1

2 natural ecosystems in southwestern British Columbia, Canada 3 4 Sung-Ching Lee¹, Sara H. Knox¹, Ian McKendry¹, T. Andrew Black² 5 6 ¹Department of Geography, University of British Columbia, Vancouver, Canada 7 ²Faculty of Land and Food Systems, University of British Columbia, Vancouver, 8 Canada 9 10 **Correspondence:** Sung-Ching Lee (sungching.lee@geog.ubc.ca) 11 12 Abstract 13 Area burned, number of fires, seasonal fire severity, and fire season length are all 14 expected to increase in Canada, with largely unquantified ecosystem feedbacks. 15 However, there are few observational studies measuring the ecosystem-scale 16 biogeochemical and biophysical properties during smoke episodes, and hence 17 accessing productivity effects of changes in incident diffuse photosynthetically active 18 radiation (PAR). In this study, we leverage two long-term eddy covariance 19 measurement sites in forest and wetland to study four smoke episodes, which 20 happened at different times and differed in length, over four different years. We found 21 that the highest decrease of shortwave irradiance due to smoke was about 50% in July 22 and August but increased to about 90% when the smoke arrived in September. When 23 the smoke arrived in the later stage of summer, impacts on H and LE were also 24 greatest. Smoke generally increased the diffuse fraction from ~0.30 to ~0.50 and 25 turned both sites into stronger carbon-dioxide (CO₂) sinks with increased productivity

Biogeochemical and biophysical responses to episodes of wildfire smoke from

- 26 of ~18% and ~7% at the forest and wetland sites, respectively. However, when the
- 27 diffuse fraction exceeded 0.80 as a result of dense smoke, both ecosystems became
- 28 CO₂ sources as total PAR dropped to low values. The results suggest that this kind of
- 29 natural experiment is important for validating future predictions of smoke-
- 30 productivity feedbacks.
- 31
- 32

33 1 Introduction

- 34 Among the many ecosystem services provided by temperate forests and wetlands in
- 35 western North America, climate regulation is identified as one of their most important
- 36 benefits to society (Millennium Ecosystem Assessment, 2005). However, these
- 37 services are being greatly altered by increasing wildfire occurrences, both in terms of
- 38 frequency and duration (Settele et al., 2015). In addition to affecting visibility and air

39 quality, aerosols arising from biomass burning can alter the radiation budget by 40 scattering and absorbing radiation and hence potentially influence cloud processes 41 (Crutzen & Andreae, 1990). The overall effect of aerosols on climate still remains 42 uncertain according to the latest IPCC assessment (Pachauri et al., 2014). This has 43 triggered enormous interest in the radiative impacts of smoke plumes induced by 44 biomass burning (Chubarova et al., 2012; Lasslop et al., 2019; Markowicz et al., 45 2017; McKendry et al., 2019; Moreira et al., 2017; Oris et al., 2014; Park et al., 2018; Sena et al., 2013). Heavy smoke conditions were found to cause net surface cooling of 46 47 3 °C in Amazonia (Yu et al., 2002), while some have observed net radiative cooling at 48 the surface and net radiative warming at the top of the atmosphere in the Arctic and 49 southeastern United States (Markowicz et al., 2017; Taubman et al., 2004), resulting 50 in enhanced atmospheric stability. It has been estimated that aerosol emissions from 51 boreal fires might have a net effect of inducing a positive feedback to global warming 52 (Oris et al., 2014). Jacobson (2014) also suggested a net global warming of 0.4 K by 53 including black and brown atmospheric carbon, heat and moisture fluxes, and cloud 54 absorption effects. However, other studies using atmospheric modelling found a net 55 cooling effect of aerosols, which can lead to a net reduction in the global radiative 56 forcing of fires (Landry et al., 2015; Ward et al., 2012). 57 Changes in solar irradiance, in particular photosynthetically active radiation (PAR, 400-700 nm), affect plant physiological mechanisms that influence 58 59 photosynthesis (i.e., gross primary production (GPP)), net ecosystem exchange of 60 CO₂ (NEE), and light use efficiency (LUE). Sub-canopy leaves, especially in forest 61 ecosystems, typically remain under light-deficit conditions. Increasing diffuse 62 radiation makes it easier for PAR photons to penetrate deeper into the canopy (Doughty et al., 2010; Kanniah et al., 2012; Knohl and Baldocchi, 2008; Rap et al., 63 64 2015). Additionally, diffuse PAR coming from different angles can increase the 65 efficiency of CO₂ assimilated by plants because leaves are generally at different orientations (Alton et al., 2006). This increase in photosynthesis that results from the 66 trade-off between decreased solar radiation and increased PAR scattering is referred 67 to as the diffuse radiation fertilization (DRF) effect (Moreira et al., 2017; Park et al., 68 69 2018; Rap et al., 2015). However, DRF has not always been observed under fire 70 smoke conditions and appears to be ecosystem-dependent. For instance, Ezhova et al., 71 (2018) found that the mechanisms causing the increases in GPP are different between 72 the boreal coniferous and mixed forest ecosystems. Some studies suggest that DRF might depend on canopy height and the leaf area index (LAI) (Cheng et al., 2015; 73 74 Kanniah et al., 2012; Niyogi et al., 2004). For example, Cheng et al. (2015) found an 75 increase in GPP due to diffuse radiation for forest sites but not for cropland sites using 76 AmeriFlux data from ten temperate climate ecosystems including three forests and

- seven croplands. Therefore, it is still uncertain how the changes in diffuse radiation 77
- 78 affect GPP and it is also not clear how large the effect of aerosols is on diffuse 79
- radiation.

80 With an area of 95 million hectares (Ministry of Forests, 2003), British Columbia (BC), Canada, is almost double the size of California, USA. Of that area, almost 64% 81 82 is forested with less than one-third of one percent of BC's forest land harvested 83 annually (Ministry of Forests, Mines and Land, 2010). Wetlands in BC comprise 84 around 5.28 million hectares or approximately 5% of the land base (Wetland 85 Stewardship Partnership, 2009). Therefore, responses of forests and wetlands to 86 wildfire smoke are very likely to have a significant impact on regional carbon 87 budgets. In western Canada, a previous study found that a short, but severe, wildfire 88 smoke episode in 2015 appreciably changed the energy balance and net CO_2 exchange at wetland and forest sites in southwestern BC (McKendry et al., 2019). Another 89 90 study investigated 2017 and 2018 smoke events in southwestern BC and found that 91 the aerosols from wildfires suppressed the development of deep mountain convective 92 layers, and hence inhibited vertical mixing, convection and cloud development 93 (Ferrara et al., 2020). It is unclear whether the changes in NEE found by McKendry et 94 al. (2019) were due to changes in GPP or ecosystem respiration (R_e). Furthermore, 95 biogeochemical and biophysical properties of wetland and forest ecosystems might respond differently to smoke events with different intensities and durations. In 2015, 96 97 2017, 2018, and 2020, southwestern BC experienced smoke episodes that differed in 98 both duration and intensity. 99 In this study, we investigate the effect of those fire events on two natural 100 ecosystems in southwestern BC; one is a temperate forest ecosystem (Douglas-fir, 101 *Pseudotsuga menziesii*) and the other is a wetland ecosystem (restored peatland) (Fig. 102 1). We aim to provide a better understand of biogeochemical and biophysical 103 responses to wildfire smoke episodes in natural ecosystems in southwestern BC. 104 Specifically, we aim to (1) evaluate smoke-induced changes in shortwave irradiance, 105 albedo, and energy partitioning at the two sites, (2) assess the biogeochemical responses to smoke by investigating GPP and R_e at the two sites, and (3) estimate the 106 107 maximum effect of smoke on GPP due to changes in the ratio of diffuse to total PAR. 108 Ultimately, we hope to provide a firm foundation for upscaling the impacts of wildfire 109 smoke on the regional CO₂ budget.

110	2 Methodology
111	2.1 Wildfire smoke episodes
112	2.1.1 Overview
113	In 2015, there were a series of wildfires across different provinces in Canada. During
114	4-8 July 2015, smoke spread across most of North America and a particularly intense
115	event occurring in ~150 km north of Vancouver seriously impacted air quality and
116	visibility in southwestern BC. The detailed evolution and synoptic patterns associated
117	with this event are described in McKendry et al. (2019). In summer 2017, a smoke
118	haze settled over the BC coast due to offshore winds advecting smoke from wildfires
119	in the BC Interior. The wildfire season in 2018 eclipsed the previous year's as the
120	worst recorded in BC history with 2,117 fires consuming 1,354,284 hectares of land.
121	(https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-
122	history/wildfire-season-summary). Smoke covered the BC coast area for
123	approximately 20 days with additional plumes drifting north from similar fires in
124	Washington state, USA. In 2020, BC recorded a quiet fire season with 637 wildfires
125	burning just over 15,000 hectares of land between 1 April and 1 October. However,
126	southwestern BC was significantly affected by smoke advected northward from an
127	intense fire season affecting Washington state, Oregon, and California, USA. Notably,
128	the cross-border smoke arrived in September, somewhat later than usual.
129	

130

131 Figure 1. Locations of the all sites mentioned in text. Observations of aerosol optical

- 132 depth at the reference 500 nm wavelength (AOD $_{500}$) and particulate matter less than
- 133 2.5 μ m in diameter (PM_{2.5}) were collected at Saturna Island AERONET site and
- 134 Vancouver International Airport, respectively. Flux and climate data of wetland and
- 135 forest ecosystems were measured at Burns Bog and Buckley Bay, respectively.

