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Abstract 15 

We present a new method to infer nitrogen oxides (NOx) emissions and lifetimes based on tropospheric nitrogen dioxide (NO2) 

observations together with reanalysis wind fields for cities located in polluted backgrounds. Since the accuracy of the method is 

difficult to assess due to lack of “true values” that can be used as a benchmark, we apply the method to synthetic NO2 observations 

derived from the NASA-Unified Weather Research and Forecasting (NU-WRF) model at a high horizontal spatial resolution of 4 

km × 4 km for cities over the continental US. We compare the inferred emissions and lifetimes with the values given by the NU-20 

WRF model to evaluate the method. The method is applicable to 26 US cities. The derived results are generally in good agreement 

with the values given by the model, with the relative differences of 2 % ± 17 % (mean ± standard deviation) and 15 % ± 25 % for 

lifetimes and emissions, respectively. Our investigation suggests that the use of wind data prior to satellite overpass time improves 

the performance of the method. The correlation coefficients between inferred and NU-WRF lifetimes increase from 0.56 to 0.79 

and for emissions increase from 0.88 to 0.96 when comparing results based on wind fields sampled simultaneously with satellite 25 

observations and averaged over 9 hours data prior to satellite observations, respectively. We estimate that uncertainties in NOx 

lifetime and emissions arising from the method are approximately 15 % and 20 %, respectively, for typical (US) cities. The total 

uncertainties reach up to 43 % (lifetimes) and 45 % (emissions) by considering the additional uncertainties associated with satellite 

NO2 observations and wind data. We expect this new method to be applicable to NO2 observations from the TROPOspheric 

Monitoring Instrument (TROPOMI) and geostationary satellites, such as Geostationary Environment Monitoring Spectrometer 30 

(GEMS) or the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument, to estimate urban NOx emissions and 

lifetimes globally. 
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1 Introduction 35 

Nitrogen oxides (NOx), consisting of nitrogen dioxide (NO2) and nitric oxide (NO), are important atmospheric trace gases that 

actively participate in the formation of tropospheric ozone and secondary aerosols and accordingly have a significant effect on 

human health and climate (Seinfeld and Pandis, 2006). NOx emission sources include anthropogenic activities, biomass burning, 

soil emissions, and lightning. Fossil-fuel burning from mobile and industrial emitters represents the largest source of anthropogenic 

NOx emissions; these sources are usually clustered near densely populated urban areas (Crippa et al., 2018).  40 

We traditionally rely on a bottom-up method to estimate anthropogenic NOx emissions for a country or a region based on their 

total fuel use and averaged emission factors, which are subject to uncertainties due to incomplete understanding of real world 

operating conditions and spatial distributions (Butler et al., 2008). Some sources may be missing from bottom-up emission 

inventories (McLinden et al., 2016). Additionally, estimates of NOx emissions may become outdated when fuel consumption and 

emission factors change dramatically. For instance, NOx emissions from China decreased by 21 % from 2011 to 2015 due to wide 45 

deployment of denitration devices (Liu et al., 2016a). Inferring emissions for individual cities is even more challenging, due to the 

difficulties in acquiring a complete and reliable database for fuel consumptions and emission factors at city level. Proxies such as 

population density, industrial productivity, and road network maps are often used to downscale national/regional emissions to finer 

scales, which may incorrectly allocate emission sources spatially (Butler et al., 2008).  

Satellite observations of tropospheric NO2 have been widely used to infer the strength of NOx emissions. Satellite instruments, 50 

e.g., the Ozone Monitoring Instrument (OMI; Levelt et al., 2006, 2018) and TROPOspheric Monitoring Instrument (TROPOMI; 

Veefkind et al., 2012), are used to retrieve the column density of NO2 in a vertical column of air. These data can then be related to 

NOx emissions by considering chemical conversion and transport. Chemical transport models (CTMs) were initially employed to 

use NO2 measured from space as a constraint to improve NOx emission inventories based on mass balance (e.g., Martin et al., 

2003; Kim et al., 2009; Lamsal et al., 2011). Techniques such as the four-dimensional variational (4D-Var) method (e.g., Henze 55 

et al., 2007, 2009), extended Kalman filter (e.g., Ding et al., 2017), ensemble Kalman filter (e.g., Miyazaki et al., 2017), and hybrid 

mass balance/4D-Var (e.g., Qu et al., 2019) have also been used to improve emissions estimates within CTMs.  

Several studies have inferred emissions independent of CTMs (e.g., Beirle et al., 2011; Liu et al., 2017; Laughner and Cohen, 

2019). Such investigations were inspired by a pioneering study that used the downwind decay of NO2 in continental outflow regions 

to estimate the global NOx lifetime and total emissions (Leue et al., 2001). Beirle et al. (2011) first proposed an empirical function 60 

to describe the plume distribution around an isolated city without inputs from CTMs. Follow-up studies have adopted this function 

to provide estimates of NOx emissions from power plants and cities based on OMI (e.g., de Foy et al., 2015 and Lu et al., 2015) 

and TROPOMI (e.g., Goldberg et al., 2019) observations. Additional methods, such as the plume rotation technique (Pommier et 

al., 2013; Valin et al., 2013) and the divergence approach (Beirle et al., 2019), were developed to refine the approach of Beirle et 

al. (2011). More recent studies explored additional constraints for the empirical function using simulated atmospheric composition 65 

from models (e.g., Lorente et al., 2019; Lange et al., 2021). For sources with a polluted background, Liu et al. (2016b) proposed a 

different fitting function to consider the interferences from surrounding sources; this approach has been used to estimate NOx 

emissions for European cities (Verstraeten et al., 2018). 

The uncertainties in satellite-derived emissions inferred from CTM-independent approaches have rarely been investigated. Field 

campaigns, e.g, Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air 70 

Quality (DISCOVER-AQ), Korea–United States Air Quality Study (KORUS-AQ), and Cabauw Intercomparison of Nitrogen 

Dioxide Measuring Instruments 2 (CINDI-2), have been performed to better quantify errors in the NO2 observations (e.g. Choi et 
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al., 2020), and therefore improve knowledge about uncertainties in satellite-derived emissions. Existing studies usually quantify 

the uncertainties based on results from sensitivity analyses (e.g., Beirle et al., 2011), since we usually lack “true values” that can 75 

be used as a benchmark for validation. de Foy et al. (2014) tested CTM-independent approaches using simulated NO2 column 

densities from a single point source with a specified emission and chemical lifetime. The good consistency between the derived 

values and the specified values given to drive the simulation suggests that the uncertainty of the Beirle et al. (2011) approach is 

small for an ideal, isolated source. However, the performance of the approach in the real world with complex source distributions 

has not yet been evaluated. 80 

Here, on the basis of previous approaches (Beirle et al., 2011; Liu et al., 2016b), we develop a new CTM-independent approach 

for inferring NOx lifetimes and emissions for cities with polluted backgrounds and complex spatial distribution of interfering 

emissions. We use synthetic NO2 observations derived from a model simulation to evaluate the performance of the new approach 

and to estimate its uncertainties. An overview of the synthetic observations, the methodology and features of the new CTM-

independent approach is provided in Sect. 2. We evaluate results by comparing the inferred emissions and lifetimes with values 85 

from the model simulation in Sect. 3.1. Section 3.2 compares the performance of the method developed in this work with previous 

approaches (Beirle et al., 2011; Liu et al., 2016b). Section 3.3 discusses the uncertainties of NOx lifetimes and emissions derived 

from the new approach. Section 4 presents a summary of the performance of the new method and the future work plans for applying 

the method to satellite observations. 

