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Abstract. Assessment of bottom-up greenhouse gas emissions estimates through independent methods is needed to 

demonstrate whether reported values are accurate or if bottom-up methodologies need to be refined. We report atmospheric 10 

methane (CH4) mole fractions and δ13CH4 measurements from Imperial College London since early 2018 using a Picarro 

G2201-i analyser. Measurements from March 2018 to October 2020 were compared to simulations of CH4 mole fractions and 

δ13CH4 produced using the NAME dispersion model coupled with the UK National Atmospheric Emissions Inventory, UK 

NAEI, and the global inventory, EDGAR, with model spatial resolutions of ~2 km, ~10 km, and ~25 km. Observed mole 

fractions were underestimated by 30-35 % in the NAEI simulations. In contrast, a good correspondence between observations 15 

and EDGAR simulations was seen. There was no correlation between the measured and simulated δ13CH4 values for either 

NAEI or EDGAR, however, suggesting the inventories’ sectoral attributions are incorrect. On average, natural gas sources 

accounted for 20-28 % of the above background CH4 in the NAEI simulations, and only 6-9 % in the EDGAR simulations. In 

contrast, nearly 84 % of isotopic source values calculated by Keeling plot analysis (using measurement data from the afternoon) 

of individual pollution events were higher than -45 ‰, suggesting the primary CH4 sources in London are actually natural gas 20 

leaks. The simulation-observation comparison of CH4 mole fractions suggests that total emissions in London are much higher 

than the NAEI estimate (0.04 Tg CH4 yr-1) but close to, or slightly lower than the EDGAR estimate (0.10 Tg CH4 yr-1). 

However, the simulation-observation comparison of δ13CH4 and the Keeling plot results indicate that emissions due to natural 

gas leaks in London are being underestimated in both the UK NAEI and EDGAR.  

1 Introduction 25 

Urban areas are hotspots of greenhouse gas (GHG) emissions accounting for 70 % of anthropogenic GHG emissions (IPCC, 

2014), making them important targets for GHG emissions mitigation (Duren and Miller, 2012; Hopkins et al., 2016). Urban 

areas account for 21 % of global anthropogenic CH4 emissions (Marcotullio et al., 2013), and over 40 % of global CH4 

emissions from the waste, energy and transport sectors come from cities (Marcotullio et al., 2013).  

 30 
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In the UK, the National Atmospheric Emissions Inventory (NAEI) uses a bottom-up methodology to estimate CH4 emissions 

and their spatial and sectoral distributions. The London region enclosed within the London orbital motorway comprise 0.65 % 

of the UK’s land area yet accounts for 2.7 % of the UK’s annual CH4 emissions, and 9.1 % of the UK’s annual fugitive (e.g. 

leaks from the natural gas distribution network) CH4 emissions (NAEI, 2017). In the 2017 UK NAEI estimates, CH4 from the 

waste sector is the dominant source in London accounting for 52 % of London’s CH4 emissions, with fossil-fuel sources of 35 

methane (e.g. fugitive gas emissions) making up 41 % of London’s CH4 emissions (NAEI, 2017).  

 

Attributing emissions to specific sources can be challenging when CH4 sources are collocated. Isotopic measurements of 

13C/12C in CH4 (13CH4) have become an established means for discriminating between sources of CH4 (e.g. Fisher et al., 2017; 

France et al., 2016; Tans, 1997). Sources can be distinguished by their different isotopic source signatures (e.g. Sherwood et 40 

al., 2017). UK isotopic signatures of waste have an average value of -58 ‰ whereas the average for natural gas is -36 ‰ 

(Zazzeri et al., 2017). The isotopic signatures of some sources have been found to exhibit spatiotemporal variations (Feinberg 

et al., 2018) so it is preferable to use regional values, when available, for interpreting atmospheric 13CH4 measurements 

(Feinberg et al., 2018; Hoheisel et al., 2019; Zazzeri et al., 2017).  

