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Abstract.

A novel method of comparison between an atmospheric model and satellite probabilistic estimates of relative humidity (RH)
in the tropical atmosphere is presented. The method is developed to assess the Météo-France numerical weather forecasting
model ARPEGE using probability density functions (PDF) of RH estimated from the SAPHIR microwave sounder. The
satellite RH reference is derived by aggregating footprint-scale probabilistic RH to match the spatial and temporal resolution
of ARPEGE over the April-May-June 2018 period. The probabilistic comparison is discussed with respect to a classical
deterministic comparison confronting each model RH value to the reference average and using a set confidence interval. This
study first documents the significant spatial and temporal variability of the reference distribution spread and shape. We
demonstrate the need for a finer assessment at the individual case level to characterise specific situations beyond the classical
bulk comparison using determinist “best” reference estimates. The probabilistic comparison allows for a more contrasted
assessment than the deterministic one. Specifically, it reveals cases where the ARPEGE simulated values falling within the
deterministic confidence range actually correspond to extreme departures in the reference distribution, highlighting the
shortcomings of the too-common Gaussian assumption of the reference, on which most current deterministic comparison

methods are based.

1 Introduction

Fundamental drivers of the climate system variability, such as atmospheric water cycle, are still not well understood. They are
associated with uncertainties that hampers climate predictions with consequences for society. An essential ingredient of the
Earth’s hydrological cycle, water vapor is the principal greenhouse gas and exerts a fundamental control on the distribution of
temperature (Held and Soden, 2000; Pierrehumbert, 2011; Allan, 2012; Stevens and Bony, 2013). The radiative importance of
the atmospheric water in maintaining the thermal energy balance of the Earth system is undebated. The connection between

temperature, water vapor and infrared radiation creates a positive feedback that further warms the global climate from an
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external forcing (Hartmann et al., 2013). In addition, cloud-moisture interactions and their associated processes are diverse
(Bony et al., 2015; Sherwood et al., 2010; Sherwood et al., 2020), and their representation in numerical models bear strong
constraints on the local scales of weather forecasts and on global climate sensitivity (Stevens and Schwartz, 2012).

The accuracy of meteorological forecasts and climate projections relies on parametrization schemes or model physics.
Assessing their accuracy is routinely performed by comparing the simulated geophysical fields to an observed reference
derived from ground-based measurements or remote sensing techniques (Randall et al., 2007). When considering remote
sensing techniques as reference, the comparison to numerical simulations may be performed in either geophysical or
observation space, each one being associated with their own uncertainties. In the geophysical space, the model geophysical
variables are evaluated directly against remote sensing estimations based on a retrieval scheme. This retrieval scheme can be
an inversion algorithm that relies on incomplete representations of the atmospheric variability (see for instance Solheim et al.,
1998; Aires et al., 2002; Roy et al, 2020). In the observation (e.g., radiance) space, a forward model is used to convert the
simulated atmosphere into synthetic remote sensing measurements (Morcrette, 1991; Soden and Bretherton, 1994; Brogniez
et al., 2005; Chepfer et al., 2008; Bodas-Salcedo et al., 2011; Jiang et al., 2012; Tian et al., 2013; Steiner et al., 2018). This
model-to-satellite approach relies on the accuracy of the forward model to simulate remote sensing observations for a given
atmospheric state (Weng, 2007), while strong uncertainties may remain (Geer and Baordo, 2014; Brogniez et al., 2016).

In any case, the comparisons usually involve spatial and/or temporal averaging, sometimes involving error bars or the use of
averaging kernels to smooth models or in situ profiles relative to the vertical resolution of the satellite measurement (Rodgers
and Connor, 2003). Moreover, common assessment practices typically use bulk comparison metrics (e.g. correlation, bias) to

assess performances over a given spatial and temporal domain.

The present work focuses on atmospheric relative humidity (RH). There is an extensive body of literature on the use of relative
humidity estimated by space-borne instruments to evaluate climate models (among others Soden and Bretherton, 1994;
Brogniez et al., 2005; John and Soden, 2006; Jiang et al., 2012; Tian et al., 2013; Steiner et al., 2018...). However, the
comparison generally provides limited insight in their error characteristics for several reasons:

1. First, an objective assessment requires an independent reference, which may not be verified when satellite remote
sensing observations that are already incorporated in the model via an assimilation step are re-used to assess its
accuracy.

2. Second, metrics such as correlation and bias are often applied without necessarily checking the relevance of such
criteria. For example, the magnitude of the bias as an additive model-to-reference difference may be challenging to
assess objectively at the primary satellite scale. The linear correlation is generally insufficient to describe the non-
linear and heteroscedastic dependence structure between the model estimates and the reference.

3. Third, the model product is often assumed to be uniform and display homogeneous properties over the spatial and
temporal domain of comparison. Bulk metrics such as correlation and bias are computed over samples that actually

gather a variety of atmospheric situations (vertical structure, moisture, etc.) for which the model is likely to behave
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differently through its assumptions. Hence bulk error metrics lack specificity and depict averaged space/time
properties while the errors tend to be non-stationary and sensitive to parameters not accounted for in the assessment
formulation. Therefore, the representativeness of any deterministic assessment of model RH is confined to the time
and space domain over which it is performed, with limited extension over other regimes, regions, seasons, etc. These
issues are not confined to the study of RH but are, to an extent, common to those of all geophysical variable (see for

instance Kirstetter et al., 2020 for a discussion on precipitation).

