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Abstract. Gap-filling eddy covariance CO2 fluxes is challenging at dryland sites due to small CO2 fluxes. Here, four machine 10 

learning (ML) algorithms including artificial neural network (ANN), k-nearest neighbours (KNN), random forest (RF), and 

support vector machine (SVM) are employed and evaluated for gap-filling CO2 fluxes over a semi-arid sagebrush ecosystem 

with different lengths of artificial gaps. The ANN and RF algorithms outperform the KNN and SVM in filling gaps ranging 

from hours to days, with the RF being more time efficient than the ANN. Performances of the ANN and RF are largely 

degraded for extremely long gaps of two months. In addition, our results suggest that there is no need to fill the daytime and 15 

nighttime NEE gaps separately when using the ANN and RF. With the ANN and RF, the gap-filling induced uncertainties in 

the annual NEE at this site are estimated to be within 16 g C m-2, whereas the uncertainties by the KNN and SVM can be as 

large as 27 g C m-2. To better fill extremely long gaps of a few months, we test a two-layer gap-filling framework based on the 

RF. With this framework, the model performance is improved significantly, especially for the nighttime data. Therefore, this 

approach provides an alternative in filling extremely long gaps to characterize annual carbon budgets and interannual 20 

variability in dryland ecosystems. 

 

1 Introduction 

The eddy covariance (EC) technique has been widely applied for monitoring energy and water fluxes as well as net ecosystem 

exchanges of carbon dioxide (NEE) and other trace gases between lands and the atmosphere (Baldocchi, 2003; Oncley et al., 25 

2007; Stoy et al., 2013). However, due to multiple factors including power outages, instrument malfunctions and maintenance, 

and data quality checks, there exist gaps with approximately 20-60% of half-hourly data points annually at many long-term 

EC sites (Dragoni et al., 2007; Falge et al., 2001; Ma et al., 2007; Missik et al., 2019, 2021; Moffat et al., 2007; Pastorello et 
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al., 2020; Soloway et al., 2017; Wutzler et al., 2018). An average gap fraction of 30% in an annual dataset leads to an 

uncertainty of  ±25 g C m-2 year-1 for the annual NEE at forest sites (Moffat et al., 2007), while some EC sites report much 30 

greater uncertainties (Soloway et al., 2017). Therefore, gap-filling usually accounts for one large source of uncertainties in the 

annual NEE (Soloway et al., 2017), together with other sources of uncertainties such as measurement errors and bias related 

to non-closure of the surface energy balance (Gao et al., 2019; Wilson et al., 2002).  

Robust NEE gap-filling approaches are critical for quantifying the annual and interannual variability of carbon budgets (Falge 

et al., 2001; Irvin et al., 2021; Moffat et al., 2007; Pastorello et al., 2020; Richardson and Hollinger, 2007; Soloway et al., 35 

2017; Wutzler et al., 2018). Previous studies have developed and evaluated a number of NEE gap-filling approaches including 

non-linear regressions (NLR), look-up tables (e.g., marginal distribution sampling (MDS)), machine learning (ML) algorithms 

(e.g., artificial neural networks), and process-based models (Falge et al., 2001; Huang and Hsieh, 2020; Moffat et al., 2007; 

Reichstein et al., 2005; Wutzler et al., 2018). NLR fills NEE gaps based on regression analyses between NEE and 

meteorological variables such as temperature (e.g., air or soil temperature) and light (e.g., photosynthetically active radiation), 40 

whereas MDS is based on look-up tables for similar meteorological conditions (i.e., global radiation, air temperature, and 

vapor pressure deficit) (Falge et al., 2001; Moffat et al., 2007; Reichstein et al., 2005). By virtue of an easy-to-use R package 

(Wutzler et al., 2018), MDS has become the standard method for NEE gap-filling (e.g., Pastorello et al., 2020), by virtue of an 

easy-to-use R package (Wutzler et al., 2018), although it cannot effectively fill the gaps of longer than 12 days (Moffat et al., 

2007). ML-based methods are trained by presenting them with numerous meteorological variables as inputs and NEE as output 45 

data, which have the potential to fill long gaps (Dengel et al., 2013; Kim et al., 2020; Moffat et al., 2007). Artificial neural 

network (ANN), for instance, has been widely was appliedused for gap-filling CO2 and CH4 fluxes across a variety of EC sites 

at forests, grasslands, croplands, and wetlands to fill daytime and nighttime gaps separately (Dengel et al., 2013; Delwiche et 

al., 2021; Huang and Hsieh, 2020; Irvin et al., 2021; Kim et al., 2020; Knox et al., 2016; Mahabbati et al., 2021; Moffat et al., 

2007; Papale and Valentini, 2003; Soloway et al., 2017). More recently, oOther ML algorithms such as random forest (RF), 50 

k-nearest neighbours (KNN), and support vector machine (SVM) have recently been assessed for flux gap-filling over different 

ecosystems, and RF is found to be outperformed the other ML algorithms as well as the MDS method (Huang and Hsieh, 2020; 

Irvin et al., 2021; Kim et al., 2020; Mahabbati et al., 2021) and flux upscaling (Xu et al., 2018). However, the performance of 

these ML-based algorithms has not been evaluated in filling gaps in EC fluxes for dryland ecosystems with low NEE.  