136 2.1.2 AERONET and AEROCAN

137	The global AERONET (AErosol RObotic NETwork) has been in operation since 1993
138	and is focused on measurements of vertically integrated aerosol properties using the
139	CIMEL sunphotometer/sky radiometer instrument (Holben et al., 1998). AEROCAN
140	CIMELs (AEROCAN is the Canadian sub-network of AERONET) include a facility
141	on Saturna Island, which is located 55 km to the south of the city of Vancouver (Fig.
142	1). Here, solar irradiance is acquired across eight spectral channels (340, 380, 440, 500,
143	670, 870, 1020 and 1640 nm) that are transformed into three processing levels of
144	aerosol optical depth (AOD); 1.0 - non-cloud screened; 1.5 - cloud screened; and 2.0
145	- cloud screened and quality assured. McKendry et al. (2011) demonstrated the
146	application of these data to the transport of California wildfire plumes. In this paper,
147	we present the level 1.5 AOD data at the reference 500 nm wavelength in order to
148	compare both the magnitude and duration of the four smoke episodes.
149	The monthly course of AOD ₅₀₀ for each of four episodes at Saturna Island is
150	shown in Fig. 2a. For each event there were persistent multi-day periods when
151	$AOD_{500} > 2$ and reached or exceeded a value of 4. The impact of smoke events on
152	ground level $PM_{2.5}$ (particulate matter less than 2.5 μ m in diameter) concentrations at
153	Vancouver International Airport is shown in Fig. 2b. From Fig. 2, it is evident that the
154	event of 2015, although the shortest of the four events, was the most intense with both
155	AOD_{500} >5 and ground level $PM_{2.5}$ concentrations >200 µg m ⁻³ , exceeding those of
156	the other three events. This is likely due to the close proximity of the fires in this case
157	(McKendry et al. 2019). The event of August 2017 was of somewhat longer duration
158	in which AOD ₅₀₀ peaked at 4 but ground level concentrations remained comparatively
159	low (<50 μg m $^{\text{-3}}$) and showed a strong diurnal pattern associated with boundary layer
160	entrainment from elevated layers (Ferrara et al. 2020). In August 2018 the smoke was
161	persistent and included a double maximum. Ground level PM _{2.5} concentrations
162	exceeded 150 $\mu g~m^{\text{-3}}$ and AOD_{500} reached 4. Finally, the early fall event in September
163	2020 was also a persistent event in which ground level concentrations exceeded 150
164	$\mu g\ m^{\text{-}3}$ and AOD_{500} reached 4. There was evidence in this case of two short peaks in
165	smoke in late September that followed the main event.
166	In summary, the four events were all quite different with respect to intensity of
167	smoke, duration, and impact at ground level (a function of transport height of smoke
168	layers and boundary layer processes). The most similar in character appear to be the
169	2018 and 2020 events, although it is likely that the "age" and life history of smoke
170	was different for these two cases due to the different geographical sources and
171	distance travelled.
172	

173

174 **Figure 2. (a)** AOD₅₀₀ at Saturna Island and **(b)** PM_{2.5} observations at Vancouver

175 International Airport for the four months with wildfire smoke in Vancouver, British

176 Columbia, Canada. There are different numbers of AOD₅₀₀ data points per day in

177 panel a and 24 $PM_{2.5}$ data points per day in panel b.

178

179 2.1.3 Study periods

180	Study periods were defined using the following criteria. First, days were selected with
181	$AOD_{500}>0.5$ or $PM_{2.5}>50~\mu g$ m^-3. Second, Hazard Mapping System Fire and Smoke
182	Product from The Office of Satellite and Product Operations at the National Oceanic
183	and Atmospheric Administration were used to plot smoke polygons over the
184	southwestern British Columbia region. In the final step, we included a day into the study
185	periods when the two sites were covered by the smoke polygon classified in the medium
186	category. The study periods during the four months with wildfire smoke and the
187	respective maximum AOD ₅₀₀ and PM _{2.5} values are summarized in Table 1.
100	

188

Table 1. Summaries for the four study periods.

Year	Study period	Maximum AOD ₅₀₀	Maximum PM _{2.5} (µg m ⁻³)
2015	4–8 July	5.3	210
2017	1-11 August	3.9	53
2018	8–23 August	4.0	165
2020	8–18 September	3.7*	178

190 *There were no available observations during the 2020 smoke episode. The value

191 shown here was observed on 6 September 2020.

192

193 **2.2 Radiative and turbulent flux measurements**

194 **2.2.1 Wetland site**

The rewetted peatland site (AmeriFlux ID: CA-DBB, 122°59'5.60" W, 49°07'45.59"
N) (Christen & Knox, 2021) is located in the centre of the Burns Bog Ecological

197 Conservancy Area in British Columbia, Canada (Fig. 1). Burns Bog is recognized as

the largest raised bog ecosystem on the west coast of Canada (Christen et al., 2016).

199 The 5-m-tall flux tower at Burns Bog was built in 2014 equipped with an eddy

200 covariance (EC) system to continuously measure turbulent fluxes of sensible heat (*H*),

201 latent heat (*LE*), and carbon-dioxide (F_{CO_2}). F_{CO_2} and the heat fluxes were computed

202 using the 30-min covariance of turbulent fluctuations in vertical wind speed and scalar

203 of interest and standard quality control involved removing spikes was applied to half-

204 hourly EC-measured fluxes. We applied block averaging and time-lag removal by

205 covariance maximization (Moncrieff et al., 1997). Coordinate rotations were

206 performed so that mean wind speeds at each 30-min averaging interval were zero in

207 the cross-wind and vertical directions. The flux data were further filtered to exclude

208 the errors indicated by the sonic anemometer and IRGA diagnostic flags, typically

209 attributable to heavy rainfall or snowfall. Fluxes were also filtered for spikes in 30-

210 min mean mixing ratios, variances and covariances with thresholds. F_{CO_2} was

211 corrected by adding the estimated rate of change in CO₂ storage in the air column

below the EC sensor height to obtain NEE (Hollinger et al., 1994; Morgenstern et al., 212 213 2004). After obtaining cleaned heat fluxes, we filtered NEE and heat fluxes with low friction velocity (u_*) . The u_* threshold was 0.03 m s⁻¹ determined by using moving 214 215 point test (Papale et al., 2006). The algorithm used for u_* threshold detection was run in R (R Core Team, 2017) by using the REddyProc 1.2-2 R package (Wutzler et al., 216 217 2018). NEE was partitioned into GPP and R_e using a nighttime-based partitioning 218 method (Reichstein et al., 2005). Four components of radiation (shortwave, longwave, 219 incoming, and outgoing) were continuously measured by a four-component net 220 radiometer (CNR1, Kipp and Zonen, Delft, Holland) on top of the tower. The surface 221 albedo (α) of the site, i.e., the ratio of the reflected shortwave radiation (K_{\uparrow}) to the 222 shortwave irradiance (K_1) , was measured at noon. Several climate variables were also 223 measured (e.g., net radiation (R_n) , relative humidity (RH), and water table level). Further details of the site are described in Christen et al. (2016), Lee et al. (2017), and 224 225 D'Acunha et al. (2019).

226

227 2.2.2 Forest site

228 Buckley Bay (AmeriFlux ID: CA-Ca3) is a flux tower with EC and radiation sensors 229 measuring exchanges between a coniferous forest stand (Douglas-fir, 27 years old) and the atmosphere (Black, 2021). The site is located on the eastern slopes of the 230 Vancouver Island Range, about 150 km to the west of Vancouver (Fig. 1). A 21-m-231 232 tall, 25-cm triangular open-lattice flux tower was erected in 2001 and equipped with 233 an EC system to continuously measure turbulent fluxes of H, LE, and F_{CO_2} 234 (Humphreys et al., 2006). In November 2017, this tower was decommissioned, and in 235 June 2017, a 33-m-tall walk-up scaffold flux tower (2 m wide x 4 m long) was erected 236 and equipped with an EC system to continuously measure H, LE, and F_{CO_2} . H, LE, 237 and F_{CO_2} were calculated and F_{CO_2} was also corrected by adding the estimated rate of 238 change in CO₂ storage in the air column below the EC sensor height to obtain NEE 239 (Hollinger et al., 1994; Morgenstern et al., 2004). Fluxes during low turbulence periods (friction velocity, u_* , less than 0.16 m s⁻¹) were rejected (Lee et al., 2020a). 240 NEE was partitioned into GPP and R_e using a nighttime relationship model following 241 242 the Fluxnet-Canada Research Network procedure (Barr et al., 2004; Chen et al., 243 2009). Four components of radiation were continuously measured by a CNR1 (Kipp 244 and Zonen) at the 32-m height facing south. α was calculated as $K_{\downarrow}/K_{\uparrow}$ at noon as for 245 the wetland site. The diffuse fraction of PAR was measured at the 32-m height facing 246 south (Sunshine sensor type BF3, Delta-T Devices Ltd, Cambridge, UK). Information 247 of quantum sensor is described in the next section. Further details of the site are 248 described in Jassal et al. (2009), Krishnan et al. (2009), and Lee et al. (2020b).