A probabilistic description of the reference RH is most appropriate to acknowledge the possible range of reference values.
This approach also explicitly accounts for deterministic uncertainties, making the diagnosis more documented and precise,
ultimately contributing to the improvement of climate and weather forecasting models. This paper presents an assessment of
the simulated RH using such a probabilistic approach. The method is developed and tested to assess a sample of simulations
of the global model ARPEGE (“Action de Recherche Petite Echelle Grande Echelle”), the numerical weather forecasting
system developed by Météo-France (the French national weather service; Bouyssel et al., 2021). For this assessment, density
functions of reference RH are derived from the brightness temperatures measured by SAPHIR (“Sondeur Atmosphérique du
Profil d’Humidité Intertropicale par Radiométrie), the microwave sounder onboard the Megha-Tropiques satellite orbiting
over the tropical belt (Roca et al., 2015).

This paper is divided into five sections. The datasets, and the matching procedure between SAPHIR probabilistic relative
humidity (RH) estimates and ARPEGE simulations are presented in section 2. The probabilistic method is introduced and
confronted to the deterministic comparison in section 3. Section 4 discusses the results of the two comparison methods and the

added-value of the probabilistic method. Concluding remarks are then drawn in section 5.

2 Data

ARPEGE 6-hourly instantaneous RH fields simulated at 6-hour lead time for the months April-May-June 2018 serve as a

testbed for evaluating the numerical weather forecast model.

2.1 SAPHIR probabilistic RH estimates

SAPHIR is the microwave moisture sounder instrument onboard the Megha-Tropiques satellite, which observes the tropical
(30°N to 30°S) atmosphere since October 2011 with a high revisit frequency. Megha-Tropiques is operated jointly by CNES
and ISRO (Desbois et al., 2007; Roca et al., 2015). SAPHIR measures across-track the upwelling radiation in the 183GHz
water vapor absorption line over a 1700km swath. Each scanline is composed of 130 non-overlapping footprints whose nominal

size is 10km at nadir and which deforms into an ellipse of 14.5 x 22.7 km? on the edges of the swath. SAPHIR spectrally
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samples the 183 GHz line with 6 channels ranging from 183.31 +/- 0.2 GHz (close to the center of the line for upper
tropospheric sounding) to 183.31 +/-11GHz (wings of the line for a deeper sounding).. This original sampling allows a better
vertical sounding of the tropical atmosphere compared to operational sounders like MHS and AMSU-B (3 channels) or ATMS
(5 channels) (Brogniez et al., 2013).

The measured brightness temperatures (BT) are translated into RH profiles for clear sky conditions as well as cloud-covered
situations, as soon as cloud hydrometeors are small enough to not scatter the upwelling microwave radiation significantly.
These conditions are associated with deep convection, with or without overshoots, and are detected from the BTs following
Hong et al. (2005) and Greenwald and Christopher (2002). Therefore, RH profiles are estimated for every footprint of SAPHIR
if no deep convection is detected. The RH profiles are made of six relatively wide atmospheric layers ranging between 950
and 100hPa (100-200hPa; 250-350hPa; 400-600hPa; 650-700hPa; 750-800hPa; 850-950hPa) defined from an analysis of the
channels’ weighting functions (Sivira et al, 2015). The retrieval of RH profiles is based on a multivariate regression scheme
that provides the parameters (a, ) of a Beta probability density function of the estimated RH alongside the mean and standard
deviation, for every footprint and pressure layer. The Beta distribution is chosen over a more classical Gaussian model for its
ability to better account for the spread and asymmetry around the mean that is more adapted to the study of the atmospheric
RH distribution (see Stevens et al 2017), while also representing the uncertainty of the retrieval scheme and the radiometric
noise. The Beta model is used as follows:

RHY1(1-RH)B-1
fol ur1(1-w)hf-lqu

PDFps(RH; a, B) = (@ B) >0 1)

With PDFrs(RH) being the probability density function of RH defined on the interval [0;1] and (o, B) are the parameters of the
distribution. The subscript “FS” stand for “Footprint Scale”.

As detailed in Brogniez et al (2016, Table 1), the bulk standard errors of the dataset lie in the range [3.6-14.8] %RH, depending
on the pressure range (3.6%RH for layer 250-350 hPa, 15.8%RH for layer 750-800 hPa). These have been estimated using
oceanic and continental radiosoundings collocated with satellite overpasses. Stevens et al (2017) also highlighted the role of
the vertical inhomogeneities in the discrepancies, strong gradients of moisture being the most difficult to capture by the passive

SENsors.