Besides the selection of gap-filling algorithms, several other factors may also degrade the performance of the algorithms and 55 

cause uncertainties in gap-filled fluxes. For example, the performance of gap-filling algorithms decreases with increasing the 

gap length (Huang and Hsieh, 2020; Irvin et al., 2021; Kim et al., 2020), and thus long gaps in CO2 flux are considered one of 

the primary uncertainty sources of NEE estimation (Aubinet at al., 2012). In addition, spatial variability of CO2 flux and 

meteorological drivers (e.g., soil temperature) due to heterogeneous landscapes around flux towers (Chu et al., 2021; Stoy et 

al., 2013) can lead to unknown bias in modelling research (Metzger, 2018). That is, the trained ML algorithms using the 60 
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measured CO2 flux and meteorological variables may not well reflect their real relationship within flux footprints and induce 

bias to gap-filled fluxes and the annual NEE. 

Dryland ecosystems, comprising around 40% of the Earth’s land surface, play a critical role in determining the trend and 

interannual variability of the global terrestrial carbon budgets (Ahlström et al., 2015; Missik et al., 2021; Yao et al., 2020), 

though the expansion of projected global drylands under climate change is still under debate (Berg and McColl, 2021; Feng 65 

and Fu, 2013; Huang et al., 2015; Yao et al., 2020). Long-term continuous measurements of land surface fluxes over dryland 

ecosystems are critical for assessing the impact of climate change on dryland carbon cycle (Missik et al., 2021; Yao et al., 

2020). The motivation of this gap-filling practice was driven by the fact that dryland ecosystems are very sensitive to water 

availability, functioning as carbon sinks in wet years and carbon sources in dry years (Biederman et al., 2017; Scott et al., 

2015), and bias in gap-filled NEE may alter conclusions in sources or sinks of dryland ecosystems in case of relatively long 70 

gaps for eddy covariance data. In addition, different ML algorithms have distinctive internal structures that account for the 

underlying dependencies of outputs (i.e., NEE) on the inputs (i.e., meteorological variables) in different ways, and uncertainties 

associated with different ML-based methods can also be assessed (Soloway et al., 2017).  

In this study, we evaluate the performance of four commonly used ML algorithms (ANN, KNN, RF, and SVM) in filling the 

extremely long gaps (i.e., couple months) in the NEE data collected at an EC site over a semi-arid sagebrush ecosystem in the 75 

central Washington, USA, from 2016 to 2019, and assess the uncertainties in the annual NEE introduced by gap-filling methods. 

In order to fill the extremely long gaps, we propose and examine a two-layer RF-based gap-filling framework (RF-2L) as the 

RF benefits from better performance and faster run-time than the other ML algorithms (Huang and Hsieh, 2020; Irvin et al., 

2021; Kim et al., 2020; Mahabbati et al., 2021). 

2 Materials and methods 80 

In this section, we first describe the site condition and instruments, as well as the procedures for EC data processing, quality 

control, and gap identification, following the standard protocol (Mauder and Foken, 2004). We then briefly introduce the four 

ML algorithms and the proposed framework of RF-2L, as well as the input meteorological variables. Following the previous 

studies (Moffat et al., 2007; Kim et al., 2020), four different lengths of artificial gaps are generated and used to evaluate the 

performance of these four ML algorithms, whereas the performance of RF-2L is evaluated with gaps of two months. We also 85 

examine the performance of the algorithms for different time of day scenarios: 1) all the data, 2) daytime and 3) nighttime data. 

Finally, uncertainties in monthly and annual NEE are quantified by comparing with the results from the MDS method and the 

ensemble mean of predictions of the ML algorithms. 

2.1 Site description 

The eddy covariance flux tower is located in the Hanford Area in the U.S. State of Washington (AmeriFlux site: US-Hn1; 90 

46°24¢32² N, 119°16¢30² W), and it started to collect data in December 2015 (Gao et al., 2019, 2020a, 2020b; Missik et al., 
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2019). This semi-arid site is predominantly covered by scattered shrubs and short grasses. Shrub species include Artemisia 

tridentata and Chrysothamnus viscidiflorus, and grasses include invasive weedy species (i.e., Bromus tectorum and Salsola 

kali) and native grasses (i.e., Poa secunda, Pseudoroegneria spicata, and Stipa comate) (Missik et al., 2019). The long-term 

(1986-2015) mean annual precipitation was 197 mm (varied between 100 and 300 mm for dry and wet years), most of which 95 

occurred late in the fall and early in winter (Missik et al., 2019). The soil texture in the top layer of 30 cm is loamy sand with 

small rocks and gravel interspersed (Gao et al., 2017; Missik et al., 2019). In this study, the 4-year data from 2016 to 2019 are 

analyzed. Annual precipitation in these four years were 217, 242, 169, and 210 mm, respectively; and mean annual air 

temperature were 12.9, 11.4, 12.7, and 11.2°C, respectively (Missik et al., 2021).  