249	2.3 Diffuse photosynthetically active radiation and light use efficiency
250	As mentioned above, it has been found that the dependence of GPP on the fraction of
251	diffuse PAR (called "diffuse fraction" hereafter) is ecosystem dependent. In this
252	study, we estimated the maximum GPP increase using the relationship between
253	ecosystem light use efficiency (LUE) and diffuse fraction, as well as the relationship
254	between PAR and diffuse fraction. First, cloudy conditions increase incident diffuse
255	radiation but also decrease total radiation (direct plus diffuse), which can counteract
256	productivity increases due to diffuse radiation alone (Alton, 2008; Letts et al., 2005;
257	Oliphant et al., 2011). Cloudy conditions also affect other meteorological drivers of
258	photosynthesis such as vapor pressure deficit (VPD) and surface temperature that
259	regulate stomatal conductance and can confound quantification of the photosynthetic
260	response to diffuse fraction (Strada et al., 2015). In order to exclude this, we only
261	included the day that was just before or just after the study periods if it was sunny.
262	Extraterrestrial solar radiation (K_{ext}), the flux density of solar radiation at the outer
263	edge of atmosphere, was also calculated using date, time, and latitude at the sites to
264	obtain atmospheric bulk transmissivity ($T = K_{\downarrow}/K_{ext}$), and hence determine whether a
265	day was sunny ($T > 0.65$).
266	Second, as there was no diffuse PAR measurement at the Burns Bog site, the
267	formula (diffuse fraction = $1.45 - 1.81T$) following Gu et al. (2002) and Alton (2008)
268	was used to estimate the diffuse fraction for this site. Also, diffuse fraction was set at
269	0.95 when T was less than 0.28 and at 0.10 when T was greater than 0.75. The diffuse
270	fraction at the Buckley Bay site in 2015 was estimated using the same method
271	because diffuse PAR measurement was not available yet. For the later three episodes,
272	the diffuse fraction was calculated as the diffuse PAR (PAR _d) measured by the BF3 $$
273	divided by the incoming total PAR (PARg) measured by the quantum sensor.
274	Following Cheng et al. (2016), LUE (µmol CO ₂ (µmol photon) ⁻¹) was defined as
275	the ratio of mean daily GPP (µmol $m^{-2} s^{-1}$) to mean daily PAR _g (µmol $m^{-2} s^{-1}$), which
276	gives $GPP = LUE \times PAR_g$. One important note, LUE is defined as GPP per unit
277	absorbed PAR_g (i.e. $APAR = fAPAR \times PAR_g$), where $fAPAR$ is the fraction of the
278	absorbed PAR_g . Generally, fAPAR is affected by leaf area index (LAI), the solar
279	zenith angle, and other factors such as leaf color (Ezhova et al., 2018). Typically,
280	fAPAR for tree heights greater than 10 m and at a moderate zenith angle (i.e., 40–60°)
281	can be estimated to be between 0.8 and 0.9 (Hovi et al., 2016).
282	

3 Results

283

284	3.1 Radiative changes and biophysical responses
285	3.1.1 Radiation and environmental conditions
286	Fig. 3 shows boxplots for measured K_{\downarrow} , PAR _g , air temperature (T_a), RH, and soil
287	temperature (T_s) during the smoky days (as defined in Table 1) and non-smoky days
288	(defined as all the remaining days in the same month) over the study periods. The
289	boxplot shows the mean, median, interquartile range, and outlier values. Tests of
290	significance are also shown in Figs. 3 and 4 to indicate when differences between the
291	smoky and non-smoky days are statistically significant and at what significance level
292	(Students T tests). During days that were not affected by smoke, both sites
293	experienced a smooth diurnal course of radiation components consistent with typical
294	summer clear-sky conditions. Mean K_{\downarrow} values were generally lower during the
295	smoke events compared to the days that were not affected by smoke (Fig. 3), but these
296	differences were not statistically significant with the exception of the August 2017
297	event at Buckley Bay. The difference was much greater for the September 2020 case.
298	A few low K_{\downarrow} values were observed during those non-smoky days and were likely
299	due to the rain events (Fig. S1). On clear-sky days, mean daily T values were
300	approximately 70% at the two sites except during 2020 when it was ~60% (Fig. 4).
301	The mean T values during the smoky days typically dropped to ~60% but decreased to
302	~40% in 2020 (Fig. 4). In 2015, the most dramatic impact of the smoke plume on K_{\downarrow}
303	occurred on 5 July at Buckley Bay and 6 July at Burns Bog, respectively, during
304	otherwise clear sky conditions (Fig. S2). The mean daily T dropped to ~35% and
305	~50% at Buckley Bay and at Burns Bog, respectively (Fig. S3). During the summer in
306	2017, the wetland site experienced the biggest impact of smoke on 4 August when T
307	decreased to ~ 40% (Fig. S3). One day later, on 6 August, the forest site was most
308	affected by the smoke with T reduced to ~ 50% (Fig. S3). The longest duration smoke
309	episode of the four occurred in 2018, and reduced T much earlier at Buckley Bay (11
310	August) than at Burns Bog (19 August). The magnitudes of the decrease in T were
311	similar at the two sites (dropped to ~35%) in 2018 (Fig. S3). The September 2020
312	case is notable for being the latest (season-wise) of the four cases, and the only case in
313	which K_{\downarrow} was reduced below 10 W m ⁻² at both sites (Fig. S2). Mean daily <i>T</i> values in
314	September were about 70% at the two sites under sunny days (Fig. S3). T decreased
315	appreciably to ~10% and 20% at Buckley Bay and at Burns Bog, respectively, due to
316	the smoke. These were the lowest values among the four study periods. Both T_a and T_s
317	were higher during the smoky days than non-smoky days (Fig. 2) and the differences
318	were mostly statistically significant. T_s experienced smaller changes compared to T_a .
319	RH dropped at the forest site during the smoke events except the 2020 case. In
320	contrast, the wetland site had higher RH when affected by wildfire smoke but the

- 321 changes were not statistically significant. This partially reflects the substantial
- 322 difference in wetness between the two sites.

323

324

325 Figure 3. Box plots of shortwave irradiance, average of photosynthetically active 326 radiation during daytime, daily average of air temperature, daily average of relative 327 humidity, and daily average of soil temperature over the study periods and other days, 328 respectively, in 2015, 2017, 2018, and 2020 at Buckley Bay (the forest site) and at 329 Burns Bog (the peatland site). The numbers of daily cases (n) used in the significance 330 tests for each period for both the forest and wetland sites are shown beneath the 331 boxplot pairs for the forest site in panel a. Unless otherwise shown, n is the same for 332 all other variables and boxplot pairs in the same year. 333

334	3.1.2 Albedo and energy partitioning
335	Under non-smoky conditions, mean albedo values were 0.12 and 0.13 at Buckley Bay
336	and Burns Bog, respectively (Fig. 4). These relatively low values are expected as the
337	forest site has taller vegetation that will trap light more effectively, while the wetland
338	site has dark water surfaces that lead to a lower albedo. A slight increase in albedo
339	was observed at both sites with the arrival of smoke during the four study periods and
340	the increases were mostly statistically significant. In 2015, the albedo increased more
341	than the other three years, especially at the wetland site. Excluding the 2015 case, the
342	increase in albedo was only ~ 10% at both sites.
343	The changes in H and LE during the smoky days were different every year
344	compared to the non-smoky days (Fig. 4). Cloud conditions could play a role in
345	determining magnitudes of H and LE. Thus, the mean daytime time values of H and
346	<i>LE</i> are also shown in Fig. S3. As with K_{\downarrow} in 2015, the most significant impact on <i>H</i>
347	was on 5 July at Buckley Bay and Burns Bog, where <i>H</i> decreased to 18% and 45%
348	respectively of non-smoky mean daytime (PAR _g $\ge 20 \ \mu mol \ m^{-2} \ s^{-1}$) values. The
349	impacts on LE were less than for H at both sites, with the minimum for LE occurring
350	on 9 July. At both sites, the Bowen ratio, β (= <i>H</i> / <i>LE</i>) was appreciably reduced on 5
351	July, with the greater reduction at Buckley Bay (i.e., from 3.22 to 0.84) due to the
352	large reduction in H . In 2017, the smallest decrease in H , which maintained at 45% of
353	non-smoky mean daytime time values, was found for Buckley Bay among the four
354	study periods. However, LE dropped appreciably at Buckley Bay (14% of non-smoky
355	mean daytime time values). During the 2018 smoke episode, Buckley Bay showed a
356	similar response in H as 2015 but LE still decreased more than 2015. During 2017 and
357	2018 smoke events, H and LE had a similar response at Burns Bog. H decreased to
358	32% and 34% of non-smoky mean daytime time values in 2017 and 2018,
359	respectively, while LE decreased to 27% and 34% of non-smoky mean daytime time
360	values, respectively, but the differences in LE were not statistically significant. In
361	September 2020, the latest of the four smoke episodes, <i>H</i> and <i>LE</i> dropped below 5
362	and 10 W m ⁻² at Buckley Bay and Burns Bog, respectively.
363	In summary, the forest site had higher H than the wetland site during the smoky
364	days, except for the 2020 case (Fig. 4). LE was maintained at a higher value at the
365	wetter site (Burns Bog) compared to the forest site during smoke conditions. Due to
366	the smaller changes in H and LE, β at Burns Bog stayed near 50% of non-smoky
367	mean daytime time values. However, β at Buckley Bay responded much more
368	dramatically and the observed range of β was between 26 and 90% of non-smoky
369	mean daytime time values.
370	

371

372 **Figure 4.** Box plots of albedo at noon, daily average of transmissivity, daily average

373 of diffuse fraction, daily average of sensible heat flux, and daily average of latent heat

374 flux at the forest and wetland sites during the smoke events and non-smoky days,

375 respectively, in 2015, 2017, 2018, and 2020. The numbers of daily cases (n) used in

the significance tests for each period for both the forest and wetland sites are shown

beneath the boxplot pairs for the forest site in panel a. Unless otherwise shown, n is

the same for all other variables and boxplot pairs in the same year.