 45 

Bottom-up CH4 inventories tend to underestimate emissions in comparison to atmospheric measurements in urban regions 

(Brandt et al., 2014), including in London. Helfter et al. (2016) conducted eddy-covariance measurements from the BT Tower 

in central London between 2012-2014 and found emissions (72 ± 3 ton km-2 yr-1) were more than double the NAEI inventory 

values, which was attributed to gas leaks being underestimated in the inventory (Helfter et al., 2016). Zazzeri et al.  (2017) 

also concluded that gas leaks were underestimated after finding many large gas leaks in mobile measurement surveys. 50 

However, a study using aircraft measurements from a single flight around the London region in 2016 suggested the UK NAEI 

was overestimating CH4 emissions and they needed to be scaled down by 0.71 (0.66-0.79) to be consistent with the aircraft 

measurements on this particular day (Pitt et al., 2019).  

 

Discrepancies between atmospheric measurements and bottom-up estimates have similarly been found in other urban regions. 55 

CH4 observations in Boston, USA found natural gas emissions were 2-3 times higher than the emissions estimates from a 

customised inventory made up of local data (McKain et al., 2015). Airborne CH4 flux measurements were more than double 

the 2015 EDGAR v5.0 inventory estimates in Berlin (Klausner et al., 2020). In Paris, Xueref-Remy et al. (2020) conducted 

mobile surveys for CH4 and 13CH4 over 2012-2015 and found that emissions from the waste water treatment sector were 

being underestimated in the AIRPARIF 2013 inventories.  60 

 

Instruments capable of making continuous measurements of atmospheric 13CH4 have recently become available, yet only a 

few studies have deployed them to attribute CH4 emissions in areas of mixed sources. Venturi et al. (2020) measured 13CH4 
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in Florence, Italy, over a few months in 2017 and found that CH4 emissions in the city were mainly due to natural gas emissions. 

In Cabauw, Netherlands Röckmann et al. (2016) deployed a dual isotope mass spectrometric system and a quantum cascade 65 

laser spectrometer to measure 13CH4. Model-data comparisons of 13CH4 across five months found simulations using the 

EDGAR inventory overestimated fossil-fuel CH4 sources for this region. Assan et al. (2018) used a Picarro G2201-i to measure 

13CH4, along with other atmospheric tracers, near a natural gas compressor station and found local sources were dominated 

by natural gas CH4, with traffic-related and ruminant sources also present. The first network of continuous atmospheric 13CH4 

measurements, using cavity ring-down spectroscopy (CRDS), comprised of four tall towers in the Marcellus Shale gas region, 70 

Pennsylvania (Miles et al., 2018) showed mean differences between flask and in situ 13CH4 were between 0.02 ‰ and 0.08 

‰, demonstrating CRDS has the capacity to make high-precision 13CH4 measurements that align with flask measurements. 

 

Here we present over two years of continuous measurements of CH4 mole fractions and 13CH4 values made from the South 

Kensington campus of Imperial College London (ICL), in central London; the longest in situ 13CH4 measurement campaign 75 

reported to date. An automated Keeling plot analysis was created to determine the isotopic source values (s) of individual 

pollution events. We compare observations with atmospheric transport model simulations using 2017 UK NAEI and Emissions 

Database for Global Atmospheric Research (EDGAR) 2012 v4.3.2 (http://edgar.jrc.ec.europa.eu/overview.php;  Janssens-

Maenhout et al., 2012) bottom-up inventory estimates and their source apportionment for the London region. We used the UK 

Met Office’s Numerical Atmospheric-dispersion Modelling Environment (NAME v7.2; Jones et al., 2007) to transport these 80 

emissions under three different spatial resolutions to simulate the excess mole fractions and 13CH4 at ICL.  

