
Response to Reviews 
We thank the two reviewers for their constructive comments to improve the manuscript. Their 
comments are copied below with our responses shown in blue. The corresponding changes in the 
manuscript are also highlighted in blue and the associated changes in the revised manuscript are 
marked in green. 
 
 
Reviewer #1 
1. Interpretable ML or interpreting ML 
 
There is a major difference in internally interpretable ML models versus trying to interpret ML 
outcomes with analytic tools [Rudin 2019]. I think this study belongs to the second category. 
 
In that case, the title is really confusing, first XGBoost model is explainable that one can easily 
derive variable importance. However, SHAP was finally used to interpret XBGoost. 
 
Interpreting an interpretable ML model (XGBoost) with an interpreting tool (SHAP) is a little bit 
weird. Why not just used XGBoost derived variable importance? What’s the value of SHAP? If 
SHAP is really necessary and could give us a better understanding of XGBoost, then at least the 
title needs to be updated to: e.g., “Interpreting ML prediction of fire emission xxx”. And focus 
more on why SHAP is better than XGBoost internal variable ranking. 
 
Thank you for your comments. We use SHAP instead of taking the variable importance directly 
from XGBoost because SHAP provides local importance, which offers variable importance for 
each sample. In contrast, XGBoost only provides global importance that evaluates the variable 
importance of all the samples. The local importance helps understand which variables have 
larger contributions to a specific event, which cannot be assessed using the variable importance 
from the XGBoost model, as stated in Section 3.3 (lines 268-273). The SHAP value for a feature 
indicates its contribution to the prediction. We have stressed the reason for choosing SHAP to 
understand how the XGBoost model learns from the data to predict fire emissions in the 
manuscript, as shown below: 
 
Lines 304-309: 
SHAP importance is chosen because it provides not only global importance but also local 
importance that helps understand which variables have larger contributions to specific events or 
regions. Here, we first demonstrate the global importance that considers all the samples. Fig. 2 
shows the 20 most important variables for the model ranked by the absolute mean SHAP values. 
The SHAP value for a feature indicates its contribution to the prediction, so larger absolute mean 
SHAP values indicate larger contributions to the fire emissions. 
 
To more accurately describe this study, we have replaced “interpretable ML” with “ML model 
with SHAP” in the main text and revised the title to “Interpreting machine learning prediction of 
fire emissions and comparison with FireMIP process-based models”. 
 
 2. What can we learn and to inform future development 
 



As highlighted in the abstract that one of the objectives was to inform model future development. 
However, it wasn’t sufficiently discussed and there is no clear conclusion on e.g., which part of 
the process-based model needs major development? What is missed in process-based models? 
 
Based on the results, we identified several factors that contributed to the biases in the process-
based models and summarized them in the last paragraph of Section 5 – Discussion and 
conclusions. These factors include: (1) process-based models have larger sensitivities of fire 
emissions to meteorology compared to the sensitivities in observations; (2) the large-scale 
meteorological patterns conducive to fires are not fully considered; (3) the spatial resolutions of 
the models might be too coarse to resolve the effects of regional weather patterns; (4) biases in 
the atmospheric forcing, and (5) human effects on fires might not be fully represented. These 
five aspects require additional developments for the process-based model to achieve better 
performance. See lines 611-631: “To summarize, we utilize the ML model …”  
 
3. Different time scales: long-term trend, inter-annual variability, sub-seasonal dynamics 
 
For different time scale, one would expect different dominant driver for wildfire burn and PM2.5 
emissions. For example at the sub-seasonal scale, climate may play a more important role, while 
the long-term trends may be more affected by human activities. I wonder is it possible to carry 
out some experiments to better interpret the ML outputs across different scales? For example, 
detrend the time series (long-term trend) and use ML to predict interannual variability and 
compare the variable importance with the original ML models? 
 
We agree that the dominant controlling factors might differ by time scales. To address the 
reviewer’s concern, we aggregate the monthly SHAP values to obtain annual and seasonal time 
series of SHAP values for each variable. The annual and seasonal time series are the averaged 
SHAP values over the study period for each year and month, respectively. For each variable, we 
calculate the mean |SHAP| values and correlations between the annual/seasonal time series of 
variable SHAP and mean fire emissions. Larger mean |SHAP| values indicate larger 
contributions of the variables to the fire emissions, and higher correlations indicate that the 
variable contributions can better explain the variation of the fire emissions. 
 
Fig. R1 shows the mean |SHAP| values at seasonal and interannual time scale for the whole 
CONUS. Considering both the mean |SHAP| and correlations larger than 0.5, temperature, VPD, 
RH, and ERC are the dominant variables controlling the seasonal variation of fire emissions. 
These factors have relatively stronger seasonality than other variables (e.g., VPD is usually 
higher in the summer). On the other hand, large-scale circulation patterns, including 
SVD1_SElag2, SVD2_SElag2, and SVD1_RM, are important variables controlling both the 
seasonal and interannual variability of fire emissions, while SVD2_RM and SVD2_NCA mainly 
control interannual variability. Some identified large-scale meteorology has significant 
seasonality (e.g., SVDs_SElag2 are predominant in spring and SVD1_RM is strongest in 
summer), and most of them have interannual variability (i.e., their contributions vary by years), 
as shown in Fig. 8. Overall, the SHAP analysis shows different dominant predictors for fire 
emissions at various time scales. 
 