2.2 Eddy covariance and meteorological measurements 100 

The EC system included a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Inc.) and an open path gas 

analyzer (LI-7500A, LI-COR, Inc.), and the EC data were sampled at a rate of 10 Hz. In addition, a variety of microclimate 

data were measured, including four-component radiation, air temperature and relative humidity, wind speed and direction, 

precipitation, soil heat flux, and soil temperature and volumetric water content (Gao et al., 2017, 2019, 2020a; Missik et al., 

2019). These data were sampled at a rate of 1 Hz and stored as 30-min averages. Further, 15-min meteorological data from 105 

two weather stations close to the tower site were obtained from the Washington State University AgWeatherNet (AWN; 

https://weather.wsu.edu/). The two AWN stations are located within 8 km from the tower. The 15-min data were averaged to 

half-hourly values to fill gaps in the tower meteorological data of solar radiation (𝑅!), air temperature (𝑇"#$) and relative 

humidity (RH), vapor pressure deficit (VPD), wind speed (WS), precipitation (P), and soil temperature (𝑇%&#'). Thus, these 

half-hourly meteorological data for the study period are gap-free.  110 

2.3 EC data processing, quality control, and gap identification 

Raw 10 Hz EC data were processed using the EddyPro® software (version 7.06, LI-COR Biosciences, USA) to calculate the 

30-min average fluxes of CO2 (NEE) and latent (LE) and sensible (H) heat. The data were despiked and filtered for physically 

impossible values and abnormal diagnostic values of the sonic anemometer and the gas analyzer. The double rotation method 

was applied to the sonic anemometer data. Block averaging was used to determine the turbulent fluctuations for each 30-min 115 

intervals. The fluxes were corrected for the effects of high- and low-pass filtering (Massman, 2000, 2001; Moncrieff et al., 

2004) and air density fluctuations (Webb et al., 1980), respectively. The corrected fluxes were quality checked according to 

Mauder and Foken (2004). After quality checking, the “REddyProc” R package (Wutzler et al., 2018) was used to determine 

the friction velocity (𝑢∗) threshold and NEE data with low turbulence conditions were removed from the dataset. 

For simplicity, a score of 2 was we assigned a gap score of 2 to gaps due to field operations (e.g., instrument maintenance), 120 

electrical and/or instrument failures, a gap score of 1 to gaps due to low data quality (i.e., quality control and 𝑢∗ filtering), and 

a score of 0 to flux data with good quality. Only the data with the score of 0 were used to train/test the gap-filling algorithms. 
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In addition,Note that, for the data gaps with a score of 1, meteorological data from the flux tower were still available for NEE 

gap-filling; whereas for the data gaps with a score of 2, meteorological data from the flux tower also had gaps, and the data 

obtained from the two nearby AWN stations are thus used for gap filling. 125 

2.4 Machine learning algorithms 

Four ML algorithms including the ANN, KNN, RF, and SVM were employed and evaluated for filling NEE gaps. In the 

following sections, we briefly describe the characteristics and implementation of each ML algorithm. The required parameters 

in each algorithm (e.g., the number of nodes in each hidden layer for the ANN; k value for the KNN) are optimized using the 

“caret” R package (Kuhn et al., 2020) with a 10-fold cross-validation repeated ten times. 130 

2.4.1 Artificial neural network (ANN) 

The ANN algorithm has been successfully applied for filling NEE gaps in various ecosystems (Baldocchi & Sturtevant, 2015; 

Knox et al., 2016; Moffat et al., 2007; Papale & Valentini, 2003; Tramontana et al., 2016). In this study, we employed the 

“neuralnet” R package (Günther and Fritsch, 2010), the resilient backpropagation algorithm that has proven to be capable of 

gap-filling flux data (Dengel et al., 2013; Jammet et al., 2015; Kim et al., 2020; Knox et al., 2016). The required parameters 135 

for the ANN algorithm include the number of hidden layers and the number of nodes in each layer. Here, based on the parameter 

tuning results, we use two hidden layers with 12 and 10 nodes in the first and second hidden layers. We train the neural network 

1000 times, and the mean prediction results of the top 20 runs based on their training and testing R2 values are used to fill NEE 

gaps (Baldocchi & Sturtevant, 2015; Knox et al., 2016). 

2.4.2 K-nearest neighbours (KNN) 140 

The KNN algorithm (Fix and Hodges, 1951) is a non-parametric ML approach and has been used in many applications. For 

example, Chen et al. (2012) applied the KNN algorithm for filling latent heat flux gaps, which fills the data gaps based on a 

certain attribution of k neighbours in the feature space. In this study, we use the “caret” R package (Kuhn et al., 2020) to build 

the KNN where a suitable k value needs to be determined. Here, the optimized k value is 9. 

2.4.3 Random forest (RF) 145 

The RF algorithm (Breiman, 2001) has been applied for upscaling flux data to regional (Xu et al., 2018) and global (Jung et 

al., 2017; Zeng et al., 2020) scales and recently for gap-filling flux data (Huang and Hsieh, 2020; Kim et al., 2020). The RF 

algorithm uses bootstrap aggregation and feature randomness when generating each individual tree to try to create many 

independent decision trees that operate as an ensemble of the prediction results. In this study, we create 500 regression trees 

for each case using the “randomForest” R package (Liaw and Wiener, 2002), in which the tuning parameter is the number of 150 

randomly selected predictors (i.e., mtry equals 7). In addition, the RF allows the estimation of relative importance of input 
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variables, and such a feature has been utilized in previous studies to help interpret the results (Irvin et al. 2021; Kim et al., 

2020). 

2.4.4 Support vector machine (SVM) 

The SVM algorithm (Cortes and Vapnik, 1995) has also been applied for gap-filling (Huang and Hsieh, 2020; Kim et al., 2020) 155 

and upscaling (Xu et al., 2018) flux data. The SVM algorithm can convert nonlinear regressions into linear regressions by 

projecting the original finite-dimensional space into the much higher-dimensional space with a predefined kernel function. In 

this study, we use the radial basic kernel function and the “kernlab” R package (Karatzoglou et al., 2004) where the tuning 

parameters include the inverse kernel width (i.e., sigma = 0.13) and the cost regularization parameter (i.e., C = 27). 