2 Methods 

2.1 Measurements and site description 

Measurements of CH4 mole fractions and 13CH4 values were made at ICL using a Picarro G2201-i isotopic analyser beginning 

in early 2018. Ambient air is sampled from an inlet mounted on a 2 m mast located on the southeast corner of the Huxley 85 

building roof (~26 m.a.g.l., 51.4999o N, 0.1749o W; Fig. 1). Measurement data are averaged into 1, 5, 20, and 60-minute 

intervals by GCWerks software (http://www.gcwerks.com). There are gaps in the data at times when the instrument was being 

used for laboratory tests. The mast is equipped with a weather station (ClimeMet) measuring 5-minute averaged wind speed 

and direction as well as atmospheric pressure and temperature. The air inlet is approximately level with the surrounding 

rooftops and there are four main roads nearby.  90 

https://doi.org/10.5194/acp-2021-606
Preprint. Discussion started: 28 September 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

 

Figure 1: Map of the surrounding area of Imperial College London with the UK CH4 1 km NAEI estimates overlaid. The locations 

of large CH4 sources are indicated. © OpenStreetMap contributors 2019. Distributed under the Open Data Commons Open 

Database License (ODbL) v1.0. 

There are several large potential sources of CH4 in the vicinity of ICL that may influence the atmospheric CH4 and 13CH4 95 

measurements. The locations of some of these sources are highlighted on Fig. 1 with the UK NAEI CH4 1 km emissions 

superimposed. There are ~20 small sewage pumping stations and a waste facility south of the site in the Battersea area. An on-

campus natural gas-fired power station is located in the basement of the Electrical and Electronic Engineering building (~200 

m east of the inlet) with the stack emitting at ~ 52 m.a.g.l. (Sparks and Toumi, 2010). Eddy-covariance measurements of CO2 

previously conducted from the top of the adjacent building frequently detected emissions from the power station, and found a 100 

mean CO2 flux of 18.6 µmol m-2 s-1 from the power station (Sparks and Toumi, 2010). This was ~70 % smaller than the UK 

CO2 NAEI estimate of emissions from the power station at the time. The UK NAEI inventory estimates CH4 emissions from 

the power station are 3.47 × 103 kg CH4 yr-1 (NAEI, 2017; Fig. 1).  
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2.2 Picarro calibrations and data correction 

2.2.1 Measurement setup 105 

Outside air is drawn into the lab through a 3/8" Synflex tube by a 30 litres-per-minute (lpm) KNF Laboport pump. Air is dried 

to water levels of 0.01 % using a Nafion Perma Pure gas dryer (PD-50-24) in the split sample configuration, with a 5 lpm 

diaphragm pump for the counterflow. The Nafion dryer was installed in August 2019. A water correction (Sect. 2.2.4) was 

applied to the sample air between March 2018 and August 2019 when the air was not dried. A Picarro 16-port manifold is used 

to switch valves and direct either outside air or standard tank air into the Picarro. A pressure controller between the manifold 110 

and the Picarro inlet (PC-100PSIA-D/5P, Alicat Scientific, Inc.) is used to keep the inlet pressure constant at approximately 

14 psia.  

2.2.2 Allan variance  

An Allan variance (Allan, 1966) was calculated to measure the noise and drift response of the instrumentation over different 

averaging times. Two air tanks with ambient CH4 mole fractions and 13CH4, referred to as the "low" standard (1900 ppb, -115 

48.0 ‰) and "high" standard (2200 ppb, -47.0 ‰), have each been measured continuously for 24 h. An averaging time of four 

minutes has Allan variances of 0.3 ‰ and 0.2 ‰ for the low and high standard 13CH4 values (Fig. S1), respectively. This is 

consistent with previous tests carried out with Picarro G2201-i instruments (Miles et al., 2018; Rella et al., 2015). An averaging 

time of 20 minutes reduces the Allan variance to less than 0.1 ‰.  