 
Fig. R1 Variable importance in mean |SHAP| values at seasonal and interannual time scale. The 
variables and time scales which have correlation between time series of fire emissions and SHAP 
values larger than 0.5 are in stripes. 
 
We have included the results and associated discussions in the manuscript (lines 322-334) and 
Fig. R1 is also included in the supplement as Fig. S7. 
 
Lines 322-334: 
As the dominant drivers differ for different temporal scales, we aggregate the monthly SHAP 
values to obtain annual and seasonal time series of SHAP values for each variable. The annual 
and seasonal time series are the averaged SHAP values over the study period for each year and 
month, respectively. Fig. S7 shows the mean |SHAP| values at seasonal and interannual time 
scale for the whole CONUS. Considering both the mean |SHAP| and larger correlations (r > 0.5) 
between the annual/seasonal time series of SHAP and mean fire emissions, temperature, VPD, 
RH, and ERC are the dominant variables controlling the seasonal variation of fire emissions. 
These factors have relatively stronger seasonality than other variables (e.g., VPD is usually 
higher in the summer). On the other hand, large-scale circulation patterns, including 
SVD1_SElag2, SVD2_SElag2, and SVD1_RM, are important variables controlling both the 
seasonal and interannual variability of fire emissions, while SVD2_RM and SVD2_NCA mainly 
control interannual variability. Some identified large-scale meteorology has significant 
seasonality (e.g., SVDs_SElag2 are predominant in spring and SVD1_RM is strongest in 
summer), and most of them have interannual variability, as shown in Fig. 8. Overall, the SHAP 
analysis shows different dominant predictors for fire emissions at various time scales. 
 
 
4. Uncertainties in data and ML model training/prediction 
 
There are multiple existing datasets (e.g., Fire Atlas, Fire CCI). One potential issue of 
training/validating an ML model using only GFED data is that the ML predictions are subject to 
GFED uncertainties. If possible, a comparison of GFED with other products and even better, 
applying GFED emission factors to other BA products, then one can train/validate ML model 
towards multiple datasets of fire emissions, include the data uncertainties in the cost function. 



 
We acknowledge that other fire datasets are available, including Fire Atlas, Fire CCI, FINN, 
QFED, GFAS, etc. We chose GFED4s because (1) it is one of the most widely used global fire 
emission inventories, (2) it provides fire emission estimations, and (3) it has more extended 
temporal coverage than other datasets. Prior studies have compared the estimated fire emissions 
based on GFED and other products (Liu et al., 2020; Li et al., 2019). They noted that the GFED 
data tends to underestimate the fire emission peak in springtime over the southeastern US, which 
may be explained by the fact that other products such as FINN capture more small fire activity 
compared to the GFED approach (Koplitz et al., 2018; Carter et al., 2020). Despite this known 
discrepancy between GFED and other data products, the normalized PM2.5 emissions of GFED 
still show bimodal peaks in spring and fall over the southeastern US, while most FireMIP models 
fail to reproduce the first peak (Fig. 7g in the manuscript). We appreciate reviewer’s suggestion 
of applying GFED emission factors to other BA products to quantify data uncertainties; however, 
large uncertainties exist in the emission factor and fuel consumption (Davis et al., 2015; Ottmar, 
2014), which may lead to additional uncertainties when quantifying the data uncertainty. 
 
In the revised manuscript, we have added discussions of uncertainties in fire emissions datasets, 
including findings from previous studies that compared GFED with other data products, as 
shown below. We also noted the need for future work to address data uncertainties by 
incorporating uncertainty information in the cost function used to train and validate ML models. 
 
Lines 596-610:  
It is known that different fire emission inventories have their uncertainties and prior studies have 
compared fire emission inventories over the globe or CONUS (Urbanski et al., 2018; Liu et al., 
2020). The GFED fire emissions used in this study are known to underestimate the fire emission 
peak in springtime over the southeastern US, which may be explained by the fact that other 
products such as FINN or QFED capture more small fire activity compared to the GFED 
approach (Koplitz et al., 2018; Carter et al., 2020). Although FINN can capture more small fires, 
it underestimates the intensity of large fires for some cases, which has been attributed to the 
cloud coverage on daily scale detection (Paton-Walsh et al., 2012). QFED and GFAS, which 
estimate emissions using fire radiative power (FRP) from satellites, are also more sensitive to 
small fires than GFED. However, QFED tends to estimate much larger emissions than other 
products, which can be explained by the fact that the emission coefficients used to obtain 
emissions are constrained by MODIS AOD and the uncertainties within FRP (Pan et al., 2020). 
Despite the known discrepancy between GFED and other data products, the GFED data still 
shows bimodal peaks in spring and fall over the southeastern US, while most FireMIP models 
fail to reproduce the first peak (Fig. 7g in the manuscript). For the western US, GFED and FINN 
are generally consistent regarding the magnitude and variability of fire emissions (Urbanski et 
al., 2018). As stated above, different fire emission inventories have uncertainties. Future works 
are required to include other fire emission datasets for model evaluation. 
 