2.4.5 A two-layer RF based gap-filling framework (RF-2L) for extremely long gaps 160 

Numerous studies have suggested that the performance of ML algorithms decreases with increasing the gap length, and that 

the ML algorithms is only reliable for gaps shorter than couple weeks (Huang and Hsieh, 2020; Irvin et al., 2021; Kim et al., 

2020; Mahabbati et al., 2021). In order to fill the extremely long gaps (i.e., couple months), we propose and examine a two-

layer RF-based gap-filling framework (RF-2L) because the RF outperforms most of the other ML algorithms in gap-filling the 

half-hourly fluxes over various ecosystems (Huang and Hsieh, 2020; Irvin et al., 2021; Kim et al., 2020; Mahabbati et al., 165 

2021) and is more time efficient than the ANN (Irvin et al., 2021). The procedures of the RF-2L include: 1) train the RF model 

using the half-hourly data and fill the NEE gaps shorter than 7 days; 2) calculate daily means of the input variables and the 

partially filled NEE data; and 3) train the RF model using the daily data and fill the gaps in the daily NEE data. 

2.5 Input variables 

Besides the above mentioned meteorological variables, the input variables for the ML algorithms also include the normalized 170 

difference vegetation index (NDVI) and enhanced vegetation index (EVI) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), and three fuzzy variables (i.e., decimal day of year, and sine and cosine functions to represent 

seasonal changes) following Moffat et al. (2007). We obtained the NDVI and EVI data around the flux tower location from 

the MOD13Q1 version 6 data product (https://lpdaac.usgs.gov/products/mod13q1v006/) at 16-day temporal and 250-m spatial 

resolutions (Didan, 2015). The 16-day NDVI and EVI data were resampled to 30 minutes using cubic spline interpolation. 175 

Note that soil water content (SWC) and groundwater table are not included in the inputs because 1) the SWC measurements 

at these AWN stations had some issues for the study period and could not be used to fill the long gaps in tower SWC data, and 

2) the station is primarily fed by rainfall without groundwater access (Missik et al., 2019, 2021).  

With the RF, we estimate the relative importance of the input variables for the three different time of day scenarios, respectively 

(Fig. 1). For the model trained using all the data and the daytime data, 𝑅! is the most important variable, while for the model 180 

trained using the nighttime data, 𝑇"#$ and RH are the most important variables. Overall, the estimated variable importance 
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indicates that, for the three different time of day scenarios, the meteorological inputs except 𝑅! for the nighttime data play a 

comparable role in the trained gap-filling models. Note that there exists collinearity among the various variables, and thus the 

model performance might approach a plateau with certain input variables and increase slightly with increasing the number of 

inputs, resulting in a slower, less efficient model. However, to be consistent with previous studies (e.g., Kim et al., 2020; 185 

Moffat et al., 2007), we also include all available meteorological variables as the inputs to train and evaluate the models. 

 

Figure 1 Variable importance for the random forest trained without separating the daytime and nighttime data (All), and separately for 

daytime and nighttime data. The variables DOY, c and s indicate decimal day of year, cosine and sine functions, respectively. 

2.6 Artificial gap scenarios and performance evaluation 190 

In order to evaluate the gap-filling algorithms, artificial gaps with different lengths were are randomly generated in the original 

flux data, accounting for approximately 10~12% of the NEE data with a score of 0total data length. Following Moffat et al. 

(2007) and Kim et al. (2020), we considered four artificial gap lengths: one hour (1-H), one day (1-D), one week (1-W), and 

two months (2-M). The variations in the number of data points artificially removed are because after quality control, it is hard 

to locate even couple days of data without any missing points (Section 3.1). In order to reduce the potential effect of uneven 195 

sample sizes and gap positions on the performance evaluation, eEach gap length scenario iswas permuted 10 times, resulting 

in 40 distinct time series with artificial gap scenarios plus the real gap scenario to be filled. 

For each artificial gap scenario, we trained the models separately with only daytime or nighttime data, and with both daytime 

and nighttime data. The performance of gap-filling algorithms iswas evaluated by comparing the estimated values (𝑒#) with 

the measured values (𝑚#) for the artificial gaps. Fourive commonly used performance metrics are used including the coefficient 200 

of determination (R2), the absolute root mean square error (ARMSE) and relative root mean square error (RRMSE), mean 

absolute error (MAE), and the bias error (BE): 
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ARMSE = *4
5
∑ (𝑒# −𝑚#))5
#64       (2) 

RRMSE = *
∑ (-!.1!)%"
!#$
∑ (1!)%"
!#$

       (23) 205 

MAE = 4
5
∑ |𝑒# −𝑚#|5
#64        (34) 

BE = 4
5
∑ (𝑒# −𝑚#)5
#64        (45) 

where the overbar denotes the mean value.  

Besides the above statistic metrics, we also calculate the probability density functions of the measured and estimated values to 

examine the performance of ML algorithms in terms of different ranges of NEE values. Here, the probability density functions 210 

are calculated as the binned density distribution of measured (estimated) NEE values divided by the bin width (0.2 µmol m-2 

s-1).  

Previous studies also suggested that the model errors of gap-filling algorithms should approach the measurement random errors 

of the EC method (Kim et al., 2020; Moffat et al., 2007; Richardson et al., 2008). In this study, we compare the model errors 

with the random measurement errors as a reference. Here, the random measurement error is estimated following the method 215 

proposed by Finkelstein and Sims (2001). 