2 Data and method 90 

In this section, we develop an evaluation system to assess the performance of our newly-developed CTM-Independent SATellite-

derived Emission estimation Algorithm for Mixed-sources (MISATEAM). Figure 1 displays the schematic of the evaluation 

system. MISATEAM uses satellite retrievals of tropospheric NO2 vertical column densities (VCDs), together with wind 

information from a meteorological reanalysis, to infer NOx lifetimes and emissions for cities. Cities are usually non-isolated sources 

with polluted backgrounds (Fig. S1). Additionally, emissions from cities may spread out and make cities not (quasi) point sources 95 

even at the footprint of satellite observations (a few km; Fig. 3). We refer to these cities as mixed-sources.  

To evaluate MISATEAM, we replace satellite observations with synthetic NO2 VCDs derived from the NASA-Unified Weather 

Research and Forecasting (NU-WRF) model (Tao et al., 2013; Peters-Lidard et al., 2015) (Sect. 2.1). We then apply MISATEAM 

to the synthetic NO2 VCDs and NU-WRF meteorological fields to infer urban NOx lifetimes and emissions (Sect. 2.2). We 

investigate the impact of temporal variations in wind fields on derived NOx lifetimes and emissions (Sect. 2.3). In Section 2.4, we 100 

describe the benchmark NOx emissions directly given by NU-WRF and NOx lifetimes deduced from known NOx emissions and 

concentrations (hereafter referred to as “given emissions and NU-WRF lifetimes”) that we will compare with the MISATEAM-

derived lifetimes and emissions. Analysis of the uncertainties in these datasets, including satellite observations and wind fields, is 

outside the scope of the study. We briefly discuss the potential impact of ignoring systematic errors in Sect. 3.3.2. 

2.1 Synthetic NO2 VCDs: NU-WRF simulations 105 

We use a regional modelling system, NU-WRF (Tao et al., 2013; Peters-Lidard et al., 2015), to simulate tropospheric NO2 VCDs 
over the continental US. NU-WRF was developed from the advanced research versions of WRF (Michalakes et al., 2001) and 
WRF-Chem (Grell et al., 2005) with the addition of several NASA-developed components (e.g., Chou and Suarez, 1999; Chin et 
al., 2002, 2007; Kumar et al., 2006; Peters-Lidard et al., 2007; Shi et al., 2010). The gas-phase chemical mechanism in NU-WRF 
is the second-generation regional acid deposition model (RADM2, Gross and Stockwell, 2003). The aerosol module is the Goddard 110 
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Chemistry Aerosol Radiation and Transport (GOCART) model (Chin et al., 2002). We use the anthropogenic emissions based on 
the 2011 National Emissions Inventory (NEI) compiled by the US Environmental Protection Agency (US EPA, NEI 2011) but 
with a few modifications, in which the measurements from OMI, the ground-based Air Quality System (AQS), the in-situ 
continuous emissions monitoring in power plants, and the Air Pollutant Emissions Trends Data compiled by the US EPA 
(https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data), have been employed to adjust the baseline 115 
emissions to the simulation year of 2016 (Tong et al., 2015; Tao et al., 2020). As such, the total anthropogenic NOx emissions in 
2016 were approximately 72% of those in 2011, the baseline NEI year. The simulation also includes the fire emissions from the 
Global Fire Data version 4 with small fires (GFED v4s, van der Werf et al., 2017; Randerson et al., 2015); biogenic emissions 
from the online calculation using the Model of Emissions of Gases and Aerosols from Nature version 2 (MEGAN2, Guenther et 
al., 2006); dust emissions from the on-line estimation based on the surface wind speed, soil moisture, and soil erodibility (Ginoux 120 
et al., 2001; Kim et et al., 2017); and sea salt emissions from the on-line computation based on the method by Gong (2003). 

We run NU-WRF for 2016 at a high horizontal spatial resolution of 4 km × 4 km and 40 vertical layers extending from surface to 
50 hPa in this study. Figure 2 illustrates the domain of the simulation, which covers the continental US. We integrate NO2 
concentrations from the surface to the tropopause to calculate tropospheric NO2 VCDs. We assume a consistent tropopause height 
of 10 km over the model domain to accelerate the data process, because NU-WRF outputs do not include tropopause height and 125 
NO2 VCDs integrated above 10 km increase slightly. We have performed a sensitivity analysis by integrating NO2 concentrations 
from the surface to altitudes ranging from 8 to 16 km, where the seasonal mean tropopause heights may occur over the US (Pan et 
al., 2011; Rieckh et al, 2014). The derived NO2 VCDs over the fit domain of individual cities vary slightly above 10 km, with the 
relative difference of 3 % ± 2 % when increasing the integration altitude from 10 to 12 km, since most NO2 stays near the surface 
over the polluted urban areas. The meteorological initial and lateral boundary conditions are derived from the Modern Era 130 
Retrospective-Analysis for Research and Applications version 2 (MERRA-2, Rienecker et al., 2011; Gelaro et al., 2017). The 
chemical initial and lateral boundary conditions are derived from the results of the Community Atmosphere Model with chemistry 
(CAM-chem, Lamarque et al., 2012). A 7-day model spin up following the recommendation by Berge et al. (2001) is used. 

Figure 2A illustrates the six-month average of the simulated hourly mean tropospheric NO2 VCDs sampled at 14:00 local time, 

which approximately corresponds to the early afternoon overpass time of OMI and TROPOMI. The NOx emissions used to drive 135 

NU-WRF over the model domain for the same time period are presented in Fig. 2B. We focus on cities with populations > 200,000, 

which have been defined as medium-size urban areas in Organisation for Economic Co-operation and Development (OECD) 

countries. Nearby cities (located within 50 km of the largest city in a given urban area) are considered as one city cluster when 

applying MISATEAM to infer lifetimes and emissions. Cities on the boundary of the model domain, e.g., Seattle and San Francisco, 

are excluded from the following analysis, because the data for their inflow/outflow plumes are partially missing from the model 140 

output and thus do not meet the requirements of MISATEAM (see details of the fit interval in Sect. 2.2). This filtering results in a 

total of 60 cities and urban conglomerations (see Table S1) as the candidates for applying MISATEAM, of which 26 have valid 

results. The locations of the 26 cities are shown in Figure 2.  Cities without valid results either lack observations under calm wind 

conditions or are associated with large fitting errors (see details in Section 3.1). 

2.2 Emission estimation algorithm 145 

We develop MISATEAM based on the methods of Beirle et al. (2011) and Liu et al. (2016b). We develop a new model function 

aiming for determining emissions for mixed-sources, instead of isolated sources within a clean background considered by Beirle 

et al. (2011). It is also different from that of Liu et al. (2016b), which was developed for complex sources, but adapted an additional 

model function to fit emissions in a separate step. More comparisons with those two previous methods will be discussed in Sect. 

3.2. 150 
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We adapt the basic approach of Liu et al. (2016b) that estimates NO2 emission rates, E(x), using NO2 observations, LDcalm(x), 

following 

𝐸(𝑥) = !!"#:!"% 	×	[%&&'()(()	*	+]

-
,                            (1) 

where E(x) is a function of distance from the city center (denoted by x) in a particular direction and integrated over a given distance 

in a direction y (perpendicular to that of x). The mean emission maps (two-dimensional, 2D) are reduced to 1D along the respective 160 

direction x by integration across the direction y. LDcalm(x) are the so-called NO2 line densities, defined as the observed NO2 VCDs 

(units molec cm-2) under calm wind conditions (wind speed < 2 m s-1) integrated in the same way as E(x) to give units of molec 

cm-1 as in Beirle et al. (2011).  