379

380 **3.1.3 Diffuse radiation fraction**

381	Fig. 4 shows the diffuse fraction (mean daily PAR_d / mean daily PAR_g) during the
382	four smoke episodes at Buckley Bay. Under non-smoky conditions over the four
383	years, PAR_d is roughly a constant fraction of PAR_g (i.e., 0.30). With the arrival of
384	smoke in July or August, the diffuse fraction increased to about 0.40. When the
385	smoke arrived later in the season, as in September 2020, the diffuse fraction increased
386	significantly to almost 0.80. There was another peak in diffuse fraction on 23
387	September 2020 (Fig. S3). We attribute this to intermittent transport events linked to
388	the original smoke episode. Over the four study periods, mean daily PARg values
389	decreased during the smoke events (Fig. 3), suggesting that during heavy smoke,
390	scattering and absorption of incoming PARg was enhanced.
391	
392	
393	3.2 Biogeochemical responses
394	3.2.1 Net ecosystem exchange
395	Daily totals for NEE are shown in Fig. 5. Both sites became a stronger CO ₂ sink when
396	the smoke was present except in the September 2020 case. These increases were
397	statistically significant in the first two years. The average change in daily (24-h) totals
398	of NEE was about -1.00 g C m ⁻² day ⁻¹ during the three years prior to 2020 with this
399	increase in sink strength primarily driven by an increase in GPP (Fig. 5). The increase
400	in GPP (~2.00 g C m ⁻² day ⁻¹) was more prominent than the decrease in R_e (<1.00 g C
401	m ⁻² day ⁻¹) in general. NEE during the September 2020 case did not change because
402	both GPP and R_e showed little response to the smoke.
403	Throughout the 2015 smoke period, Burns Bog remained a CO ₂ sink and showed
404	an increasingly negative trend in NEE (stronger CO ₂ sink) over the duration of the
405	smoke episode. Before the smoke arrived at the bog, the mean daily NEE was about -
406	1.60 g C m ⁻² day ⁻¹ . The peak biogeochemical impact of the smoke at Burns Bog
407	occurred on 7 July, which led to a daily NEE of -3.64 g C m ⁻² day ⁻¹ (net CO ₂ sink)
408	(Fig. S5). Conversely, on 5 July, when the peak reduction of K_{\downarrow} was observed, NEE
409	at the forest site became more positive (a greater atmospheric source of CO ₂). The
410	Buckley Bay forest site became a strong net CO_2 sink on 6 and 7 July (-1.35 and -
411	2.31 g C m ⁻² day ⁻¹ , respectively) when the smoke had started to disperse (Fig. S6).
412	In 2017, Burns Bog again became a stronger CO_2 sink (daily NEE < -2.5 g C m ⁻²
413	day ⁻¹) for three days (4–6 August) due to smoke (Fig. S5). The biogeochemical
414	impacts of smoke were a little different at Buckley Bay, where daily NEE showed
415	little change until decreasing to $-5.40\ C\ m^{-2}\ day^{-1}$ (stronger $CO_2\ sink)$ on the last day
416	of the study period (Fig. S6).

417	During the 2018 episode, both sites became a CO ₂ sink for three days that smoke
418	affected Burns Bog on later dates (13 to 15 August) compared to Buckley Bay (11 to
419	13 August) (Fig. S5 and S6). Both sites changed from being CO ₂ neutral to being a
420	moderate CO_2 sink of about -2.50 g C m ⁻² day ⁻¹ .
421	Throughout the 2020 smoke period, when the diffuse fraction was the highest of
422	all cases (0.30 to 0.80) significant impacts on NEE were observed at both sites.
423	Buckley Bay and Burns Bog both became stronger CO ₂ sinks between 11 and 12
424	September (going from –0.57 to –4.00 g C m ⁻² day ⁻¹ and from –0.40 to –1.40 g C m ⁻²
425	day ⁻¹ , respectively) (Fig. S5 and S6). However, after PAR _g dropped to low values,
426	both sites turned into weak CO ₂ sources (2.10 and 0.37 g C m^{-2} day ⁻¹ for Buckley Bay
427	and Burns Bog, respectively).
428	
429	
430	3.2.2 Gross primary production and ecosystem respiration
431	Measured NEE was partitioned into GPP and R_e to further investigate the
432	biogeochemical responses of the two sites to smoke (Fig. 5). In general, most of the
433	changes in GPP and R_e during the smoke periods compared to the non-smoky days
434	were statistically significant. In the 2015 smoke event at Buckley Bay, daily GPP
435	increased about 25% while daily R_e decreased by only about 5%, which resulted in the
436	site becoming a CO ₂ sink. At Burns Bog, the responses were somewhat different than
437	those at Buckley Bay. Here, the relative increase in daily GPP and decrease in daily
438	$R_{\rm e}$ were similar with both being ~60%.
439	Due to missing data, the increase in CO ₂ sequestration was only appreciable on
440	one day (6 August) at Buckley Bay in 2017 (Fig. S6). This was predominantly
441	controlled by the sizeable increase in daily GPP (140%), while the decrease in daily
442	$R_{\rm e}$ was minimal at 4%. The increase in daily GPP also played a role in increasing CO ₂
443	sequestration at Burns Bog but it was not as strong as at Buckley Bay, where the
444	increases in daily GPP were about 30% and the decreases in daily R_e were smaller at
445	15%.
446	Compared to the previous two years where both sites became stronger CO ₂ sinks
447	from being weak CO_2 sinks, the changes in 2018 at the two sites were similar but
448	slightly smaller. The main factor was the weaker rise in daily GPP. The Burns Bog
449	wetland site had about 30% higher daily GPP during the smoke event than during
450	non-smoky conditions (Fig. S5). But the Buckley Bay forest site experienced about
451	the same daily GPP during the smoke event as during non-smoky conditions (Fig.
452	S6).
453	Throughout the 2020 smoke event, there were marked increases in daily GPP of
454	about 90% at both sites. Due to the heavy smoke permitting only lowPARg on 13

- 455 September, daily GPP rapidly dropped by about 70% compared to the previous days
- 456 (Fig. S5 and S6). This resulted in the two sites switching from CO₂ sinks to sources
- 457 over one day.

458

459

460 **Figure 5.** Box plots of net ecosystem exchange (NEE), gross primary production 461 (GPP), and ecosystem respiration (R_e) at the forest site during the smoke events and 462 non-smoky days, respectively, in 2015, 2017, 2018, and 2020. The numbers of daily 463 cases (n) used in the significance tests for each period for both the forest and wetland 464 sites are shown beneath the boxplot pairs for the forest site in panel a. Unless 465 otherwise shown, n is the same for all other variables and boxplot pairs in the same 466 year.

- 467
- 468

469 **3.2.3 Relationship between smoke and gross primary production**

Fig. 6a shows the dependence of mean PAR_g on the diffuse fraction for the two sites. 470 471 As expected, PAR_g decreases linearly as the fraction increases ($R^2 = 0.86$ and 0.80 for 472 Buckley Bay and Burns Bog, respectively). PARg decreased more rapidly (~10%) at 473 the wetland site than the forest site. The relationship between LUE and the diffuse 474 fraction was also examined in order to better understand the behaviour of the 475 dependence of GPP on the diffuse fraction (Fig 6b). A linear relationship is evident 476 with a R² at 0.52 and 0.34 for Buckley Bay and Burns Bog, respectively. LUE at the 477 forest site increased much more when the diffuse fraction increased, which was ~2 478 times more than at the wetland site. 479

480

481 Figure 6. (a) Total photosynthetically active radiation (PAR_g) as a function of the

482 diffuse fraction of PAR_g. (b) Light use efficiency (LUE) as a function of the diffuse
483 fraction of PAR_g.

484	4 Discussion
485	4.1 Impact of smoke episodes on radiation and biophysical properties
486	Over the four study years, significant perturbation of both the radiation and energy
487	budgets over the forest and wetland ecosystems in southwestern BC was observed
488	when a dense layer of wildfire smoke impacted the region. Generally, changes were
489	more pronounced at the Buckley Bay forest site on Vancouver Island.
490	The observed decreases in K_{\downarrow} at the two sites during the four study periods were
491	about 50% and 40% for the forest and wetland sites, respectively. These values are
492	comparable (Table 2) with reported reductions of total solar irradiance by forest fire
493	smoke in Brazil (the Brazilian Amazon with AOD ₅₀₀ peaking at 3.0) and Africa
494	(Zambian savanna with AOD_{500} peaking at 2.0) (Schafer et al., 2002). Similar
495	agreement is also apparent when compared with the 2010 fires in central Russia that
496	led to a reduction of K_{\downarrow} of about 40% (Chubarova et al., 2012) or 80 W m ⁻² (Péré et
497	al., 2014) and the 2017 Chilean mega-fires that made K_{\downarrow} drop about 100 W m ⁻²
498	(Lapere et al., 2021). The reduction of K_{\downarrow} from Rosário et al. (2013) was smaller at
499	about 55 W m ⁻² when AOD ₅₀₀ was near 2.0 during the 2002 biomass burning season in
500	south America. Although the AOD ₅₅₀ value was slightly lower than this study,
501	Yamasoe et al. (2017) reported that K_{\downarrow} was reduced by about 50 W m ⁻² over spring,
502	during the period of long range transport of biomass burning plumes, in São Paulo,
503	Brazil. In our study, we found that K_{\downarrow} dropped to near 0 W m ⁻² and that lower values
504	were about 90% and 70% of non-smoky conditions at the forest and wetland sites,
505	respectively, in September 2020. The reduction was much greater than the previous
506	three smoke episodes.
507	As with K_{\downarrow} , turbulent heat fluxes (<i>H</i> and <i>LE</i>) were appreciably affected by
508	smoke at the two sites with a greater impact at the Buckley Bay forest site. These
509	results are consistent in both direction and magnitude with previous studies elsewhere
510	where the reduction in K_{\downarrow} due to aerosols in turn impacted H and LE (Feingold et al.,
511	2005; Jiang and Feingold, 2006; Mallet et al., 2009; Markowicz et al., 2021; Steiner et
512	al., 2013). It is important to note that these results were similar despite the cited
513	locations being in quite different geographical settings than in this study.
514	Furthermore, they were associated with significantly lower AOD ₅₅₀ values than
515	observed in the four BC episodes.
516	It is important to note that energy partitioning can be very different in different
517	ecosystems (Steiner et al., 2013). As discussed above, H was reduced significantly at
518	the Buckley Bay forest site where canopy effects are most important. The possible
519	mechanism could be that the switch from high direct radiation to predominately
520	diffuse radiation during the smoke episodes likely caused the reduction in H as a
521	consequence of reduced heating of leaves in a highly coupled forest canopy