2.2 ARPEGE simulated RH

The ARPEGE model is the operational global model operated by Météo-France since 1992 (Bouyssel et al., 2021). This model
is characterized by a stretched and tilted horizontal grid and by a hybrid pressure terrain-following vertical coordinate system.
The vertical grid is composed of 105 levels and the mesh of the horizontal grid has a 5 km resolution over Europe and a 24 km
resolution elsewhere. Forecasts are initialized with a four-dimensional variational system (Courtier et al., 1992) with 6-hour
windows and run up to a +102-hour forecast range. In the Tropics (30°N-30°S) and at this forecast range, the ARPEGE biases
(resp. rmse) on RH fields range between -5 and +5 % (resp. 5 and 25%) with respect to both radiosondes and the ECMWF
analysis (Chambon et al., 2014).
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For the purpose of this study, the 6-hourly forecasts of atmospheric RH have been projected on a regular horizontal 0.25° x
0.25° grid, and onto a regular vertical grid of 50 hPa resolution from 950hPa up to 100 hPa to match to the vertical resolution
of the SAPHIR RH profiles. The vertical averaging implies that the results of the comparison are valid at the resolution of the
SAPHIR RH profiles.

2.3 Co-location

SAPHIR footprints probability density functions (PDFgs, “FS” standing for Footprint Scale) are aggregated to match
ARPEGE’s 0.25 x 0.25° grid, as illustrated on Fig 1.a. A one-hour time window centered around each ARPEGE simulation is
applied to SAPHIR pixels to avoid errors induced by shifts in moisture patterns due to global and local processes. The
histogram in Fig 1.b shows the distribution of the number of SAPHIR footprints that fall within ARPEGE gridboxes. This
number varies from 0 to a maximum of 20, with a majority of sample sizes lying between 1 and 10 and the most frequent being
5.

(b)Number of SAPHIR footprints per
(@) overpassed gridbox
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Figure 1: (a) Colocalization diagram of SAPHIR’s PDFrs and ARPEGE grid and (b) distribution of the sample size of SAPHIR
footprints in ARPEGE gridboxes (log scale).

Within each model gridbox, all the footprints’ PDFes are averaged together to compute an unconditional distribution of the
RH averaged at the ARPEGE scale, as follows:

1
PDF (PDFgs) = %L1 PDFps(x); X I )
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With PDFgg(x) being the individual footprint scale distributions and N the number of footprints collocated within the gridbox.
The averaged PDF encompasses all the available information of the reference RH such as the mean (first moment), shape, and
extremes of the distributions.

3 Methodology

3.1 Statistical approach

3.1.1 Mathematical principles

The differences and similarities between the deterministic and the probabilistic comparison approaches are illustrated in Figure
2. At any given pixel and timestep, the ARPEGE model value is noted RHmoq. The corresponding retrieval taken as reference

RHops is a random variable described by its cumulative distribution (CDF; defined in [0,1]) noted Fgp.
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Figure 2: Single-gridbox example (grid point situated 24.75 to 25 °N 114.5 to 114.75 °W and 400-600 hPa for the simulations of
2018/04/01 at 00 UTC) showing the projection of RHmod (0range cross) onto its associated reference distribution RHobs (blue curve)
in terms of PDF (left panel) and CDF (noted Frn; right panel). The reference expectation (first moment of the distribution) noted
RH,, is drawn as the grey dotted line centered within a £15% RH range (grey shade) on the PDF. The expected value (median) of
the distribution is shown as the green dotted line on the CDF and the 0.25-0.75 quantile interval is shaded in green.

The value Frr (RHmoa) represents the probability P that that RHqps takes on values lower or equal to the RHmod:
Fru(RHpmoq) = Pr(RH,ps < RHppoq) = P ©))

The probability P indicates the position of RHmoa Within the distribution of RHops. A probability value P~0.5 indicates that
RHmod is close to the median that is a representative value of RHops. A probability value P < 0.1 (resp. > 0.9) indicates that
ARPEGE probably underestimates (resp. overestimates) the reference RHqps as there are less than 10% chances that the RHops

takes on lower (resp. greater) values.
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In order to compare the probabilistic method to a more classic approach, a simple deterministic comparison is used as a
benchmark. The mean reference value RH,, is calculated as the first moment of the PDF and it is taken as the reference in

the deterministic comparison.

D= RHmod - RHobs (4)

The deterministic bias D is defined as the difference between the RHmog and the mean observed value RH,,;. A D close to 0
indicates that the RHmoq is close to the mean reference RH,,,. An a priori deterministic + 15% RH confidence interval (grey
shading on Fig. 2a) centered around RH,, is chosen to account for uncertainties in the reference. The 15% RH uncertainty
value is the smallest that allows to encompass the uncertainties of all pressure layers (see paragraph 2.1 or Brogniez et al, 2016
for a more complete analysis of uncertainty). It is a reasonable value that can be applied to the full RH profile. Note the retrieval
uncertainty is lower in the mid-tropospheric layers compared to the edges of the profiles (Sivira et al., 2015). In terms of
deterministic comparison D < -15% RH (resp > 15% RH) means that RH,,,, 4 significantly underestimates (resp. overestimates)

the reference RH,,, average observation as it falls outside its confidence interval.