2.2.3 Calibration procedure and measurement uncertainty 120 

Different calibration procedures were tested using one air tank as a working standard to correct for instrument drift and another 

air tank as a target tank to assess the standard deviation of the measurements. We assumed the response of the instrument was 

linear within the observed range (-50 to -42 ‰, 1900 to 4000 ppb) (Rella et al., 2015) and the working standard is stable and 

applied a one-point calibration by measuring the working standard once per day for an hour. The "bracketing technique" was 

used to correct for instrumental drift; i.e. the measurements were calibrated against the time-interpolated value of two adjacent 125 

standard measurements. There was an average daily drift of 0.25 ppb for CH4 and 0.7 ‰ for 13CH4. Both air tanks were 

calibrated against two primary standards which were prepared at the Max Planck Institute for Biogeochemistry (MPI-BGC).  

 

We tested calibrations based on the ratio or the difference between the measured value of the standard and the assigned 

calibrated value. Ratio-based calibration adjusts the slope, thus the correction varies with the measured value, whereas 130 

difference-based calibration adjusts the intercept and the correction does not vary across the measured value. Some studies 

recommend calibration of individual isotopologues (Griffith, 2018), while others use 13CH4 (Rella et al., 2015). The following 

calibration procedures for 13CH4 were tested:  
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1. 13CH4 and 12CH4 mole fractions were calibrated independently based on the ratio and then a calibrated 13CH4 was 

computed. 135 

2. 13CH4 and 12CH4 mole fractions were calibrated independently based on the difference and then a calibrated 13CH4 

was computed. 

3. 13CH4 values were calibrated directly based on the ratio. 

4. 13CH4 values were calibrated directly based on the difference. 

We applied the different calibration procedures to 20-minute averaged measurements of the target from May 2019 to November 140 

2019.  All the calibration procedures performed comparably and reduced the standard deviation of the target tank 13CH4 

values from 1.1 ‰ to 0.2 ‰. We chose to apply a one-point calibration based on the ratio between the measured standard 

value and the assigned 13CH4 value, which is the default calibration procedure used by GCWerks software. Rella et al. (2015) 

also applied calibration constants on the 13CH4 values rather than on the 13CH4 values. The total CH4 mole fraction was 

calculated using calibrated 12CH4 and 13CH4 values, where 12CH4 was also calibrated using a one-point calibration based on 145 

the ratio of the measured and assigned values. We regard the standard deviation of calibrated CH4 mole fractions and 13CH4 

in the target tank to be the best indicator of our measurement uncertainty, at 0.28 ppb and 0.2 ‰ for 20-minute averages after 

May 2019, and 1.8 ppb and 0.6 ‰ before May 2019. The mean of the standard deviations of each standard tank is 0.18 ppb 

and 0.5 ‰ before May 2019, and 0.16 ppb and 0.4 ‰ after May 2019, for CH4 and 13CH4 respectively. The larger uncertainty 

before May 2019 is likely related to unexplained larger variations in the measurements of one of the reference tanks. 150 

 

A correlation between atmospheric pressure and 13CH4 is seen in the raw measurements, which has been observed for CO in 

other Picarro analysers (Yver Kwok et al., 2015). The daily working tank calibrations removed the effect of atmospheric 

pressure variations over more than one day. For some days when atmospheric pressure changed rapidly within one day, 

artefacts appeared in 13CH4. The 13CH4 measurements were inspected for periods of high variability in atmospheric pressure 155 

and manually flagged to remove these artefacts.  

 

Here, measurements at ICL were compared to the 13CH4 observations at the Mace Head Observatory carried out by the 

Institute of Arctic and Alpine Research (INSTAAR) of the University of Colorado. Therefore, we applied a value of +0.28 ‰ 

to correct for the laboratory offset between INSTAAR and MPI-BGC measurements (Umezawa et al., 2017). 160 

2.2.4 Water correction 

A cross interference from water has been observed on the 13CH4 values during the period March 2018-August 2019 when 

sample air was not dried. Rella et al. (2015) state the gas stream should be dried to <0.1 % water vapour content to increase 

measurement accuracy. Data measured before applying the Nafion dryer were corrected for the water vapour influence. To 

determine the correction coefficients, the water vapour concentration of a working standard with a 13CH4 value of -48.5 ‰ 165 
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was varied using the setup in Fig. S2. A water correction range between 0 % and 2.2 % was generated by using two mass flow 

controllers to adjust the flow rate through the bubbler (Fig. S2). Five measurement cycles (each cycle being ~ 6 h) with 13CH4 

values increasing with water vapour concentration are shown in Fig. S3a. The correction coefficients were determined by 

applying a least squares regression on the ratio of wet-to-dry 13CH4 values against the water concentration (Fig. S3b). Using 

the calibrated working standard 13CH4 value of -48.5 ‰ as the dry value, we calculated the following equation to correct for 170 

the water dependency: 

