
1 

Analysis of regional CO2 contributions at the high Alpine observatory 

Jungfraujoch by means of atmospheric transport simulations and δ13C 

Simone M. Pieber1, Béla Tuzson1, Stephan Henne1, Ute Karstens2, Christoph Gerbig3, Frank-Thomas 

Koch3,4, Dominik Brunner1, Martin Steinbacher1 and Lukas Emmenegger1  

1 Laboratory for Air Pollution and Environmental Technology, Empa, Switzerland  5 
2 ICOS Carbon Portal, Lund University, Sweden  
3 Max Planck Institute (MPI) for Biogeochemistry (BGC), Jena, Germany 
4 Meteorological Observatory Hohenpeissenberg, Deutscher Wetterdienst, Germany 

simone.pieber@empa.ch 

Abstract. Understanding of regional greenhouse gas emissions into the atmosphere is a prerequisite to mitigate 10 

climate change. In this study, we investigated the regional contributions of carbon dioxide (CO2) at the location of 

the high Alpine observatory Jungfraujoch ("JFJ", Switzerland, 3580 m a.s.l.). To this purpose, we combined 

receptor-oriented atmospheric transport simulations for CO2 concentration in the period of 2009–2017 with stable 

carbon isotope (δ13C-CO2) information. We applied two Lagrangian particle dispersion models driven by output 

from two different numerical weather prediction systems (FLEXPART-COSMO and STILT-ECMWF) in order to 15 

simulate CO2 concentration at JFJ based on regional CO2 fluxes, to estimate atmospheric δ13C-CO2, and to obtain 

model-based estimates of the mixed source signatures (δ13Cm). Anthropogenic fluxes were taken from a fuel type-

specific version of the EDGAR v4.3 inventory, while ecosystem fluxes were based on the Vegetation Photosynthesis 

and Respiration Model (VPRM). The simulations of CO2, δ13C-CO2 and δ13Cm were then compared to observations 

performed by quantum cascade laser absorption spectroscopy. The models captured around 40 % of the regional 20 

CO2 variability above or below the large-scale background, and up to 35 % of the regional variability in δ13C-CO2. 

This is according to expectations considering the complex Alpine topography, the low intensity of regional signals 

at JFJ, and the challenging measurements. Best agreement between simulations and observations in terms of short-

term variability and intensity of the signals for CO2 and δ13C-CO2 was found between late autumn and early spring. 

The agreement was inferior in the early autumn periods and during summer. This may be associated with the 25 

atmospheric transport representation in the models. In addition, the net ecosystem exchange fluxes are a possible 

source of error, either through inaccuracies in their representation in VPRM for the (Alpine) vegetation or through 

a day (uptake) vs. night (respiration) transport discrimination to JFJ. Furthermore, the simulations suggest that JFJ 

is subject to relatively small regional anthropogenic contributions, due to its remote location (elevated and far from 

major anthropogenic sources), and the limited planetary boundary layer-influence during winter. Instead, the station 30 

is primarily exposed to summer-time ecosystem CO2 contributions, which are dominated by rather nearby sources 

(within 100 km). Even during winter, simulated gross ecosystem respiration accounted for approximately 50 % of 

all contributions to the CO2 concentrations above the largescale background. The model-based monthly mean δ13Cm 

ranged from –22 ‰ in winter to –28 ‰ in summer and reached the most depleted values of –35 ‰ at higher fractions 

of natural gas combustion, and the most enriched values of –17 to –12 ‰ when impacted by cement production 35 

emissions. Observation-based δ13Cm values were derived independently from the simulations by a moving Keeling-

plot approach. While model-based estimates spread in a narrow range, observation-based δ13Cm exhibited a larger 

scatter and were limited to a smaller number of data points due to the stringent analysis prerequisites . 
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1. Introduction 

Reliable regional quantification of greenhouse gas (GHG) emissions into the atmosphere is a prerequisite to 40 

determine the effectiveness of mitigation strategies to limit global warming. Carbon dioxide (CO2) is the prime 

player in these regards. Its atmospheric concentrations are altered by both anthropogenic and natural (terrestrial 

ecosystem and oceanic) fluxes (Friedlingstein et al., 2020). Remote sites are ideal to study large-scale and global 

emissions, but make it more challenging to characterize individual sources and sinks as during transport of air 

masses the signals and signatures become increasingly diluted and mixed. Thus, remote atmospheric sites typically 45 

focus on long-term trends, and, therefore, sporadic events are often discarded in the time series analyses. This leads 

to loss of potentially insightful information. 

In this study, we focus on the information contained in the regional scale signals at the remote high altitude 

observatory Jungfraujoch (JFJ), situated in the Swiss Alps. Owing to its particular location in central Western 

Europe and its altitude of 3580 m above sea level (a.s.l.), it allows for studying background concentrations of air 50 

pollutants and GHGs in the lower free troposphere (Herrmann et al., 2015). These background conditions are 

representative of large spatial or temporal scale variations and not influenced by regional sources or sinks. 

Furthermore, regional signals transported from different regions within Western Europe and beyond reach the 

monitoring station intermittently (Henne et al., 2010). Thus JFJ offers both aspects: i) insight into the atmospheric 

background, and ii) an opportunity for studying GHGs and pollutants sources and sinks in the planetary boundary 55 

layer (PBL) on a regional scale. The latter is challenged, however, by low signal-to-background ratios, and requires 

high-precision instrumentation. In comparison to a typical low altitude site, the regional signal measured at JFJ is 

integrated over a larger concentration footprint (source area). This allows for a greater coverage per measurement, 

but also leads to a higher degree of mixing of various sources and sinks. Atmospheric backward transport 

simulations can provide information about the history (location backward in time) of the sampled air mass and a 60 

quantitative relationship between atmospheric concentrations and sources or sinks (source/sink-receptor 

relationships) to combat this challenge. Although atmospheric transport and concentration simulations are 

particularly demanding for complex topography, observations at JFJ have been successfully combined with high-

resolution transport simulations in previous inverse modelling studies to allocate and quantify emissions of CH4 

(Henne et al., 2016) and halocarbons (Keller et al., 2011; Brunner et al., 2017; Vollmer et al., 2021).  65 

The same task, however, is more challenging for CO2, because of the strong contribution of natural 

processes in addition to anthropogenic sources, the interplay between signals from sources and sinks, and the large 

temporal variability and broad distribution, especially of the natural fluxes. In this case, multi-tracer approaches are 

useful tools, as they allow for separation of different processes based on composition characteristics. Some of their 

benefits and limitations are briefly revoked in the following:  70 

 Carbon monoxide (CO), which is co-emitted during combustion processes, was used to identify 

combustion-related CO2 signals (Levin and Karstens (2007), Vogel et al. (2010), Vardag et al. (2015) or 

Oney et al. (2017)). However, this method suffers from variable CO/CO2 emission ratios and atmospheric 

production and loss of CO. The approach is most promising when all sources/sinks in the footprint area are 

well characterised, yet remains challenging for sites with low signal-to-background ratios. 75 
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 Other promising tracers are isotopes, as isotope composition measurements can provide valuable 

information on the sources and sinks contributing to the regional signal. Today, sufficiently precise 

instrumentation is available that allows to measure the stable isotope composition at high precision and 

temporal resolution for several natural GHGs (see Tuzson et al. (2008b) for CO2, Eyer et al. (2016) for CH4 

and Waechter et al. (2008) for N2O). Applying these or similar techniques, for instance, Röckmann et al. 80 

(2016), Hoheisel et al. (2019), Menoud et al. (2020), Xueref-Remy et al. (2020) and Zazzeri et al. (2015 

and 2017) derived observation-based isotope source signature estimates from measurements conducted to 

study near-source or regional-scale CH4 plumes. Harris et al. (2017a and 2017b) and Yu et al. (2020) 

presented similar analyses for N2O. These studies took advantage of double-isotope constraints, i.e., δ13C-

CH4 and δ2H-CH4 for CH4, and δ15N-N2O and δ18O-N2O for N2O and provided very promising results, 85 

although the availability of long-term data sets is still very limited.  

 The stable carbon isotope of CO2, δ13C-CO2, can be an attractive tracer for CO2 sources and sinks. So far it 

has been largely employed for analysis of long-term atmospheric background trends (Keeling et al., 1979; 

Graven et al., 2017), in global ecosystem studies (Ballantyne et al., 2011; Keeling et al., 2017; Van Der 

Velde et al., 2018), or to characterise emissions close to a source. Traditionally, the near-source δ13C-CO2 90 

studies focus on ecosystem processes in areas with limited anthropogenic influence (Pataki et al., 2003), or 

on anthropogenic emissions under limited ecosystem influences, such as the vehicle tunnel study by Popa 

et al. (2014). However, the current instrumental capability of high precision δ13C-CO2 observations at high 

temporal resolution (e.g., Sturm et al. (2013) or Vogel et al. (2013)) opens up new opportunities to 

disentangle CO2 in a more complex setting. For instance, Pugliese et al. (2017) and Vardag et al. (2016) 95 

recently studied urban air masses, and Ghasemifard et al. (2019) and Tuzson et al. (2011) attempted to 

characterise specific regional scale CO2 signals at remote sites. These studies used hourly to daily 

resolution, and compared observation-based (mixed) isotope source signatures (δ13Cm) with literature 

information on source-specific signatures (δ13Cs); often, however, reducing the data to few particular 

pollution events, as this method is applicable only under very stringent conditions (see e.g., Zobitz et al., 100 

2006). These source identification or apportionment studies may successfully use δ13Cs to discriminate CO2 

emissions from fuel burning; in particular to distinguish gaseous (–40 ‰ for thermogenesis gas,–60 ‰ for 

microbial gas) from solid (–20 ‰ to –25 ‰, for wood/coal) or liquid fuels (–25 ‰ to –32 ‰, for heating 

oil, gasoline and diesel)1. However, ecosystem processes and their δ13Cs add further complexity, as they are 

highly dependent on plant growth conditions (ambient humidity,  CO2 concentration) and photosynthetic 105 

pathway (C3- vs C4-plants), detailed by Hare et al. (2018) and Kohn (2010). CO2 from C3 plants (which 

dominate ecosystems globally) carries a mean respiration signature of –27.5 ‰ with a range from –20 ‰ 

to –37 ‰ under arid, respectively humid, conditions. The smallest 13C uptake relative to 12C, i.e. highest 

fractionation and thus the most depleted δ13Cs of –37 ‰, is observed in tropical forests, and of little 

relevance for European ecosystems. C4-plants (which includes primarily a few particular crops such as 110 

maize, sugar cane, sorghum and various kinds of millet, selected grasses (e.g., clover), and only few trees 

                                                     
1 All δ13Cs values mentioned here are based on Andres et al. (1994), Vardag et al. (2015 and 2016) and Sherwood et al. 

(2017), and presented based on the Vienna Pee Dee Belemnite (VPDB) reference scale. 
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and desert shrubs) exhibit distinctly smaller 13C fractionation during photosynthesis and can be 

distinguished from C3 plants based on their peculiar δ13Cs of about –12.5 ‰. In Europe C4 plants make up 

only a small fraction and are mainly present in croplands (maize production). Instead C3 plants dominate 

the European and global ecosystems (Ballantyne et al., 2011). It is critical to note, that δ13Cs for C3 plant 115 

respiration and some anthropogenic sources overlap, limiting source apportionment approaches for 

ecosystem and anthropogenic contributions, which are based only on δ13Cs. The stable oxygen isotope ratio 

of CO2, δ18O-CO2, is, aside of the carbon cycle, subject to the global water cycle (e.g., Welp et al., 2011) 

due to the isotope exchange between water and CO2 and thus ambiguous as CO2 tracer. Instead, the 

radiocarbon signature may be used to quantify fossil fuel contributions to atmospheric CO2, e.g., Levin et 120 

al. (2003), Vogel et al. (2010), Turnbull et al. (2015), Berhanu et al. (2017), or Wenger et al. (2019). The 