Others: 
 
5. L23: xxx, which may be explained by the coarse spatial resolutions of the processed-based 
models or atmospheric forcing data or limitations in model parameterizations for capturing the 
effects of Santa Ana winds on fire activity. This statement is not helpful. What is the real reason 



why the FireMIP model did not capture bimodal peak emissions? For example, one can check 
wind fields in GSWP3 forcings or CRUNCEP forcings to verify the existence of Santa Ana 
winds. 
 
To confirm our statement, we compare the wind speed between CRUNCEP and NARR, focusing 
on the days with strong wind speed (daily mean wind speed >4.5 m/s) over southwestern 
California (116-119 ºW, 32.6-34.8 ºN) during 2000-2012 October. In October, large wind speeds 
(>4.5 m/s) in southwestern California are usually offshore winds and are associated with Santa 
Ana winds (Figure 7 in Yue et al., 2014).  The wind speeds from NARR are significantly larger 
than from CRUNCEP for the identified large wind speed days (Fig. R2). In addition, we also 
compare the mean wind speed of the large wind speed days for Oct 2003 and 2007, as shown in 
Table R1. For both years, the mean wind speeds from NARR are significantly stronger than 
CRUNCEP, indicating the lower wind speeds in the CRUNCEP used in FireMIP may partially 
explain the model biases for the events associated with Santa Ana winds (large wind speed).  
 

 
Fig. R2 Distribution of wind speed for the days with large wind speeds (>4.5 m/s) in October 
during 2000-2012 for the CRUNCEP and NARR data. The NARR data is regridded to 0.5º x 
0.5º, matching the spatial resolution of the CRUNCEP data. This figure is now included in 
supplement as Fig. S8. 
 
 
Table R1. Mean wind speed of Oct 2003 and 2007 over southwestern California for the two 
datasets.  
Wind speed (m/s) Oct 2003 Oct 2007 Oct mean 
CRUNCEP 3.75 4.98 4.41 
NARR 5.07 5.67 5.40 

 
We have revised the sentence to explain the biases of the process-based models and included the 
results in the manuscript, as shown below: 
 
Lines 20-23: 
However, all models except for the ML model fail to reproduce the bimodal peaks in July and 
October over Mediterranean California, which may be explained by the smaller wind speeds of 
the atmospheric forcing data during Santa Ana wind events and limitations in model 
parameterizations for capturing the effects of Santa Ana winds on fire activity. 



 
Lines 436-440: 
As shown in Fig. S8, the wind speeds from NARR are significantly larger than from CRUNCEP 
for the strong wind days (daily wind speed > 4.5 m/s) over southwestern California (116-119 ºW, 
32.6-34.8 ºN) during 2000-2012 October as well as the during Oct 2003 and 2007 (Table S3). 
The results indicate the lower wind speeds in the CRUNCEP atmospheric forcing used in 
FireMIP may partially explain the model biases for the events associated with Santa Ana winds. 
  
 
6. L108: How was emission factor data estimated? Are the emission factors PFT dependent or 
constant across the whole US? 
The emission factors were obtained from Akagi et al. (2011). The emission factors are dependent 
on the fire types, including savanna, boreal forest, temperate forest, tropical forest, and 
agriculture (van der Werf et al. (2017). We included the abovementioned information in the 
manuscript, as shown below: 
 
Lines 112-117: 
The GFED fire PM2.5 emissions are estimated by combining the burned area boosted by small 
fire burned area (Randerson et al., 2012) and the emission factors based on Akagi et al. (2011) 
with a revised version of the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model 
that estimates fuel loads and combustion completeness for each monthly time step (van der Werf 
et al., 2017). The emission factors are dependent on the fire types, including savanna, boreal 
forest, temperate forest, tropical forest, and agriculture (van der Werf et al., 2017). 
  
 
7. Section 2.2. What are the differences in input variables used by FireMIP and ML model? For a 
fair comparison, it will be good to make sure ML and FireMIP models used the same input 
variables. But, if not, what are the implications of using different input variables, and how do 
they contribute to the ML and FireMIP model differences? 
 