𝑑𝑟𝑦 𝑑𝑎𝑡𝑎 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎

−0.0109 𝑋𝐻2𝑂+1.0023
. (1) 

The errors of the linear regression parameters from the water vapour correction experiment were ~10-3 ‰ suggesting there is 

no additional uncertainty resulting from the water vapour correction.  

2.3 Keeling plot analysis 175 

The Keeling plot technique (Keeling, 1961; Pataki et al., 2003) was used to assess isotopic signatures (s) of local and regional 

sources by analysing data across three different moving time intervals, or "windows" that were 12 h, 3 days, and 7 days in 

length. We expect that the s values obtained with the 12 h window emphasize sources local to the measurement site, 

particularly the local emissions that accumulate in the nocturnal boundary layer. For the 3-day and 7-day time windows we 

used only daytime data between 13:00-17:00 when the planetary boundary layer (PBL) is at its largest to find s values more 180 

representative of sources from the wider area. For all three time windows an orthogonal distance regression was applied to the 

20-minute averaged data using an automated algorithm, similar to Röckmann et al. (2016). To ensure a coherent pollution 

event was captured, the s value from each moving window was retained if the mole fractions varied by more than 150 ppb. 

The choice of this criterion (i.e. the mole fraction peak strength) was based on simulation experiments using pseudo data 

(Supplementary material).  185 

2.4 Atmospheric simulations 

2.4.1 NAME footprints 

Simulations of atmospheric CH4 at ICL were performed using the UK Met Office Lagrangian dispersion model NAME with 

meteorological fields from the UK Met Office’s Unified Model (UM). NAME back-trajectories were used to calculate 

"footprints" of surface emission sensitivities. Each grid cell of the footprint describes the impact an emission from that grid 190 

cell would have on the mole fraction measured at the receptor site at a certain time (Manning et al., 2011; Rigby et al., 2012). 

 

Three sets of hourly footprints were generated, each with a different horizontal spatial resolution: ~25 km, ~10 km, and ~2 km 

(Table 1). The domain of the 2 km resolution footprints covers the British Isles and a small portion of northern Europe, the 

domain of the 10 km resolution footprints covers most of Europe, and the domain of the 25 km resolution footprints extends 195 
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to central Northern America (Fig. 2). The 2 km and 10 km simulations used a 6 day back-trajectory duration whereas the 25 

km simulations used a 30 day back-trajectory duration. Particle release rates of 2 × 104 h-1 were used for the 25 km and 10 km 

footprints and 1.5 × 104  h-1 for the 2 km footprints. Footprints used the Met Office UM 0.0135𝑜 ×  0.0135𝑜  UKV 

meteorological fields over the UK and UM 0.1406𝑜 ×  0.0938𝑜  global meteorological fields for the rest of the modelling 

domain. To compare simulations that used footprints with different modelling domains we created nested footprints that used 200 

the higher resolution footprints for the inner domain and the coarser footprints for the outer domain(s); Table 2.  

 

Table 1: NAME model parameters used for each of footprints. 

Footprint Horizontal spatial resolution Particle release rate Back-trajectory duration 

25 km 𝟎. 𝟑𝟓𝟐𝐨 × 𝟎. 𝟐𝟑𝟒𝐨 𝟐𝟎𝟎𝟎𝟎 𝐡-1 30 days 

10 km 𝟎. 𝟏𝟎𝐨 × 𝟎. 𝟏𝟎𝐨 𝟐𝟎𝟎𝟎𝟎 𝐡−𝟏 6 days 

2 km 𝟎. 𝟎𝟐𝟎𝐨 × 𝟎. 𝟎𝟐𝟎𝐨 𝟏𝟓𝟎𝟎𝟎 𝐡−𝟏 6 days 

 

Table 2: Summary of atmospheric CH4 simulations. WetCHARTs and GFED4 were used for wetland and biomass burning emissions 205 
in all simulations. 