𝑅./#:./% is the ratio of NOx to NO2. We use 𝑅./#:./%of 1.32 to represent “typical urban conditions and noontime sun” (Seinfeld 

and Pandis, 2006). We investigate the effect of using a constant value of 𝑅./#:./%on derived emissions in Sect. 3.1; it is found to 165 

be insignificant.  

b represents the NO2 background for each city, which is derived by analyzing the distribution of NO2 VCDs. We first calculate the 

mean NO2 VCD under calm wind conditions for grid cells within the lowest 5th percentile of NO2 VCDs for each city. This 

produces a good approximation of the mean NO2 VCD for grid cells with low NOx emissions (i.e., the lowest 5th percentile of 

NOx emissions). We then multiply this mean VCD value by the spatial width of the across-wind integration interval to derive b.  170 

 τ is the NOx lifetime. Note that τ is assumed to be an effective mean dispersion lifetime (i.e., the result of the effect of deposition, 

chemical conversion, and wind advection) because we do not consider downwind changes in the fitting functions, such as due to 

variations in wind speeds or 𝑅./#:./%or lifetime itself.  

We then use the following model function, f(x), to describe NO2 line densities under windy conditions (wind speed > 2 m s-1) 

LDwindy(x): 175 

𝑓(𝑥) =
1(()

!!"#:!"% 	×	2
∗ 𝑒*

#
*	×	- + 𝑏  

        = [%&&'()(()	*	+]
-	×	2

∗ 𝑒*
#

*	×	- + 𝑏,                                                                         (2)	

where w is the mean wind speed at the emission level in a given direction x, and * denotes convolution. Figure 3 illustrates the 

calculation of LDwindy(x). Additional technical details of the model function f(x) and its differences compared to those proposed by 

Liu et al. (2016b) are given in Appendix A.  180 

Finally, we use estimates of b and 𝑅./#:./%in Eq. (2), along with values of w, LDcalm(x), and LDwindy(x) from the model simulation 

to infer τ and E(x). As displayed in Fig. 1, we use the NU-WRF high-resolution tropospheric NO2 VCDs sampled at 14:00 local 

time as the synthetic NO2 VCD observations, together with the NU-WRF meteorological wind information, to estimate urban NOx 

emissions. In other words, here we assume perfect knowledge of the winds and do not further consider the impact of errors in w. 

As in previous studies, we only analyze data from April to September, in order to exclude winter data that have larger uncertainties 185 

and longer NOx lifetimes. We also investigate the impact of the inclusion of winter data in Sect. 3.3.1; it is found to be associated 

with a larger uncertainty. We further compute total emissions for each city, 𝐸𝑚𝑖𝑠./#, by summing E(x).  

We perform a nonlinear least-squares fit of f(x) to the observed line densities under windy conditions, LDwindy(x), with τ as the 

single fitting parameter. We use the package of scipy.optimize.curve_fit from the Python software library to perform the fitting. 

We set the fit interval to 150 km in downwind direction, which corresponds to the e-folding distance for τ = 6 h and w = 7 m s-1. 190 
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The fit interval in the upwind direction and the y direction are set to half the e-folding distance (75 km); the resulting area is large 

enough to cover a highly populated and spread-out metropolitan region such as New York City. The definition of the fit interval 

in upwind and downwind direction, and the across-wind integration interval are illustrated in Fig. 3. Note that we use LDcalm(x) 

over a larger horizontal interval of 450 km to calculate the convolution in Eq. (2), in order to eliminate the edge effect of 

convolution. Fitting results of insufficient quality (i.e., the correlation coefficient R between the fitted and observed NO2 LD < 0.9, 230 

and one standard deviation error of τ > 10%) are discarded. We infer emissions simultaneously by summing E(x) in Eq. (1). We 

perform the fit for all wind direction sectors and then average the fitted τ and corresponding total emission 𝐸𝑚𝑖𝑠./#with good 

quality, using the fit residuals as inverse weights, to yield a best estimate of <τ> and <𝐸𝑚𝑖𝑠./#> for a given city. The standard 

deviation of the fit results for different wind directions has been used to quantify uncertainties in Sect. 3.3.2. 

We use the city of New York as a case study to demonstrate our approach. This city is well suited for illustrating the strength of 235 

MISATEAM to estimate emissions for mixed sources, because it is a large city with multiple point and areal sources and is 

surrounded by many other large sources. Figure 3 displays the complex spatial distribution of sources around New York. Under 

southwesterly wind, the city of Philadelphia is located in the upwind direction and Long Island is located in the downwind direction, 

both of which are significant NOx sources. Note that we do not exclude cloudy days from our analysis to make the most of the NU-

WRF NO2 simulations and to avoid additional uncertainties arising from the inconsistent definitions of cloud fractions in the NU-240 

WRF and satellite NO2 products. The uncertainty of the presence of clouds is discussed in Sect. 3.3.2. 

We use wind fields averaged from the surface to 1000 m altitude for w in this study. The synthetic NO2 VCDs around New York 

are sorted by wind directions (Figure S1). Figure 4A displays the observed line densities for calm (blue circles) and southeasterly 

winds (red circles) around New York and the fitted model function f(x) (red lines). Generally, f(x) describes the observed downwind 

patterns very well; the coefficients of determination (R2) between observation and fit are 0.90–0.98 for different wind directions. 245 

The resulting lifetimes show a range of 2.2–2.9 h, which result in emissions of 754–996 mol h-1 for different wind directions, as 

shown in Fig. 4A–E. Results for other wind direction sectors are discarded due to the fitting results being of insufficient quality 

(westerly and northwesterly winds; Fig. S2) or lack of observations (easterly wind). 

2.3 Impact of temporal variations in wind fields 

CTM-independent emission estimation algorithms usually assume a steady wind field over the duration of NOx lifetime. In the 250 

demonstration in Sect. 2.2, we use the wind fields sampled at the satellite overpass time to drive MISATEAM, consistent with 

previous studies (e.g., Beirle et al., 2011; Valin et al., 2013; Lu et al., 2015; Liu et al., 2017, 2020; Goldberg et al., 2019). This is 

expected to be reasonable for species with a short lifetime of a few hours such as NOx near noon of non-winter seasons. In reality, 

wind fields are variable over the NOx lifetime. Consequently, NOx emitted at a time prior to the satellite overpass may be 

transported under different wind conditions than those at the overpass time.  255 

Figure 5 illustrates the temporal variations in wind fields around New York. We use the northeasterly wind direction (with a good 

fitting result) for demonstration. We select northeasterly winds observed at 14:00 local time as the baseline and find their backward 

trajectories for up to 8 hours. The backward trajectories are given at a time step of one hour. Not surprisingly, winds are not 

constant during the 9 hours from 8 hours before the baseline to the exact hour of the baseline. However, the temporal variations in 

wind directions are rather small for the northeasterly wind; wind directions are almost constant over time. For wind directions 260 

without good fit results, we observe larger variations. For instance, for the westerly wind with a poor correlation coefficient R of 

0.76, the wind directions deviate from the west direction gradually for the time prior to the baseline (Fig. S3). These results shed 

light on the robustness of MISATEAM’s steady-wind assumption. It is most likely that the fit fails when the assumption of steady 
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wind is not satisfied. In other words, the inherent fitting assumption is robust when the fit results have sufficient quality as defined 290 

in Sect. 2.2. 