The ML model uses input variables that are primarily included as input variables in the process-
based models. To compare the input variables between the ML and FireMIP models, we 
reviewed the literatures and summarized them in Table R2. As shown in Table R2, the ML and 
FireMIP models share many common variables, including precipitation, temperature, wind 
speed, relative humidity, lightning flashes density, and population density. Additionally, even 
among the FireMIP models, input variables are not the same. Since the purpose of comparing the 
fire emissions predicted by the ML model and the process-based models is to help diagnose 
predictions by the process-based models to inform future developments, we do not limit the ML 
model to using the same input variables as used in the process-based models, as shown below. 
For example, as we mentioned in Section 4.2.3, all FireMIP models fail to reproduce the second 
fire emission peak in October over Mediterranean California, while the ML model predicts the 
peak successfully. Given the differences in winds in the atmospheric forcing used in the ML 
model and process-based models (see our response to comment #5), and the differences in 
predictors (i.e., ML model includes large-scale meteorology as predictors while the FireMIP 
models do not have such input variables or related parameterizations), we can conclude that 



including predictors of large-scale meteorological patterns favorable for fires improves the ML 
model performance. 
 
Lines 90-99: 
It uses the XGBoost algorithm and incorporates various predictors, including local and large-
scale meteorology, land surface characteristics, and socioeconomic variables, which are common 
input variables also used by the FireMIP models while some are specifically related to fire 
activities in CONUS. We acknowledge that different input variables between the ML and 
FireMIP models might cause additional uncertainty for comparison. This study aims to construct 
an ML model that predicts fire emissions over CONUS and utilize the ML model and SHAP to 
reveal the important factors contributing to fire emissions that might not be fully represented in 
the process-based models. In this context, the ML model and FireMIP models are optimized 
using different data or predictors at various scales, which enables us to use the ML to diagnose 
the performance of FireMIP models over CONUS through the comparisons of their 
performances and variable importance from the ML model. 
 
Table R2. Input variables used to drive models (only the variables not calculated from the 
models are included). The common variables are marked in bold. 
 Meteorological input variables Socioeconomic 

variables 
References 

ML model Temperature, RH, 
precipitation, wind speed 
(U&V), SPEI, ERC, VPD, 
lightning flashes density, SVDs 
(large-scale meteorology) 

Population density, 
GPD 

This study 

CLM Temperature, RH, specific 
humidity, precipitation, wind 
speed, air pressure, downward 
solar radiation, lightning 
frequency 

Population density Li et al. (2012); Li 
et al. (2013) 

CTEM Temperature, precipitation, 
specific humidity, surface 
pressure, wind speed, shortwave 
and longwave radiation, 
lightning flashes, soil texture 

Population density Arora & Boer 
(2005); Melton and 
Arora (2016) 

LPJ-
SPITFIRE 
(LPJ-SPI) 

Temperature, precipitation, 
number of wet days, cloudiness, 
wind speed, atmospheric CO2, 
lightning flashes 

Population density Thonicke et al. 
(2010) 

LPJ-
GUESS-
Glob (LPJ-
Glob) 

Temperature, precipitation, 
percentage sunshine hours, soil 
texture 

 Thonicke et al. 
(2001) 

LPJ-
GUESS-

Temperature, precipitation, 
downward shortwave radiation 

Population density Knorr et al. (2016) 



SIMFIRE 
(LPJ-SIM) 
JSBACH-
SPITFIRE 
(JSBACH) 

Temperature, precipitation, 
number of wet days, cloudiness, 
wind speed, atmospheric CO2, 
lightning flashes 

Population density Thonicke et al. 
(2010) 

JULES-
INFERNO 
(JULES) 

Temperature, RH, 
precipitation, lightning flashes, 
soil moisture 

Population density Mangeon et al. 
(2016) 

ORCHDE
E-
SPITFIRE 
(ORCHID
EE) 

Temperature, precipitation, 
number of wet days, cloudiness, 
wind speed, atmospheric CO2, 
lightning flashes 

Population density Thonicke et al. 
(2010) 

 
 
 
8. L171: LAI is a poor indicator of biomass since the majority of the biomass comes from the 
stem. As long as the canopy is closed, the growth of vegetation biomass no longer link to LAI. 
 
LAI correlates with canopy bulk density that describes the density of available canopy fuel in a 
stand and is important for crown fires (Keane et al., 2005). We understand that LAI may not 
fully represent the available biomass, so we also include vegetation fraction and fuel load from 
CLM as predictors to represent various fuel characteristics for different types of fires. We have 
included the above discussions in the manuscript, as shown below: 
 
Lines 176-181: 
As there are limited observations of fuel load, we use LAI to approximate the canopy bulk 
density, which is important crown characteristics to predict crown fire spread, and vegetation 
fraction to represent the existing amount of vegetation (Keane et al., 2005). LAI is taken from 
MODerate resolution Imaging Spectroradiometer (MODIS) instruments (Myneni et al., 2015) 
and vegetation fraction is obtained from the NLDAS-2. As LAI may not fully represent the 
available biomass, we also include fuel load simulated by Community Land Model (CLM). 
 