14C allows primarily for discrimination of fossil versus ecosystem carbon. Once this is accomplished, δ13C 

provides further insight into the partitioning of fuel types among the fossil pool, or of contributions from 

different photosynthetic pathways among the ecosystem pool. Such dual carbon-isotope approaches making 

use of co-located δ13C and 14C measurements have already proven successful for carbon source 125 

apportionment in few gas- (Meijer et al., 1996; Zondervan and Meijer, 1996) and particle phase studies 

(Winiger et al., 2019; Andersson et al., 2015). Yet, studies are currently limited to infrequent sampling at 

few locations, since the involved laboratory analyses are costly, and high frequency, in-situ measurement 

techniques with sufficient precision for atmospheric 14C-CO2 currently unavailable, despite first 

developments (e.g., Genoud et al., 2019; Galli et al., 2011).  130 

Despite these promising multi-tracer (CO2, CO) and multi-isotope (δ13C and 14C) approaches outlined 

above, the low signal-to-background ratios at remote sites still remain a challenge as highlighted in previous work 

by Vardag et al. (2015). Thus, combining measurements in addition with atmospheric simulations is essential for 

regional CO2 apportionment. Yet, to date, only few studies have performed hourly-scale regional simulations of 

CO2 concentration and/or provide "model-based" atmospheric δ13C-CO2 or mixed isotope source signatures (δ13Cm) 135 

for a comparison with observations. The available studies are limited to two ground-based urban locations (Pugliese-

Domenikos et al. (2019) and Vardag et al. (2016)), and one rural tall tower location (Wenger et al., 2019).  

Here, we address the situation at the high Alpine observatory JFJ. We aim at challenging our understanding 

of the contribution of CO2 sources and sinks within the European domain to the regional CO2 concentration 

variability at JFJ, and at evaluating model-based δ13C-CO2 and model-based mixed isotope source signatures (δ13Cm) 140 

against observations. To this end, we employ long-term regional CO2 simulations for JFJ for a nine-year period 

(2009─2017) at 3-hourly time-resolution, using two different atmospheric transport models. We compare the 

model-based data to atmospheric observations, making use of the unique long-term high-frequency observations of 

CO2 and δ13C-CO2 measured by quantum cascade laser absorption spectroscopy (QCLAS) since 2008 (Sturm et al., 

2013; Tuzson et al., 2011), and deploy a moving Keeling-plot method to obtain observation-based δ13Cm. 145 
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2. Methods 

2.1 Site description 

The High Altitude Research Station Jungfraujoch (JFJ) is located at 7°59’20’’ E, 46°32’53’’ N in the Swiss Alps, 

at an altitude of 3580 m a.s.l. on a mountain saddle between the peaks of Jungfrau and Mönch (both > 4000 m a.s.l.). 

As part of the Swiss long-term national monitoring network (NABEL), regular measurements of air pollutants and 150 

GHGs are performed at JFJ since the 1970s (Buchmann et al., 2016). The station contributes to European (EMEP) 

and global (Global Atmospheric Watch; GAW) monitoring programmes and was labelled as class 1 station within 

the European Integrated Carbon Observing System (ICOS) in 2018 (Yver-Kwok et al., 2020). 

2.2 Atmospheric Transport Simulations 

Atmospheric CO2 concentration simulations were conducted for the period 2009─2017 with two distinct 155 

combinations of Lagrangian particle dispersion models (LPDM), meteorological input fields, domain size and 

spatial resolution (Table 1). Both models were run in a receptor-oriented approach, following 'sampled' air masses 

backward in time, and as such providing surface source sensitivities (“footprints”). Convoluting these with spatially 

and temporally resolved CO2 fluxes allows for quantitative simulations of CO2 concentrations at the receptor site 

(Seibert and Frank, 2004). Here, we use the fuel type-specific version of the Emissions Database for Global 160 

Atmospheric Research (EDGAR v4.3) inventory and the Vegetation Photosynthesis and Respiration Model 

(VPRM) to account for anthropogenic and ecosystem CO2 fluxes, respectively. The simulated CO2 mixing ratios 

are reported in ppm, and we refer to them as "concentration" for readability. In order to disentangle the influence of 

the underlying CO2 fluxes and the transport dynamics on the simulated CO2 concentrations at JFJ, the influence of 

various parameters such as the domain size, the meteorological input fields, or the LPDM implementation was 165 

investigated in dedicated simulations with synthetic CO2 fluxes in Appendix A1. 

Table 1. Overview of atmospheric transport simulation models and their associated parameters. 

LPDM Meteo. 

input 

Approximate  

spatial  

resolution 

(km2) 

Domain* Integration 

period 

(days) 

Release  

height  

(m asl) 

Sampling 

height 

(m) 

Temporal  

resolution 

CO2 fluxes 

FLEX- 

PART 

MeteoSwiss 

COSMO 
7 × 7 WEU 4 3100 50 

3-hourly  

avg. 

EDGAR v4.3 (pre-release),  

VPRM offline (Gerbig and Koch, 2021) 

STILT ECMWF IFS 
25 × 25  

(10 × 10) 
EU 10 3100 0.5 × hPBL 

3-hourly  

snapshots 

EDGAR v4.3 (pre-release) 

VPRM online (Gerbig, 2021) 

 * "EU" and "WEU" refers to 33°N-73°N, -15-35°E, and 36.06-57.42°N, −11.92-21.04°E, respectively  

 

2.2.1 FLEXPART-COSMO  170 

A version of the LPDM FLEXPART (Pisso et al., 2019; Stohl et al., 2005) coupled to output from the regional 

numerical weather prediction model COSMO (Baldauf et al., 2011) was operated using operational analysis fields 

generated by MeteoSwiss (see Henne et al., 2016). The model was run in backward mode to calculate source 

sensitivities for JFJ. Within each 3-hourly interval, 50'000 model particles were initialized continuously at the 

receptor location and traced back in time for 4 days or until they left the model domain. FLEXPART considers 175 

transport by the mean atmospheric flow as well as turbulent and sub-grid scale convective mixing. COSMO analyses 
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were available hourly at a horizontal resolution of approx. 7 km × 7 km over Western Europe (COSMO-7; 36.06 – 

57.42°N, −11.92 – 21.04°E; Figure S1). The horizontal resolution of the model does not resolve the steep topography 

around JFJ. Hence, a difference between observatory and model altitude exists. In previous studies (e.g., Keller et 

al., 2011), the optimal release height was determined to be around 3100 m above sea level when using COSMO-7 180 

inputs, which is between the true altitude (3580 m) and the model topography (2650 m) at JFJ. Surface source 

sensitivities were determined from the location of model particles below a sampling height of 50 m and stored 3-

hourly along the backward simulation, allowing for a 3-hourly coupling to temporally variable surface fluxes. 

2.2.2 STILT-ECMWF 

The Stochastic Time Inverted Lagrangian Transport (STILT) Model, first described by Lin et al. (2003), was driven 185 

by the numerical weather forecast fields from the European Centre for Medium-Range Weather Forecasts 

(ECMWF), as previously presented by Trusilova et al. (2010) and Kountouris et al. (2018a). The simulations for 

JFJ were performed at the same release height as with FLEXPART-COSMO (3100 m.a.s.l.), corresponding to 960 

m above the model topography. STILT-ECMWF simulations are also routinely performed within the activities of 

the ICOS Carbon Portal (CP), albeit at a release height of 720 m above model ground (2860 m a.s.l.) for the default 190 

products for JFJ (https://stilt.icos-cp.eu/worker/). The particles are released instantly on a 3-hourly interval and 

traced back in time for 10 days or until they leave the European domain (33°N–73°N, 15°W–35°E, Figure S1). The 

STILT calculations were driven by 3-hourly operational ECMWF-IFS analysis/forecast fields available at a 

resolution of 0.25° × 0.25° (approx. 25 km × 25 km), whereas STILT output was generated on a finer grid (approx. 

10 km × 10 km). Surface source sensitivities were evaluated by using a variable sampling height (0.5 × hPBL), where 195 

hPBL is the PBL height diagnosed within STILT. Transport and fluxes were coupled at hourly time resolution. 

2.3 CO2 fluxes and boundary conditions for the atmospheric transport simulations 

2.3.1. Regional CO2 

A) Anthropogenic Emissions 

Regional anthropogenic CO2 concentrations for JFJ (CO2.anthr) were calculated using emission fluxes based on a 200 

pre-release of EDGAR v4.3 (pers. comm. with G. Janssens-Maenhout). The inventory was disaggregated into fuel-

type specific categories (Table S1), and provides annual emissions on a 0.1° × 0.1° grid (~10 km × 10 km) (Janssens-

Maenhout et al., 2019; Karstens, 2019). Here, we use 14 categories, representing 11 different fossil and biogenic 

fuel types as well as 3 non-fuel categories from cement and other production processes (Table 2). The CO2.anthr 

comprises CO2 from fuel-burning CO2 (oil, gas, coal, liquid biofuels, biogas, solid biomass), and CO2 from cement 205 

and other industrial production (referred to as CO2.cement collectively). We temporally extrapolated the inventory, 

which was established for the base year 2010, using annual scaling factors per country and category based on data 

from BP (bp, 2019), see Table S2. Additionally, we applied seasonal, weekly, and diurnal time factors for different 

anthropogenic categories. These are based on MACC-TNO (Kuenen et al., 2014) and available in Table S3. 

B) Ecosystem Fluxes  210 

Regional ecosystem CO2 fluxes were based on the VPRM (Mahadevan et al., 2008). Underlying parameters are 

specific for seven vegetation types (VT) including: 1) evergreen forest, 2) deciduous forest, 3) mixed forest, 4) 

https://stilt.icos-cp.eu/worker/
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shrubland, 5) savanna, 6) cropland, 7) grassland. The VTs are based on the settings typically used within the ICOS 

Carbon Portal, although, for instance, category 5 (savanna) is irrelevant within the domain boundaries used for JFJ. 

An additional category "others" includes primarily water bodies and urban spaces for which VPRM does not 215 

estimate CO2 fluxes and, hence, was excluded from the final analysis. The VT maps underlying VPRM are based 

on the synergetic land cover product (SYNMAP,  Jung et al., 2006). A map showing the dominant category per grid 

as used in our study is provided in Figure S2. Note that oceanic sources and sinks (including oceanic biomass), as 

well as human or animal respiration (see e.g., Ciais et al., 2020) and wildfire related emissions were not included, 

and are expected to be a minor contribution to the regional signal at JFJ. With FLEXPART-COSMO, we use an 220 

offline version of VPRM (Gerbig and Koch, 2021) based on the same ECMWF meteorological analysis as in STILT-

ECMWF. Although the fluxes are generated based on the individual VTs, ecosystem respiration (CO2.resp), 

ecosystem uptake (also referred to as gross ecosystem exchange, and thus abbreviated CO2.gee), and net ecosystem 

exchange (CO2.nee = CO2.gee – CO2.resp) are provided only as a total over all VTs. The STILT-ECMWF is coupled 

online with VPRM and allows extracting CO2 concentration contributions at JFJ for CO2.nee, CO2.gee and CO2.resp 225 

for the individual VTs separately. The online VPRM parametrisation initially presented by Kountouris et al. (2018b) 

was updated for our study (Gerbig, 2021). A dedicated evaluation of the online compared to the offline 

implementation with STILT-ECMWF for at JFJ yielded comparable results for CO2.nee, CO2.gee and CO2.resp. 