We perform sensitivity analyses to investigate the potential impact of temporal variations in winds on the fit results. We extend 

the time windows used for calculating averaged wind fields from 1 h (i.e., at the overpass time of 14:00 local time) to 3 h (i.e., 

starting from the overpass time and extending into the past 2 h), 6, 9, and 12 h. We weight the winds based on their temporal 

proximity, i.e., the wind closer to the overpass time is given larger weight, following Eq. (3).  295 

𝑤3,511111 =
∑ 2.,0,1×72./45
!
.65

∑ 72./45!
.65

,                                                      (3) 

Where h represents the number of hours prior to the overpass time. i and d denote an individual grid cell and day, respectively. 

wh,i,d is the wind for a specific grid cell i on day d at the time of h hours prior to the overpass time. N is the length of the time 

window used (units of hour). The weighted average winds 𝑤3,511111 are further applied with MISATEAM to infer NOx lifetimes and 

emissions for investigated cities. We set t0 to a constant value of 3 derived from rounding the average NU-WRF lifetimes for all 300 

investigated cities (see details in Sect. 2.4). The fitting results are found to be relatively insensitive to the choice of t0. The 

differences of the fitted lifetimes and emissions are -2 ± 15 % and 3 ± 16 %, respectively, when we increase t0 by a factor of 2. 

This is significantly smaller than the difference between the fit results based on weighted average winds and the winds at the 

overpass time (shown in Sect. 3.1). 

2.4 Performance evaluation 305 

In order to evaluate the fitting results, we infer given emissions and NU-WRF lifetimes from the NU-WRF inputs/outputs. The 

given emission 𝐸𝑚𝑖𝑠./#
8  is derived by summing up NU-WRF NOx emissions from all grid cells within the fit interval. The NU-

WRF lifetime τ’ can be computed by solving Eq. (1), i.e., 

𝜏8 = ∑!!"#:!"%×[%&&'()(()*+]
∑17(()

,                                                                                                      (4)	

where E’(x) is the given NOx emission line densities under calm wind conditions, as function of distance x from the city center. 310 

For evaluation, we compute the correlation coefficient (R), the Normalized Mean Bias (NMB), and the Root Mean Squared Error 

(RMSE) of the fitted emissions and the given emissions for all investigated cities. The model performance metrics of NMB and 

RMSE for the emission (𝐸𝑚𝑖𝑠./#) evaluation are defined as  

𝑁𝑀𝐵 = ∑ (19:;!"#,0*19:;!"#,0
7 )8

069

∑ 19:;!"#,0
78

069
,                                                              (5) 

and	315 

𝑅𝑀𝑆𝐸 = 7
∑ (19:;!"#,0*19:;!"#,0

7 )%8
069

<
,                                                (6)	

respectively, where i represents the individual city and n is the total number of cities used for evaluation. The metrics for lifetime 

evaluation are consistent with Eqs. (5) – (6) when replacing 𝐸𝑚𝑖𝑠./#with τ and 𝐸𝑚𝑖𝑠./#
8  with τ’. A good method should have a 

large R, a near-zero NMB, and a small RMSE.  
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3 Results and Discussion 

3.1 Evaluation 

We apply MISATEAM to 60 large cities over the US (see the selection criteria of cities in Sect. 2.1). For 5 cities, we are not able 

to initiate the fitting procedure, due to lack of observations under calm wind conditions to calculate LDcalm(x). We derive valid 330 

fitting results for 26 cities. The locations of the 26 cities are shown in Fig. 2. The other 29 cities without valid results either had 

small correlation coefficients (< 0.9) or large fitting errors (standard deviation error of τ > 10 %); those cities tend to have larger 

temporal variations in winds (similar to Fig. S3), which do not satisfy MISATEAM’s requirement for steady winds prior to satellite 

overpass.  

Figure 6 compares MISATEAM estimated lifetimes and emissions with the NU-WRF lifetimes and given emissions for the 26 335 

cities. The comparison shows good consistency in general. For results derived from the wind data sampled at the overpass time 

(hereafter referred to as “1 h wind”; red dots), values of R are 0.56 and 0.88 for lifetimes and emissions, respectively. The bias is 

rather small for the lifetime comparison with NMB of -0.04 and RMSE of 0.54. The bias is larger for emissions, primarily caused 

by the assumption of a constant NOx to NO2 ratio (𝑅./#:./% ). The errors arising from the differences between 𝑅./#:./% for 

individual cities and a constant value of 1.32 will be propagated into the resulting emissions. The impact of the prescribed 340 

𝑅./#:./%on inferring emissions will be discussed in more detail in this section (Fig. 7). 

The use of wind data over 9 hours prior to the overpass time improves the performance of MISATEAM. Figure 6 compares the 

inferred lifetimes and emissions based on the 9 h weighted average of wind data (hereafter referred to as “9 h wind”; blue dots). 

The results derived from the weighted average wind data show larger correlations with R increasing from 0.56 to 0.79 for lifetimes 

and from 0.88 to 0.96 for emissions; and smaller bias with NMB decreasing from -0.04 to 0.02 for lifetimes and from 0.23 to 0.13 345 

for emissions, when comparing with those derived from the 1 h wind. We have performed the comparison using results based on 

the weighted averages of 3 h, 6 h, and 12 h wind data as well. The use of wind information prior to the satellite overpass time 

succeeds in improving the performance of MISATEAM in all these cases (Fig. S4). Note that the correlation between the inferred 

and the NU-WRF lifetimes based on 12 h wind (R=0.64) is not as good as that based on 3 h (R=0.74), 6 h (R=0.78), and 9 h 

(R=0.79) wind, which is most likely caused by the inclusion of overnight wind information. 350 

The importance of applying wind information prior to the satellite overpass time should not be overinterpreted. The fitting function 

Eq. (2) by definition is not capable of describing the NO2 plumes under significantly varying wind directions because such temporal 

variations are not considered in the fitting function. In this way, wind directions and the results inferring from different wind 

scenarios are not expected to vary significantly, as far as fits with sufficient quality are yielded. Only 6 out of 26 cities show 

relative differences larger than 20 % when comparing results derived from 1 h wind to those derived from 9 h wind.  355 

We examine a scenario, namely “NU-WRF NOx/NO2”, to investigate possible errors from the assumption of a constant 𝑅./#:./%. 

We replace 𝑅./#:./%with the ratio of NOx and NO2 calculated directly from NO2 and NO VCDs per grid cell by NU-WRF outputs, 

and then use MISATEAM for inferring NOx emissions. Any difference in the inferred emissions compared to the emissions based 

on the prescribed ratio of 1.32 (“this study”) can then be assumed to originate from errors in the assumption of 𝑅./#:./%. Figure 7 

compares the results using a prescribed ratio (blue dots) with those using NU-WRF NOx/NO2 (grey dots). The comparison shows 360 

nearly the same correlations to the given emissions, but a smaller bias for results based on NU-WRF NOx/NO2 with NMB dropping 

from 0.13 to almost zero (0.03). The comparison suggests that the influence of changing ratio on derived emissions is limited, 

because its spatial variation is significantly smaller than that of NOx lifetime and NO2 columns (τ and LDcalm(x) in Eq. (1)). 
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Considering the investigated cities are located all over the country and have a wide range of geographic features, we conclude that 

a constant ratio is a reasonable assumption without resulting in significant bias to the derived emissions for typical US cities. The 

errors associated with the assumption is estimated to be 10 %, consistent with our previous estimates based on literature reviews 370 

(Beirle et al., 2011; Liu et al., 2016b). However, for applications based on geostationary satellites with changing local observation 

time, the approach using a constant value for 𝑅./#:./%is subject to larger uncertainties arising from the diurnal cycle of 𝑅./#:./% 

(Han et al., 2011). 