Compared to a deterministic comparison between ARPEGE’S RHmod and the reference RH,,,, Fru(RHmod) Objectively
quantifies the significance of the departure of ARPEGE w.r.t. the reference RHous central value by factoring in (normalizing
by) the spread of the distribution. It allows us to quantify the occurrence of extreme biases from the model while accounting
for the tails of the distribution. By accounting for the complete reference distribution (and its characteristics like the spread
and asymmetry), this probabilistic formulation allows comparison with greater resolution, sharpness and discrimination than

a deterministic comparison at the pixel level.

3.1.2 Application to a single gridbox

The deterministic comparison and the CDF-based comparison are applied to each ARPEGE grid point. Figure 2 illustrates
further the complementarity of the two approaches, for a representative case.

For any given ARPEGE gridbox the values P and D are computed from eq. (3) and eq. (4). As RHmoq rarely falls on a RHops
percentile, P is calculated with a linear interpolation between the two encompassing percentiles. A probabilistic confidence
interval for the reference is defined at every ARPEGE gridbox, as the interquartile [0.25; 0.75] (green shading in Fig. 2b). This

interval encompasses 50% of the RHops distribution centered around the median (Fru = 0.5, green dotted line).

In the example shown in Fig. 2, ARPEGE’s RHmoq is rather close to the mean reference value as it lies within 15% RH from
RH (D = 11% RH, see Fig. 2a). However, the projection of RHmos onto the CDF (Fig. 2.b) indicates that it is located in the
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upper quartile of the distribution outside the [0.25; 0.75] reference confidence interval (Fig. 2b). RHqps has a low probability
of P=0.16 of being lower than or equal to RHmod. In other words, at this gridbox and time the probabilistic approach indicates
that ARPEGE has a fairly high probability of overestimating RH while the deterministic comparison indicates an acceptable
difference with the averaged value RH. This example illustrates how the probabilistic comparison increases the information
content in the reference by explicitly accounting for the reference uncertainty, which leads to a different conclusion than with

the deterministic comparison that is based on a constant a priori uncertainty.

3.2 Applied methodology
3.2.1 Precipitation masking

As underlined in section 2.1, the retrieval of RH profiles from SAPHIR measurements is performed for both clear sky and
cloud-covered areas, to the extent of scattering by large hydrometeors produced by convective activity is negligible (Greenwald
and Christopher, 2002; Hong et al., 2005). Therefore, all ARPEGE gridboxes associated with rainfall rates strictly above 0

mm/h are filtered out.

3.2.2 Temporal statistical accumulation

The comparison method is applied to a spatiotemporal domain covering the tropical belt over 3 months (April-May-June 2018).
D values are calculated at each gridbox and timestep and are averaged over time into a D value representing the average
departure between ARPEGE’s RHmoq and the reference at this gridbox. In terms of the probabilistic comparison, P values are
also calculated at each gridbox and timestep and are aggregated over time to compute a PDF (Kirstetter et al. 2015), whose

mode Paw (3M stands for “3 months™) is kept. Figure 3 illustrates this process.
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Figure 3: Diagram presenting the spatial and temporal aggregation method for a single grid point (blue square when the gridbox
was passed over by SAPHIR, red when not and/or filtered out). Pswm is the mode of the distribution aggregated over all the considered

time steps for this gridbox.

4 Results
4.1 Uncertainty related to the assumption of Gaussian distributions

In deterministic comparison settings, the uncertainty may be defined based on a priori assumptions, instrumental biases and
retrieval errors. This uncertainty is often assumed to be multiplicative w.r.t to the reference value, and that the underlying
density function is unimodal, symmetric, and follows a Gaussian model so that the uncertainty is defined as a standard
deviation. However, a Gaussian model would not have been adapted to the dataset. A Shapiro-Wilks test is run with each and
every individual PDF of the data set (with asw = 0.01). The Shapiro-Wilks test is a widely used test of normality in statistics
(Shapiro and Wilks, 1965). Finding a p-value above aSW would mean that the null hypothesis (“the PDF fits a normal
distribution”) cannot be refuted. For each pressure layer, more than 99.99% of the PDFs have p-values under asw meaning that
almost none of them can be qualified as gaussian. With the probabilistic approach, the uncertainty can be defined with the
Inter-Quartile Range (IQR) of the distribution calculated from the CDF at each time step and each gridbox (see section 3.1.2).
The IQR represents the difference between the RH values corresponding to probabilities of 0.75 and 0.25. Note that no
assumption is made on the shape of the distribution in this case, hence the uncertainty is objectively and robustly quantified.

The smaller the IQR, the narrower the distribution and the smaller the uncertainty of the reference. Values of the IQR can be
compared with the deterministic 15% RH uncertainty. If the IQR is greater (resp. lower) than 15% RH, then the reference

distribution is broader (resp. narrower) than assumed with a set 15% RH error.