522	(Brümmer et al., 2012). In this study, the wetland site offers an interesting contrast to
523	the Buckley Bay forest site. As McKendry et al. (2019) noted, with standing water as
524	a result of restoration at the wetland site, and little physiological control on <i>LE</i> , the
525	impacts on the energy partitioning were modest compared to the physiologically
526	controlled LE at Buckley Bay. Another factor affecting energy partitioning is soil
527	moisture. Our results indicate that LE at the forest site dropped much more in 2017
528	and 2018 than 2015. This might be due to generally drier soil conditions in August
529	than in July, especially the extreme dry summer during which there was only 1 mm of
530	precipitation in July and August 2017 (Lee et al., 2020b). Soil moisture also plays a
531	role at the wetland site. Generally, the site also had higher <i>LE</i> than <i>H</i> during the
532	smoke episodes except in September 2020. This was likely because water level
533	dropped below the rooting depth of most bog vegetation (Lee et al., 2017). For both H
534	and LE, when the smoke arrived at the later stage of summer (September 2020),
535	impacts were the greatest of the four study periods. This was attributed to the fact that
536	both sites were dry after two months of low precipitation.
537	Only a slight increase in albedo was observed at both sites with the arrival of
538	smoke during the four study periods. This was probably due to reduction in specular
539	reflection during direct solar irradiance and an increase in diffuse reflection.
540	However, Nojarov et al. (2021) found that the albedo of the underlying surface greatly
541	affects the radiative effect of aerosols at Musala (altitude is 2925 m), Bulgaria. The
542	results indicated that aerosol amount, at surface level, has a negative radiative effect
543	when albedo values are low (< 0.4) but a positive radiative effect when albedo values
544	are high (> 0.4) . They explained that higher albedo can lead to larger amounts of
545	reflected and scattered shortwave radiation, especially close to the earth's surface. At
546	higher aerosol amounts the result is an increase in the amount of scattered shortwave
547	radiation, which also increases the global solar radiation.

548	Table 2. Observed decreased shortwave irradiance (K_1) during the study smoke
510	Tuble 2. Observed decredsed shortwave infudiance (M) during the study shoke

549 periods and several estimates from previously published studies.

550

Event	AOD value	Decrease in K_{\downarrow}	Reference
2015, BC	$AOD_{500} = ~4.5$	52% or 180 W m ⁻²	Buckley Bay site
	$AOD_{500} = \sim 3.0$	30% or 104 W $\mathrm{m}^{\text{-2}}$	Burns Bog site
2017, BC	$AOD_{500} = ~1.5$	31% or 101 W m ⁻²	Buckley Bay site
	$AOD_{500} = ~2.5$	37% or 98 W m ⁻²	Burns Bog site
2018, BC	$AOD_{500} = ~3.5$	50% or 157 W m ⁻²	Buckley Bay site
		47% or 120 W $\mathrm{m}^{\text{-2}}$	Burns Bog site
2020, BC	AOD ₅₀₀ not available	87% or 231 W m ⁻²	Buckley Bay site
		69% or 120 W $\mathrm{m}^{\text{-2}}$	Burns Bog site
1999, Brazil	$AOD_{500} = 0.5 \sim 3.0$	9~37%	Schafer et al. (2002)
2000, Africa	$AOD_{500} = 0.5 \sim 2.0$	13~37%	Schafer et al. (2002)
2010, central Russia	$AOD_{500} = 2.5$	40%	Chubarova et al. (2012)
2002, South America	$AOD_{500} = 0.2 \sim 2.0$	10~55 W m ⁻²	Rosário et al. (2013)
2010, Central Russia	$AOD_{340} = 2.0 \sim 4.0$	70~84 W m ⁻²	Péré et al. (2014)
2005~2015, Brazil	AOD ₅₅₀ = 0.6~1.0	50 W m ⁻²	Yamasoe et al. (2017)
2017, Chile	$AOD_{550} = 4.0$	100 W m ⁻²	Lapere et al. (2021)

551

552

553 The typical diffuse fraction in southwestern BC under sunny conditions (T > 0.65)554 over these four years was ~ 0.15. Generally, when the diffuse fraction increased to 555 between 0.40 and 0.50 due to wildfire smoke, the two sites became a strong CO_2 sink (i.e., NEE became more negative). However, these responses were also controlled by 556 557 other factors, such as VPD and T_s . When PAR_g dropped to low values, even if PAR_d 558 fraction exceeded 0.80, the study forest and wetland ecosystems both became a CO_2 559 source. These broad patterns are comparable to previous research in different environments (Niyogi et al., 2004; Park et al., 2018; Yamasoe et al., 2006). An 560 561 observational study in the Amazon rainforest found that, under moderate AOD₅₀₀, CO_2 uptake was enhanced by the increased diffuse fraction (Yamasoe et al., 2006). 562 563 Park et al. (2018) also indicated that moderate levels of smoke resulted in small increases in CO₂ sequestration, while extremely smoky conditions resulted in lower 564 565 CO₂ sequestration as the effect of the reduction in PAR_g outweighed the DRF effect. 566 The changes in NEE were primarily controlled by GPP (Fig. 5). Therefore, in 567 this study, we further investigated how GPP responded to smoke using the relationship between PAR_g and diffuse fraction, as well as the relationship between 568 LUE and diffuse fraction. Ezhova et al. (2018) analyzed data from five forest sites 569 that included two mixed forests and three Scots pine (Pinus sylvestris L.) forests (55-, 570 60-, and 100-year old). In that region, diffuse fraction was approximately 0.11 on 571 572 days characterized by low aerosol loading and about 0.25 on days with moderate 573 aerosol loading. They also found that PARg decreased as diffuse fraction increased at 574 the five sites. Compared to their estimated coefficients (PARg at zero diffuse fraction), the Buckley Bay forest site had a similar value (-1132 µmol m⁻² s⁻¹) to the 100-year 575 old Scots pine forest (-1118 μ umol m⁻² s⁻¹). The Burns Bog wetland site had a slightly 576 higher coefficient (-1248 $\mu mol~m^{-2}~s^{-1})$ among all these sites (-944 $\mu mol~m^{-2}~s^{-1}$ to 577 about -1194 µmol m⁻² s⁻¹). Generally, the slopes of the linear dependences in the 578 579 relationship of PARg and diffuse fraction were similar, which can likely be attributed to similar cloud attenuating properties (Ezhova et al., 2018). 580 The slope in the relationship of LUE and diffuse fraction reflects canopy 581 582 properties. The Buckley Bay forest site had a slope of $0.0240 \mu mol CO_2$ (µmol photon)⁻¹, which is about three times higher than the value found at the Burns Bog 583 wetland site $(0.0082 \mu mol CO_2 (\mu mol photon)^{-1})$. This indicates the ability of a forest 584 585 stand to take up more CO₂ in response to an increasing diffuse fraction of PAR. 586 Ezhova et al. (2018) found that two mixed forest sites (0.0238 to 0.0278 μ mol CO₂ $(\mu mol photon)^{-1}$ had steeper LUE slopes compared to the other three coniferous 587 forest sites (about 0.015 µmol CO₂ (µmol photon)⁻¹ in average). They attributed the 588 difference to mixed forests having a larger potential for photosynthetic activity 589

