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Table S1. Summary of characteristic wavenumbers of selected functional groups.

Absorption frequencies

Functional groups () References

organic nitrates (RONQO,) 860, 1280, 1630—1640 (Bruns et al., 2010)
sulfates (SO7) 612-615,1103-1135 (Hawkins et al., 2010)
aliphatic carbon (C-H) 28503000 (Zhong and Jang, 2014)
esters (RC(O)OR”) 1050-1160 (Hung et al., 2013)
0-0 960 (Jia and Xu, 2018)
C-N stretch 1315 (Liu et al., 2015)
carboxylic acids 875-970, 1210-1320,

(RC(}é))OH) 1685-1740, 2500-3300 (Hung et al., 2013)
aldehydes (RC(O)H) 1325-1450, 1720-1740 (Hung et al., 2013)
ketones (RC(O)R”) 1100-1170, 17151745 (Hung et al., 2013)

alcohols (R-OH) 3200-3500 (Zhong and Jang, 2014)




Table S2. Organosulfur compounds detected in aerosol particles from TMB/NO,/SO, photooxidation using UPLC-
HRMS.

Molecular Measured Suggested ion a Proposed chemical
weight [M - HJ formula S structure
Organosulfates
226 225.00772 CeHeO7S" 1.219 =§r<:
Olc[)so;n
o 0SO;H/==0
228 227.00150 CsH70sS" -2.059 w
OH
o (o]
240 239.02271  CrHuOrS -1.638 ngzz
0SO;H OH
HO
[¢] 0
242 241.00168 CeHgOsS -2.833
0S0;H oy
OH
o 0S0;H/=—=0
244 242.99619 CsH700S -2.886 W
HO OH
300 299.04395 CoH1500S -0.938 3 ;@(
316 315.03867 CgH15010S -1.494 ‘
345 344.02853 CoH14011NS" -2.250 ;
214 212.98590 CsHs0sS -1.954 Unidentified
268 267.01724 CsH110sS -2.879 Unidentified

Organic sulfonates

228 227.00159 CoH70sS -1.675

o’/q 3
Y

SOzH

230 229.01706 CoHoOsS -2.437

:o
o
I

2 The molecular formula was assigned based on accurate mass measurements with a mass tolerance of + 5 ppm.



Table S3. Observed products in NH3-involved photooxidation.

M\/?/L?;ﬂltar Measured ions Sug];cgerersgs?aion Error (ppm) ¢ o/C log10C* (ug m3) 9
742 72.99308 C2HOs -0.508 1.50 6.16
882 87.00876 C3H305 -0.100 1.00 6.18
150% 149.0088 C4Hs0¢ -1.882 1.50 2.16
1142 113.02439 CsHs03 -0.231 0.60 5.87
146* 145.01407 CsHsOs -1.277 1.00 3.53
162% 161.00876 CsHsO¢ 4311 1.20 2.23
1482 147.02985 CsH70s -0.342 1.00 3.53
164* 163.02470 CsH70¢6 -0.657 1.20 2.23
174% 173.00879 CeHs0¢6 4.188 1.00 2.20
1282 127.04013 CeH703 0.497 0.50 5.61
144% 143.03482 CeH704 -1.128 0.67 4.58
160 159.03011 CeH705 1.314 0.83 3.43
176 175.02451 CesH706 4.520 1.00 2.20
146% 145.05052 CesHoO4 -0.759 0.67 4.58
162% 161.04543 CeHoOs -0.753 0.83 3.43
178% 177.04028 CeHoO6 -1.005 1.00 2.20
1722 171.02988 C7H70s5 -0.116 0.71 3.28
188% 187.02446 C7H720¢6 3.985 0.86 2.11
156 157.05048 C7HoO4 -0.993 0.57 4.36
174% 173.04514 C7H9Os5 -2.376 0.71 3.28
190% 189.03993 C7H9O¢ 3.003 0.86 2.11
160 159.06609 C7H1 O« -1.234 0.57 4.36
176% 175.06070 C7H110s -2.840 0.71 3.28
2162 215.01923 CsH707 -2.324 0.88 0.79
186% 185.04509 CsHyOs -2.469 0.63 3.08
2022 201.04025 CsH9Og 4.418 0.75 1.97
188% 187.06075 CsH1iOs -2.413 0.63 3.08
2042 203.05577 CsH11O¢6 3.724 0.75 1.97
184° 185.08040 CoH1304" -2.360 0.44 3.81
2162 215.05579 CoH1106 -1.512 0.67 1.79
2324 231.05043 CoH11O7 2.169 0.78 0.66
2642 263.03973 CoH1109" -4.262 1.00 -1.77
202 201.07658 CoH1305 -1.307 0.56 2.85




Table S3. Continued.

Molecular . Suggested ion

weight Measured ions I Error (ppm) ¢ o/C log10C* (ug m3) ¢
218% 217.07117 CoHi1306 2.314 0.67 1.79
2344 233.06613 CoHi1307° -2.336 0.78 0.66
2502 249.06107 CoHi130s -2.107 0.89 -0.53
2202 219.08690 CoHi506 -2.339 0.67 1.79
2362 235.08188 CoHi507° -1.903 0.78 0.66
2524 251.07664 CoHi50s" -2.372 0.89 -0.53
2292 228.05083 CoH1006N" -2.338 0.67 0.36
229° 230.06591 CoH1206N* -3.365 0.67 0.36
231% 230.06701 CoH1206N" -2.028 0.67 0.36
231" 232.08087 CoH1406N* -2.981 0.67 0.36
2652 264.07187 CoH1408N" -2.350 0.89 -1.09
265" 266.08615 CoH160sN* -3.351 0.89 -1.09
1912 190.03529 CeHsO6N- -2.192 1.00 1.36

2 The molecules were detected by UPLC-HRMS in the negative mode.
®The molecules were detected by UPLC-HRMS in the positive mode.

¢ The molecular formula was assigned based on accurate mass measurements with a mass tolerance of + 5 ppm.

4 The saturation mass concentrations of observed products were predicted based on the method of Li et al. (2016).
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Figure S1. Decay of SO, during the photooxidation of TMB (Exps. 2—4, 6-8).
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Figure S2. Time profiles of TMB for photooxidation experiments under low- (a) and high-NO, (b) conditions with
different SO; levels.
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Figure S3. The particle sulfate, nitrate, and ammonium loadings for aerosol samples collected from the photooxidation
of TMB under low- (a) and high-NO, (b) conditions with SO, introduction. None: SO, = 0 ppb; low: SO, = 50-70 ppb
intermediate: SO, = 100—120 ppb; high: SO, =200-230 ppb.
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Figure S4. MS/MS spectra of organosulfates generated from the photooxidation of TMB in the presence of SO,.
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Figure S4. Continued.
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Figure S5. MS/MS spectra and fragmentation schemes of ion at m/z 227.00159 and 229.01706 observed in aerosol
particles from TMB photooxidation in the presence of SO».
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Figure S6. Observed initial growth rates of acrosol particles under SO,-free and SO»-added (~ 230 ppb) conditions (Exps.
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Figure S7. High-resolution mass spectra of aerosol particles from TMB photooxidation with/without NH; introduction.

Panels a—b: positive ion mode. Panels c—d: negative ion mode.
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Figure S8. Ion chromatography results for aerosol particles formed from the photooxidation of TMB in the presence of

SO, and NHj3 Panel (a): Ammonium. Panel (b): Sulfate.
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