Figures 4.a and 4.b show an example of reference RH,;,; and the associated IQR calculated at a given time step (2018/04/01
at 00 UTC) and for a given atmospheric layer (650-700 hPa). Figure 4.c shows the frequency of occurrence for cases with IQR
> 15% RH at each gridbox over the three-month period April-June 2018.
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(a) IQR of SAPHIR's observations (b)Mean of SAPHIR’s observations
2018/04/01 00 UTC Layer 650-700 hPa 2018/04/01 00 UTC Layer 650-700 hPa

(c) Frequencies of IQR within the 15%RH confidence interval
Spring 2018 Layer 650-700 hPa
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Figure 4: (a) Spatial distribution of the inter-quartile range (IQR) and (b) mean of reference (RH,;,) representing the observed
spatial field of RH from SAPHIR on 01/04/2018 at 00UTC and at the 650-700 hPa layer (c) Frequency of IQR < 15% RH over the
three-month period (April to June 2018)

The spatial distribution of the IQR (Fig 4.a) shows contrasted areas that match the patterns of RH,, (Fig 4.b). Low IQR values
(IQR < 15% RH, appearing in red and orange on Fig 4.a) are consistently found where the atmosphere is dry, for example
above the Atlantic Ocean and the Arabian sea. High IQR values (IQR > 15% RH, in yellow to green on Fig 4.a) are found over
moister atmosphere, especially above South America, Africa and South Asia. It suggests that while scaling relation between
RH and its uncertainty is relevant, a typical 15% RH assumption lacks dynamics to represent the true uncertainty. The
contrasted differences between the IQR < 15% RH and IQR > 15% RH areas show that the width of the RHqps distributions
vary significantly and are linked to the same processes. In addition, in the areas with IQR > 15% RH the wider range of RHps
illustrates the equally wide diversity of underlying situations. These results illustrate the need to use a comparison method that
adapts to the range of variability at each gridbox. Especially in the areas where the IQR is high, using a deterministic approach
solely based on the distribution expectation does not capture the variety and complexity of situations and is thus ill-advised.
However, we note that high IQR values found in moister situations may also result from multiple causes such as the aggregation
of distinct sub grid processes or higher retrieval errors (Sivira et al., 2015; Brogniez et al., 2016). Nonetheless, using a
probabilistic approach make any comparison more specific to each situation by avoiding the use of a consistent simplification

(i.e. a set confidence interval) that does not fit the underlying complexity.

10
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The comparison of the two uncertainty approaches over the whole period (Fig. 4.c) confirms the spatial correlation between
the IQR and the classical patterns of the humidity field. This is particularly visible around the South Pacific and South Atlantic
Highs where the proportion of IQR under the 15% RH threshold reaches 70% and even 100%. In these subsiding areas, the
atmospheric RH is ruled by large-scale processes that have little to no instantaneous variability at the scale of our grid. It results
in more homogeneous conditions within the same gridbox that explains the narrower distributions of the retrievals (i.e. smaller
IQR). The Intertropical Convergence Zone (ITCZ) appears through areas of low proportion (0 to 30% of the retrievals’ dataset)
of under-15% RH IQR. High dynamics characterizing this zone result in smaller-scale processes that impact the RH field and
result in heterogeneous conditions within the same gridbox and larger IQR. Most importantly, IQR varies across space and
time, and it can be partly linked to the RH field and explained by large and fine scale processes. These highlight the need for
a comparison method that exploits and takes into consideration the variability of the dataset and adapts the comparison to each

situation.

One can note that while these results vary significantly depending on the atmospheric layer, they are coherent with the expected
RH field patterns. For example, in the upper two atmospheric layers (100-200 hPa and 250-350 hPa), the homogeneous dryer
conditions result in almost all retrievals distributions having IQR under 15% RH. The two lower layers (750-800 hPa and 850-
950 hPa), closer to the ground show strong ocean-continent contrasts. This contrast shows the difference of processes that
depend on the surface, with extremely low frequencies of IQR under 15% RH above the continents. It suggests that the lower

the layer, the wider the distribution of retrieved RH.

In all cases where the IQR is above 15% RH, flattened and possibly non-Gaussian RH distributions may result in non-
representative RH,,, values associated with varying confidence intervals that make the deterministic comparison less
appropriate. These results show that these situations can be quite frequent and geographically distributed. The probabilistic
method allows us to adapt the confidence to each distribution regardless of the width and shape, and thus improves

the assessment accuracy both overall and at the gridbox/timestep scale.

4.2 Application to a single time step

Figure 5 shows the comparison results between the reference RHops and ARPEGE’s RHmod Obtained with both deterministic

and probabilistic methods.
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(a) Deterministic method on ARPEGE (c) Scatterplot of predicted vs mean observed RH values
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Figure 5: Comparisons between SAPHIR’s RH,,; and ARPEGE’s RHmod on 01/04/2018 at 00UTC and for the 400-600 hPa
atmospheric layer. (a) map of the difference D, (b) map of the probability P and (c) scatterplot between RH ¢ (x-axis) and RHmod
(y-axis); the percentile associated to each point as P > 0.75 (blue), 0.25 < P < 0.75 (grey), and P < 0.25 (red); the solid line represents
the y=x line and the dotted lines delimit the X + 15% RH around values