4.2 Effects of aerosol loading on biogeochemical properties

590	enhancement due to a larger leaf area index and a deeper canopy. Results from mixed
591	and broadleaf forest sites in the USA showed the increase in LUE was about 0.03
592	μ mol CO ₂ (μ mol photon) ⁻¹ (Cheng et al., 2016). Hemes et al. (2020) analyzed the EC
593	measurements across one corn (C4 plant), one alfalfa (C3 plant), and two restored
594	wetland (C3 plants) sites during the summer 2018 smoke event in California, USA.
595	The slope of the relationship between LUE and diffuse fraction for the corn site
596	$(0.0190 \ \mu mol \ CO_2 \ (\mu mol \ photon)^{-1})$ was intermediate between the mature alfalfa site
597	$(0.0270 \ \mu mol \ CO_2 \ (\mu mol \ photon)^{-1})$ and the two restored wetland sites $(0.0140 \ and$
598	0.0180 μ mol CO ₂ (μ mol photon) ⁻¹). This indicates that corn is more sensitive than the
599	wetlands but less than alfalfa. Their restored wetland ecosystems are both
600	characterized by quasi-managed mixes of tule and cattail vegetation with
601	aboveground water tables. Thus, these two sites had lower LUE sensitivities to diffuse
602	fraction compared to the two crop sites. Our wetland site has even shorter vegetation
603	compared to theirs and thus an even lower sensitivity (~40% lower).
604	Finally, based on the linear dependence of LUE on diffuse fraction and PAR_g on
605	diffuse fraction, we estimated how GPP changed with diffuse fraction. GPP at the
606	Buckley Bay forest site can increase up to ~18%, which is consistent with results
607	from Ezhova et al. (2018) showing an increase in GPP between 6% and 14% at five
608	forest sites. Hemes et al. (2020) found that the GPP enhancement was between 0.71%,
609	and 1.16% at four sites for every 1% increase in diffuse fraction when absorbed PAR_g
610	was held constant. Lee et al. (2018) also showed a comparable GPP enhancement at
611	0.94% GPP using a process-based sun-shade canopy model with observations from a
612	broadleaf forest in the eastern USA. We note that although the empirical models
613	based on conditional sampling in this study are able to explain much of the variation
614	in observations, they have limitations compared to more mechanistic, process-based
615	models (Knohl and Baldocchi, 2008; Lee et al., 2018). On the other hand, process-
616	based models often require parameterizations for specific vegetation and
617	photosynthetic types that introduce more complexities and hence probably lead to
618	higher uncertainty (Hemes et al., 2020).
619	
620	4.3 Study limitations
621	Due to their limited spatial and temporal scale, the results described here have
622	limitations that restrict attempts to generalise (and easily scale up). Firstly, although
623	the four cases examined extend our understanding of biophysical and biogeochemical
624	impacts to a wider range of cases than McKendry et al. (2020), they are by no means
625	exhaustive, nor are they likely representative of the broad variety of forest types
626	across BC.

627 Secondly, attribution of ecosystem responses wholly to smoke, while rigorously controlling for other environmental variables (e.g. air quality, antecedent moisture 628 629 conditions, wind, cloudiness, RH, temperature) is challenging. Our rudimentary tests 630 of significance highlight that whilst there is a clear signal of biophysical and biogeochemical responses to smoke, it is by no means consistent across all four 631 632 events, each land-use type, or all variables. This suggests that each smoke event is 633 somewhat unique in terms of antecedent conditions, present weather conditions and 634 the characteristics of the smoke itself (e.g. age, elevation, composition, density). For 635 example, in addition to the effects of diffuse fraction, wildfire smoke often incorporates a complex mixture of gases (e.g., CO, CH₄, NO_x, and O₃), aerosols, and 636 aerosol precursors (Crutzen et al., 1979; Jaffe and Wigder, 2012; Pfister et al., 2008). 637 638 Increased O₃ and co-pollutants are often associated with wildfires (Jaffe & Wigder, 2012; Pfister et al., 2008; Yamasoe et al., 2006) and can have an indirect impact on 639 640 the ecosystem carbon budget that is harder to quantify (Malavelle et al., 2019). None 641 of these effects are addressed in this study. 642 Finally, we have compared smoky and non-smoky conditions exclusively during 643 the months of these events. This is somewhat arbitrary and necessarily neglects a wide range of meteorological variability associated with each "type". However, this 644 rudimentary approach serves to highlight the complex combination of processes 645 involved. Various combinations of cloudiness, antecedent meteorological conditions, 646 647 wind, etc. all control biophysical and biogeochemical responses, with smoke being 648 only one of the factors at play. Isolating the individual impact of smoke is 649 challenging. There are, however, common elements that can be gleaned from this 650 inter-comparison of four cases. In particular, the presence of wildfire smoke is shown to have a statistically significant impact on diffuse radiation that has the potential to 651 652 turn both natural and managed ecosystems into a carbon sink when smoke densities are low to moderate. In this sense, this work is consistent with both theory and 653 654 observations elsewhere and confirms that wildfire smoke likely has a significant 655 impact on regional carbon budgets.

656	5 Conclusions
657	Aerosol loading from wildfire smoke is not only becoming a regular component of air
658	quality considerations in a warming world but has climate impacts and unexplored
659	feedbacks. Through biogeochemical and biophysical processes, wildfire smoke
660	influences the climate by altering both greenhouse gas dynamics and how energy and
661	water are exchanged between the ecosystem and the atmosphere. Clearly, under
662	conditions in which the presence of wildfire smoke is more frequent, and perhaps of
663	longer duration, the results described herein imply substantial impacts on the regional
664	carbon budget.
665	
666	Results from four major smoke events in different years are broadly consistent with
667	those described elsewhere. Specifically for the two sites examined;
668	• The reduction in incoming solar radiation due to smoke was generally about
669	50% but reached $90%$ in the September 2020 case and was near $100%$ in dense
670	smoke.
671	• The forest site had a more dramatic change in the ratio of sensible heat to latent
672	heat flux (i.e., the Bowen ratio). When the smoke arrived later (e.g., September
673	2020), impacts on turbulent heat fluxes were the greatest for both sites. This was
674	attributed to the markedly reduced incoming solar radiation and to both sites
675	being dry after two months of low precipitation.
676	• Under non-smoky conditions during the summer months, diffuse fraction in
677	southwestern British Columbia is ~0.30. The presence of smoke generally
678	increased it to ~ 0.50 with dense smoke increasing values to ~ 0.95 . When total
679	photosynthetically active radiation dropped to low values, however, both the
680	forest and wetland ecosystems turned into CO ₂ sources.
681	• Photosynthesis can be increased by $\sim 18\%$ and $\sim 7\%$ due to the direct effect of
682	smoke particles compared to clean conditions in the forest and wetland sites,
683	respectively.
684	
685	This study confirms a clear signal of diffuse radiation fertilization across four major
686	smoke episodes, resulting in forest and wetland becoming enhanced carbon sinks
687	under some smoke conditions. This has implications for the regional carbon budget if
688	the duration and frequency of smoke events increases as a result of climate change.
689	However, we identify significant limitations in this preliminary research and identify
690	a complex array of processes that contribute to biophysical and biogeochemical
691	responses. Before attempting to scale up, further research is required in different
692	forest types across the region and to identify and control for the myriad processes and
693	feedbacks influencing local carbon budgets in forest and wetland ecosystems.

694 6 Acknowledgements

07.	o norma generality
695	We are grateful to the Natural Sciences and Engineering Research Council of Canada
696	(NSERC) for support to individual researchers and graduate students involved in this
697	work. The Buckley Bay flux tower was funded by the NSERC and The Canadian
698	Foundation for Innovation (CFI). We sincerely thank Island Timberlands LP for the
699	permission to work on their land and their logistical support. The Burns Bog flux
700	tower operation was funded by Metro Vancouver through contracts to Drs. Andreas
701	Christen and Sara Knox. Selected instrumentation was supported by NSERC and CFI.
702	We thanks the substantial technical and logistical support by staffs from Metro
703	Vancouver and City of Delta. We greatly appreciate the assistance of Robert Halsall,
704	Rick Ketler, Zoran Nesic, and Marion Nyberg with the invaluable field and technical
705	support.

706 7 References

- Alton, P., Mercado, L. andNorth, P.: A sensitivity analysis of the land-surface scheme
 JULES conducted for three forest biomes: Biophysical parameters, model processes,
- 700 JOLLS conducted for three forest biomes. Diophysical parameters, model proces
- and meteorological driving data, Global Biogeochem. Cycles, 20(1), 2006.
- 710 Alton, P. B.: Reduced carbon sequestration in terrestrial ecosystems under overcast
- skies compared to clear skies, Agric. For. Meteorol., 148(10), 1641–1653, 2008.
- 712 Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K. and Nesic, Z.: Inter-
- annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to
- net ecosystem production, Agric. For. Meteorol., 126(3–4), 237–255, 2004.
- 715 Black, T. A.: AmeriFlux BASE CA-Ca3 British Columbia Pole sapling Douglas-fir
- stand, Ver. 3-5, AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1480302,
 2021.
- 718 Brümmer, C., Black, T. A., Jassal, R. S., Grant, N. J., Spittlehouse, D. L., Chen, B.,
- 719 Nesic, Z., Amiro, B. D., Arain, M. A. andBarr, A. G.: How climate and vegetation
- 720 type influence evapotranspiration and water use efficiency in Canadian forest,
- peatland and grassland ecosystems, Agric. For. Meteorol., 153, 14–30, 2012.
- 722 Chen, B., Black, T. A., Coops, N. C., Hilker, T., Trofymow, J. A. T. and Morgenstern,
- 723 K.: Assessing tower flux footprint climatology and scaling between remotely sensed
- and eddy covariance measurements, Boundary-Layer Meteorol., 130(2), 137–167,
- 725 2009.
- 726 Cheng, S. J., Bohrer, G., Steiner, A. L., Hollinger, D. Y., Suyker, A., Phillips, R. P.
- 727 andNadelhoffer, K. J.: Variations in the influence of diffuse light on gross primary
- productivity in temperate ecosystems, Agric. For. Meteorol., 201, 98–110, 2015.
- 729 Cheng, S. J., Steiner, A. L., Hollinger, D. Y., Bohrer, G. and Nadelhoffer, K. J.: Using
- 730 satellite-derived optical thickness to assess the influence of clouds on terrestrial
- 731 carbon uptake, J. Geophys. Res. Biogeosciences, 121(7), 1747–1761, 2016.
- 732 Christen, A., Jassal, R. S., Black, T. A., Grant, N. J., Hawthorne, I., Johnson, M. S.,
- 733 Lee, S.-C. and Merkens, M.: Summertime greenhouse gas fluxes from an urban bog
- undergoing restoration through rewetting., Mires Peat, 17, 2016.
- 735 Christen, A., and Knox, S.: AmeriFlux BASE CA-DBB Delta Burns Bog, Ver. 2-5,
- 736 AmeriFlux AMP, (Dataset). https://doi.org/10.17190/AMF/1543378, 2021
- 737 Chubarova, N., Nezval, Y., Sviridenkov, I., Smirnov, A. andSlutsker, I.: Smoke
- 738 aerosol and its radiative effects during extreme fire event over Central Russia in
- 739 summer 2010, Atmos. Meas. Tech., 5(3), 557, 2012.
- 740 Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: Impact on
- 741 atmospheric chemistry and biogeochemical cycles, Science (80-.)., 250(4988), 1669–
- 742 1678, 1990.