2.3.2 Background CO2  

We use the Jena CarboScope (JCS) global atmospheric CO2 product for the determination of the CO2 boundary 230 

conditions. These simulations are based on optimized fluxes (Rödenbeck, 2005) and available at http://www.bgc-

jena.mpg.de/CarboScope/. We used three-dimensional CarboScope fields (version/experiment: s04oc_v4.3) with a 

temporal resolution of 6 hours and interpolated concentrations in space and time to the endpoints of model particles. 

The mean over all model particles of a given release forms the background concentration (denoted fb herein) at the 

time of the release. We observed a higher short-term variability in the simulated background CO2 concentration for 235 

FLEXPART-COSMO compared to STILT-ECMWF, which is a consequence of the smaller domain size, in 

particular towards Eastern Europe, and shorter backward-integration time (4 days versus 10 days).  

2.3.3 Total CO2 

The sum of CO2.anthr and CO2.nee concentrations provides the regional contribution to the CO2 concentration at 

JFJ (i.e., CO2.regional). Together with the simulation-specific background for either FLEXPART-COSMO or 240 

STILT-ECMWF this yields the total CO2 concentration (i.e., CO2.total) at JFJ. 

2.4 Model-based δ13C-CO2 estimation 

The stable carbon isotope ratio of CO2 is referred to as δ13C-CO2, or δ13C in short. The estimation of the mixed δ13C-

CO2 source signature (δ13Cm) and ambient δ13C-CO2 isotope ratios (δ13Ca) is based on the CO2 concentration 

simulations. All δ13C-CO2 estimates are given in permille (‰) relative to the Vienna Pee Dee Belemnite (VPDB) 245 

reference standard. Further information on stable isotope expressions and definitions are available in Coplen (2011). 

http://www.bgc-jena.mpg.de/CarboScope/
http://www.bgc-jena.mpg.de/CarboScope/
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2.4.1 Mixed source signature (δ13Cm)  

The absolute values of simulated CO2 concentrations per source and sink category i, |fs,i|, were weighted with 

category-specific source signatures, δ13Cs,i, to retrieve a mixed source signature, δ13Cm according to Eq. (1) using 

the δ13Cs literature-based assumptions summarized in Table 2 and Table 3. The simulated anthropogenic CO2 data 250 

were disaggregated based on fuel type (Table 2) rather than sectorial processes, because δ13Cs can best be attributed 

as a function of fuel type. For ecosystem fluxes, a seasonal cycle in δ13Cs was assumed (Table 3). Following the 

reasoning of Vardag et al. (2016), the CO2.gee was treated as source, i.e., its absolute value, was considered, along 

with the δ13Cs, using a reversed sign in Eq. (1). 

 255 

Table 2. Fuel type-specific δ13Cs assigned to the simulated anthropogenic CO2 categories. 

CO2.anthr δ13Cs, ‰ 

CO2.fuel  

gas, natural  –44.0 

gas, derived  –44.0 

coal, hard –24.1 

coal, brown –24.1 

coal, peat –24.1 

oil, heavy –26.5 

oil, light –26.5 

oil, mixed –26.5 

bio, gas –60.0 

bio, solid –24.1 

bio, liquid –26.5 

CO2.cement  

cement –0 

Assumptions for fossil and cement sources are based on Andres et al. (1994). Gaseous fuels are characterised by a large range 

(–15 to –85 ‰) as reviewed by Sherwood et al. (2017), with a mean of –44 ‰. The biogas signature is based on measurements 

of δ13C-CH4 released by cows, a biogas production plant, and waste-water treatment (Hoheisel et al., 2019; Levin et al., 1993). 

The values are in line with microbial δ13C-CH4 reviewed by Sherwood et al. (2017). CO2.cement includes industrial emissions 260 
from cement production (NMM) alongside two minor contributors (CHE, IRO), as detailed in Table S1. 

 

Table 3. Assumptions for ecosystem δ13Cs, based on Ballantyne et al. (2010 and 2011) and Vardag et al. (2016). 

Months δ13Cs, ‰ δ13Cs, ‰ 

 CO2.resp CO2.gee 

January –27 –25 

February –26 –24 

March –25 –23 

April –24 –22 

May –23 –21 

June –22 –20 

July –22 –20 

August –23 –21 

September –24 –22 

October –25 –23 

November –26 –24 

December –27 –25 
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δ13C𝑚 =
∑  (|f𝑠,𝑖| × δ13C𝑠,𝑖)𝑖

𝑛=1

∑ (|f𝑠,𝑖|)𝑖
𝑛=1 

            (1) 

 265 

2.4.2 δ13C-CO2 background estimate (δ13Cb) 

The Jena CarboScope (JCS) CO2 background concentration simulation for JFJ serves as fb. The δ13C-CO2 

background value, δ13Cb, is estimated thereof throughscaling fb by using a relationship between observations of CO2 

and δ13C-CO2 in background air (flask samples as detailed in section 2.6), derived following the strategy by Vardag 

et al. (2016) by applying yearly linear regression fits between measurements of CO2 concentration and δ13C-CO2 270 

under free troposphere conditions at JFJ (method A). The obtained δ13Cb is provided in Figure S3.. In addition to 

method A we also obtained estimates for δ13Cb based on a moving linear regression over a 12 months window 

(method B). Alternatively, we tested the ratio of δ13C-CO2 and CO2 in background air as scaling factor, using 

monthly data averaged over 2009–2017 (method C), and daily ratios (method D). The daily ratios were obtained 

from QCLAS measurements at 5-6 AM, as the early morning is considered as background condition for JFJ. Results 275 

are available in Figure S4. 

2.4.3 Atmospheric δ13C-CO2 estimates (δ13Ca)  

The mixed source signature, δ13Cm, derived in Eq. (1) was combined with the background estimates (fb, δ13Cb) in 

order to derive estimates of atmospheric δ13C-CO2 isotope ratios at JFJ, δ13Ca, following Eq. (2). Note that, contrary 

to Eq. (1), CO2.gee is considered as effective sink in Eq. (2), which is further detailed in Vardag et al. (2016). 280 

δ13C𝑎 =
(f𝑏 × δ13C𝑏) +( ∑ (f𝑠,𝑖)× δ13C𝑚)𝑖

𝑛=1

f𝑏 + ∑ (f𝑠,𝑖)𝑖
𝑛=1

           (2) 

 

2.5 Observation-based δ13C-CO2 estimation 

Observation-based mixed source signature, δ13Cm, were derived using a moving Keeling-plot approach following 

the example of Vardag et al. (2016) and using JFJ specific fitting and filtering criteria, as detailed in section 3.2.3. 285 

2.6 Observations 

The CO2 concentrations and δ13C-CO2 isotope ratios were continuously measured at JFJ by quantum cascade laser 

absorption spectroscopy (QCLAS) during the period 2009–2017. The custom-built QCLAS instrument (Nelson et 

al., 2008; Tuzson et al., 2008b, 2008a, 2011; Sturm et al., 2013) provides high-precision data for the three main 

CO2 isotopologues (12C16O2, 13C16O2 and 12C16O18O), and therefore, it allows simultaneous determination of the CO2 290 

concentration and the δ13C-CO2 and δ 18O-CO2 values at 1 s time resolution. The CO2 dry air mole fractions (µmol 

mol-1) are reported in units of parts per million (ppm) on the World Meteorological Organization (WMO) CO2 

X2007 scale, while the  isotope ratio values are given in ‰, relative to the Vienna Pee Dee Belemnite (VPDB) 

reference standard. The instrument was configured as described in Tuzson et al. (2011) during 2009–2011. 

Hardware and calibration strategy were revised during an upgrade in 2012, as described in Sturm et al. (2013) to 295 

improve long-term precision, stability, and SI-traceability. Furthermore, the instrument participated in the 
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WMO/IAEA Round Robin 6 Comparison Experiment to assess the instrument capability to maintain the link to the 

WMO recommended level under field operation (NOAA, 2015). Stable operating conditions guarantee a precision 

of 0.02 ‰ for δ13C-CO2 and 0.01 ppm for CO2 at an optimum averaging time of 10 min. During 2016–2017, 

laboratory temperature instabilities adversely affected instrument performance, causing lower data coverage. CO2 300 

concentrations were in addition determined at 1 min time resolution by a commercial cavity ring-down spectrometer 

(CRDS, G2401, Picarro Inc., USA) since 2010, likewise linked to the WMO CO2 X2007 scale. These data are 

available as ICOS product (Emmenegger et al., 2020). The mean difference (1σ) between the 10 min averaged 

CRDS and QCLAS data is 0.1±0.4 ppm for the entire observation period. Besides the in-situ measurements, air 

samples were collected in triplicate every second Friday at around 7 AM local time, i.e., at a time when the JFJ site 305 

predominantly experiences lower free troposphere conditions (Herrmann et al., 2015). CO2 concentration, δ13C-CO2 

and δ18O-CO2 in the flask samples were analysed at Max Planck Institute for Biogeochemistry (MPI-BGC) in Jena 

as described in Van Der Laan-Luijkx et al. (2013). The flask data, which defined by the sampling time correspond 

primarily to background conditions at JFJ, are used to construct δ13Cb. A comparison of flask sample measurements 

with the QCLAS measurements for 2009–2017 indicates very good agreement, typically within ±0.2 ppm for CO2 310 

and  ±0.1 ‰ for δ13C-CO2, as well as no apparent systematic bias as function of time or signal intensity. It should 

be noted that the data and sample collection for in-situ measurements (QCLAS) and offline samples (flasks) was 

not primarily designed to assess an inter-comparison between the two measurements systems. In particular, 

uncertainties exist regarding the accurate matching of time stamps. Therefore, the real agreement of the 

measurements is likely even better. 315 
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2.7 Time-series Analysis 

Time series analysis was performed using R programming language, v3.6.1 (R Core Team, 2019), deploying 

available R packages (https://cran.r-project.org) as well as custom developed scripts. While FLEXPART-COSMO 

simulations provide 3-hourly averages, STILT-ECMWF provides instantaneous snapshots every 3rd hours. STILT-

ECMWF simulations were interpolated between the 3-hourly nodes for comparison with 3-hourly averages of 320 

observational data. For comparing the observations with the LPDM model output, we use 3-hourly and monthly 

averages of the QCLAS measurements. Furthermore, a common JCS-based background is subtracted from the 

measurements. The STILT-ECMWF JCS-based background is preferred as common background for this particular 

assessment over the FLEXPART-COSMO background owing to the higher short-term variations in the latter 

(compare Figure S3a). The background-subtracted data set is referred to as "regional observations". 325 

3. Results and Discussion 

3.1 Regional CO2 simulations at JFJ 

3.1.1 Monthly time-scale 

A) Planetary boundary layer influence at JFJ 

Air mass transport dynamics determine the exposure of the receptor site JFJ to air masses from the planetary 330 

boundary layer (PBL). Thus, together with the source or sink strength in the footprint region, they drive the regional 

contributions to the CO2 concentrations, and are discussed upfront. Previous analyses of tracers (e.g., radon and 