2.7 Uncertainty Estimation 

With the 40 distinct artificial gap scenarios, we obtain 40 gap-filled NEE time series for each method. By replacing the artificial 

gaps with the observed data, these time series datasets allow for an evaluation of the model self-agreement and reliability in 

filling the actual gaps. Monthly and annual NEE are then computed from the gap-filled flux time series. The model self-220 

agreement can be evaluated by investigating the mean standard deviations of the monthly NEE (Soloway et al., 2017), whereas 

the uncertainties in the monthly and annual NEE can be assessed by comparing the monthly and annual NEE obtained by each 

ML algorithm with their ensemble means (Irvin et al., 2021; Kim et al., 2020; Soloway et al., 2017). Here, the flux time series 

gap-filled separately for the daytime and nighttime periods are combined to determine the monthly and annual NEE. 

 225 
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3 Results 

3.1 NEE data gap evaluation 

At the US-Hn1 site, different lengths of gaps were found in NEE data during the four years from 2016 to 2019 (Fig. 12). Gaps 

with short to medium lengths were usually caused by low data quality (i.e., gap score of 1), whereas gaps with medium to 230 

extremely long lengths were mostly due to electrical and/or instruments failures (i.e., gap score of 2). Data gaps with a score 

of 1 frequently occurred in nighttime because 𝑢∗ filtering mainly removes nighttime data. On average, gaps with scores of 1 

and 2 accounted for about 28.4% and 30.2% of half-hour NEE data, respectively (Table 1). There were more extremely long 

gaps in 2018 and 2019 than 2016 and 2017 due to power failures in winter and early spring. Therefore, it is worth to examining 

the performances of gap-filling algorithms in filling different lengths of gaps. Overall, about 43.7% of NEE data were available 235 

to calibrate and validate the gap-filling methods. In addition, for the data gaps with a score of 1, meteorological data from the 

flux tower were still available for NEE gap-filling; whereas for the data gaps with a score of 2, meteorological data from the 

flux tower also had gaps, and the data obtained from the two nearby AWN stations are thus used for gap filling. 
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Figure 1 2 Distribution of NEE data gaps by day and hour from 2016 to 2019. NEE data gaps were classified as non-gaps (gap score: 0), 240 
gaps due to low data quality (gap score: 1), and gaps due to electrical and/or instrument failures (gap score: 2). 
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Table 1 Percentage of NEE data with different gap scores (0/1/2) for daytime and nighttime from 2016 to 2019. NEE gaps are classified as 

non-gaps (gap score: 0), gaps due to low data quality (gap score: 1), and gaps due to electrical and/or instrument failures (gap score: 2). 

 Daytime Nighttime All 

2016 36.1% / 9.6% / 2.7% 19.9% / 26.1% / 5.6% 56.0% / 35.7% / 8.3% 

2017 31.5% / 9.8% / 7.1% 15.4% / 22.3% / 13.9% 46.9% / 32.1% / 21.0% 

2018 27.8% / 6.8% / 14.1% 10.9% / 16.5% / 23.9% 38.7% / 23.3% / 38.0% 

2019 23.4% / 7.1% / 17.9% 10.0% / 18.1% / 23.5% 33.4 % / 25.2 % / 41.4% 

Overall 29.7% / 8.4% / 10.5% 14.0% / 20.7% / 16.7% 43.7% / 29.1% / 27.2% 

 

3.2 Performance of ML gap-filling algorithms with different gap lengths 245 

We first train and evaluate the ML algorithms without separating the daytime and nighttime data (i.e., using all the data). The 

overall performance of each algorithm degrades as the gap length increases, while the RF slightly outperforms the other 

algorithms for all the gap scenarios (Fig. 2 3 and Table 2). For the gap length of one hour (1-H), all the four ML algorithms 

have the highest R2 and the lowest ARMSE, RRMSE, and MAE. As the gap length increases, R2 for all ML algorithms 

decreases and ARMSE (RRMSE and MAE) increases. For 1-H, the RF has R2, ARMSE, and RRMSE of 0.77±0.02, 0.66±0.03 250 

µmol m-2 s-1, and 0.47±0.02, respectively, whereas for the gap length of two months (2-M), the R2 decreases to 0.60±0.22, and 

ARMSE and RRMSE increase to 0.91±0.07 µmol m-2 s-1 and 0.62±0.17, respectively.  The magnitudes of BE for all ML 

algorithms also increase with the increasing gap lengths. The performance of these ML algorithms in NEE gap-filling at this 

semi-arid sagebrush site is comparable to that at some grassland sites (Huang and Hsieh, 2020), but lower than that at forest 

and cropland sites (Huang and Hsieh, 2020; Moffat et al., 2007). The relatively low performance might be caused by the spatial 255 

complexities of the targeted CO2 flux and input meteorological drivers within the flux footprints (Chu et al., 2021; Stoy et al., 

2013), especially for the scattered sagebrush ecosystems.  

Following Moffat et al. (2007), we also perform the algorithm training and evaluation separately for daytime and nighttime 

data. For the daytime data, the performance of each algorithm is similar to that for all the data, whereas the algorithm 

performance for the nighttime data is degraded with R2 of 0.1–0.2 and RRMSE of 0.7–0.8, similar to the results for some forest 260 

sites in Moffat et al. (2007). The poor performance of the gap-filling algorithms for the nighttime data is primarily attributed 

to the shortage of available nighttime data for training the models (Fig. 1 2 and Table 1). However, the change of BE with the 

increased gap length at night is relatively small compared to that for the daytime data, especially for the ANN and RF. In 

addition, BE for long gaps (e.g., 2-M) has opposite signs for the daytime and nighttime data, resulting in a smaller BE for all 

the data. 265 
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Figure 2 3 Performance of NEE gap-filling algorithms for the four gap length scenarios (i.e., one-hour (1-H), one-day (1-D), one-week (1-

W), and two-month (2-M), respectively). 