9. L173: Worth first evaluate CLM fuel load with existing present-day biomass datasets, then 
apply it to ML model. 
 
We included the comparison between CLM fuel load and the field-measured fuel load from the 
global fuel consumption database (van der Werf et al., 2017; van Leeuwen et al., 2014). Figure 
R3 shows the scatter plot between the observed and CLM-simulated fuel load over CONUS. 
Based on the results, the simulated fuel loads from CLM are consistent with the measured fuel 
loads across cropland, temperate forest, and boreal forest (Fig. R3). Due to the limited 
measurements, there are only 15 observations available across CONUS, and more data is 
required for more comprehensive evaluations. We have included the results in the manuscript, as 
shown below: 
 



Lines 184-187: 
CLM fuel load is validated by comparing with the fuel-measured fuel load from the global fuel 
consumption database (van der Werf et al., 2017; Van Leeuwen et al., 2014), as shown in Fig. 
S4. The CLM-simulated fuel load is generally consistent with the measured fuel for different 
vegetation types across CONUS based on the limited measurements. 
 
 

 
Fig. R3 Scatter plot between the observed and CLM-simulated fuel load over CONUS. Three 
fire types are marked in pink (cropland), green (temperate forest), and black (boreal forest). The 
data is obtained from fuel consumption database (van der Werf et al., 2017; Van Leeuwen et al., 
2014). This figure is now included in supplement as Fig. S4. 
 
 
10. L202: FireMIP models used cru-ncep, while ML model used NARR and gridMET, ML’s 
fuel load input was simulated with GSWP3 forcings? The differences in climate forcings make 
the comparison less valuable, especially when forcing uncertainties dominated the comparison. 
Maybe one can eliminate the forcing uncertainties by first surrogate FireMIP with ML models 
and replace CRUNCEP forcing with the GSWP3 forcings. 
 
We chose the simulated fuel load driven by the GSWP3 instead of CRUNCEP forcing because 
we would like to have data in both the historical (2000-2014) and projection (2015-2020) runs 
from the same ensemble member (r270). The CLM output of historical run driven by CRUNCEP 
from the same ensemble does not include land use and land cover change, which is important for 
changes in spatial distributions of fires. Therefore, we chose GSWP3 output instead to ensure 
data consistency for the two time periods. 
 
This study aims to construct an ML model that predicts fire emissions over CONUS and utilize 
the interpretable ML model (SHAP) to reveal the important factors contributing to fire emissions 
that might not be fully represented in the process-based models. In this context, this goal is better 
achieved by optimizing the data used to develop the ML model so that the ML model is useful 
for informing the process-based models. Indeed, by using the reanalysis data with finer 
resolutions (NARR), the ML model can better explain the fire emissions in CONUS, which 
enables us to diagnose processes or relationships that may be missing or not well represented in 



the process-based models. For instance, by comparing the input meteorology data of the ML and 
FireMIP models over the southwestern US in 2011, we attribute the low biases of FireMIP 
models to the biases in the atmospheric forcing (lines 468-472). Considering the goals of this 
study, developing surrogated models of the FireMIP models may lead to additional uncertainties 
that complicate diagnosis of the FireMIP model biases (e.g., whether the ML models can 
perfectly reproduce the FireMIP outputs). However, we acknowledge the uncertainties of 
different inputs and include the discussions in the manuscript, as shown below: 
 
Lines 93-99: 
We acknowledge that different input variables between the ML and FireMIP models might cause 
additional uncertainty for comparison. This study aims to construct an ML model that predicts 
fire emissions over CONUS and utilize the ML model and SHAP to reveal the important factors 
contributing to fire emissions that might not be fully represented in the process-based models. In 
this context, the ML model and FireMIP models are optimized using different data or predictors 
at various scales, which enables us to use the ML to diagnose the performance of FireMIP 
models over CONUS through the comparisons of their performances and variable importance 
from the ML model. 
 
11. Section 2.3. Has the FireMIP model sufficiently tuned using GFED data? Since the ML 
model was maximally tuned towards the GFED dataset, it’s important to clarify whether or not 
FireMIP also tuned towards GFED. Otherwise, it’s expected that the ML model would 
outperform FireMIP models. 
 
We carefully reviewed the literatures of the FireMIP models but could not find information of 
model tuning. Even though not all FireMIP models were tuned using GFED fire data, Li et al. 
(2019) showed that models that perform well against other satellite products usually have good 
agreements with GFED (e.g., CLM and CTEM). Here we again emphasize that the purpose of 
comparing the fire emissions predicted by the ML model and the FireMIP models is to help 
diagnose the FireMIP model biases. We have clarified the goals of this study in the abstract and 
Section 1 and included the discussions regarding the reviewer’s concerns in Section 1 and 5. 
 
Lines 12-13: The optimized ML model is used to diagnose the process-based models in the Fire 
Modeling Intercomparison Project (FireMIP) to inform future development. 
 
Lines 93-99: 
We acknowledge that different input variables between the ML and FireMIP models might cause 
additional uncertainty for comparison. This study aims to construct an ML model that predicts 
fire emissions over CONUS and utilize the ML model and SHAP to reveal the important factors 
contributing to fire emissions that might not be fully represented in the process-based models. In 
this context, the ML model and FireMIP models are optimized using different data or predictors 
at various scales, which enables us to use the ML to diagnose the performance of FireMIP 
models over CONUS through the comparisons of their performances and variable importance 
from the ML model. 
 