CO/NOy) by Herrmann et al. (2015) suggested that, compared to winter (December–February), the PBL-influence 

at JFJ is enhanced by 1.5 to 2.5-fold in April and August/September, and by 3 to 4-fold from May–July. To isolate 

the influence of seasonally varying transport, we performed dedicated simulations where CO2 fluxes were assumed 335 

constant in space and time (see Appendix A1). This analysis revealed a 2 to 3-fold larger simulated PBL-influence 

in summer compared to winter for both models. Diurnal variations were most pronounced in summer, indicating a 

1.4-fold larger PBL-influence during the afternoon and evening (maximum at ~16:00 h, UTC+1) compared to the 

morning (minimum at ~10:00 h, UTC+1). A larger PBL-influence in May and September for STILT-ECMWF 

compared to FLEXPART-COSMO appears to be a peculiarity of using ECMWF fields and may reflect the less-340 

well resolved transport in complex terrain in the coarser resolution data from ECMWF. Additional differences 

appear related to the smaller domain size and shorter backward integration used for FLEXPART-COSMO, which 

are directly associated with smaller integrated surface CO2 fluxes. The findings for STILT-ECMWF and 

FLEXPART-COSMO from the transport dynamics analysis (Appendix A1) appear to explain some of the mismatch 

in the simulated CO2 observed between the simulations in Figure 1 (see 3.1.1 B).  345 

B) Regional CO2 concentration observations and simulations 

Simulated CO2.regional for 2009–2017 is compared with the respective regional CO2 concentration observations in 

Figure 1 (multi-annual monthly means of 3-hourly). The CO2.regional observations show a minimum in June and a 

maximum in October and November, both with an amplitude of about 1.8 ppm. Subpanels present the corresponding 

simulated anthropogenic (CO2.anthr) and ecosystem components (CO2.nee, CO2.gee, CO2.resp).  350 

https://cran.r-project.org/
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Figure 1. Multi-annual monthly means of 3-hourly regional CO2 simulations compared to observations (2009–

2017). CO2.regional (a), and its components CO2.anthr (c), and net ecosystem exchange (CO2.nee) (d). The 

difference between simulations (sim) and observations (obs) are presented in b). CO2.nee is composed of e) gross 

ecosystem respiration (CO2.resp) and f) gross ecosystem exchange (CO2.gee), i.e. gross uptake. Error bars represent 355 

1SD of the multi annual means and reflect the year-to-year variability for 2009–2017. 

 

While CO2.anthr and CO2.nee together constitute CO2.regional, the sum of ecosystem components CO2.gee 

and CO2.resp results in CO2.nee. The minimum in June as observed in the measurements is well represented by the 

models, though the amplitude is overestimated. The October/November maximum is delayed in both models by 360 

about one month. A local minimum in December/January is seen in observations and models. The winter minimum 

in the regional signal reflects the limited influence of PBL air masses at JFJ during this period of the year, and 

coincides with a minimum in CO2.anthr (Figure 1c) and ecosystem CO2 (Figure 1d-f). The models thus appear to 

represent the processes contributing to the seasonal variability of the regional CO2 signal at JFJ quite realistically. 

Noteworthy, the seasonal trends of the regional signal, in particular the local winter minimum, differ from those in 365 

the large-scale CO2 background concentrations, which show a minimum in August, two months later than the 

regional signal, and only one maximum in March/April, as shown by Sturm et al. (2013).  

Regarding CO2.anthr (Figure 1c), we conclude that the reduced transport of PBL air to JFJ during 

December/January outweighs a maximum in anthropogenic surface emission fluxes related to enhanced fuel use for 

heating during the cold season. Instead, CO2.anthr simulations reach a maximum at JFJ in spring (April/May) in 370 

both models, resulting from still relatively large anthropogenic surface emissions and generally more unstable 

atmospheric conditions due to rising surface temperatures and sustained colder temperatures aloft. The STILT-

ECMWF simulations comprise a second CO2.anthr maximum in autumn (September), which is in line with the 

simulated PBL-influence (Appendix A1).  

Given that ecosystem contributions quantitatively dominate the regional contributions to CO2 375 

concentrations during summer, we reiterate that the CO2.nee simulations depend on the parameterization of 

a c e

b d f
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ecosystem respiration and uptake fluxes in VPRM. The parameterization accounts for environmental factors such 

as temperature, radiation, and through MODIS derived enhanced vegetation index (EVI) and land surface water 

index (LSWI) also for soil moisture (Mahadevan et al., 2008). Warmer temperatures generally lead to enhanced 

gross ecosystem fluxes (CO2.resp and CO2.gee) in summer compared to winter. These trends are indeed reflected 380 

in the simulations for JFJ (Figure 1d-f). The strong negative regional CO2.nee from March to October is a result of 

only partial compensation of uptake (CO2.gee) by respiration (CO2.resp). The CO2.gee minimum in June does not 

coincide with the CO2.resp maximum in July/August. This may be explained by the fact that respiration is strongly 

dependent on temperature, and July and August typically show the highest average temperatures in the relevant 

footprint region. Ecosystem uptake, on the other hand, has a more complex relationship with temperature (drops off 385 

when too hot), radiation (actually largest in June), water availability (usually decreasing during the summer), and 

plant phenology (e.g., Bonan, 2015; Mahadevan et al., 2008).  

The simulations qualitatively satisfy our expectations. However, the overestimation of the amplitude in 

summer and early autumn by the two models merit further discussion of potential contributions to this mismatch, 

which includes uncertainties in the transport model or in the spatio-temporal flux distribution. A quantitative 390 

assessment is available in section 3.2.2 C. 

1) Transport Dynamics: The fluxes computed by VPRM together with the air mass transport dynamics determine 

the final seasonality of the ecosystem-related CO2 contributions at JFJ.  

a. It has been reported by Denning et al. (1999) that the signal from respiration CO2 is amplified over flat 

terrain, because respiration dominates at night when the boundary layer is shallow. This observation is 395 

referred to as "rectifier effect". At JFJ, we likely observe the inverse situation, a "fair-weather effect", 

as warm and sunny afternoons favour PBL-influence at JFJ, while low irradiation periods (nighttime, 

winter) limit the PBL-influence. Vertical atmospheric transport and photosynthetic activity (uptake) co-

vary and are both largest on sunny days. In contrary, ecosystem respiration is active independently of 

light condition (day/night) and, to a smaller degree, during colder periods, when PBL-influence is 400 

limited at JFJ. Such "fair-weather effects" may be inadequately captured in the models, as the vertical 

export of PBL air in these situations is driven by thermally-induced flow systems in complex terrain 

(up-slope, up-valley, see Rotach et al., 2014) that cannot be adequately resolved at the present model 

horizontal resolution.  

b. The simulations for JFJ indicate that a considerable fraction of ecosystem CO2 originated from fluxes 405 

within the last few hours before arrival at JFJ and at distances shorter than 100 km from the site 

(predominantly north of JFJ). We find that this "nearby" contribution is particularly pronounced in 

summer, whereas cold season sampled air masses are rather associated with a much wider concentration 

footprint and are less dominated by those "nearby" vegetation fluxes. In addition, the nearby vegetation 

fluxes seem artificially enhanced by the limited spatial resolution of the vegetation maps (see also 2c).  410 

2) VPRM: An overestimation of the CO2.gee or an underestimation of CO2.resp may be associated with harvesting 

activities and drought stress, which are not well reflected in the current parameterisation of VPRM, as well as 

the spatial representation of vegetation maps and temperature profiles. 
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a. Harvesting usually results in a change of the Enhanced Vegetation Index (EVI) derived from the 

MODIS observations. While the reduced ecosystem uptake due to harvesting is thus in principle already 415 

represented in VPRM, the agricultural biomass left behind after the harvest may lead to increased 

respiration. VPRM is unlikely to capture this latter process with its simple linear dependence of 

respiration on temperature.  

b. Water stress (drought) can lead to altered respiration and uptake fluxes (e.g., Ramonet et al. (2020) or 

Gharun et al. (2020)), but it is not explicitly included in VPRM.  420 

c. Owing to the smoothed topography and vegetation maps in the models, the effective temperatures in 

alpine vegetation is likely not well represented and, moreover, the temperature-parameterisations in 

VPRM is not  optimized for alpine vegetation. No systematic bias net ecosystem exchange is apparent 

for ecosystem simulations with STILT-ECMWF for other observational sites in Europe (data available 

at the ICOS Carbon Portal), suggesting that the discrepancy is predominantly linked to JFJ's location 425 

in complex terrain. Indeed, summer discrepancies appear to be comparatively large at JFJ (3580 m 

a.s.l.) even when considering other mountain stations, such as Monte Cimone (~2000 m a.s.l., Italy) or 

Puy de Dôme (~1500 m a.s.l., France), which are characterized by lower altitude and less complex 

topography compared to JFJ. 

An assessment of uncertainties in daily ecosystem fluxes is estimated in Kountouris et al. (2015), based on a 430 

comparison with eddy covariance flux observations, to be 2.5 μmol m−2 s−1 for VPRM, and typical spatial error 

correlation of around 100 km corr. length and a temporal correlation of 30 days. To estimate the impact of this 

uncertainty between eddy covariance data and simulations using VPRM on the simulated CO2, however, full 

propagation of the error would be required, including spatial and temporal correlation. As VPRM is used in 

many inversion studies, the corresponding error in simulated CO2 can alternatively be assessed based on the 435 

change from prior to posterior model-data mismatch. Based on Table 3 in the Technical Note of Kountouris et 

al. (2018b), typical numbers for mountain sites such as JFJ are around 4 ppm (prior), which drop to about 1.5 

ppm for posterior fluxes (the assumed model-data mismatch error). 

3) EDGAR: A mismatch between CO2.regional simulations and observations may also result from biases in the 

CO2.anthr signal. However, as quantified in see subsection 3.2.2 C, an increase of CO2.anthr by a factor of 3 to 440 

4 would be required in order to compensate the summer mismatch. Further, the discrepancy during summer is 

much larger than that during winter when CO2.anthr contributes the largest share, and we consider is thus 

unlikely that CO2.anthr is the main driver of the summer mismatch. As JFJ is also a popular destination for 

touristic daytrips, local emissions from tourists and the JFJ infrastructure itself cannot be excluded. A recent 

study by Affolter et al. (2021), however, showed that this effect is expected to be well below the discrepancy 445 

between observations and simulations found here. 

C) Composition of simulated anthropogenic and ecosystem CO2  

Ecosystem contributions to CO2 concentrations outweigh the anthropogenic ones at JFJ most of the year if we 

consider the multi-annual monthly means (Figure 1). For instance, gross respiration contributions to CO2 

concentrations are at their maximum 3-4 fold the anthropogenic ones during summer. However, gross respiration is 450 

overcompensated by an up to two fold gross uptake in summer. During the colder period, gross respiration 
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dominates the net ecosystem exchange and equals roughly the amounts of anthropogenic CO2. While on a global 

scale monthly ecosystem fluxes indeed outweigh anthropogenic CO2, this is not the case for urban areas. For 

instance, Vardag et al. (2016) suggests that on cold winter days, the CO2 share in an urban environment in Germany 

(Heidelberg) is 90–95 % fuel-related, which is 2-fold the CO2.anthr fraction compared to JFJ. Nevertheless, also in 455 

Heidelberg ecosystem contributions can make up 80 % in summer, similar to our simulations for JFJ.  