The comparisons are performed using wide discrete color bars in order to discuss the complementarity of the methods and not
specific issues of the model. The deterministic approach shows that a majority of RHmeq Values are within the interval of £
15% RH of RH,,. (grey areas on Fig 5.a). By contrast, the probabilistic approach reveals that only a few of the corresponding
P fall within the [0.25;0.75] probabilistic interval (blue or red on Fig 5.b). Large areas of deterministic reasonable differences
such as in the Southern Atlantic are associated with P > 0.75, meaning that the corresponding RHmeg has a high probability
overestimating the reference. The inset in the maps is a zoom that highlights similar bias patterns with both methods but with

higher contrasts with the probabilistic one. The patterns only appear in the deterministic results when using a continuous color

scale that allows to show small differences w.r.t. the mean RH,,s. These patterns can be observed with both methods in general,
but the small differences between the RHmog and RH,;,s prevent a robust diagnosis. The probabilistic results are particularly
contrasted in comparison because these RHmoq Values fall into in the extreme quartiles (P < 0.25 or P > 0.75). The scatterplot
(Fig. 5.c) further illustrates the added value of the probabilistic approach. The confidence interval set by P within [0.25,0.75]
(grey triangular shape) follows closely the RHmoa = RH,, line, showing the overall consistency of the two methods. For small
values of RH, this interval is much tighter around the line than at higher values. The confidence interval widens for higher
values of RH, confirming that the probabilistic method is more specific than a deterministic approach with constant error bars
around the RHmog = RH,,s line. Furthermore, situations where P falls within the [0.25; 0.75] interval are less common when
compared to the + 15% RH range defined around the mean. The blue and red dots that appear within the £ 15% RH range

indicate cases where RHmoq are close to RH,;,, (D within [-15;15]) but fall in extreme RHops distribution quartiles (P outside

12



[0.25;0.75]). Most blue and red points (respectively above and under the + 15% RH range) show that a strong deviation from

mean nearly always matches with extremes of the distribution (P < 0.25 or P > 0.75).

320 Inshort, the probabilistic method is consistent with the deterministic comparison on extreme biases and adds more information
for cases where RHmod Seems close to RH s -

4.3 Comparison results for an extended period of time
4.3.1 Distributions

The two methods are applied on the entire data set over the period from April to June 2018. The distributions of each method’s
325 results are represented as histogram (Fig 6.a) and rank histogram/Talagrand diagram (Hamill, 2001; Wilks, 2011; Kirstetter et

al. 2015; Fig 6.b). Note that while the Talagrand diagram is often used to assess ensemble forecasts by comparing a single

reference to a distribution of forecast ensembles, its interpretation is similar when comparing a single simulated value to a

reference distribution. This graphical method illustrates where the ARPEGE’s RHmoq falls in the distribution function CDF of

RHops. In case of perfect forecasts, each quantile represents an equally likely scenario for the ARPEGE model. The perfect
330 case is a flat rank histogram indicating that the RHobs probability distribution is well represented by RHmod.

(a) Distribution of the deviations from mean (b) Distribution of the associated percentiles
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Figure 6 : Distribution of the results from each comparison method applied on all layers over the period April to June 2018 : (a)
335 histogram of the deviations D from the mean (in red : D <-15% RH ; grey : -15% RH <D <15% RH ; blue : D > 15% RH) and (b)
rank histogram/Talagrand diagram of P (in grey: values of P when D within [-15;15] %RH; in white: for all values of D).
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As seen on Fig 6.a, the deterministic difference D = RHmod - RH,,s displays a unimodal and symmetrical distribution centered
around 0. All layers combined, more than 67%, of the RHmoq deviate by less than 15% RH from the mean estimate RH,,,,.
Nearly 20% of all RHmoq are too high by more than 15% RH and less than 2% by more than 50 %RH. Yet the Talagrand
diagram on Fig 6.b shows that the associated percentiles P display a bimodal distribution with maximum frequencies
concentrated at the two extreme ends. Half the ARPEGE’s RHmoq are associated with extreme percentiles of the RHops
distribution (P< 0.05 or P>0.95). Less than a quarter (23.3%) RHmq fall within the centered half of the RHos distribution. The
Talagrand diagram allows us to draw direct conclusions on the reliability of the forecasts. Assuming that the forecasts are
spread far enough in both time and space to be considered independent from each other, the probabilities of finding each
percentile of the histogram should be fairly equal giving the diagram a flattened aspect, which is not observed here. The U-
shape indicates that the extreme classes are over-represented and compensate for the under-estimations of the central quantiles
(Candille & Talagrand, 2005). There is also a tendency of ARPEGE to overestimate RH. These features remain when focusing
on RHmed Values within the 15% RH from the mean estimate (grey histogram on Fig. 6.b). It confirms that the overestimation
is present within the deterministic confidence range. Validating RHmoq Values by their proximity to the mean reference (-15 <
D < +15% RH) is not sufficient to assess their accuracy, especially when they fall in the extreme percentiles of the associated
distribution (P < 0.25 or P > 0.75).