 

 270 
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Table 2 Performance metrics of the four ML gap-filling algorithms for the four gap length scenarios. The ML algorithms are trained and 275 
evaluated without separating daytime and nighttime data. 

 Gap length 

scenarios 

R2 RRMSE  

 

MAE  

(µmol m-2 s-1) 

BE  

(µmol m-2 s-1) 

ANN One-hour 0.71±0.02 0.52±0.02 0.50±0.01 -0.005±0.016 

 One-day 0.70±0.02 0.54±0.04 0.51±0.02 0.005±0.017 

 One-week 0.69±0.03 0.54±0.03 0.51±0.04 -0.009±0.046 

 Two-month 0.59±0.23 0.63±0.19 0.62±0.07 -0.057±0.158 

KNN One-hour 0.71±0.02 0.53±0.02 0.50±0.01 0.001±0.020 

 One-day 0.66±0.04 0.57±0.04 0.55±0.02 0.004±0.033 

 One-week 0.63±0.05 0.59±0.04 0.57±0.06 0.007±0.040 

 Two-month 0.51±0.24 0.68±0.19 0.69±0.08 -0.059±0.175 

RF One-hour 0.77±0.02 0.47±0.02 0.43±0.01 0.003±0.017 

 One-day 0.73±0.04 0.51±0.04 0.48±0.02 -0.008±0.024 

 One-week 0.68±0.03 0.55±0.03 0.52±0.05 -0.029±0.033 

 Two-month 0.60±0.22 0.62±0.17 0.61±0.05 -0.061±0.137 

SVM One-hour 0.75±0.02 0.48±0.02 0.45±0.01 0.014±0.015 

 One-day 0.71±0.03 0.52±0.03 0.49±0.02 0.022±0.032 

 One-week 0.67±0.03 0.56±0.03 0.53±0.04 -0.000±0.031 

 Two-month 0.47±0.25 0.73±0.22 0.77±0.16 -0.062±0.146 

 

3.3 Comparison of probability density functions (PDFs) between measured and estimated NEE 

Figure 3 4 shows the comparison of the probability density functions (PDFs) between the measured and estimated NEE of the 

gap-filling algorithms. The estimated NEE by the gap-filling algorithms has similar shape of PDFs, which is also quite similar 280 

to that of the measured NEE with some difference in amplitudes. At this site, the measured half-hourly NEE ranges from -6 to 

4 µmol m-2 s-1, while the estimated NEE varies from approximately -5 to 2 µmol m-2 s-1. For all the data, the PDFs of the 

estimated NEE present two peaks at around -0.2 and 0.2 µmol m-2 s-1, whereas the PDF of the measured NEE only has one 

peak at around 0.2 µmol m-2 s-1. That means that the PDFs of the estimated NEE have higher amplitude than the measured 

NEE in the range of -0.6 to 0.0 µmol m-2 s-1. However, in the range of -2.0 to -0.8 µmol m-2 s-1, the amplitude of the PDFs of 285 

the estimated NEE is lower than that of the measured NEE. The PDFs of the estimated NEE for the daytime data show one 

peak at around -0.2 µmol m-2 s-1 with their shapes similar to those for all the data in the range with the negative NEE values; 

for the nighttime data, the estimated NEE has a narrower shape of PDF than that of the measured NEE. These results suggest 
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that the gap-filling algorithms underestimate the magnitudes of NEE in the range of -2.0 to 0.0 µmol m-2 s-1 and the magnitudes 

of the peak values of NEE.  290 

 

Figure 3 4 Comparison of probability density functions (PDFs) for the measured and estimated NEE of the gap-filling algorithms using 

daytime and nighttime data together and separately. The PDFs are estimated from the binned density distributions divided by the bin 

width. The bin width is 0.2 µmol m-2 s-1 and bins with less than 10 data points are excluded.  

3.4 Comparison of measurement error and absolute error of ML algorithms 295 

Figure 4 5 shows the absolute errors as a function of bin-averaged NEE values for the gap-filling algorithms with the estimated 

random measurement errors (Finkelstein and Sims, 2001) as a reference. For all the data, the binned absolute errors for the 

ML algorithms are quite close to each other, and they are also close to the random errors in the range of negative NEE values 

but slightly deviated from the random errors in the range of positive NEE values. Note that the large deviations from the 
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random errors at the edges are most likely due to the small number of data points as illustrated in Fig. 34. The binned absolute 300 

errors for the daytime data are close to the random errors in the NEE range of about -4.0 to 1.0 µmol m-2 s-1; whereas the 

binned absolute errors for the nighttime data are consistently higher than the random errors. For all the data, the mean value 

of the random errors is 0.56 µmol m-2 s-1, while the MAE of the ML algorithms is 0.55, 0.59, 0.53, and 0.58 µmol m-2 s-1 for 

the ANN, KNN, RF, and SVM, respectively. For the daytime data, the MAE of the ML algorithms (0.59, 0.62, 0.55, and 0.62 

µmol m-2 s-1) is all smaller than the mean value of the random error (0.66 µmol m-2 s-1); whereas for the nighttime data, the 305 

MAE of the ML algorithms (0.46, 0.48, 0.47, and 0.49 µmol m-2 s-1) is all larger than the mean value of the random error (0.32 