We examine an additional scenario, namely “constant lifetime”, to show the necessity of deriving lifetimes for individual cities. 

Instead of individually fitted lifetimes for each city, we use the mean NU-WWRF lifetime of all cities (2.5 h) for the calculation 375 

of emissions in the “constant lifetime” scenario. The emissions correlation drops to -0.03 (Fig. 7), showing that individually fitted 

lifetimes are critical for this method. The bias is also larger with RMSE increasing by a factor of 3 compared to results based on 

the individually fitted lifetimes. This further improves our confidence that the derived variation of the fitted lifetimes carries 

important information on local variability of the oxidizing capacity of urban plumes. The individual lifetimes are well suited for 

the determination of emissions, suggested by the significantly improved consistency with given emissions. 380 

3.2 Comparison with previous methods 

We further evaluate MISATEAM by comparing the results with those derived from two previous approaches including Beirle et 

al. (2011) and Liu et al. (2016b). The comparison of the technical details between MISATEAM and those two previous approaches 

is given by Fig. S5. We apply all three approaches to fit lifetimes and emissions for all 26 cities investigated by this study. Note 

that we use the 9 h wind for all approaches for best performance and consistency.  385 

Figure 8A illustrates the comparison for inferring lifetimes. The approach of Beirle et al. (2011) does not predict lifetimes well, 

with a poor correlation (R = 0.01). The correlation improves (R = 0.36) when eliminating the data for 7 cities with large (>5 h) or 

small (< 1h) fitted lifetimes, assuming the NOx emission distributions around these cities do not meet the requirements of the Beirle 

et al. method. The poor correlation is not surprising, because by definition the method can only represent a single point source 

convolved with a Gaussian function, and was not intended to be applied to mixed-sources with interfering emissions from nearby 390 

cities or industrial areas. For instance, it is capable of giving an accurate estimate for an isolated city of St. Louis in Missouri, with 

a relative difference of less than 10 % compared to the NU-WRF lifetime. However, for most cities with a polluted background, 

the fitted lifetimes are biased significantly due to the interference from surroundings. This is consistent with the previous findings 

for this approach: an additional source at 100 km with only 10% of the emissions of the source under investigation causes a lifetime 

bias of 20 %; for an interfering source of the same order as the source of interest, the method fails completely (Liu et al., 2016b). 395 

Several studies adopted a plume rotation technique (Pommier et al., 2013; Valin et al., 2013) to advance the approach of Beirle et 

al. (2011), which is not applicable to mixed-sources as well. These techniques rotate NO2 measurements centered over the city 

center so that NO2 columns under different wind directions are aligned in a common upwind-to-downwind direction. This increases 

the number of observations used for analysis without introducing additional errors for (quasi) point sources, compared with 

individually analyzing observations by wind directions as done in this study. However, for mixed-sources investigated in this 400 

study, use of such rotation techniques may result in significant bias by allocating the NO2 from interfering sources into a ring of 

elevated NO2 values around the source of the interest and thus amplifying the NO2 signal of the source. An illustration of this 

amplification can be found in Fig. S2 of Fioletov et al. (2015). 

We note that the performance of MISATEAM is also better than that of the approach reported in Liu et al. (2016b), although they 

share the same concept of using the NO2 patterns observed under calm wind conditions as proxy of emission patterns instead of 405 
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assuming a single point source as in Beirle et al. (2011). It is most likely that Liu et al. (2016b) overfits the model by introducing 

too many degrees of freedom. As suggested by Fig. 8A, the model function of Liu et al. (2016b) occasionally tries to “explain” 

changes of scaling factors by a shorter lifetime, resulting in a small R of 0.21. In MISATEAM, we decrease the number of fitting 

parameters from three in Liu et al. (2016b) to only one (see details in Eq. (A4) of Appendix A), which improves the robustness of 

the fit results.  415 

Emission comparisons in Fig. 8B show better agreement than lifetime comparisons in Fig. 8A for all approaches. MISATEAM-

derived emissions show the best consistency with the given emissions. According to mass balance, the magnitude of emissions 

equals the total mass of NOx divided by lifetime. In the evaluation for MISATEAM, the given emissions range from 57 mol h-1 to 

717 mol h-1 for all investigated cities, the variation in which is significantly larger than that in lifetimes ranging from 1.5 h to 3.7 

h. This finding also holds for the other two approaches. The other two approaches can achieve a good correlation with the given 420 

emissions by providing reasonable estimates for the magnitude of the total NOx mass, even though they fail to predict variations 

in lifetimes between cities. For instance, the results derived from the approach of Liu et al. (2016b) show a small R of 0.21 to the 

NU-WRF lifetimes, but a significantly stronger correlation to the given emissions of 0.94, which is comparable to that of 

MISATEAM-derived emissions. But Liu et al. (2016b)-derived emissions are still associated with larger biases arising from the 

estimates for lifetimes. The values of NMB are 0.13 and -0.21 for emissions derived from MISATEAM and the approach of Liu 425 

et al. (2016b), respectively, when comparing against the given emissions. Note that the derived and given emissions from the 

approach of Liu et al. (2016b) is smaller than the two other approaches, but does not indicate a smaller bias. Liu et al. (2016b) only 

aims to estimate emissions from the city center, considered as a (quasi) point source, instead of all sources in the urban area. In 

this way, 𝐸𝑚𝑖𝑠./#and 𝐸𝑚𝑖𝑠./#
8 , and thus RMSE are smaller than that for MISATEAM. 

3.3 Uncertainty analysis 430 

The good consistency in Sect. 3.1 increases our confidence that the fitted lifetimes and emissions represent the real-word 

characteristics well. We investigate their uncertainties in this session. 

3.3.1 Sensitivity analysis 

Analogous to Beirle et al. (2011) and Liu et al. (2016b), we investigate the impact of the a-priori choice of fit and integration 

intervals, and wind layer height. The dependency of the fit results for τ and 𝐸𝑚𝑖𝑠./#on these three choices is tabulated in Table 1.  435 

The fitted lifetimes are generally robust with respect to changes of the fit and integration intervals, because the NO2 distribution 

under calm wind conditions, LDcalm(x), is a good representation of the emission pattern in any case. An increase of the fit interval 

in downwind direction by 50 km affects the resulting lifetimes by about -2 ± 11 %. The changes of derived lifetimes are also small 

when increasing the fit interval in upwind direction (4 ± 12 %) or integration interval (interval i + 25 km in Fig. 3； 4 ± 18 %) by 

50 km. MISATEAM succeeds in avoiding choosing intervals city by city manually, which has been done in previous studies in 440 

order to minimize the influence of other nearby sources. 

