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Estimation of ΔFR uncertainty 

The uncertainties of BC and BrC ΔFR (including primary and secondary ones) were quantitatively determined using Monte 

Carlo simulations. Note that the uncertainty was expressed as one standard deviation (±1σ) or the coefficient of variation (CV, 

σ divided by the mean) as a percentage. According to the uncertainty propagation, the CV for babs, BC (λ) is: 

CVౘ౩,ాి(ಓ) ≈ ටቂ(CVౘ౩,ాి,ఴఴబ)ଶ + [CV ∗ α ∗ (ln ଼଼ )]ଶቃ      (1) 

where CVbabs, BC, 880 and CVα represent the uncertainty of measured absorption coefficient at 880nm (~ 25%) and absorption 

Ångström exponent of pure BC (~ 10%) (Gyawali et al., 2009; Bond et al., 2013; Lack and Langridge, 2013; Lu et al., 2015), 

respectively. The CV for babs, BrC (λ) could be quantified as: 

CVౘ౩,ా౨ి,యళబ ≈ ටቂ(CVౘ౩,౪౪ౢ,యళబ)ଶ + [CV ∗ α ∗ (ln ଼଼ଷ)]ଶቃ   (2) 

CVౘ౩,ా౨ి(ಓ) ≈ ටቂ(CVౘ౩,ా౨ి,యళబ)ଶ + [CVஒ ∗ β ∗ (ln ଷ )]ଶቃ    (3) 

where CVbabs, BrC, 370 (~26%) and CVβ represent the uncertainties of BrC absorption coefficient at 370 nm and absorption 

Ångström exponent of BrC (fitting uncertainty ~ 10%), respectively. Similarly, CVbabs, PriBrC, (λ) and CVbabs, SecBrC(λ) could also 

be quantified. Then we applied normal distributions for measured data with uncertainties provided by the calculated CVs and 

100 000 simulations by Monte Carlo analysis. After running the radiative forcing model repeatedly, we got 100 000 RF values, 

and the standard deviation could be considered as the uncertainty of radiative forcing. The probability distributions of ΔFR for 

BC and different types of BrC are shown in Fig. S12. The uncertainties of BC and BrC absorption ΔFR are comparably about 

27 ~ 28%. And the uncertainties for primary and secondary BrC absorption ΔFR are about 32% and 43%, respectively. 

Comparison between MRS and multiple linear regression model (MLR) 

We test the reliability of MRS methods by comparing with the typical multiple linear regression model (MLR), combined with 

the OA factors (measured by TOF-ACSM and analyzed by PMF) in summer when the highest mass fraction of LO-OOA 

occurred (Hu et al., 2017; Sun et al., 2018; Xu et al., 2021). As shown in Figure S13, although LO-OOA accounted for 47% 

in summer in 2019, the fraction of secondary BrC absorption quantified by MRS method only underestimated about 10% 
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compared with the result from MLR. And when LO-OOA accounted for less in organic aerosols, such as September in 2019 

(accounted for 5%) the difference in secondary BrC absorption quantified by the two methods is negligible.”  

Table S1. A summary of Mann-Kendall trend test for air pollutants from 2013 to 2020. 

  Entire  Spring   Summer   Fall   Winter 

  
τ 

(p-value) 

 τ 

(p-value) 
  

τ 

(p-value) 
  

τ 

(p-value) 
  

τ 

(p-value) 

eBC 
-1 

(0.01) 

 -1 

(0.01) 
  

-0.4 

(0.33) 
  

-1 

(0.01) 
  

-0.4 

(0.33) 

eBC/PM2.5 
-0.6 

(0.14) 

 0.4 

(0.33) 
  

-0.4 

(0.33) 
  

-0.8 

(0.05) 
  

-0.8 

(0.05) 

eBC/CO 
-0.6 

(0.14) 

 -0.8 

(0.05) 
  

-0.4 

(0.33) 
  

-0.6 

(0.14) 
  

-0.8 

(0.05) 

bext 
-0.8 

(0.05) 

 -0.8 

(0.05) 
  

- 

- 
  

-0.8 

(0.05) 
  

-0.4 

(0.33) 

SSA 
1 

(0.01) 

 - 

- 
  

0.8 

(0.05) 
  

0.8 

(0.05) 
  

0.8 

(0.05) 

MEE 
0.4 

(0.33) 

 -0.2 

(0.62) 
  

0.8 

(0.05) 
  

- 

- 
  

-0.2 

(0.62) 

 

Table S2. A summary of relationship between aerosol optical depth and light extinction coefficient measured by CAPS 
in four seasons. 

 Entire  Spring   Summer   Fall   Winter 

Effective Height 
1233 

 
1200 

 
1800 

 
964 

 
635 

(m, slope)     

r 0.64  0.66  0.76  0.72  0.72 
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Fig. S1. Schematic representation of instrument deployment in different years. 

 
 

Fig. S2. (babs, BrC/eBC) pri determination by MRS at 370nm in September, October, November in 2020. The red line 
represents the correlation coefficient (R2) between hypothetical babs, Secondary BrC and eBC mass as a function of (babs, 

BrC/eBC) pri_h. The shaded area in light tan represents the frequency distribution of observed (babs, BrC/eBC) pri. The 
dashed green line is the cumulative distribution of observed (babs, BrC/eBC) pri. 
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Fig. S3. Annual variation of CO concentration. The median (horizontal line), mean (square), 25th and 75th percentiles 
(lower and upper box), and 10th and 90th percentiles (lower and upper whiskers) are also shown, same as below. 

 

Fig. S4. The frequency distributions of △eBC/△CO in the past three years. 

 



 

Fig. S5. Distribution of cities and towns around Beijing (© Google Maps). 

 
Fig. S6. Annual variations of aerosol volume size distribution in Beijing (available from the Aerosol Robotic 
Network data archive). 



 

Fig. S7. Seasonal mean of SSA and MEE. 

 

 
Fig. S8. Seasonal variations of aerosol volume size distribution in Beijing (available from the Aerosol Robotic 
Network data archive). 
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Fig. S9. Diurnal variations of AAE and babs, BrC for spring, summer, fall and winter time in different years. 

 

 

Fig. S10. Monthly variations in results of MRS and babs, primary BrC. 
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Fig. S11. Seasonal variations of BC ΔFR and BrC absorption ΔFR. 

 

Fig. S12. Probability distributions of ΔFR for BC, BrC and primary BrC based on 100,000 Monte Carlo simulations. 
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