µmol m-2 s-1). Overall, the RF and ANN have better performance in filling NEE gaps at this semi-arid site, especially for the 

daytime data, although the RF is more time efficient than the ANN. In addition, all the four ML algorithms have low 

performance in gap-filling the nighttime data, though the BE for the nighttime data is relatively small compared to the daytime 

data mostly due to the low magnitudes of the nighttime NEE. 310 

 

-6 -4 -2 0 2 4
NEE bin average ( mol m-2 s-1)

0

0.4

0.8

1.2

1.6

2

Al
l e

rro
rs

 (
m

ol
 m

-2
 s

-1
) a)

-6 -4 -2 0 2 4
NEE bin average ( mol m-2 s-1)

0

0.4

0.8

1.2

1.6

2

D
ay

tim
e 

er
ro

rs
 (

m
ol

 m
-2

 s
-1

)

b)

-6 -4 -2 0 2 4
NEE bin average ( mol m-2 s-1)

0

0.4

0.8

1.2

1.6

2

N
ig

ht
tim

e 
er

ro
rs

 (
m

ol
 m

-2
 s

-1
)

c)
Random error

ANN absolute error

KNN absolute error

RF absolute error

SVM absolute error



16 
 

Figure 4 5 Comparison of NEE measurement and model uncertainties of the gap-filling algorithms using the data and the daytime and 

nighttime data. The random measurement error is estimated by Finkelstein and Sims  (2001). The bin width is 0.2 µmol m-2 s-1 and bins with 

less than 10 data points are excluded. 

 315 

4 Discussion 

4.1 Uncertainties in carbon budgets caused by gap-filling  

We now examine uncertainties in carbon budgets caused by gap filling with different training dataset and different methods. 

With the 40 distinct artificial gap scenarios, we obtain 40 gap-filled NEE time series for each method. By replacing the artificial 

gaps with the observed data, these time series datasets allow for an evaluation of the model consistency and reliability in filling 320 

the actual gaps. Figure 5 6 compares the monthly accumulative NEE of the gap-filled data during 2016-2019. The subscript A 

denotes that the daytime and nighttime NEE data are gap-filled together using the ML algorithms trained with all the data, and 

DN denotes that the daytime and nighttime data are gap-filled separately using the trained ML algorithms and then combined 

together to determine the monthly accumulative NEE. The error bar denotes one standard deviation of the monthly 

accumulative NEE of the 40 gap-filled time series. Here the gap-filled NEE using the most-commonly used MDS method is 325 

also included as a reference for comparison. 

With the 40 gap-filled NEE time series for each method, we first investigate the self-agreement of each method as the method 

with good self-agreement should have small variations in the accumulative NEE among different trails. For months with gaps 

less than 7 days (Fig. 12; e.g., February to October in 2016), all the four ML algorithms have good self-agreementare quite 

consistent and reliable with the mean standard deviations of the monthly accumulative NEE ranging from 0.4 (ANN) to 1.0 330 

(SVM) g C m-2. Both the RF and KNN have mean standard deviations of approximately 0.7 g C m-2 during these months. For 

months with long gaps (i.e., > 7 days), the mean standard deviations of the monthly accumulative NEE are 1.2, 1.3, 1.5, and 

3.3 g C m-2 for the ANN, KNN, RF, and SVM, respectively. From this perspective, the ANN is the most reliable method in 

gap-filling because the predicted values are averages of the best 20 runs (Section 2.4.1). In other words, most of the ML 

algorithms are quite consistent in filling the gaps, and the differences in the monthly accumulative NEE caused by changes in 335 

training dataset are less than 1.5 g C m-2 except for the SVM. 

The uncertainties in the monthly accumulative NEE as a result of the differences in the methods are now assessed with the 

monthly NEE from the MDS as a reference. The difference among the methods ranges from 0.2 to 1.3 g C m-2 for months with 

gaps less than 7 days, and changes from 0.8 to 10.2 g C m-2 for months with long gaps, which is 0.8 to 4.8 g C m-2 without 

including the SVM. For the ANN and RF, the differences in the monthly accumulative NEE between A and DN are usually 340 

quite small for all the months, whereas the KNN presents opposite signs for A and DN in months with long gaps, which means 

that the KNN is unable to handle the daytime and nighttime data together. Overall, for months with short to medium gaps (i.e., 
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< 7 days), there is no significant difference in the monthly accumulative NEE among the methods including the MDS method. 

For months with long gaps (i.e., > 7 days), the MDS method usually fails, and the ANN and RF have the best performance, 

and they have the potential to handle the daytime and nighttime data gap-filling together, as also supported by the distribution 345 

of estimated variable importance (Fig. 1).  