We use the change of the ratio of fitted emissions 𝐸𝑚𝑖𝑠./#to given emissions 𝐸𝑚𝑖𝑠./#
8 , Δ(𝐸𝑚𝑖𝑠./#/𝐸𝑚𝑖𝑠./#

8 ), to show the impact 

of the enlarged fit and integration intervals on emissions. We do not focus on the change of emissions, Δ𝐸𝑚𝑖𝑠./#/𝐸𝑚𝑖𝑠./#, 

because the fitted emissions are expected to be sensitive to the enlarged intervals which include additional sources and thus more 

emissions. The fitted emissions show an average growth of 48 % associated with extending the integration interval by 50 km to 445 

increase the given emissions by 36 %. The rise in emissions is similar to increasing the fit interval in the upwind direction by 50 
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km with 33 % for the given emissions and 42 % for the fitted emissions. However, for the scenario of a larger downwind-direction, 

upwind-direction and integration interval, the change of the ratio of 𝐸𝑚𝑖𝑠./#to 𝐸𝑚𝑖𝑠./#
8  is rather small, which is 3, 9, and 9 % on 

average, respectively; the fitted emissions show good consistency with the given emissions, reporting the correlation coefficient 

of 0.95, 0.92, and 0.86, respectively. It is interesting to note that the fitted emissions are rather insensitive to the extension of the 450 

fit interval in downwind direction. Neither the given nor the fitted emissions are significantly changed by increasing the downwind-

direction interval from 150 km to 200 km. It suggests that we succeed in capturing the complete downwind plume and reaching 

the background areas by the default setting of 150 km for the investigated cities in this study. 

Uncertainties associated with the choice of top wind layer height (e.g., 500 m, 1000 m, or 2000 m) are relatively small. The 

resulting lifetimes and emissions change about 16 % and -9 % on average when averaging the wind fields from surface to up to 455 

500 m. The average changes are -11 % and 13 % for inferring lifetimes and emissions, respectively, when adopting the wind layer 

height of 2000 m. This is consistent with the findings in the previous studies (e.g., Beirle et al., 2011 and Liu et al., 2016b). 

We also apply MISATEAM to year-round NO2 data to investigate the impact of including winter data on the performance of the 

method. We keep default settings of MISATEAM as described in Sect. 2.2 for the fit. As expected, the fitted results differ more 

significantly from given values compared with results based on using only non-winter data. The bias is larger with NMB changing 460 

from 0.02 to -0.14 for lifetimes and from 0.13 to 0.27 for emissions. This indicates that MISATEAM, most likely its inherent 

steady-wind assumption, is less accurate during the winter season with longer NOx lifetimes. 

3.3.2 Uncertainty quantification 

We calculate the uncertainties of inferred results based on the fitting metrics (Fig. 6 and 7) and the dependencies on the a priori 

settings as investigated in the above sensitivity studies. We attribute uncertainties of 15 % and 20 % to the derived lifetimes and 465 

emissions, respectively, based on the mean of relative differences for all 26 cities (14 % for lifetimes and 21 % for emissions). The 

derived emissions have higher uncertainties arising from uncertainty in the NOx to NO2 scaling factor. The derived emissions in 

terms of NO2 are upscaled to NOx based on a constant NOx/NO2 ratio of 1.32, representing typical urban conditions at noon 

(Seinfeld and Pandis, 2006). Since MISATEAM aims to provide estimates for cloud-free satellite observations at the overpass time 

close to noon of non-winter seasons and it focuses on polluted regions with generally high tropospheric ozone, this value is 470 

reasonably accurate. However, the NOx/NO2 ratio might vary locally. NU-WRF reports 1.4 ± 0.1 with a range of 1.2 – 1.6. The 

overall impact of variations in this ratio is shown to be relatively small (see Sect. 3.1). 

We can identify additional uncertainties that would be present when applying MISATEAM to “real” data instead of synthetic data. 

The uncertainty of satellite NO2 observations propagates into the uncertainty of emissions. The uncertainty of satellite NO2 

observations has less impact on the lifetime estimation and only results in errors for lifetimes when satellite observations have 475 

systematic errors depending on the distance from the source. The total uncertainty of NO2 VCDs results from uncertainties in the 

spectral fit in the retrieval, the stratospheric and tropospheric separation, and the tropospheric air mass factor (AMF). In the model 

function of MISATEAM, a possible bias associated with the stratospheric and tropospheric separation is eliminated by use of the 

background term b. The uncertainty in the spectral fit in the retrieval is rather small compared to that associated with AMF 

(Boersma et al., 2007). We estimated the overall uncertainty primarily arising from the uncertainty in the tropospheric AMF is 480 

about 25 % based on validation of TROPOMI NO2 products with ground-based measurements (e.g., Griffin et al., 2019; Ialongo 

et al., 2020; Zhao et al., 2020). Since the random uncertainty of the tropospheric NO2 observations could be suppressed due to the 

consideration of long-term means, this estimate may be conservative.  
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The presence of clouds is an additional source of uncertainties. We are required to exclude satellite observations with significant 

cloud fractions in the instrument’s field of view. For TROPOMI NO2 products, we usually remove data with cloud radiance fraction 490 

≥ 0.5. A bias is observed in NO2 VCD averages as a result of removing the data during cloudy conditions (Geddes et al., 2012). 

The bias is associated with changing photochemistry, meteorology, and pollutant transport, which may also have impacts on 

NOx/NO2 ratio and NOx lifetime. NOx lifetime on a sunny day with valid satellite observations will likely be shorter than that on a 

cloudy day since faster photolysis rates are expected for NOx reactions on sunny days. The magnitude of a bias is expected to vary 

from city to city. We calculate the fraction of cloudy scenes to total scenes over the fit domain of individual cities based on 495 

TROPOMI NO2 products from April through September, 2020. The fractions range from 16 – 56 % for the considered cities. For 

cities with heavy cloud cover, like New York, Philadelphia, and Washington D.C. with a fraction > 50%, the impact associated 

with cloud selection criteria is expected to be larger than cities with more clear sky. We estimated an uncertainty of 10% arising 

from cloud selection criteria based on the evaluation performed at urban sites (Geddes et al., 2012). 

Additionally, the accuracy of wind fields contributes to the uncertainties of both lifetimes and emissions. It can affect the sorting 500 

of the NO2 VCDs according to wind directions as well as the conversion of the downwind decay from a function of distance into 

a function of time in Eq. (2). We estimate the uncertainties associated with the wind data to be approximately 30 % based on the 

comparison of wind information between reanalysis product and sounding measurements (see Table S3 in Liu et al., 2016b). 

We define total uncertainties of the resulting lifetimes and emissions as the root of the quadratic sum of the above-mentioned error 

contributions that are assumed to be independent. We estimated that total uncertainties of NOx lifetime and emissions for a US city 505 

are 43 % and 45 %, respectively. 

4 Conclusions and future work 

In this work we developed a CTM-independent approach, MISATEAM, to infer NOx lifetimes and emissions from satellite NO2 

observations. As in Liu et al. (2016b), MISATEAM is developed for sources with polluted backgrounds. It adopts the approach of 

using NO2 spatial patterns under calm wind conditions as a proxy of the spatial patterns of emission sources to account for 510 

interferences from neighboring strong sources. MISATEAM improves upon Liu et al. (2016b) by advancing the fitting function to 

reduce the number of parameters and to provide estimations of NOx lifetimes and emissions simultaneously. 

We applied MISATEAM to synthetic tropospheric NO2 VCDs over the continental US provided by a NU-WRF high resolution 

model simulation. We found that our new method for determining NOx lifetimes and emissions was applicable to 26 cities. The 

derived results were generally in good agreement with the NU-WRF given values. In existing studies, wind fields sampled 515 

simultaneously with satellite observations were used to drive the CTM-independent approach. We investigated the impact of 

temporal variations in winds on fitted results and found the use of wind data prior to satellite overpass time improves performance 

of our approach. R between inferred and NU-WRF lifetimes increased from 0.56 to 0.79 and for emissions increased from 0.88 to 

0.96 when comparing results based on 1 h and 9 h winds, respectively. The comparison between MISATEAM and the approaches 

of Beirle et al. (2011) and Liu et al. (2016b) suggests that MISATEAM is more suitable for non-isolated sources, particularly for 520 

lifetime estimation. Lifetimes inferred from the previous approaches showed rather weak correlations with respect to NU-WRF 

lifetimes (0.01 for Beirle et al. (2011) and 0.21 for Liu et al. (2016b)) as compared with that from MISATEAM (0.79). 