Lines 596-610:  



It is known that different fire emission inventories have their uncertainties and prior studies have 
compared fire emission inventories over the globe or CONUS (Urbanski et al., 2018; Liu et al., 
2020). The GFED fire emissions used in this study are known to underestimate the fire emission 
peak in springtime over the southeastern US, which may be explained by the fact that other 
products such as FINN or QFED capture more small fire activity compared to the GFED 
approach (Koplitz et al., 2018; Carter et al., 2020). Although FINN can capture more small fires, 
it underestimates the intensity of large fires for some cases, which has been attributed to the 
cloud coverage on daily scale detection (Paton-Walsh et al., 2012). QFED and GFAS, which 
estimate emissions using fire radiative power (FRP) from satellites, are also more sensitive to 
small fires than GFED. However, QFED tends to estimate much larger emissions than other 
products, which can be explained by the fact that the emission coefficients used to obtain 
emissions are constrained by MODIS AOD and the uncertainties within FRP (Pan et al., 2020). 
Despite the known discrepancy between GFED and other data products, the GFED data still 
shows bimodal peaks in spring and fall over the southeastern US, while most FireMIP models 
fail to reproduce the first peak (Fig. 7g in the manuscript). For the western US, GFED and FINN 
are generally consistent regarding the magnitude and variability of fire emissions (Urbanski et 
al., 2018). As stated above, different fire emission inventories have uncertainties. Future works 
are required to include other fire emission datasets for model evaluation. 
 
12. Figure 4,5. The results will more meaningful if the regression was done for only the peak fire 
months (or fire season), given that emissions only happened during fire season. 
 
We conducted the regression for the annual mean fire emission and meteorology because the fire 
seasons vary by region. For instance, the fire season in the western US is from June to October, 
while in the southeastern US the fire season has two peaks, one from March to May and the other 
from September to October (Fig. 7 in the manuscript). The sensitivity calculated based on 
different fire seasons may not be compared directly since the ranges of temperature (or RH) vary 
by season and region. Additionally, the peak fire season may not stay the same every year (e.g., 
October is the peak month in Mediterranean California, mainly for 2003 and 2007). Therefore, 
defining a single peak fire month or season to calculate the sensitivity may not be suitable for 
examining the fire-meteorology relationship.   
 
Reference 
 
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions 
and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215. 
 
 
Reviewer #2 
 
In this paper, the authors followed their previous study (Wang et al., 2021) and used ML 
technique for predicting fire emissions using gridded GFED fire emission dataset (as target) and 
meteorological, land-surface properties, and socioeconomic variables (as predictors). The 
performance of ML is evaluated and compared against FireMIP process-based models, and is 
interpreted using SHAP. The paper is clear written, and the scientific findings presented are 
important and suitable for the journal of ACP. However, there are a few issues need be clarified 



before the paper is considered for publication. Here the reviewer recommends a “resubmission 
after major revisions”. 
We appreciate the reviewer’s encouraging comments and valuable feedbacks. The major 
comments regarding fire datasets, model training, and variable selection were addressed and 
detailed in the response below. 
 
General comments: 
 
1. It is well known that different fire emission datasets (i.e. GFED, QFED, FINN, etc.) predict 
biomass burning emissions with large discrepancies, for example, Figure 6 in Liu et al. (2020). 
Large uncertainties associated with GFED dataset are due to the accumulated errors from burned 
area, fuel type/condition, and burning condition/fire weather. It is reasonable that ML results 
agree well with GFED, because it is trained against GFED. However, when validating FireMIP, 
the authors may consider the other fire emission dataset and examine whether the correlation 
coefficients are different. I understand that this requires additional work. The authors can ignore 
this suggestion but add additional discussion in the conclusion. 
  
Prior studies have compared the estimated fire emissions based on GFED and other products 
over the globe or CONUS (Urbanski et al., 2018; Liu et al., 2020). Compared to other fire 
emission inventories, it has been noted that the GFED data underestimates the fire emission peak 
in springtime over the southeastern US, which may be explained by the fact that other products 
such as FINN or QFED capture more small fire activity compared to the GFED approach 
(Koplitz et al., 2018; Carter et al., 2020). Although FINN can capture more small fires, it 
underestimates the intensity of large fires for some cases, which has been attributed to the cloud 
coverage on daily scale detection (Paton-Walsh et al., 2012). QFED and GFAS, which estimate 
emissions using fire radiative power (FRP) from satellites, are also more sensitive to small fires 
than GFED. However, QFED tends to have a much larger estimation of emissions than other 
products, which can be explained by (1) the emission coefficient used to obtain emissions are 
constrained by MODIS AOD, thus resulting in higher scaling factors and derived emissions, and 
(2) the uncertainties within FRP (Pan et al., 2020). 
 