 

Figure 5 6 Monthly total net ecosystem exchange (NEE, g C m-2) at the US-Hn1 in (a-d) 2016-2019.  The subscript A denotes that the 

daytime and nighttime NEE data are gap-filled together using the ML algorithms trained with all the data, and DN denotes that the daytime 

and nighttime data are gap-filled separately and then combined to determine the monthly total values. RFsRF-2L denotes the proposed two-350 
layer RF based gap-filling framework, and MDS is the marginal distribution sampling algorithm. The error bar denotes one standard 

deviation of the monthly total NEE of the 40 gap-filled time series. 
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The uncertainties in the annual total NEE are estimated by comparing the annual NEE obtained by each ML algorithm with 

their ensemble means (Fig. 67). Obviously, both the KNN and SVM are largely apart from the ensemble means, whereas the 

ANN and RF are relatively close to the ensemble means except for the RF in 2019. The mean standard deviations of the 40 355 

trials for the annual NEE by ANN range from 2.5 to 4.3 g C m-2, the mean standard deviations by the RF vary from 3.4 to 7.1 

g C m-2, and the mean standard deviations by the KNN and SVM vary from 5.1 to 13.9 g C m-2. The differences between the 

ANN and RF are within ±8.4 g C m-2; and the differences between A and DN are less than 1.7 and 4.5 g C m-2 for the ANN 

and RF, respectively. The overall uncertainties in the annual NEE caused by the ANN and RF are usually less than 15.5 g C 

m-2, while the uncertainties can be as large as 27.2 g C m-2 if including the KNN and SVM. Therefore, it is recommended to 360 

use the ensemble mean of the ANN and RF as the best estimate of the annual NEE at the semi-arid sagebrush site. The annual 

mean NEE by the ANN and RF is -15.4±4.7, -50.0±9.1, -31.4±7.2, and -40.3±8.7 g C m-2 for 2016, 2017, 2018, and 2019, 

respectively. In addition, the annual total NEE by the MDS is about 5.6~15.6 g C m-2 larger than that by the ANN and RF. 

 

Figure 6 7 Comparison of the annual mean NEE from the ML algorithms and their ensemble mean. The subscript A denotes that daytime 365 
and nighttime NEE data are gap-filled together using the ML algorithms trained with all the data, and DN denotes that the daytime and 

nighttime data are gap-filled separately and then combined to determine the monthly total values. 

4.2 Performance of the A two-layer RF based gap-filling framework (RF-2L)for extremely long gaps 

We then propose and test a two-layer RF-based gap-filling framework (RFs) because 1) the performance of the ML algorithms 

is only reliable for short to medium gaps; 2) there is no obvious difference in monthly and annual NEE between training the 370 
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model using all the data or the separated daytime and nighttime data; and 3) the RF is more time efficient than the ANN. The 

procedures include: 1) train the RF model using the half-hourly data and fill the NEE gaps shorter than 7 days; 2) calculate 

daily means of the input variables and the partially filled NEE data; and 3) train the RF model using the daily data and fill the 

gaps in the daily NEE data. Following the same procedures as for evaluating the ML algorithms above, the performance of 

this frameworkRF-2L in filling the long gaps (i.e., two months) in the daytime and nighttime daily means are also accessed. 375 

Using a 10-fold cross-validation repeated ten times, the R2 of the second layer RF model is 0.78, 0.85, and 0.77 for all the data, 

the daytime data, and the nighttime data, respectively. The mean BE for this framework is 0.04 g C m-2 day-1, which is slightly 

smaller than that of the original RF with the half-hourly NEE data (0.06 g C m-2 day-1). 

The uncertainties of the RF-2L are accessed by comparing the monthly and annual NEE with other ML algorithms. As shown 

in Figs. 5 6 and 67, the monthly and annual NEE by the RFsRF-2L are quite close to those by the RF. For A (i.e., trained by 380 

all the data), the difference in the annual mean NEE ranges from 0.0 to 2.2 g C m-2, whereas for DN (i.e., trained by the 

separated daytime and nighttime data), the difference varies from 0.8 to 3.3 g C m-2. This test suggests that it is not necessary 

to fill all the gaps in the half-hourly NEE data if the focus is on assessing the uncertainties in cumulative annual mean NEE 

and interannual variability. Therefore, the RF-2L provides an alternative in filling extremely long gaps to characterize annual 

carbon budgets and interannual variability in dryland ecosystems. In addition, the performance of the different methods ML 385 

algorithms is quite consistent when filling short to medium gaps (e.g., < 7 days), and thus a promising extension of the proposed 

approach is that using the ensemble mean of different multiple methods as the input of the second RF layer, which may hashave 

the potential to lower the uncertainties in the gap-filled data. Of course, other reliable algorithms can also be applied in the 

second layer to reduce bias estimation caused by long gaps.  

 390 

5 Conclusions 

The performance of the four ML algorithms in filling the NEE data gaps is evaluated at a semi-arid sagebrush ecosystem site. 

Due to the relatively small range of NEE variations, the overall performance of these gap-filling algorithms at this site is lower 

than that at other forest sites, but comparable to that at other grassland sites. The RF algorithm outperforms the other algorithms 

in terms of the overall performance. It is not necessary to train the model separately for daytime and nighttime data when using 395 

the ANN and RF algorithms. The uncertainties in the monthly and annual NEE due to the gap-filling approaches are evaluated 

by the standard deviations of monthly NEE of multiple trials for each method and also accessed by the difference in the monthly 

NEE by the methods. With the ANN and RF, the uncertainties in annual NEE are usually within 16 g C m-2 at this semi-arid 

sagebrush site. Extremely long gaps in half-hourly NEE data due to power failures cannot be confidently filled by either of the 

methods because of the high uncertainties in R2 and RRMSE, and thus we propose and test a two-layer RF based gap-filling 400 

framework. With this framework, the improvement in model performance is significant, especially for the nighttime data. 

Therefore, it is recommended that the two-layer RF based framework (RF-2L) should be used if there are extremely long gaps 
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existed in the NEE dataset and if there is a need to investigate its annual and interannual variability. However, it is hard to 

assess the uncertainties caused by bias in the gap-filled meteorological variables using the current approaches and study design, 

which need to be explored in future studies. 405 
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