In Figure 2a/b we present the ecosystem contributions at JFJ split for the considered vegetation types (multi-

annual monthly means for 2009–2017, available for STILT-ECMWF only). For summer, the largest fractions of 

simulated CO2.resp are related to cropland (~50 %), followed by forest (~30 %) and grassland (~10 %). During 

winter, the cropland share increases, while the mixed forest share decreases. This may be a result of the above 460 

discussed change of footprint area from regional (cropland) in winter to more local (mixed forests) in summer. For 

CO2.gee, it is important to consider that absolute quantities approach zero during the cold season, and relative 

fractions are most meaningful in summer. The CO2.gee generally displays a larger forest share in comparison to the 

one of CO2.resp, possibly as air masses travel through forest-rich vegetated areas during the last few hours before 

reaching JFJ (which corresponds to daytime, when uptake is active). Furthermore, we observe a shift in the relative 465 

CO2.gee share from cropland to forest from April to September, which is likely the result of vegetation dynamics, 

considering that crops mature earlier in the year, and forests absorb carbon much longer during the growing season.  

In Figure 2c/d we present the relative fractions of CO2.anthr. The contributions associated with fossil 

sources sum up to 90 % of CO2.anthr. The CO2.anthr is dominated by CO2 from liquid fuel use, in particular light 

and heavy oil used for on- and off-road transport as well as domestic heating (~50 %). Further 25 % of CO2.anthr 470 

are related to natural gas, and only 10 % are attributed to solid fossil fuels, including a larger fraction of hard coal 

and a smaller fraction of brown coal. Solid biomass, such as residential wood burning for domestic heating, 

contributes 10 % to CO2.anthr. Non-combustion CO2 from cement and other industry production amounts to 5 % 

of CO2.anthr at JFJ. Seasonal shifts are observed in the contribution of solid biomass (higher in winter, lower in 

summer) as well as in relative fractions of light oil (higher in summer) and natural gas (lower in summer). The 475 

relative contributions of FLEXPART-COSMO (not shown here) are very similar to the ones of STILT-ECMWF 

despite the differences in the absolute quantities of CO2.anthr between the two models (Figure 1), which, as 

discussed above, are primarily driven by the model's implementation of transport dynamics. 
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 480 

Figure 2. Simulated regional contributions to the CO2 concentrations at JFJ (multi-annual monthly means of 3-

hourly simulations, 2009–2017, STILT-ECMWF). a) gross ecosystem respiration per vegetation type (CO2.resp), 

b) gross ecosystem exchange (uptake) per vegetation type (CO2.gee), c) CO2.anthr and CO2.resp, d) CO2.anthr per 

fuel-type. Maps of anthropogenic fluxes and vegetation distribution are provided in Figure S1 and S2.  

 485 

a c

b d
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3.1.2 Regression analysis of hourly-scale CO2 simulations vs. observations 

The model performance was further evaluated by comparing the 3-hourly simulated CO2 concentration time-series 

with observations. In Figure 3 we present CO2.total, which includes background (fb) and regional contributions 

(CO2.regional, i.e., the sum of fs,i). In order to derive CO2.total, the simulation-specific background (i.e., either 

FLEXPART-COSMO or STILT-ECMWF) was added to the respective CO2.regional data. Overall, the simulations 490 

capture the intensity and timing of individual regional short-term events at the models' 3-hourly time-resolution to 

a high degree, in addition to the good representation of annual and seasonal trends.  

We assess the performance separately for the four seasons winter (December–February, or DJF), spring 

(March–May, or MAM), summer (June–August, or JJA) and autumn (September–November, or SON) for the 

CO2.regional signal, as summarized in Figure 4, and show a four-year subset for 2012–2015 in addition to the full 495 

nine-year observation period (2009–2017). The subset is of interest as it comprises a higher frequency and intensity 

of regional CO2 at JFJ, in particular considering the winter of 2012/2013, and aside, measurements by QCLAS had 

the best performance during 2012–2015. We consider primarily the coefficient of determination, r2, regression 

slope, and bias-corrected root mean square error (BRMS) in the assessment of the short-term variability.  

The mean bias, labelled Y-X) and provided in Figure 5, is usually smaller than 1 ppm with the exception of 500 

summer, when the models exhibit a negative bias of up to 2.5 ppm. Removing this bias before calculating the root 

mean square error (RMSE) focusses onto the short-term variability. The BRMS ranges from 1.8 to 3.1 ppm CO2, 

with lowest errors observed during winter and autumn, and highest errors in summer. For the 3-hourly data, both 

models reproduce the regional signal with similar quality. The r2 is 0.44 for FLEXPART-COSMO and 0.41 for 

STILT-ECMWF, meaning that the models explain about 40 % of the observed regional CO2 variability at JFJ. 505 

Considering the complex topography and small amplitude of the regional signal, this is a very satisfactory result, 

and in line with comparable simulations by Henne et al. (2016), which were able to explain a similar fraction of 

variability in regional CH4 at JFJ for the year 2012, after simulations optimization with respect to CH4 emissions.  

When analysing individual seasons, we find that the summer period is characterised by significantly lower 

r2 for the 3-hourly data compared to the other seasons, although, aside of above-mentioned negative bias, diurnal 510 

profiles in the observations during summer are well represented by the simulations. The slightly better performance 

for FLEXPART-COSMO compared to STILT-ECMWF in terms of mean bias and r2 for 3-hourly data may be 

partly attributed to the higher spatial resolution that potentially allows for a better representation of thermally driven 

atmospheric transport in mountainous terrain during summer. Note that when adding model-specific JCS 

background values to the regional simulations, r2 values are substantially higher (~0.6–0.9, not shown), because a 515 

considerable part of variability in CO2.total derives from seasonal variability and long-term trends.  

The regression slopes represent the factors by which simulation and observation intensities agree with each 

other. For CO2.regional, the intensity agreement (slope, ~0.9–1.5) varies as a function of season and model. Slopes 

are closest to 1 in autumn/winter, and, as for other regression parameters, larger discrepancies occur in 

spring/summer. The spring/summer discrepancies are driven by negative excursions from the baseline in analogy 520 

to the larger warm season mismatch (discussed in 3.1.1) and higher mean bias. Again, note that we find the slopes 

for CO2.total to be closer to 1 (~0.9–1.3, not shown), than those for the CO2.regional, confirming the appropriate 

assumptions for the background CO2 concentrations. 
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Figure 3. Time series of CO2.total simulations with a/c) FLEXPART-COSMO and b/d) STILT-ECMWF compared 525 

to hourly observations. a/b) 2009–2017 (tick marks indicate January of each year), c/d) 2013. (JCS-based 

background is detailed in Figure S3a.) 
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Figure 4. Summary of the regression analysis of CO2.regional simulations vs. observation (data are based on 3-

hourly time resolution; error bars = 95 % confidence interval). The parameters (slope, r2 and bias corrected RMSE, 530 

i.e., BRMS) are presented for FLEXPART-COSMO (a-c) and STILT-ECMWF (d-f), including the full observation 

period, 2009–2017, and a 4-year subset (2012–2015). 

  

 

Figure 5. Heatmaps for CO2.regional simulations (SIM) using FLEXPART-COSMO (a-e) and STILT-ECMWF 535 

(f-j), in comparison to regional components of observations (OBS) for 2012–2015, full year and per seasons, on 3-

hourly time resolution. The STILT-ECMWF-based JCS background is subtracted from the observations to derive 

the regional component. The weighted least squares regression takes into account uncertainties in both data sets. 

(Full page version of this figure is available in SI). 
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3.2 Atmospheric δ13C-CO2  540 

Simulating regional signals at a high-alpine background site like JFJ is challenging, yet JFJ is one of very few 

stations that offer continuous high frequency δ13C-CO2 observations over multiple years. Thus, JFJ uniquely allows 

for combining model-based estimates of atmospheric δ13C-CO2 and of mixed source signatures (δ13Cm) with 

atmospheric δ13C-CO2 observations and thereof derived ("observation-based") δ13Cm values using a moving 

Keeling-plot approach.  545 

3.2.1 Atmospheric δ13C-CO2 estimates vs. observations 

We evaluated the atmospheric δ13C-CO2 isotope ratio estimates (δ13Ca), which are derived following Eq. (2) on a 3-

hourly basis, through comparison with the QCLAS observations during the period 2012–2015 (Figure 6, Table 4). 

Multi annual monthly means for 2012-2015 are presented in Figure 7.  

 550 

Figure 6. Time series of model-based and observed atmospheric δ13C-CO2 for the years 2012–2015 (hourly 

observations). a) FLEXPART-COSMO, b) STILT-ECMWF; tick marks indicate January of each year. The 

background, δ13Cb, is presented in further detail in SI (Figure S3b). Data are presented on hourly time resolution. 

(Zoomed versions of this figure for 2012, 2013, 2014 and 2015 are provided in SI, see Figure S7-S9). 

 555 
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Figure 7. a) Multi-annual monthly means of 3-hourly model-based and observed atmospheric δ13C-CO2 for the 

years 2012–2015. Error bars represent 1SD of the multi annual means and reflect the year-to-year variability for 

2012–2015. (b) Difference between simulations (sim) and observations (obs). 

 560 

The simulated δ13Ca time-series capture the observed variability in δ13C-CO2 at JFJ well, in particular during 

the transition periods in spring and autumn. For most of the summer, however, the δ13C-CO2 simulations are 

isotopically heavier than the observations, i.e. they appear more enriched in 13C. Despite an offset of ~0.15 ‰, 

which appears related to the background (δ13Cb) assumptions, the diurnal profiles in the observations during summer 

are well represented by the simulations. Generally, the discrepancy in δ13C appears to be larger for STILT-ECMWF 565 

compared to FLEXPART-COSMO, and thus the discrepancy in CO2 concentrations itself likely contributes to the 

mismatch in δ13C-CO2, as further assessed in section 3.2.2 C-D, aside of uncertainties associated with assumptions 

for δ13Cs which are discussed in section 3.2.2 A) and δ13Cb (discussed in section 3.2.2 B). 

 

Table 4. Summary of statistics on atmospheric δ13C-CO2 estimates and observations for the period 2012–2015. 570 

Values for min., max., median (P50) and 25 and 75 percentiles (P25 and P75), mean (avg.) and 1SD are provided 

(hourly data). (see also Figure S6). 

 min P25 P50 P75 max avg. ±SD 

FLEXPART-

COSMO 
–9.81 –8.64 –8.51 –8.29 –7.78 –8.47 ±0.24 

STILT- 

ECMWF 
–9.86 –8.65 –8.52 –8.29 –7.42 –8.47 ±0.25 

Observation 

(QCLAS) 
–9.81 –8.64 –8.47 –8.29 –7.78 –8.47 ±0.24 

 

a

b
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3.2.2 Sensitivity of δ13C-CO2 estimates to different model assumptions 

A) δ13Cs assumptions 575 

The mixed source signature estimates (δ13Cm) as derived in Eq. (1) are presented in Figure 8 on a 3-hourly timescale 

(monthly data are provided in Figure S5). The estimated average δ13Cm is around –24 ‰ and varies seasonally 

between around –22 ‰ in summer and –28 ‰ in winter, for both, FLEXPART-COSMO and STILT-ECMWF. 