Despite the known discrepancy between GFED and other data products, the GFED data still 
shows bimodal peaks in spring and fall over the southeastern US, while most FireMIP models 
fail to reproduce the first peak (Fig. 7g in the manuscript). For the western US, GFED and FINN 
are generally consistent regarding the magnitude and variability of fire emissions (Urbanski et 
al., 2015). In the revised manuscript, we have added discussion of uncertainties in fire emissions 
datasets, including findings from previous studies that compared GFED with other data products. 
We also noted the need to include other fire emission datasets for model evaluation in the future. 
 
Lines 596-610:  
It is known that different fire emission inventories have their uncertainties and prior studies have 
compared fire emission inventories over the globe or CONUS (Urbanski et al., 2018; Liu et al., 
2020). The GFED fire emissions used in this study are known to underestimate the fire emission 
peak in springtime over the southeastern US, which may be explained by the fact that other 
products such as FINN or QFED capture more small fire activity compared to the GFED 
approach (Koplitz et al., 2018; Carter et al., 2020). Although FINN can capture more small fires, 



it underestimates the intensity of large fires for some cases, which has been attributed to the 
cloud coverage on daily scale detection (Paton-Walsh et al., 2012). QFED and GFAS, which 
estimate emissions using fire radiative power (FRP) from satellites, are also more sensitive to 
small fires than GFED. However, QFED tends to estimate much larger emissions than other 
products, which can be explained by the fact that the emission coefficients used to obtain 
emissions are constrained by MODIS AOD and the uncertainties within FRP (Pan et al., 2020). 
Despite the known discrepancy between GFED and other data products, the GFED data still 
shows bimodal peaks in spring and fall over the southeastern US, while most FireMIP models 
fail to reproduce the first peak (Fig. 7g in the manuscript). For the western US, GFED and FINN 
are generally consistent regarding the magnitude and variability of fire emissions (Urbanski et 
al., 2018). As stated above, different fire emission inventories have uncertainties. Future works 
are required to include other fire emission datasets for model evaluation. 
 
 
2. The way the ML model is trained guarantee the better performance of ML technique in 
capturing the interannual variability of fire, because the 10-fold cross-validation/random 
sampling method is used. When randomly splitting the whole sampling pool into 10 groups, the 
interannual variability information is stored in the 9 groups that are used for training. I strongly 
suggest the authors to examine the performance of ML by using entire or two years’ data for 
validation purpose only. For example, the authors can train the ML using data from 2000 to 
2019, and perform the ML model to the data of 2020, and examine the performance of ML 
model (total PM2.5, spatial distribution, seasonal variability, etc.). I believe by doing so, it can be 
considered as fair comparison against FireMIP models. In addition, the method will be more 
suitable for the future prediction. For the case studies, aren’t the data of these two cases are 
included in training ML, unless I miss the text. 
 
To address the reviewer’s concern, we conducted several tests to demonstrate the ML model 
performance. The first test uses data from 2000 to 2019 as a training set and data from 2020 as a 
testing set. As shown in Fig. R4, the ML model is able to reproduce the spatial patterns of fire 
emissions well (r=0.72) but underestimates the total emissions, especially the peak in Sep 2020. 
The results are within our expectations because the ML model generally fails to make accurate 
predictions for the data outside of the training domain or has large uncertainties in extrapolation 
(Hooker, 2004; Tsubaki and Mizoguchi, 2020). Since 2020 features the largest fire emissions in 
the study period, we conducted another test using 2000-2017 and 2019-2020 to train the ML 
model and test on the data of 2018. We selected 2018 because 2018 had the largest fires on 
record before 2020. The ML successfully reproduces the total amount of the fire emissions in 
2018, the temporal variability of fire emissions (r=0.92) and captures the peak in Aug 2018, as 
well as the spatial distributions of fire emissions (r=0.52). 
 



 
Fig. R4. (a, d) Time series of the total PM2.5 fire emissions over CONUS and spatial 
distributions of the annual mean PM2.5 fire emission for (b, e) GFED, and (c, f) ML model (top 
panel: 2020 and bottom panel: 2018). This figure is now included in supplement as Fig. S2. 
 
For the case studies, to compare with the FireMIP models, we trained the ML model using data 
of 2000-2009 and 2013-2020 and tested on 2010 to 2012. We chose CLM to compare with the 
ML model since CLM has the best performance compared to other FireMIP models. The GFED 
observations and ML predictions were regridded to 1º x 1º for comparison. As shown in Figs. R5 
and R6 the model performance is as good as the performance of with the10-fold cross-validation 
(Figs. 10 and 11), indicating the ML model's capability to provide accurate predictions on unseen 
data (i.e., generalization). We have included the results and discussions in the manuscript, as 
shown below: 
 
Lines 293-302: 
In addition, we also test the ML model’s ability to provide accurate predictions on unseen data 
(i.e., generalization) by using data from 2000 to 2019 as a training set and data from 2020 as a 
testing set. As shown in Fig. S5, the ML model can reproduce the spatial patterns of fire 
emissions well but underestimates the emissions of the peak in September 2020. The results are 
within our expectations because the ML model generally fails to make accurate predictions for 
the data outside of the training domain or has large uncertainties in extrapolation (Tsubaki and 
Mizoguchi, 2020; Hooker, 2004). Since 2020 features the largest fire emissions in the study 
period, we conducted another test using 2000-2017 and 2019-2020 to train the ML model and 
test on the data of 2018. We selected 2018 because 2018 had the largest fires on record before 
2020. The ML successfully reproduces the temporal variability of fire emissions (r=0.92) and 
captures the peak in Aug 2018, as well as the spatial distributions of fire emissions (r=0.52). 
  