The comparisons are performed independently for each atmospheric layer in Fig. 7. The distributions are represented as
boxplots in Fig. 7, with the width of the box is defined by the first and third quartiles and the length of the whiskers by either

1.5 x IQR or the most extreme value if under. It highlights a variability in terms of both shift and spread.
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Figure 7: Distribution the results of each method of comparison applied on the period April to June 2018 represented as boxplots
for each layer: (a) deviations D from mean and (b) associated percentiles P divided into three distribution types depending on the
category of D (red: D < -15% RH; grey: -15% RH < D < 15% RH; blue: D > 15% RH). The weights of each category within their

layer’s distribution are indicated in Table 1

The distributions of the deviations from the mean D (Fig. 7.a) show a tendency of the model to overestimate RH,, in the
upper tropospheric layers (100-200 hPa, 250-350 hPa), to close in on RH,, in the mid-tropospheric layers (400-600 hPa) and
to slightly underestimate RH,, in the lower tropospheric layers (650-950 hPa). The highest layer (100-200 hPa) has the most
off-centered results, with half (50.3%) of the simulated values overestimating RH,,, by more than 15% RH. The layer 750-
800 hPa has more than a third (38.7%) of the simulations more than 15% RH below RH,,, (D < -15% RH). The other layers

have the majority of their distribution well within the £15% RH range.

The distributions of the associated percentiles are wider (Fig. 7.b) and offer a deeper understanding. The comparison results
are divided into three categories that follow the deviation from the mean intervals. They are drawn separately to highlight the
consistency of the two methods’ extreme results. The ARPEGE’S RHmoq distant from RH,;,; by more than 15% RH (D outside
[-15%;15%]) almost always fall in either one or the other extreme end of the estimated distribution (red and blue boxplots in
Fig. 7b). Table 1 provides, for each atmospheric layer, the portion of the distributions that falls inside or outside the interval [-
15%;15%]. The proportion of extremes vary from one layer to the another. It allows us to separate the two maxima of the U-
shape of the rank histogram/Talagrand diagram (Fig. 6.b): the left-hand extreme is largely influenced by the under-estimated
values in the lower layers (750-800 hPa, 850-950 hPa) while the right-hand extreme is driven by the over-representation of
over-estimations in the higher layers (100-200 hPa, 250-350 hPa).

D<-15%% RH -15<D<15% RH D>15% RH

100 - 200 hPa 1.32% 48.34% 50.34%
250 - 350 hPa 0.41% 71.62% 27.97%
400 - 600 hPa 0.87% 87.66% 11.47%
650 - 700 hPa 13.23% 74.31% 12.46%
750 - 800 hPa 38.67% 52.37% 8.96%
850 - 950 hPa 22.34% 70.45% 7.21%

Table 1: Part (in %) of the distributions within the three categories of differences D for each atmospheric layer.

An added value of the probabilistic approach resides in the contrast and variability of the results within the +15% RH range.
As previously shown, the implicit hypothesis in a deterministic method does not allow to narrow the confidence interval further
than 15% RH, thus preventing a more contrasted diagnosis of the model’s outputs. The grey boxplots highlight the great

variability in cases contained within the deterministic interval, that is not revealed by a small difference D to the mean estimate
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RH,,s. Even though the distributions of P are fairly spread, in the highest layers (above 400 hPa) they have a strong tendency
to fall on higher percentiles of the reference distributions: more than 75% of the simulations of the first two layers (between
100 and 350hPa) are above 0.75 and 65% into the upper 0.05. It confirms the general overestimation displayed by the
deterministic results in these layers. The underestimations of the lower layers are also clear, with 54.4% and 39.1% of the
simulations falling into the lower quarter of the reference distribution in the second to lowest layer (750-800 hPa) and lowest
layer (850-950 hPa), respectively. The distribution of the 650-700hPa layer is the most centered, yet is spread and still has
more than half of the associated percentiles (66.2%) outside the 0.25-0.75 interval.

The 400-600hPa layer has the narrowest distribution of deviations from the mean within the +15% RH range. However, the
distribution of the associated percentiles is mostly located towards the higher half (64.7% above 0.75) and nearly half of the

simulations (47.0%) fall onto the upper extreme 0.05%.

4.3.2 Maps: Deterministic results

The two maps in Fig. 8 show the results of the deterministic approach in terms of the average deviation from RH,,, (D) (Fig.
8.a) and frequency of RHmea Within the + 15% RH range (Fig. 8.b) for layer (400-600 hPa; other layers can be found as

supplementary material). The combined results of the three-month period show recognizable patterns.
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Figure 8: Deterministic comparisons for layer 400-600 hPa over the April to June 2018 period. (a) Map of the mean difference D =

(RH,,q — RH,;,) and (b) frequency of instantaneous difference D falling within [-15;15] over the 3-month period.
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The majority of the average deviations D are close to zero (displayed in grey in Fig. 8.a). These regions have 80% to 100% of
single-time-step D within the £ 15% RH range (light to dark green in Fig. 8.b). On average, the model’s overestimated RH
values (blue) are localized above known convective areas (ITCZ, South Pacific Convergence zone, or due to south-American
coastal orographic convection processes). These on-average overestimated zones are characterized by low frequencies of
single-time-step D within the + 15% RH range (50% and less, appearing as yellow and orange in Fig. 8.b). It indicates that
this potential bias occurs at least half the time over the study period. Only a small number of pixels show an on-average
underestimation (red), as predicted by the distribution of the deviation results (see Fig. 7.a and the discussion in section 4.3.1).
The results of this method reveal a slight moist bias in the convective zones, but mostly validate ARPEGE simulations

everywhere else outside these areas.