Extreme values during particular events on 3-hourly time resolution reach –35 ‰ when they are heavily impacted 

by anthropogenic fuel emissions including a larger fraction of natural gas (~50 % of regional CO2), and values 580 

between –17 to –12 ‰ when impacted by cement production (~30%). The δ13Cs from cement production originates 

from carbonates, which are characterised by a similar isotope composition as the carbonaceous VPDB reference 

material itself. Consequently, the δ13Cs for cement-related CO2 is 0 ‰. Although cement-related CO2 contributions 

to CO2.regional at JFJ are about one order of magnitude smaller than from fuel burning or ecosystem processes, the 

influence of cement on δ13Cm is clearly visible in the model-based data in Figure 8. These cement-related peaks in 585 

δ13Cm are, however, absent in δ13Ca (Figure 6), simply because even the most intense cement signals at around 1─2 

ppm are much smaller than other CO2 contributions. Thus, when mixed with the background, the signal is diluted.  

The δ13Cs values, which are underlying the δ13Cm, represent the best available information in the scientific 

literature. However, while we use static assumptions, these values may vary in reality with air mass source region 

(footprint) and over time. Further uncertainties may arise from assumed ecosystem δ13Cs. For instance, C4 plants 590 

are not explicitly represented in our model as a dedicated vegetation type with known spatial distribution. Yet, their 

contribution to average ecosystem δ13Cs is captured in the data of Ballantyne et al. (2010 and 2011), which are 

underlying the assumptions in Table 3, as these are derived from ambient measurements in mixed C3/C4 ecosystems 

representative for the Northern Hemisphere. In the footprint region of JFJ, C4 plants are mainly present in cropland 

due to maize production. For the year 2017, EUROSTAT reports that the grain maize production made up around 595 

21 % of the overall grain and cereal production by weight, within EU-28. Of all cropland, roughly 35 % on a land 

surface basis is assigned to grain and cereals. Applying a simple "back-of-the-envelope" calculation, this equates to 

~7 % C4-related CO2 fluxes within the European Union, as a yearly average. Because maize production is primarily 

relevant during the spring and summer, the fraction would be enhanced for this period of the year. Replacing 7 % 

of the C3-related CO2 with C4-related CO2 would marginally change the source signature of crops (< 1 ‰, and that 600 

of the overall ecosystem signal by even less); however, generally δ13Cm would become more enriched and thus the 

discrepancy between model and observations larger. Reducing a potential C4-related CO2 fraction instead would 

make δ13Cm less enriched and thus bring the simulations data into slightly better agreement with observations at JFJ. 

Indeed, the ecosystem assumptions for the Northern Hemisphere are based on data collected in the USA and might 

be characterised by a higher C4 fraction than the footprint region for JFJ.  605 

Vardag et al. (2016) report a measurement-based mean source signature (δ13Cm) of −26 ‰ in summer and 

about −32 ‰ in winter for Heidelberg, which is isotopically lighter when compared to the simulated δ13Cm for JFJ 

(−22 ‰ in summer, −28 ‰ in winter). The winter differences between Heidelberg and JFJ is reasonable as it may 

derive from larger ecosystem contributions at JFJ (50 %) compared to Heidelberg (5 %). The summer differences, 

however, may, aside from summer overestimations of CO2.regional at JFJ, result from uncertainties in the 610 

assumption for the ecosystem δ13Cs including the uncertainty of the C4-related CO2 fraction. Indeed, also Vardag 
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et al. (2016) suggest that the assumption of δ13Cs = −23 ‰ for ecosystem CO2 by Ballantyne et al. (2011) is too 

enriched for August and September in Heidelberg, and  a more depleted assumption (through adjusting the 

seasonality in δ13Cs) would result in improved agreement between model-based δ13C-CO2 and observations at JFJ.  

 615 

 

Figure 8. Time series a) model-based δ13Cm (Eq. (1)), b-c) model-based δ13Cm for ecosystem-, fuel- and cement-

related CO2: b) FLEXPART-COSMO, c) STILT-ECMWF; hourly data are used; tick marks indicate January of 

each year. (see also Figure S5) 

 620 

B) δ13Cb assumptions 

The background (δ13Cb see Figure 6, Figure 7, and SI), as estimated by the baseline CO2 taken from the JCS 

assimilation system and the empirical δ13C/CO2 relationship based on yearly linear regression fits (method A), tracks 

the evolution of the observed δ13C-CO2 values outside of the peaks closely and varies seasonally. Yet, 

inconsistencies are apparent from the use of the yearly regression fits. Assuming a more depleted δ13Cb during the 625 

second half of the year, for instance, by –0.15 ‰ during late summer (August) and early autumn (September), and 

assuming a more enriched δ13Cb during the first half of the year, for instance by +0.05 to +0.10 ‰ from January to 

March, would reduce the discrepancies between observations and simulations. Indeed, the moving fit (method B, 

see Figure S4b) improves the transitioning between years. However, the use of multi-annual monthly ratios in 

method C introduces discontinuities when transitioning between months, and the daily ratios (method D) introduce 630 

higher scatter and data gaps (see Figure S4c-d). 
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C) Sensitivity to CO2 concentrations  

Based on the discussion in section 3.1.1 we defined five scenarios, which aim to bring the simulated summer-time 

CO2.regional concentrations into better agreement with the observations. In each scenario, we adjust one or a 

combination of CO2 sources/sinks by a single scaling factor for the whole summer period (JJA) for the years 2012–635 

2015, thereby removing the model bias.  

 

 Scenario 1 (sc1): through increasing CO2.anthr we simulate a bias in the anthropogenic emission fluxes or 

a wrong seasonal factor for CO2.anthr during summer. 

 Scenario 2 (sc2): through reducing both CO2.resp and CO2.gee we attempt to represent a general VPRM 640 

parameterisation or vegetation map representation issue.  

 Scenario 3 (sc3): through reducing CO2.gee we consider its potential overestimation by general VPRM 

parameterisation or vegetation map representation issue in analogy to sc2; specific only to CO2.gee. 

 Scenario 4 (sc4): through increasing CO2.resp we consider its potential overestimation by general VPRM 

parameterisation or vegetation map representation issue in analogy to sc2; specific only to CO2.resp. 645 

 Scenario 5 (sc5): through modifying all signals at equal amounts (CO2.anthr, CO2.resp, CO2.gee) we attempt 

to represent a pure transport issue (i.e., overrepresentation of PBL-influence). 

 

Scaling factors for each scenarios were derived by weighted least squares regression and presented in Table 5. The 

largest scaling factors of ~3-4 are found for CO2.anthr, followed by CO2.resp (~2), indicating that CO2.anthr or 650 

CO2.resp would need to be substantially increased in order to reduce the bias between model and observations. 

Instead, a reduction (scaling factor ~0.7-0.8) would be required if only CO2.gee was considered, and likewise a 

reduction in both, CO2.resp and CO2.gee (scaling factor ~0.7-0.8) in order to achieve a reduced CO2.nee would lead 

to a reduced bias between model and observations. 

 655 

Table 5. Scaling factors based on the weighted least squares regression fitting slope b, and intercept a (in 

parenthesis), used to minimize the CO2 model bias for JJA, 2012–2015. 

 
FLEXPART- 

COSMO 

STILT- 

ECMWF 

CO2 

component 

base -- --  

sc1 

(anthr) 

3.14  

(a = 0.02) 

3.73 

(a = -0.11) 
× CO2.anthr  

sc2 

(nee) 

0.80 

(a = 1.04) 

0.72 

(a = 1.22) 
× CO2.resp 

× CO2.gee 

sc3 

(gee) 

0.79  

(a = 0.45) 

0.74 

(a = 0.49) 
× CO2.gee 

sc4 

(resp) 

2.08 

(a = -0.88) 

1.98 

(a = -0.56) 
× CO2.resp 

sc5 

(trans) 

0.82 

(a = 1.29) 

0.74 

(a = 1.54) 

× CO2.anthr  

× CO2.resp  

× CO2.gee  
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D) Regression analysis for hourly δ13C-CO2  

We further evaluate the effect of CO2 adjustments (Table 5) on the estimated regional δ13C-CO2 at JFJ in comparison 660 

to the observations. First, however, we discuss the regression analysis for the base scenario (Fehler! Verweisquelle 

konnte nicht gefunden werden. and Fehler! Verweisquelle konnte nicht gefunden werden.).  To obtain an 

estimate for regional δ13C-CO2 a δ13C-CO2 background needs to be subtracted from the total signal. Here, we used 

background method A, following strategy used previously by Vardag et al., 2016). A higher short-term variability 

was observed for the δ13Cb from FLEXPART-COSMO compared to STILT-ECMWF (Figure S3b). Consequently 665 

we used only the STILT-ECMWF-based δ13Cb for further calculations of regional components (i.e., for the 

subtraction of background values from total signal). 

Based on this particular δ13Cb assumption, the regional estimates agree with the regional observations 

intensity within a factor of 0.7─1, depending on season. The BRMS is between 0.12 and 0.14 ‰. Similar to CO2, 

for spring, autumn, and winter the models capture the short-term variability in δ13C-CO2 better than in summer. 670 

Overall, the r2 values are lower than for CO2 (max. r2 = 0.35 for FLEXPART-COSMO and 0.28 for STILT-ECMWF 

compared to about 0.4 for CO2), which is not surprising given the uncertainties in the measurements as well as in 

the simulations, where, for instance, fixed source signatures were assumed. Despite the fact that model-based δ13C-

CO2 includes uncertainties of both, CO2 simulation (used to construct δ13Cm), δ13Cs and δ13Cb, the relative 

performance decreased by only 20─30 %. These results at JFJ were achieved with very low regional CO2 signals, 675 

which, compared to the background (ΔCO2), reached at maximum 30 ppm. Instead, the previously conducted urban 

studies benefitted from much more pronounced ΔCO2 reaching up to ~150 ppm for both, Heidelberg (Vardag et al., 

2016) and Downsview (Pugliese-Domenikos et al., 2019). However, they were limited regarding either the length 

of the observation period (few months in Downsview), and/or the stringent data filtering (e.g., Vardag et al. (2016) 

discarded 85 % of the data and biased the urban data sets towards night-time observations, Pugliese-Domenikos et 680 

al., 2019 discarded 80% of the data for their isotopic mass balance approach). Contrary, the tall tower study in rural 

England was challenged by a low signal-to-background ratio (ΔCO2 reaching around 20 ppm), and isotope 

measurements were performed at low (weekly) time-resolution, although simulations are provided on hourly-scale 

(Wenger et al., 2019). In comparison to the results from JFJ, Pugliese-Domenikos et al. (2019) reported an r = 0.58 

(r2 = 0.3), a root mean square error (RMSE) of 1.05 ‰ and a mean bias of 0.04 ‰ for a single month (January) for 685 

δ13C-CO2. Wenger et al. (2019) do not provide any regression parameters for their model-observation comparisons; 

however, they observed large uncertainties in the δ13C-CO2 estimation using a Monte Carlo approach. They related 

a part of their uncertainty for the δ13C-CO2 estimates to the influence of ecosystem processes and the dominance of 

ecosystem fluxes on the regional CO2 observations and simulations at the rural tall tower site. Overall, the JFJ 

results are very well in line with previous findings despite the more remote location and correspondingly smaller 690 

magnitudes of regional signals at JFJ. 

