1	Simulated impacts of vertical distributions of black carbon
2	aerosol on meteorology and PM2.5 concentrations in Beijing
3	during severe haze events
4	
5	Donglin Chen ¹ , Hong Liao ^{1*} , Yang Yang ¹ , Lei Chen ¹ , Delong Zhao ² , Deping Ding ²
6	
7	¹ Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu
8	Engineering Technology Research Center of Environmental Cleaning Materials, Collaborative
9	Innovation Center of Atmospheric Environment and Equipment Technology, School of
10	Environmental Science and Engineering, Nanjing University of Information Science &
11	Technology, Nanjing, Jiangsu, China
12	² Beijing Weather Modification Office, Beijing 100089, China
13	
14	
15	
16	*Correspondence to: Hong Liao (hongliao@nuist.edu.cn)
17	

Flight date and time	hs value	
2016/12/11 16:20	N/A	
2016/12/12 13:05	0.82	
2016/12/12 15:39	0.96	
2016/12/16 15:47	0.53	
2016/12/17 15:59	0.35	
2016/12/18 14:22	0.79	
2016/12/19 16:09	0.48	

Table S1. The values of *hs* for each flight.

Figure S1. The calculated percentage of BC mass column burden in each layer below

- 25 f) and different exponential decline functions (g-l).
- 26

Figure S2. Observed (black dot) and simulated (red line) temperature (°C) profiles in
Beijing at 8 am and 8 pm LT during 11-19 December 2016.

32 Figure S3. Horizontal distribution of observed and simulated AOD at 550 nm averaged

33 11-19 December 2016.

Figure S4. (a) The spatial distribution of wind at 10 m in NoBCrad case averaged two haze events. (b-c) The spatial distributions of changes in wind at 10 m due to BC DRE with original and modified vertical profiles, respectively. The dotted areas are statistically significant at the 95% level, as determined by a two-sample Student's t test.

Figure S5. Direct radiations of BC at the surface (SUF), in the atmosphere (ATM) and
at the top of atmosphere (TOA) in Beijing averaged 12 and 16-19 December in six
sensitivity experiments (VerBC_hs1-6).

Figure S6. The spatial distributions of changes in wind at 10 m due to BC DRE with
two exponential functions (VerBC_hs1,6 minus NoBCrad) and one observed transport
vertical profile (VerBC_RT minus NoBCrad) average 0:00-11:00 LT (a, d, g), 12:0018:00 LT (b, e, h), and 19:00-23:00 LT (c, f, i).