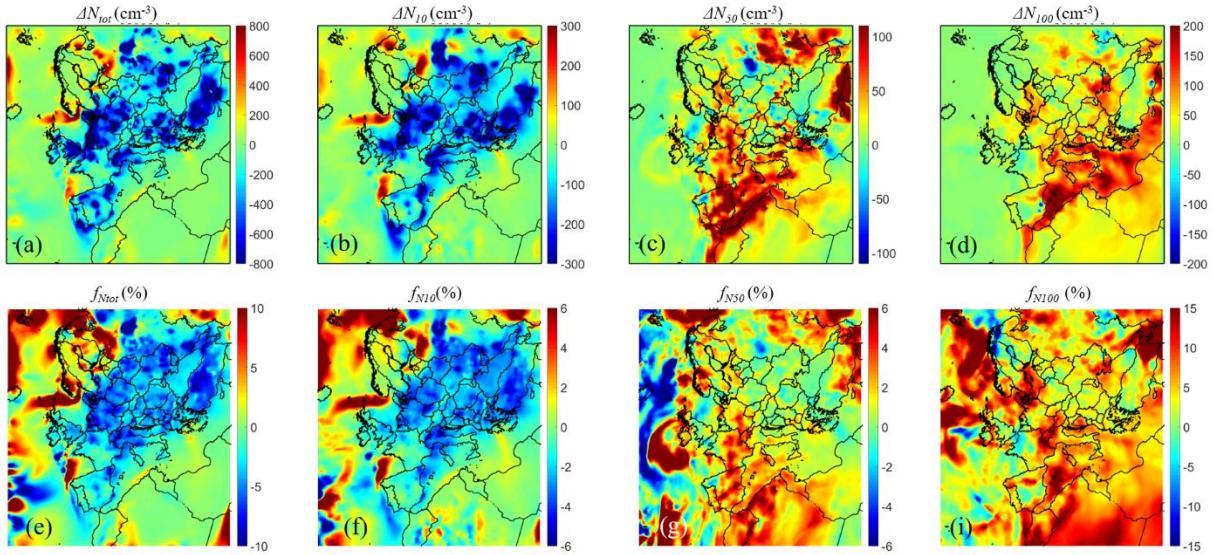
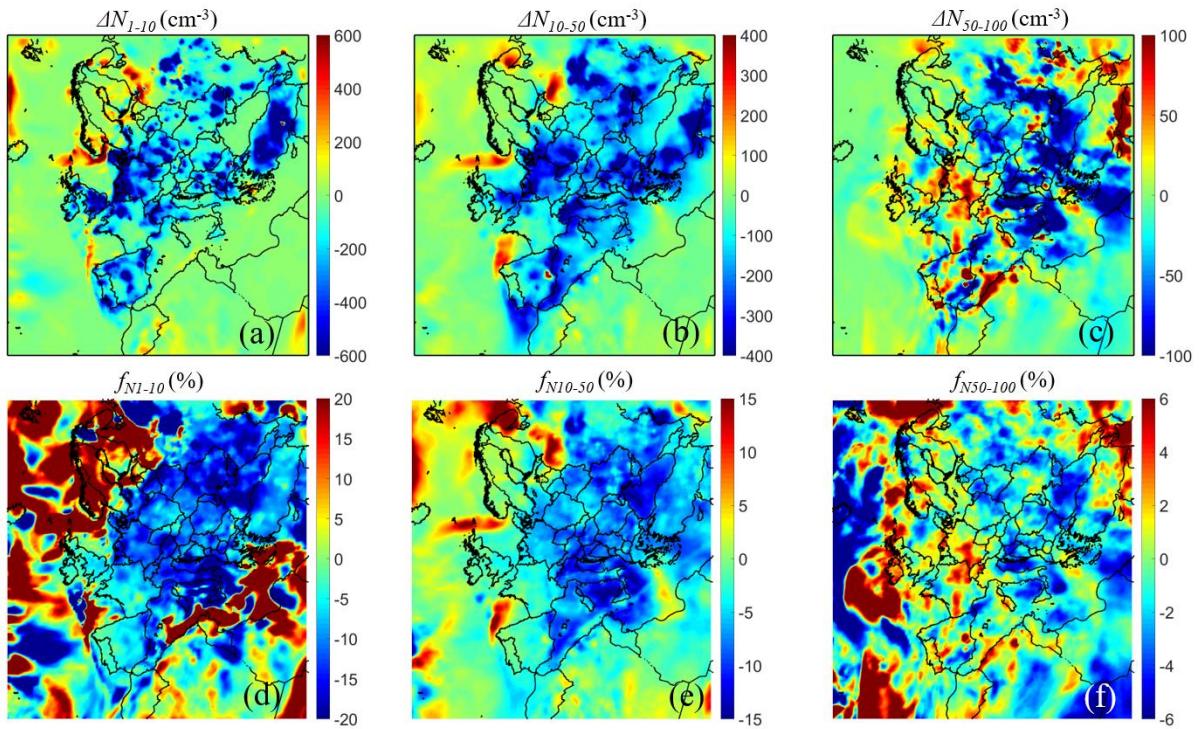


Figure 5: Average ground level increase of number concentration (in cm^{-3}) due to the condensation of ELVOCs for: (a) all particles (ΔN_{tot}); particles above (b) 10 nm (ΔN_{10}); (c) 50 nm (ΔN_{50}); and (d) 100 nm (ΔN_{100}). Different scales are used.

1027
1028 **Figure 6:** Ground level average (a) increase of $\text{PM}_{2.5}$ mass concentration of organics aerosol (in
1029 $\mu\text{g m}^{-3}$) and (b) fractional increase of $\text{PM}_{2.5}$ mass concentration of organics aerosol (%) due to the
1030 addition of IVOCs emissions of semi-volatility organic aging, predicted during 5 June – 8 July.
1031 Different scales are used.

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043



1044

1045 **Figure 7:** Ground level increase of number concentration (in cm^{-3}) (a-d) and fractional increase
1046 (e-i) of number concentration (e-i) due to the addition of IVOCs emissions and aging reactions,
1047 predicted during 5 June – 8 July 2012 for: (a, e) all particles (N_{tot}); and particles above (b, f) 10 nm
1048 (N_{10}); (c, g) 50 nm (N_{50}); and (d, i) 100 nm (N_{100}). Different scales are used.

1049

1050

1051

1052 **Figure 8:** Ground level average increase of number concentration (in cm^{-3}) (a-b-c) and fractional
 1053 increase (f_{N_x}) of number concentration (d-e-f) due to the addition of IVOCs emissions predicted
 1054 during 5 June – 8 July 2012 for: (a, d) particles between 0.8 nm and 10 nm (N_{1-10}); (b, e) particles
 1055 between 10 nm and 50 nm (N_{10-50}) and (c, f) particles between 50 nm and 100 nm (N_{50-100}).
 1056 Different scales are used.