A representative set of results of the regression analysis for further scenarios as defined in 3.2.2 C is 

summarized in the SI in Table S4. Overall, we find that modifications in sc 1 (CO2.anthr) do not lead to an 

improvement in the agreement between regional δ13C-CO2 observations and simulations on 3-hourly resolution. Sc 

5 (transport) results only in small improvements with regards to the BRMS. While the other scenarios neither result 695 

in major adjustments, for sc 3 (CO2.gee) and sc 4 (CO2.resp) we observe small model improvements with slightly 
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increased r2, slightly reduced BRMS and a smaller bias (Y-X). Note, that the remaining bias depends on the fitting 

intercept assumptions of the scaling factor. These results indicate that the δ13C simulation can be influenced through 

reasonable modification of CO2 contributions. Discrepancies between observed and simulated δ13C-CO2 are thus 

not exclusively related to uncertainties in source signature (δ13Cs) or background (δ13Cb) assumptions. However, an 700 

optimization of δ13Cb mentioned in 3.2.2 B might result in an improved agreement between δ13C simulation and 

observation for the base scenario itself, as we found indications for improved performance in the regression analysis, 

when using δ13Cb derived using moving linear fits (background method B) compared to yearly fits (method A). 

 

 705 

Figure 9. Summary of the regression analysis of δ13C-CO2 estimation vs. observation (data are based on 3-hourly 

time resolution; error bars = 95 % confidence interval). Performance parameters (slope, r2 and bias corrected RMSE 

(i.e., BRMS)) are presented for the 4-year subset of the observation period (2012–2015) for FLEXPART-COSMO 

(a-c) and STILT-ECMWF (d-f), across all year ("ALL"), and per season (DJF, MAM, JJA, SON). 

 710 
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Figure 10. Heatmaps of model-based regional δ13C-CO2 (SIM) vs. observation (OBS) (3-hourly data), for 

FLEXPART-COSMO (a-e) and STILT-ECMWF (f-j), during 2012-2015, for the full year (grey), and per season 

(DJF (blue), MAM (green), JJA (orange), SON (red)). Uncertainties in x- and y-axes are taken into account in the 

weighted least squares regression applied here. (Full page version of this figure is available in SI). 715 

 

3.2.3 Observation-based source signature estimates 

Observation-based δ13Cm values are accessible independently from simulations through a "Keeling"- or "Miller-

Tans" plot approach. However, this approach can be applied only after strict pre-selection of conditions under which 

the underlying hypotheses are fulfilled. Detailed descriptions of pre-requisites and limitations of this method are 720 

available in detail elsewhere (Keeling, 1958; Keeling, 1961; Miller and Tans, 2003; Pataki et al., 2003; Zobitz et 

al., 2006; Ballantyne et al., 2011; Vardag et al., 2016). In brief, previous δ13Cs studies have been successful in 

deriving observation-based δ13Cm primarily under the following conditions: First, when measurements were taken 

close to a well-defined source location and using instrumentation with high precision (e.g., Pugliese et al., 2017). 

Second, when a pronounced regional signal (referred to as ΔCO2 and computed as the difference between the CO2 725 

concentration at the site and background) with stable source composition was observed during stable background 

conditions and the regional ecosystem contribution to the observed ΔCO2 was comparatively low (e.g., Vardag et 

al., 2016). Such constrains substantially limit the number of regional events that can be effectively characterised at 

a given location. Intensities below ΔCO2 = 5 ppm, even at high precisions of 0.03 ‰ for δ13C-CO2 and low CO2 

errors of 0.1 ppm, lead to significant fitting errors as assessed by Zobitz et al. (2006). Intensity-based filtering 730 

criteria have, therefore, been applied in previous studies (e.g. ΔCO2 ≥ 5 ppm by Vardag et al. (2016), ΔCO2 ≥ 20 

ppm by Smale et al. (2019), ΔCO2 ≥ 30 ppm by Pugliese-Domenikos et al. (2019), or ΔCO2 ≥ 75 ppm by Pataki et 

al. (2003)), while at JFJ ΔCO2 reaches 30 ppm only during the most intense events. Most studies also focus on 

periods when photosynthetic uptake does not disturb the analysis, consequently biasing the data set to night-time. 

Since a classical day-/night splitting to filter ecosystem uptake is not applicable at JFJ as the received air masses 735 

are composed of integrated fluxes over day and night, such observation-based approaches are expected to be valid 

mainly during the cold period. However the PBL-influence at JFJ is at a minimum during the cold season. For 

instance, regional CO2 intensities at JFJ are at the maximum 30 ppm above the background for the 10 min averaged 

QCLAS data, and on average occur with an intensity of ≥ 5 ppm on 35 days per year during the cold period (range: 

20–50 times). This includes events reaching ≥10 ppm on 10 days per year (range: 2–20) and events reaching ≥ 15 740 

a b c d e

f g h i j
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ppm on only 1–6 days per year. Intensities and frequencies, however, are even lower, when hourly averaged data 

are considered. These conditions make Keeling/Miller-Tans methods to derive observation-based δ13Cm  particularly 

challenging at JFJ.  

The high-precision of the δ13C-CO2 measurements and the high time-resolution available from the QCLAS 

instrument allow to compensate the low ΔCO2 and to limit fitting uncertainties to some extent. This enables us to 745 

perform a moving Keeling-plot in analogy to Vardag et al. (2016). We used a 5 hour window to conduct the fit on 

hourly averaged δ13C-CO2 observations. Only fits with five data points were considered (i.e., no data gaps were 

allowed). In addition, we tested splitting the data set into warm (Apr-Sept) and cold season (Oct-Mar), and 

demanding a minimum change in ΔCO2 of 3 ppm within the 5 hour window (with and without requiring a 

monotonous increase in concentration with time, threshold: 0.1 ppm). Finally, we filtered the resulting observation-750 

based intercept value (δ13Cm) by the fitting error (4, 3, 2 and 1 ‰).  

Figure 11a shows observation-based estimates from two settings: i) results obtained without considering 

any predefined change in ΔCO2 and without filtering by the intercept error (referred to as "all"), and, ii) results 

obtained under more stringent criteria (minimum ΔCO2 change within a 5 h window of 3 ppm, maximum intercept 

error of 2 ‰ or 1 ‰). Keeling fit intercepts (δ13Cm) obtained without predefined criteria and without error-based 755 

filtering clearly do not provide meaningful data, as δ13Cm is physically meaningful only between 0 ‰, corresponding 

to pure cement production plumes, and, –44 ‰ corresponding to pure gaseous fuel burning plumes (in a peculiar 

event, gaseous fuel burning CO2 may reach –85 ‰). Most values are expected between –12 and –35 ‰ based on 

the simulated CO2 composition. Indeed, using predefined fit criteria and error-based filtering yields physically 

meaningful δ13Cm from the observations at JFJ, in line with previous findings by Vardag et al. (2016) and Pugliese-760 

Domenikos et al. (2019). Overall, the observation-based δ13Cm derived with a more stringent fitting approach are in 

good agreement with the trends found in the independently calculated model-based data, which are also shown in 

Figure 11a and Table 6 as well. Because different combinations of predefined criteria (minimum ΔCO2 or season-

based restrictions) and filtering (based on the intercept error) may be used when deriving observation-based δ13Cm, 

we display three scenarios in Figure 11b-d. Figure 11b highlights the effect of only filtering by intercept errors of 765 

4, 3, 2 and 1 ‰ . Instead, Figure 11c shows the combined effect of requiring a change in ΔCO2 > 3 ppm and filtering 

by intercept errors, and Figure 11d presents data only for the cold period (Oct-Mar), limiting the disturbance of 

photosynthetic uptake, in addition to requiring a monotonous increase in ΔCO2 within the 5 h window (i.e., the most 

stringent criteria). We may generally conclude that either more stringent intercept error thresholds (such as 1 ‰ for 

the settings in Figure 11b), or, alternatively, limiting photosynthetic uptake (through demanding monotonous 770 

increase, and/or filtering for cold season or night-time) in combination with less stringent intercept errors (e.g., 2-3 

‰ in Figure 11d) appear to yield equally good results at JFJ, as all δ13Cm values are ≤ 0‰ and ≥ –85 ‰ and thus 

physically meaningful). The latter approach, however, discards more data. The same conclusion holds true when 

using 10-min averages instead of hourly data. Note, that we do not expect that model-based δ13Cm and observation-

based δ13Cm can be compared directly with each other, as the model-based δ13Cm are calculated for 3-hourly 775 

resolution and, most importantly, not restricted to situations when the underlying CO2 simulations match the CO2 

observations. 
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Figure 11. Observation-based mixed source signatures, δ13Cm, derived from a moving Keeling approach ("OBS") 

in comparison to model-based estimates ("SIM", FLEXPART-COSMO and STILT-ECMWF). a) time-series of 780 

δ13Cm (tick marks indicate January of each year). "all" indicates that neither a minimum change in ΔCO2 was 

required, nor any filtering applied. Results when requiring a minimum change of 3 ppm in ΔCO2 within the 5 h 

window and a fit intercept error (err) < 2 ‰ and < 1 ‰ are provided as green and black markers (open circles 

represent Oct-Mar, crosses represent Apr-Sept). b-d) δ13Cm hourly moving Keeling as a function of ΔCO2 for 

various criteria: b) filtering by intercept err < 4, 3, 2 and 1 ‰, c) demanding a minimum change in CO2 of 3 ppm 785 

and filtering by intercept err < 4, 3, 2 and 1 ‰, d) demanding a monotonous increase in ΔCO2 of 3 ppm within the 

5 h window and filtering by intercept err < 4, 3, 2 and 1 ‰. 

 

Table 6. Summary statistics of δ13Cm in ‰ (2012–2015).  

 min P25 P50 P75 max avg. ±SD 

FLEXPART-

COSMO 
–35.95 –26.38 –24.26 –22.08 –17.16 –24.29 ±2.39 

STILT- 

ECMWF 
–35.26 –26.63 –24.50 –22.11 –12.78 –24.48 ±2.57 

OBS; 1‰ 

Figure 11b* 
–61.90 –28.82 –25.93 –21.64 –11.95 –25.85 ±6.85 

OBS, 1‰ 

Figure 11c* 
–38.66 –28.78 –26.09 –22.24 –12.13 –25.70 ±4.88 

OBS, 2‰ 

Figure 11d* 
–39.99 –29.64 –25.93 –22.52 –14.43 –26.59 ±5.56 

*Figure 11b (err < 1‰, w/o ΔCO2 prerequisite, w/o seasonal filtering) 790 

*Figure 11c (err < 1‰, ΔCO2 > 3 ppm, w/o seasonal filtering) 

*Figure 11d (err < 2‰, ΔCO2 > 3 ppm (m.i.), Oct-Mar) 
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4. Conclusions  

Greenhouse gas emissions source/sink identification and quantification at remote, high altitude sites is particularly 

challenging for broadly distributed, multi-source and multi-sink compounds such as CO2. In addition, atmospheric 795 

transport simulations are highly challenged by complex topography. Despite these difficulties, the CO2 simulations 

performed at 3-hourly basis for JFJ agree well with the observations during the multi-year period 2009–2017. Using 

Lagrangian particle dispersion models (LPDM), we were able to capture 40 % of the observed regional CO2 

variability. The results from the model configurations using two different LPDMs driven by output from two 

different numerical weather prediction systems, FLEXPART-COSMO and STILT-ECMWF, appear to differ 800 

primarily as a function of meteorological inputs and their spatial resolution (COSMO vs ECMWF), aside additional 

variations observed related to the domain size and backward integration time. The LPDM implementation 

(FLEXPART or STILT) itself contributes comparatively small differences.  