We plan to apply MISATEAM to observations from TROPOMI and geostationary satellite instruments including the Korean 

Geostationary Environmental Monitoring Spectrometer (GEMS; Kim et al., 2012), NASA Tropospheric Emissions: Monitoring of 

Pollution (TEMPO; Chance et al., 2012), and ESA Sentinel-4 (Ingmann et al., 2012). These instruments have spatial resolutions 525 
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similar to the NU-WRF simulation (4 km) used in this study. For applications based on geostationary satellites with local 

observation time outside of the early afternoon time frame, additional investigation about the impact of the diurnal cycle of NO2 

lifetime is required, since MISATEAM is expected to have a larger uncertainty when the lifetime is longer. We estimate that 

uncertainties in NOx lifetime and emissions arising from MISATEAM are approximately 15% and 20%, respectively, for typical 

(US) cities. Additional uncertainties are associated with wind errors in the reanalysis dataset as well as errors in the satellite NO2 530 

retrievals, increasing the total uncertainties of NOx lifetime and emissions to 43 % and 45 %, respectively. The general low bias of 

NO2 Tropospheric VCDs from TROPOMI for polluted sites (Verhoelst et al. 2021) is directly transferred into the inferred NOx 

emissions if no correction is performed. We will attempt to reconcile bottom-up and satellite-derived urban emissions to generate 

a merged inventory (e.g., Liu et al., 2018) to provide timely NOx emissions estimation for air quality and climate modeling 

communities. 535 
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Appendices 

Appendix A Derivation of the model function f(x) 

We derive Eq. (1) based on the continuity equation for steady state, following Eqs. (A1) – (A2) given by  

𝐸(𝑥) = 𝑆(𝑥) + 𝐷(𝑥),                                       (A1) 750 

𝑆(𝑥) = !!"#:!"% 	×	%&(()

-
,                                       (A2)	

where E(s), S(x) and D(x) represent the line densities of NOx emission, sink and divergence, respectively. As the NOx sinks are 

dominated by the chemical loss due to reaction of NO2 with OH at the local overpass time of TROPOMI (13:30 local time), sink 

S(x) can be described by a first order time constant τ and thus is proportional to the NO2 line density LD(x) itself as shown in Eq. 

(A2). Beirle et al. (2019) provided further details.  755 

We use NO2 line densities under calm wind conditions, LDcalm(x), to simplify Eqs. (A1) – (A2). In principle, there is no NOx 

transport under perfect calm wind conditions (i.e., divergence D(x) is zero), and thus the emission E(x) equals the sink S(x) given 

by 
!!"#:!"% 	×	%&&'()(()

-
. However, we use the threshold of 2 m s-1, instead of 0 m s-1, as the criterion for calm wind to get a good 

compromise between sufficient sample sizes for both the calculation of line densities for calm conditions as well as for windy 

conditions. In order to account for the error associated with this criterion and possible systemic differences between windy and 760 

calm wind conditions (e.g., cloud conditions, vertical profiles, or lifetimes), and to account for the upper tropospheric background 

column which is not driven by local emissions, we introduce a constant background b in the fitting function, as given by Eq. (A3).  

𝐸(𝑥) = 𝑆(𝑥) = !!"#:!"% 	×	[%&&'()(()	*	+]

-
,                                   (A3) 

We derive Eq. (2) following the concept proposed by Liu et al. (2016). We use LDcalm(x) as a proxy for emissions instead of 

assuming a single point source as in previous studies (e.g., Beirle et al., 2011; Laughner et al., 2019). The NO2 line density without 765 

considering the chemical decay is given by 1(()
!!"#:!"% 	×	2

 based on a Gaussian plume model. This formulation is different from the 

model function f(x)’ originally proposed by Liu et al. (2016), which was given by  

𝑓(𝑥)8 = 𝑎	 × 	𝐿𝐷=>?9(𝑥) ∗ 𝑒
* #
*	×	- + 𝑏,                                                                            (A4) 

We replaced one fitting parameter, the scaling factor a in f(x)’, with variables that have physical meanings in the new model 

function f(x). The new formulation was shown to improve the model performance in Sect. 3.2. We then convolved 1(()
!!"#:!"% 	×	2

 770 
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with an exponential function 𝑒*
#

*	×	- describing the chemical decay to form the new model function f(x)), implicitly assuming a 

constant effective lifetime τ.  
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Figure 1 Schematic of our evaluation system to assess the accuracy of the inferring NOx lifetimes and emissions derived from 780 
MISATEAM. The blue symbols represent the inputs (dash line) and outputs (solid line) of MISATEAM. The orange symbols represent 

the information derived from NU-WRF. 

 

 
Figure 2 Domain used for simulation. (A) Mean NU-WRF tropospheric NO2 vertical column densities. (B) Mean NEI NOx emissions 785 
fluxes used to drive the NU-WRF simulation. Hourly mean data at 14:00 local time are averaged from April through September, 2016. 

Locations of the 26 cities investigated in this study are labelled by circles (see Section 3).  
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Figure 3 Sketch of the definition of Line Densities. For each wind direction, mean NO2 VCDs are integrated in across-wind 

direction y over the interval i, resulting in line densities LD(x). The fit is performed over the entire upwind interval (fupwind) 

and downwind intervals (fdownwind). The city center is the coordinate origin. The top panel shows the NU-WRF tropospheric 

NO2 VCDs around New York City under southwesterly wind, however the image is rotated by 45 degrees in the clockwise 795 

direction to present NO2 VCDs in an upwind-downwind direction. The city of Philadelphia and Long Island are located in 

the upwind and downwind direction, respectively. 
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Figure 4 NO2 line densities around New York for different wind direction sectors. Circles: NO2 line densities for calm (blue circles) and 800 
(A) southeasterly, (B) southerly, (C) southwesterly, (D) northeasterly, and (E) northerly winds (red circles) as a function of the distance 

x to New York center. Red line: the fit result f(x). The numbers indicate the fitted NOx lifetime (τ), average days of data used for 

calculating NO2 line densities (Days), derived emissions (𝑬𝒎𝒊𝒔𝑵𝑶𝒙) and given emissions (𝑬𝒎𝒊𝒔𝑵𝑶𝒙
# ). NO2 line densities are derived from 

NO2 VCDs averaged from April through September, 2016. NO2 line densities for the remaining wind direction sectors are discarded due 

to the fitting results having insufficient quality. 805 
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Figure 5 Wind barbs around New York City for different times of the day. All northeasterly winds at 14:00 local time from April to 810 
September of 2016 are averaged and shown in (I). Wind barbs for the northeasterly winds backward trajectories from 8 to 1 h prior to 

14:00 local time are displayed in (A) – (H). Wind speed is given in the units of knots, which is a nautical miles per hour (1.9 km per hour). 

Each short and long barb represents 5 knots (9.3 km/h) and 10 knots (18.5 km/h), respectively. The average wind speed is displayed in 

the grey box.  