- 743 Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H. andSeiler, W.: Biomass
- burning as a source of atmospheric gases CO, H₂, N₂O, NO, CH₃Cl and COS, Nature,
- 745 282(5736), 253–256, 1979.
- 746 D'Acunha, B., Morillas, L., Black, T. A., Christen, A. and Johnson, M. S.: Net
- recosystem carbon balance of a peat bog undergoing restoration: integrating CO2 and
- 748 CH4 fluxes from eddy covariance and aquatic evasion with DOC drainage fluxes, J.
- 749 Geophys. Res. Biogeosciences, 124(4), 884–901, 2019.
- 750 Doughty, C. E., Flanner, M. G. and Goulden, M. L.: Effect of smoke on subcanopy
- shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest,
- 752 Global Biogeochem. Cycles, 24(3), 2010.
- 753 Ezhova, E., Ylivinkka, I., Kuusk, J., Komsaare, K., Vana, M., Krasnova, A., Noe, S.,
- 754 Arshinov, M., Belan, B. andPark, S.-B.: Direct effect of aerosols on solar radiation
- and gross primary production in boreal and hemiboreal forests, Atmos. Chem. Phys.,2018.
- 757 Feingold, G., Jiang, H. and Harrington, J. Y.: On smoke suppression of clouds in
- 758 Amazonia, Geophys. Res. Lett., 32(2), 2005.
- 759 Ferrara, M., Pomeroy, C., McKendry, I. G., Stull, R. and Strawbridge, K.: Suppression
- 760 of "Handover" Processes in a Mountain Convective Boundary Layer due to Persistent
- 761 Wildfire Smoke, Boundary-Layer Meteorol., 1–12, 2020.
- 762 Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M. andDowty,
- 763 P. R.: Advantages of diffuse radiation for terrestrial ecosystem productivity, J.
- 764 Geophys. Res. Atmos., 107(D6), ACL-2, 2002.
- 765 Hemes, K. S., Verfaillie, J. and Baldocchi, D. D.: Wildfire-smoke aerosols lead to
- 766 increased light use efficiency among agricultural and restored wetland land uses in
- 767 California's Central Valley, J. Geophys. Res. Biogeosciences, 125(2),
- 768 e2019JG005380, 2020.
- 769 Hollinger, D. Y., Kelliher, F. M., Byers, J. N., Hunt, J. E., McSeveny, T. M. and Weir,
- 770 P. L.: Carbon dioxide exchange between an undisturbed old-growth temperate forest
- 771 and the atmosphere, Ecology, 75(1), 134–150, 1994.
- 772 Hovi, A., Liang, J., Korhonen, L., Kobayashi, H. and Rautiainen, M.: Quantifying the
- missing link between forest albedo and productivity in the boreal zone,
- 774 Biogeosciences, 13(21), 6015–6030, 2016.
- 775 Humphreys, E. R., Black, T. A., Morgenstern, K., Cai, T., Drewitt, G. B., Nesic, Z.
- andTrofymow, J. A.: Carbon dioxide fluxes in coastal Douglas-fir stands at different
- stages of development after clearcut harvesting, Agric. For. Meteorol., 140(1–4), 6–
- 778 22, 2006.

- 779 Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat and
- 780 moisture fluxes, black and brown carbon, and cloud absorption effects, J. Geophys.
- 781 Res. Atmos., 119(14), 8980–9002, 2014.
- 782 Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical review,
- 783 Atmos. Environ., 51, 1–10, 2012.
- 784 Jassal, R. S., Black, T. A., Spittlehouse, D. L., Brümmer, C. andNesic, Z.:
- 785 Evapotranspiration and water use efficiency in different-aged Pacific Northwest
- 786 Douglas-fir stands, Agric. For. Meteorol., 149(6–7), 1168–1178, 2009.
- 787 Jiang, H. andFeingold, G.: Effect of aerosol on warm convective clouds: Aerosol-
- 788 cloud-surface flux feedbacks in a new coupled large eddy model, J. Geophys. Res.
- 789 Atmos., 111(D1), 2006.
- 790 Kanniah, K. D., Beringer, J., North, P. andHutley, L.: Control of atmospheric particles
- 791 on diffuse radiation and terrestrial plant productivity: A review, Prog. Phys. Geogr.,
- 792 36(2), 209–237, 2012.
- 793 Knohl, A. and Baldocchi, D. D.: Effects of diffuse radiation on canopy gas exchange
- processes in a forest ecosystem, J. Geophys. Res. Biogeosciences, 113(G2), 2008.
- 795 Krishnan, P., Black, T. A., Jassal, R. S., Chen, B. and Nesic, Z.: Interannual variability
- 796 of the carbon balance of three different-aged Douglas-fir stands in the Pacific
- 797 Northwest, J. Geophys. Res. Biogeosciences, 114(G4), 2009.
- 798 Landry, J.-S., Matthews, H. D. and Ramankutty, N.: A global assessment of the carbon
- 799 cycle and temperature responses to major changes in future fire regime, Clim.
- 800 Change, 133(2), 179–192, 2015.
- 801 Lapere, R., Mailler, S. and Menut, L.: The 2017 Mega-Fires in Central Chile: Impacts
- 802 on Regional Atmospheric Composition and Meteorology Assessed from Satellite Data
- and Chemistry-Transport Modeling, Atmosphere (Basel)., 12(3), 344, 2021.
- 804 Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C. and Veraverbeke, S.: Influence
- of fire on the carbon cycle and climate, Curr. Clim. Chang. Reports, 5(2), 112–123,
- 806 2019.
- 807 Lee, M. S., Hollinger, D. Y., Keenan, T. F., Ouimette, A. P., Ollinger, S.V
- 808 and Richardson, A. D.: Model-based analysis of the impact of diffuse radiation on
- 809 CO2 exchange in a temperate deciduous forest, Agric. For. Meteorol., 249, 377–389,
- 810 2018.
- 811 Lee, S.-C., Black, T. A., Jassal, R. S., Christen, A., Meyer, G. and Nesic, Z.: Long-
- 812 term impact of nitrogen fertilization on carbon and water fluxes in a Douglas-fir stand
- 813 in the Pacific Northwest, For. Ecol. Manage., 455, 117645, 2020a.
- 814 Lee, S.-C., Christen, A., Black, T. A., Jassal, R. S., Ketler, R. andNesic, Z.:
- 815 Partitioning of net ecosystem exchange into photosynthesis and respiration using

- 816 continuous stable isotope measurements in a Pacific Northwest Douglas-fir forest
- 817 ecosystem, Agric. For. Meteorol., 292, 108109, 2020b.
- 818 Lee, S. C., Christen, A., Black, A. T., Johnson, M. S., Jassal, R. S., Ketler, R., Nesic,
- 819 Z. andMerkens, M.: Annual greenhouse gas budget for a bog ecosystem undergoing
- restoration by rewetting, Biogeosciences, 14(11), 2799–2814, 2017.
- 821 Letts, M. G., Lafleur, P. M. and Roulet, N. T.: On the relationship between cloudiness
- and net ecosystem carbon dioxide exchange in a peatland ecosystem, Ecoscience,
- 823 12(1), 53–69, 2005.
- 824 Malavelle, F. F., Haywood, J. M., Mercado, L. M., Folberth, G. A., Bellouin, N.,
- 825 Sitch, S. andArtaxo, P.: Studying the impact of biomass burning aerosol radiative and
- 826 climate effects on the Amazon rainforest productivity with an Earth system model,
- 827 Atmos. Chem. Phys., 19(2), 1301–1326, 2019.
- 828 Mallet, M., Tulet, P., Serça, D., Solmon, F., Dubovik, O., Pelon, J., Pont, V.
- 829 and Thouron, O.: Impact of dust aerosols on the radiative budget, surface heat fluxes,
- 830 heating rate profiles and convective activity over West Africa during March 2006,
- 831 Atmos. Chem. Phys., 9(18), 7143–7160, 2009.
- 832 Markowicz, K. M., Lisok, J. and Xian, P.: Simulations of the effect of intensive
- biomass burning in July 2015 on Arctic radiative budget, Atmos. Environ., 171, 248–
 260, 2017.
- 835 Markowicz, K. M., Zawadzka-Manko, O., Lisok, J., Chilinski, M. T. and Xian, P.: The
- 836 impact of moderately absorbing aerosol on surface sensible, latent, and net radiative
- fluxes during the summer of 2015 in Central Europe, J. Aerosol Sci., 151, 105627,2021.
- 839 McKendry, I., Strawbridge, K., Karumudi, M. L., O'Neill, N., Macdonald, A. M.,
- 840 Leaitch, R., Jaffe, D., Cottle, P., Sharma, S. andSheridan, P.: Californian forest fire
- 841 plumes over Southwestern British Columbia: lidar, sunphotometry, and mountaintop
- chemistry observations, Atmos. Chem. Phys., 11(2), 465–477, 2011.
- 843 McKendry, I. G., Christen, A., Sung-Ching, L., Ferrara, M., Strawbridge, K. B.,
- 844 O'Neill, N. andBlack, A.: Impacts of an intense wildfire smoke episode on surface
- 845 radiation, energy and carbon fluxes in southwestern British Columbia, Canada,
- 846 Atmos. Chem. Phys., 19(2), 835–846, 2019.
- 847 Millennium Ecosystem Assessment: Ecosystems and human well-being, Island press
- 848 United States of America., 2005.
- 849 Ministry of Forests: British Columbia's forests: and their management. [online]
- 850 Available from: https://www.for.gov.bc.ca/hfd/pubs/Docs/Mr/Mr113.htm, 2003.
- 851 Ministry of Forests Mines and Land: Th_e State of British Columbia's Forests Th_ird
- 852 Edition. [online] Available from:

- 853 https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-and-
- reporting/reporting/envreportbc/archived-reports/sof_2010.pdf, 2010.
- 855 Moncrieff, J. B., Massheder, J. M., DeBruin, H., Elbers, J., Friborg, T., Heusinkveld,
- 856 B., Kabat, P., Scott, S., Søgaard, H. and Verhoef, A.: A system to measure surface
- 857 fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188,
- 858 589-611, 1997.
- 859 Moreira, D. S., Longo, K. M., Freitas, S. R., Yamasoe, M. A., Mercado, L. M.,
- 860 Rosário, N. E., Gloor, E., Viana, R. S. M., Miller, J. B. andGatti, L.V: Modeling the
- radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region,2017.
- 863 Morgenstern, K., Black, T. A., Humphreys, E. R., Griffis, T. J., Drewitt, G. B., Cai,
- 864 T., Nesic, Z., Spittlehouse, D. L. andLivingston, N. J.: Sensitivity and uncertainty of
- 865 the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La
- 866 Niña cycle, Agric. For. Meteorol., 123(3–4), 201–219, 2004.
- 867 Niyogi, D., Chang, H., Saxena, V. K., Holt, T., Alapaty, K., Booker, F., Chen, F.,
- 868 Davis, K. J., Holben, B. and Matsui, T.: Direct observations of the effects of aerosol
- 869 loading on net ecosystem CO2 exchanges over different landscapes, Geophys. Res.
- 870 Lett., 31(20), 2004.
- 871 Nojarov, P., Arsov, T., Kalapov, I. and Angelov, H.: Aerosol direct effects on global
- solar shortwave irradiance at high mountainous station Musala, Bulgaria, Atmos.
- 873 Environ., 244, 117944, 2021.
- 874 Oliphant, A. J., Dragoni, D., Deng, B., Grimmond, C. S. B., Schmid, H.-P. andScott,
- 875 S. L.: The role of sky conditions on gross primary production in a mixed deciduous
- 876 forest, Agric. For. Meteorol., 151(7), 781–791, 2011.
- 877 Oris, F., Asselin, H., Ali, A. A., Finsinger, W. and Bergeron, Y.: Effect of increased
- 878 fire activity on global warming in the boreal forest, Environ. Rev., 22(3), 206–219,
 879 2014.
- 880 Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R.,
- 881 Church, J. A., Clarke, L., Dahe, Q. andDasgupta, P.: Climate change 2014: synthesis
- 882 report. Contribution of Working Groups I, II and III to the fifth assessment report of
- the Intergovernmental Panel on Climate Change, Ipcc., 2014.
- 884 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W.,
- 885 Longdoz, B., Rambal, S., Valentini, R. andVesala, T.: Towards a standardized
- 886 processing of Net Ecosystem Exchange measured with eddy covariance technique:
- algorithms and uncertainty estimation, Biogeosciences, 3(4), 571–583, 2006.
- 888 Park, S.-B., Knohl, A., Lucas-Moffat, A. M., Migliavacca, M., Gerbig, C., Vesala, T.,
- 889 Peltola, O., Mammarella, I., Kolle, O. andLavrič, J. V.: Strong radiative effect

- 890 induced by clouds and smoke on forest net ecosystem productivity in central Siberia,
- 891 Agric. For. Meteorol., 250, 376–387, 2018.
- 892 Péré, J. C., Bessagnet, B., Mallet, M., Waquet, F., Chiapello, I., Minvielle, F., Pont,
- 893 V. and Menut, L.: Direct radiative effect of the Russian wildfires and its impact on air
- temperature and atmospheric dynamics during August 2010, Atmos. Chem. Phys.,
- 895 14(4), 1999–2013, 2014.
- 896 Pfister, G. G., Wiedinmyer, C. and Emmons, L. K.: Impacts of the fall 2007 California
- 897 wildfires on surface ozone: Integrating local observations with global model
- simulations, Geophys. Res. Lett., 35(19), 2008.
- 899 R Core Team: R: A language and environment for statistical computing, [online]
- 900 Available from: https://www.r-project.org/, 2017.
- 901 Rap, A., Spracklen, D.V, Mercado, L., Reddington, C. L., Haywood, J. M., Ellis, R.
- 902 J., Phillips, O. L., Artaxo, P., Bonal, D. andRestrepo Coupe, N.: Fires increase
- 903 Amazon forest productivity through increases in diffuse radiation, Geophys. Res.
- 904 Lett., 42(11), 4654–4662, 2015.
- 905 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P.,
- 906 Bernhofer, C., Buchmann, N., Gilmanov, T. and Granier, A.: On the separation of net
- 907 ecosystem exchange into assimilation and ecosystem respiration: review and
- 908 improved algorithm, Glob. Chang. Biol., 11(9), 1424–1439, 2005.
- 909 Rosário, N. E.do, Longo, K. M., Freitas, S. R.de, Yamasoe, M. A. andFonseca, R.
- 910 M.da: Modeling the South American regional smoke plume: aerosol optical depth
- 911 variability and surface shortwave flux perturbation, Atmos. Chem. Phys., 13(6),
- 912 2923–2938, 2013.
- 913 Schafer, J. S., Eck, T. F., Holben, B. N., Artaxo, P., Yamasoe, M. A. and Procopio, A.
- 914 S.: Observed reductions of total solar irradiance by biomass-burning aerosols in the
- 915 Brazilian Amazon and Zambian Savanna, Geophys. Res. Lett., 29(17), 1–4, 2002.
- 916 Sena, E. T., Artaxo, P. andCorreia, A. L.: Spatial variability of the direct radiative
- 917 forcing of biomass burning aerosols and the effects of land use change in Amazonia.,
- 918 Atmos. Chem. Phys., 13(3), 2013.
- 919 Settele, J., Scholes, R., Betts, R. A., Bunn, S., Leadley, P., Nepstad, D., Overpeck, J.,
- 920 Taboada, M. A., Fischlin, A. and Moreno, J. M.: Terrestrial and inland water systems,
- 921 in Climate change 2014 impacts, adaptation and vulnerability: Part A: Global and
- 922 sectoral aspects, pp. 271–360, Cambridge University Press., 2015.
- 923 Steiner, A. L., Mermelstein, D., Cheng, S. J., Twine, T. E. andOliphant, A.: Observed
- 924 impact of atmospheric aerosols on the surface energy budget, Earth Interact., 17(14),
- 925 1–22, 2013.
- 926 Strada, S., Unger, N. and Yue, X.: Observed aerosol-induced radiative effect on plant
- 927 productivity in the eastern United States, Atmos. Environ., 122, 463–476, 2015.

- 928 Taubman, B. F., Marufu, L. T., Vant-Hull, B. L., Piety, C. A., Doddridge, B. G.,
- 929 Dickerson, R. R. andLi, Z.: Smoke over haze: Aircraft observations of chemical and
- 930 optical properties and the effects on heating rates and stability, J. Geophys. Res.
- 931 Atmos., 109(D2), 2004.
- 932 Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T. and Hess,
- 933 P. G.: The changing radiative forcing of fires: global model estimates for past, present
- 934 and future, Atmos. Chem. Phys., 12(22), 10857–10886, 2012.
- 935 Wetland Stewardship Partnership: Wetland Ways: Interim Guidelines for Wetland
- 936 Protection and Conservation in British Columbia. [online] Available from:
- 937 https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-
- 938 planning-strategies/wetlands-in-bc#:~:text=British Columbia%27s wetlands currently
- 939 comprise, fish% 2C birds and other wildlife., 2009.
- 940 Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L.,
- 941 Menzer, O. and Reichstein, M.: Basic and extensible post-processing of eddy
- 942 covariance flux data with REddyProc, Biogeosciences, 15(16), 5015–5030, 2018.
- 943 Yamasoe, M. A., Randow, C.von, Manzi, A. O., Schafer, J. S., Eck, T. F. andHolben,
- 944 B. N.: Effect of smoke and clouds on the transmissivity of photosynthetically active
- radiation inside the canopy, Atmos. Chem. Phys., 6(6), 1645–1656, 2006.
- 946 Yamasoe, M. A., DoRosário, N. M. E. and Barros, K. M.de: Downward solar global
- 947 irradiance at the surface in São Paulo city—The climatological effects of aerosol and
- 948 clouds, J. Geophys. Res. Atmos., 122(1), 391–404, 2017.
- 949 Yu, H., Liu, S. C. andDickinson, R. E.: Radiative effects of aerosols on the evolution
- 950 of the atmospheric boundary layer, J. Geophys. Res. Atmos., 107(D12), AAC-3,
- 951 2002.
- 952