The regional CO2 simulations suggest that JFJ's high-altitude location predominantly experiences 

influences from the rather nearby (within 100 km) ecosystem. This is owing to the enhanced PBL-influence in 805 

summer, which overlaps with high ecosystem activity. Instead, the peak in anthropogenic fluxes during winter 

overlaps with substantially suppressed PBL-influence and a larger (regional) footprint. Therefore, through most of 

the year, the ecosystem CO2 contributions composed mainly of cropland and mixed forest respiration and uptake, 

outweigh the anthropogenic ones composed of 90 % fossil emissions and dominated by heavy and light oil, and 

natural gas. While the simulated composition resembles our hypothesis for JFJ, the extent to which ecosystem 810 

contributions outweigh anthropogenic ones is surprisingly large. Indeed, quantitatively, the models perform the CO2 

simulations best during winter and transition periods (spring/autumn). For the summer, the CO2 simulations poorly 

reproduce the quantities despite the good qualitative agreement. The atmospheric transport models employed 

apparently suffer from their relatively coarse spatial resolution, which deteriorates model performance in 

summer/fair-weather situations, when topography-induced convection is not captured very quantitatively during 815 

day-time. Increased model resolution and improved representation of the alpine boundary layer in both, the LPDMs 

and the driving numerical weather prediction models will be necessary to overcome this shortcoming and to allow 

for more quantitative conclusions when interpreting observations during the abovementioned conditions. However, 

also the net ecosystem exchange fluxes themselves are a likely source of error through inaccurate spatial distribution 

and VPRM parameterisation of respiration and/or uptake fluxes for the (Alpine) vegetation following limited spatial 820 

resolutions of vegetation maps and possibly temperature profiles.  

The simulations of regional CO2 concentrations allow retrieving model-based mixed source signatures 

(δ13Cm) and atmospheric δ13C-CO2 at JFJ. The latter agree well with the high frequency observations. The overall 

δ13C-CO2 correlation (28–35 %) remains only slightly lower than for CO2 (41–44 %). In analogy to the findings for 

CO2, also δ13C-CO2 shows the lowest agreement between observations and simulations during the summer. We 825 

relate this primarily to the poorly reproduced CO2 quantities in summer, although the assumption of source 

signatures (δ13Cs) as well as the estimate of the background (δ13Cb) provide additional uncertainties. For instance, 

our δ13Cs estimates do not consider geographic variations in fuel specific δ13Cs and ecosystem values are not specific 

to photosynthetic pathways. Dedicated maps that allow to separate C3 and C4 vegetation in the VPRM model would 
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allow for even better representing the forward δ13Cm of CO2. In addition, the simulations would benefit from further 830 

optimizations in deriving the background δ13Cb.  

Observation-based assessment of δ13Cm are challenging at JFJ, owing to the low signal-to-background ratios 

and the integration of fluxes over day and night, which substantially limited the data set. Yet, physically meaningful 

values were obtained. A further disaggregation of observation-based δ13Cm using mass balance approaches and 

assumptions for the end-members in order to learn more about the CO2 regional composition for any further 835 

comparison to the simulated CO2 regional composition, was not attempted here, given the small number of 

observation-based δ13Cm values obtained. This may be the focus in future studies. However, we expect that it will 

remain challenging to disentangle fuel and ecosystem respiration signals from observation-based δ13Cm alone, 

considering that the simulated regional CO2 fractions at JFJ indicate approximately equal amounts even during the 

winter, that solid and liquid fuel emissions δ13Cs end-member assumptions overlap with C3 plant respiration 840 

signatures. Thus, while δ13Cs source apportionment approaches prove meaningful among either the anthropogenic 

or the ecosystem carbon pool, they are of more limited use as a singular tracer when the carbon pools are mixed. 

The simulated regional CO2 composition at JFJ suggests that further analyses would benefit from a multi-

tracer approach, in combination with the herein presented continuous CO2 and δ13C observations. Additional 

parameters may include CO, atmospheric potential oxygen (APO), and 14C as combustion or fossil fuel tracer; and 845 

carbonyl sulphide (COS) and δ18O-CO2 as ecosystem tracers. Indeed, CO, APO, COS and δ18O-CO2 observations 

are available at high time-resolution at JFJ and may be investigated in future, although determining their regional 

and background contributions will remain challenged by the low signal-to-background ratios. The bi-weekly 

integrated 14CO2 data, currently available for JFJ, instead do not allow distinguishing regional from background 

contributions. Highly time-resolved 14CO2 measurements or grab sampling during periods with intense regional CO2 850 

influences would be highly valuable and is foreseen to be implemented at JFJ as part of the European-wide flask 

sampling strategy of the ICOS Research Infrastructure. Moreover, specific episodes at JFJ that represent air masses 

of particular regional CO2 composition may be identified based (also) on continuous δ13C observations in a multi-

tracer manner in future studies.  
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Appendix A. Transport dynamics analysis for JFJ 855 

We performed a dedicated set of simulations to characterise the atmospheric transport in backward LPDM 

simulations for JFJ as represented by different models in different configurations for 2009–2017. In order to analyse 

source sensitivity dependencies on domain size (Western Europe ("small") vs. Europe ("large")), LPDM 

implementation (FLEXPART vs. STILT) and meteorological input fields and associated spatial resolution 

(COSMO vs. ECMWF), we used four different combinations of these three parameters (Table A1). The simulations 860 

are based on one assumed input field of idealized, positive CO2 fluxes, which were kept constant in time and space 

for seven VTs based on the maps underlying the VPRM model. This analysis is designed to study atmospheric 

transport of chemically passive tracers released rather uniformly over the European continent to the high Alpine site 

and the obtained signals serve as a measure of PBL-influence of JFJ. It includes the total of the synthetic CO2 

concentration time-series from all seven VTs, alongside sub-groups comprising a) cropland, b) mixed forest, and c) 865 

the total of the remaining 5 VTs. Studying the VT subgroups gives insight into the influence of spatial distributions 

of the sources within the domains under the given assumptions of uniform fluxes. This transport dynamics analysis 

supports the interpretation of the results presented in Figure 1. 

Table A1. Model combinations for transport dynamics analysis. E3 and E4 are the model configurations as used 

for the CO2 concentration simulation in the main text. 870 

Ref. LPDM Weather 

Fields 

Approximate  

Spatial Resolution 

(km2) 

Domain* 

 

Integration period 

(d) 

Release  

Height,  

(m asl) 

Sampling  

Height 

(m) 

Temporal  

Resolution 

E1 FLEXPART ECMWF 20×20 EU 10 3000 m 100 3-hourly average 

E2 FLEXPART ECMWF 20×20 WEU 10 (cropped) 3000 m 100 3-hourly average 

E3 FLEXPART COSMO7 7×7 WEU 4 3100 m 50 3-hourly average 

E4 STILT ECMWF 25×25 EU 10 3100 m 0.5 × hPBL snapshots every 3rd hour 

* "EU" and "WEU" refers to 33°N-73°N, -15-35°E, and 36.06-57.42°N, −11.92-21.04°E, respectively  

 

Figure A1. Mean monthly PBL-sensitivity (JFJ, 2009–2017) towards i) domain size (E1 vs. E2), ii) meteorological 

input fields and spatial resolution (E2 vs. E3), iii) LPDM implementation (E1 vs. E4), iv) combinations (E3 vs. E4). 
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Figure A2. Mean diurnal PBL-sensitivity (JFJ, winter (DJF, top) and summer (JJA, bottom) for the period 2009–

2017) for a) FLEXPART-COSMO ("E3") and b) STILT-ECMWF ("E4").  

 

Figure A1 provides the multi-annual monthly means of the 3-hourly tracer concentrations at JFJ, and 880 

highlights the sensitivity towards domain size (E1 vs. E2), meteorological input fields and spatial resolution (E2 vs. 

E3), LPDM implementation (E1 vs. E4), and combinations of these (E3 vs. E4). Overall, we find that the synthetic 

CO2 concentrations simulated at JFJ vary between the different models and configurations, as well as with 

seasonality and diurnal cycle. The analyses indicate a significant seasonality in the PBL-influence for all four 

configurations. Higher tracer concentrations are observed during the warm period (April-September) and relatively 885 

lower tracer concentrations during the colder period (October-March). This confirms the generally stronger vertical 

transport during warm (and possibly sunny) days. Further, meteorological input fields and related spatial resolution 

(ECMWF vs. COSMO, i.e. E2 vs. E3) appear to have a larger influence compared to the LPDM implementation 

itself (FLEXPART vs. STILT, i.e. E1 vs. E4), and intensity discrepancies between the models used in the main text 

(E3, E4) are largest in winter, followed by summer, and smallest during transition periods. Concerning the domain 890 

size, we find differences between different VT classes, which is owing to their heterogeneous spatial distribution as 

some VT classes are present predominantly inside (e.g. mixed forest) or outside (e.g. deciduous forests) the smaller 

domain boundaries; compare Figure S2. The smallest discrepancy was thus found for mixed forest (essentially 0 

%), and a larger discrepancy (on average −15 %) was found for cropland, at the artificially assumed spatially and 

temporally constant fluxes. The influence of the LPDM implementation itself (FLEXPART vs. STILT, i.e. E1 vs. 895 

E4) appears to be smaller than that of the meteorological fields and spatial resolution, generating differences mainly 

during winter periods, when FLEXPART-ECMWF yields a higher relative signal compared to STILT-ECMWF. In 

Figure A2, we present the PBL-influence on diurnal timescales, with up to 1.4 times higher synthetic CO2 

concentrations at JFJ during the afternoon and evening (maximum around 16:00–20:00 h, UTC+1) compared to the 

morning (minimum around 10:00 h, UTC+1). This is observed for FLEXPART-COSMO (E3) as well as STILT-900 

ECMWF (E4), and it is particularly pronounced during summer (June-August). 
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Abbreviations and Definitions 

fb  CO2 concentration in the background, expressed in ppm 

fs  Regional contribution to the CO2 concentration per category, expressed in ppm  

CO2.regional Sum of all regional contributions to the CO2 concentrations (fs) 905 

CO2.total Sum of CO2,regional and JCS-based CO2 background (fb) 

CO2.anthr CO2 concentration associated with all anthropogenic (anthr) categories 

CO2.cement CO2 concentration associated with cement production 

CO2.fuel CO2 concentration associated with all fuel categories 

CO2.gee CO2 concentration associated with gross ecosystem exchange (i.e. ecosystem uptake) (gee) 910 

CO2.nee CO2 concentration associated with net ecosystem exchange (nee) 

CO2.resp CO2 concentration associated with gross ecosystem respiration (resp) 

δ13Ca  δ13C-CO2 estimate for atmospheric CO2 at JFJ ‰ 

δ13Cb  δ13C-CO2 estimate for the background CO2, ‰ 

δ13Cm  δ13C-CO2 mixed source signature for all δ13Cs weighted with the CO2 concentration (fs), ‰ 915 

δ13Cs δ13C-CO2 source signature, ‰ 

COSMO  Consortium for Small Scale Modelling 

ECMWF European Centre for Medium-Range Weather Forecasts 

EDGAR Emissions Database for Global Atmospheric Research 

FLEXPART Flexible Particle Model 920 

JCS Jena CarboScope based background estimate 

LPDM Lagrangian particle dispersion model 

MACC-TNO Monitoring Atmospheric Composition and Climate (provided by TNO) 

QCLAS Quantum Cascade Laser Absorption Spectrometer 

STILT Stochastic Time Inverted Lagrangian Transport 925 

VPRM Vegetation and Photosynthesis Respiration Model 

 

Data & Code Availability 

References to data/code are provide in main text/Supplement. Additional data will be made available online upon 

manuscript publication and further information may be requested from Lukas.Emmenegger@empa.ch.  930 
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