 815 

Deleted: 

Deleted: southwesterly 

Deleted: the local overpass time of TROPOMI 

Deleted: southwesterly 

Deleted: the overpass time820 



25 
 

 

Figure 6 Scatterplots of (A) the fitted NOx lifetime τ as compared to the NU-WRF lifetime τ’; and (B) the fitted NOx emissions 

𝑬𝒎𝒊𝒔𝑵𝑶𝒙as compared to the given emissions 𝑬𝒎𝒊𝒔𝑵𝑶𝒙
# .  Error bars show the standard error of the fitted results for all available wind 

directions. Standard error is defined as standard deviation divided by √𝒏, with n being the number of available wind directions.  The 

results deriving from the wind fields sampled at 14:00 local time (“1 h”) and the weighted average of 9 h wind fields (“9 h”) are 825 
displayed by red and blue dots, respectively. The dash line represents the 1:1 line.

Deleted: 

Deleted: the TROPOMI overpass time



26 
 

 

 830 

 

Figure 7 Scatterplot of the fitted total NOx emissions 𝑬𝒎𝒊𝒔𝑵𝑶𝒙as compared to the given total emissions 𝑬𝒎𝒊𝒔𝑵𝑶𝒙
# under different 

scenarios. The blue, grey and red dots represent the scenarios based on the fitted lifetime τ and a constant NOx to NO2 ratio of 1.32 

(“this study”), the fitted lifetime τ and the NOx to NO2 ratio given by NU-WRF model (“NU-WRF NOx/NO2”), and a constant lifetime 

of 2.5 hours and a constant NOx to NO2 ratio of 1.32 (“constant lifetime”), respectively. The dash line represents the 1:1 line. Statistics 835 
provided in the inset table.  
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Figure 8 Scatterplots of (A) the fitted NOx lifetime τ as compared to the NU-WRF lifetime τ’; and (B) the fitted NOx emissions 

𝑬𝒎𝒊𝒔𝑵𝑶𝒙as compared to the given emissions 𝑬𝒎𝒊𝒔𝑵𝑶𝒙
# .  Error bars show the standard error of the fitted results for all available wind 

directions. Standard error is defined as standard deviation divided by √𝒏, with n being the number of available wind directions.  The 

results derived from MISATEAM, the approach of Beirle et al. (2011), and the approach of Liu et al. (2016b) are displayed by blue, 

grey and red dots, respectively. The dash line represents the 1:1 line. Note that figure B is plotted in a logarithmic scale. 845 

 

Table 1. The mean relative change of lifetimes and emissions for different choices of fit and integration intervals, and wind fields. 

  
Intervaldownwind

a + 50 km 
Intervalupwinda 

+ 50 km 
Intervalintegratea 

+ 50 km 
500 mb 2000 mb  

mean[Δτ'/τ'] 0% 9% 8% 2% -2%  

mean[Δτ/τ] -2% 4% 4% 16% -11%  

mean[Δ𝐸𝑚𝑖𝑠./#
8 /𝐸𝑚𝑖𝑠./#

8 ] 0% 33% 36% 0% 0%  

mean[Δ𝐸𝑚𝑖𝑠./#/𝐸𝑚𝑖𝑠./#] 2% 42% 48% -9% 13%  

mean[Δ(𝐸𝑚𝑖𝑠./#/𝐸𝑚𝑖𝑠./#
8 )] 3% 9% 9% -8% 12%  

aIntervaldownwind = 150 km, Intervalupwind = 75 km, Intervalintegrate = 150 km  

bthe wind fields are averaged from the surface up to this height  
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Figure S1 Wind dependency of the NU-WRF tropospheric NO2 vertical column densities around New York City. NO2 columns at the 

local overpass time of TROPOMI are averaged from April through September, 2016. Mean NO2 column densities for different wind 

conditions, i.e., calm (center panel) and eight main wind direction sectors (surrounding panels; titles indicate the mean of the 

respective winds). Missing data due to lack of observations for a certain wind direction is in grey.
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Figure S2 Similar to Figure 4, but for wind direction sectors with fitting results of insufficient quality: (A) westerly and (B) northwesterly 

wind. 
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Figure S3 Similar to Figure 5, but for westerly wind. 
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Figure S4 Scatterplots of (A) the fitted NOx lifetime τ as compared to the NU-WRF lifetime τ’; and (B) the fitted NOx emissions 

𝑬𝒎𝒊𝒔𝑵𝑶𝒙as compared to the given emissions 𝑬𝒎𝒊𝒔𝑵𝑶𝒙
# .  The results deriving from the wind fields sampled at the 14:00 local time (“1 h”), 

the weighted average of 3 h wind fields (“3 h”), 6 h wind fields (“6 h”), 9 h wind fields (“9 h”), and 12 h wind fields (“12 h”) are displayed 

by red, yellow, green, blue, and grey dots, respectively. The dash line represents the 1:1 line. 
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Figure S5 Comparison of methodology between this study (MISATEAM) and Beirle et al. (2011) and Liu et al. (2016b). 

*MISATEAM and the approach of Liu et al. (2016b) are also applicable to a single point source. 
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Table S1 Summary of cities investigated in this study. 

City  Latitude Longitude Label* 
Albuquerque 35.11 -106.65 Y 
Atlanta 33.76 -84.42  
Austin 30.30 -97.75  
Bakersfield 35.32 -119.02  
Baltimore 39.30 -76.61 Y 
Baton Rouge 30.44 -91.13  
Birmingham 33.53 -86.80  
Boise 43.60 -116.23  
Boston 42.33 -71.02 Y 
Buffalo 42.89 -78.86 Y 
Charlotte 35.21 -80.83  
Chicago 41.84 -87.68 Y 
Cincinnati 39.14 -84.51  
Cleveland 41.48 -81.68  
Columbus 39.99 -82.98  
Dallas 32.79 -96.77 Y 
Denver 39.76 -104.88  
Detroit 42.38 -83.10 Y 
El Paso 31.85 -106.43 Y 
Fayetteville 35.08 -78.97  
Fort Wayne 41.09 -85.14  
Fresno 36.78 -119.79  
Greensboro 36.10 -79.83  
Houston 29.79 -95.39 Y 
Indianapolis 39.78 -86.15  
Jacksonville 30.34 -81.66 Y 
Kansas City 39.13 -94.55 Y 
Las Vegas 36.23 -115.26  
Lexington 38.04 -84.46  
Lincoln 40.81 -96.68 Y 
Los Angeles 34.02 -118.41  
Louisville 38.17 -85.65  
Lubbock 33.57 -101.89  
Memphis 35.10 -89.98  
Milwaukee 43.06 -87.97 Y 
Minneapolis 44.96 -93.27 Y 
Montgomery 32.35 -86.27  
Nashville 36.17 -86.79  
New Orleans 30.05 -89.93  
New York 40.66 -73.94 Y 
Norfolk 36.92 -76.24 Y 



8 
 

Oklahoma City 35.47 -97.51 Y 
Omaha 41.26 -96.05 Y 
Orlando 28.42 -81.27 Y 
Philadelphia 40.01 -75.13 Y 
Phoenix 33.57 -112.09 Y 
Pittsburgh 40.44 -79.98 Y 
Portland 45.54 -122.65  
Raleigh 35.83 -78.64  
Reno 39.55 -119.85  
Richmond 37.53 -77.48  
San Antonio 29.47 -98.53  
San Diego 32.82 -117.14  
St. Louis 38.64 -90.24 Y 
Tampa 27.97 -82.48 Y 
Toledo 41.66 -83.58 Y 
Tucson 32.15 -110.87  
Tulsa 36.13 -95.90  
Washington 38.90 -77.02 Y 
Wichita 37.69 -97.35   

*Y represents cities with valid fit results. 

 