4.3.3 Maps: probabilistic results

Figure 9 represents maps of the probabilistic comparison method in terms of spatial distribution of the mode Psu of the PDF
calculated from the single-time-step P aggregated over the 3 months, and the frequencies of P within the three categories (P <
0.25,0.25 <P <0.75,P > 0.75).
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The probabilistic comparison method highlights a majority of contrasted extreme values, which indicates a high probability of
ARPEGE’s RHnoq falling onto one or the other extreme quarter of the RHoqps CDF. The maps show organized and contrasted
spatial patterns with a majority of overestimated areas (blue to dark blue in Fig. 8.a) along with some under-estimated patches
(red to dark red). The overestimations are predominant with a frequency of at least 40% in most areas (Fig. 8.d). The convective
zones are overestimated with the deterministic method but seem more complex with probability P falling on both the middle
half and the upper extreme segments of the RHops CDF.

The red patch located south of the African continent (Fig. 9.a) indicates a recurring underestimation of the model, with RHmoqg
values falling in the lower quarter of the RHo,s CDF. These underestimations happen at least half of the time during the studied
period (in bright red in Fig. 9.c). The frequencies of simulated values within the middle half part of the reference distribution
are fairly low (mostly under 0.4, Fig. 9.b). The frequencies of P > 0.75 are almost null (Fig. 9.d). Other underestimated areas
can be observed, e.g. above the Caribbean and above the Pacific Ocean, east of Australia. Above the Indian ocean, even though
most D are within the £ 15% RH range, the situation appears to be significantly more contrasted with the probabilistic approach.
Again, the deterministic approach only finds close RHmoq Values to RH,,, the probabilistic method assigns high probabilities
for RHmog to fall into one or the other extreme of the RHgs distribution. In this area, both high frequencies of P in the lower
and the upper quarters of the distribution are found spatially close to each other and without any particular pattern (speckled
aspect in the Indian Ocean, Fig. 9.a, 9.c and 9.d).

These various problematic areas do not particularly stand out when solely using a deterministic comparison approach. The
probabilistic method allows for a more contrasted and detailed assessment. Note that the analysis of the results with regard to

the model specificities, such as its parameterization of convection, are outside the scope of this paper.

5 Conclusion

This paper showcases the importance of considering all the reference information content through a probabilistic approach that
considers the reference distribution to assess ARPEGE model simulations. The probabilistic reference is derived from finer-
scale RH estimates aggregated into a probability density function at the ARPEGE spatial resolution. In widely used
deterministic comparison approaches, the reference distribution is only considered through its first moment (and sometimes
its second moment) only. Moreover, nowadays, a lot of satellite products offer second moment that enable inter comparison
studies. However, the propagation of uncertainties assumes a Gaussian distribution which is not the case here. We developed
a probabilistic approach for the retrieval of RH that gets rid of such assumptions.

The improved assessment with the probabilistic approach is demonstrated by comparing the insights obtained on ARPEGE

with that from a deterministic method involving the difference RH,,,,; — RH,,s and a +15% RH confidence interval.
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First results highlight the inherent inaccuracy of solely using averaged references due to the important variability of spread
and shape of the reference estimates. By computing the inter-quartile range (IQR) for the whole reference dataset, it was found
that the spread of the PDFs varies significantly and are linked to the RH magnitude, with wider distributions in moist areas
and narrower in drier conditions. A deterministically set confidence interval is relevant to the variability of the spread to some
extent only. It promotes a comparison method that quantifies more precisely the deviation of the simulated value irrespective

of the reference distribution variability, spread and shape.

Both deterministic and probabilistic methods were confronted on a single time step and over the 3-month period. Most RH
values simulated by ARPEGE fit within the £ 15% RH confidence interval with a slight moist bias detected in the ITCZ.
However, the probabilistic method reveals that RH,,,,4 Values that differ from RH,,, by more than 15% RH (D < -15% RH or
D > +15% RH) often correspond to the extreme 5% of the reference distributions (P < 0.5 or P > 0.95). The probabilities
associated with RH,,,4 values within the deterministic confidence range are often outside the probabilistic confidence interval
[0.25 — 0.75], which highlights model biases. The highest layers (100-600 hPa) show high occurrence of probabilities within
the upper quartile of the reference distributions (P > 0.75), allowing to conclude that ARPEGE overestimates RH in these
layers. The middle and lower layers (600-950 hPa) have P distributions more centered around the reference median but are
wider than the 0.25-0.75 interval. For these layers, the spatial distribution of the probabilistic results shows a likely
overestimation of ARPEGE in convective areas and a tendency to underestimate specific subsiding systems. This last

observation is not detected with the deterministic method and it adds new perspectives on potential biases of ARPEGE.

Overall, the probabilistic comparison allows a more contrasted and complete assessment. The bias structures that are revealed
fit known humidity patterns. A more complete analysis with regard to the model’s specificities could help highlight areas of

improvement. The method presented here can be generalized to different models, variables, and observations.
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