Lines 509-512: 
To test model generalization, we train the model using data of 2000-2009 and 2013-2020 and test 
on 2010-2012 and compare the ML performance with CLM (Figs. S10-11). The ML model 
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performance is as good as the 10-fold cross-validation, demonstrating that the ML model 
performs well on predicting unseen data. 
 

 
Fig. R5. Top panel: Spatial distributions of the annual mean PM2.5 fire emission in 2011 for (a) 
GFED, (b) ML model, and (c) CLM. Bottom panel: Time series of the (d) total PM2.5 fire emissions 
and (e) normalized PM2.5 fire emission over southern US domain during 2011. 

 

 
Fig. R6. Top panel: Spatial distributions of the annual mean PM2.5 fire emission in 2012 for (a) 
GFED, (b) ML model, and (c) CLM. Bottom panel: Time series of the (d) total PM2.5 fire emissions 
and (e) normalized PM2.5 fire emission over western US domain during 2012. 
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3. I am wondering, since the authors have identified the top important predictors for ML model, 
whether it is possible to reconstruct ML model using just these top 20 predictors and what the 
performance of this new ML model will be. When incorporating this ML model in ESM like 
E3SM or CESM, it is always desirable to use less parameters. 
 
To confirm the model performance is not significantly affected if using only the top 20 
predictors, we retrained the model using only the top 20 predictors shown in Fig. 2. Table R3 
compares the performance of the models with the top 20 predictors (top 20) and all 37 variables 
(full model). Compared to the full model, the performance of the top 20 model is slightly 
degraded, with higher RMSE, lower R, and IoA. The RMSE of the large fire emissions (>95th 
percentile) increases by 5% when using only the top 20 predictors, showing that using all the 
variables enhances model performance, especially for the large fire emissions. 
 
Table R3. Model performance at grid scale over CONUS for the full model and top 20 model 
 RMSE 

(km2) of all 
grids 

Correlation 
(R) 

IoA RMSE of 
large fire 
emissions 

Correlation 
of large 
fire 
emissions 

IoA of 
large fire 
emissions 

Full model 0.156 0.76 0.84 0.62 0.83 0.87 
Top 20 
model† 

0.160 0.74 0.83 0.65 0.80 0.85 

† The top 20 variables include energy release component (ERC), temperature, vapor pressure deficit (VPD), fuel 
load, evapotranspiration (ET), 1000-hr fuel moisture (FM1000), relative humidity (RH), SVD1_SElag2, 
SVD2_SElag2, vegetation fraction, standard precipitation-evapotranspiration Index (SPEI), elevation, slope, 
SVD1_RM, SVD2_RM, deciduous broadleaf forests fraction (p_7), precipitation, u- and v- wind speed.    
 
Specific comments: 
Line 49: “same parameters”.  To my knowledge, there are some studies that use tuned 
parameters for different regions, like Zou et al., 2019. 
 
We added another sentence to clarify the progress of the process-based model – “Recently, Zou 
et al. (2019) developed the REgion-Specific ecosystem feedback Fire (RESFire) model that 
includes region- and PFT-specific fire parameterizations in subregions over the globe. Their 
model shows improved spatial distributions and temporal variations of fire activities compared to 
the CLM fire model”. 
 
Lines 49-52: 
Recently, Zou et al. (2019) developed the Region-Specific ecosystem feedback Fire (RESFire) 
model that includes region- and PFT-specific fire parameterizations in subregions over the globe. 
Their model shows improved spatial distributions and temporal variations of fire activities 
compared to the CLM fire model. 
 
Figure 7 looks too busy to read. Is it possible to improve the readability of this figure, especially 
b, d, f, h. The authors may consider to increase the thickness of ML results and GFED data 
We have changed the line thickness for ML and GFED and updated Figure 7. Thank you for the 
suggestion. 
  



 
Reference: 
Liu, T., Mickley, L. J., Marlier, M. E., DeFries, R. S., Khan, M. F., Latif, M. T., & Karambelas, 
A. (2020). Diagnosing spatial biases and uncertainties in global fire emissions inventories: 
Indonesia as regional case study. Remote Sensing of Environment, 237, 111557. 
 
Zou, Y., O’Neill, S. M., Larkin, N. K., Alvarado, E. C., Solomon, R., Mass, C., ... & Shen, H. 
(2019). Machine learning-based integration of high-resolution wildfire smoke simulations and 
observations for regional health impact assessment. International journal of environmental 
research and public health, 16(12), 2137. 
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