Simulation Footprints Anthropogenic emissions 

EDGAR-25km 25 km EDGAR 

EDGAR-10km 10 km nested in 25 km EDGAR 

NAEI-25km 25 km NAEI in UK, EDGAR outside UK 

NAEI-2km 2 km nested in 10 km nested in 25 km NAEI in UK, EDGAR outside UK 

 

Footprints were combined with gridded emissions (Sect. 2.4.2) to simulate CH4 mole fractions above the background mole 

fractions outside the footprint domain (i.e. excess CH4 mole fractions). To compare the simulated excess CH4 mole fractions 

to the measurements at ICL, we subtract daily background CH4 mole fractions from the Mace Head Observatory (Arnold et 210 

al., 2018; Manning et al., 2011) from the 20-minute averaged measurements at ICL.  

 

Simulated atmospheric 13CH4 (air) were calculated from a weighted average of the isotopic signatures of individual source 

sector components of excess CH4 using the NAME simulations, and the background 13CH4 (bg) at Mace Head following: 

𝛿𝑎𝑖𝑟 =
𝛿𝑏𝑔𝐶𝑏𝑔+ ∑ 𝛿𝑖𝐶𝑖𝑖

𝐶𝑏𝑔+∑ 𝐶𝑖𝑖
. (2) 215 

Where 𝐶𝑖 and 𝛿𝑖 are the excess CH4 and isotopic signatures of the individual source sectors, and 𝐶𝑏𝑔 and bg are the background 

CH4 mole fraction and 13CH4.  
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Background 13CH4 values were calculated using measurements at Mace Head by following the method outlined in Manning 

et al. (2011). Footprints at Mace Head are used to assess which measurements were not influenced by significant emissions 220 

and are suitable as background measurements. We fit a curve of multiple harmonics (e.g. Jones et al., 2015) to the background 

measurements at Mace Head from January 2018 to May 2020. We extrapolate to October 2020 by fitting a linear trend to the 

data and assuming the same seasonal cycle to obtain a time series of daily 13CH4 values that match the period of ICL 

observations.  

 225 

Table 3 lists the isotopic signature assigned to each source sector in the UK NAEI and EDGAR inventories, based on the UK-

specific isotopic source signatures from Zazzeri et al. (2017). For anthropogenic source sectors that did not have a UK-specific 

isotopic source signature (petroleum refining, 1A1b, and Oil, 1B2a, in EDGAR) global values from Sherwood et al. (2017) 

were used. Some source sectors are composed of multiple sources with different isotopic source signatures, for example the 

waste sector includes landfill sites and waste water treatment facilities. In this case the weighted average of the different 230 

sources, based on the UK emissions reported to the UNFCCC (https://di.unfccc.int/comparison_by_category), were used to 

calculate the isotopic source signature of that source sector. 
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Figure 2: The NAME footprint modelling domains. The inset map denotes the area encompassed by the 25 km footprints. The black 

box denotes the domain of the 10 km footprints, which is shown in the main frame along with the 𝟎. 𝟏𝐨 × 𝟎. 𝟏𝐨 EDGAR emissions. 235 
The black box surrounding the British Isles denotes the 2 km footprint domain. 
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Table 3: The correspondence and allocation of methane sources between NAEI and EDGAR along with the assigned δ13CH4 value 

for each source sector. 

Source sector UK NAEI 

SNAP sector 

EDGAR v4.3.2 IPCC 1996 

specification sector 

Assigned δ13CH4 

±1σ (‰) 

δ13CH4 

reference 

Combustion in energy 

production and transfer 

SNAP 01  1A1a  −25 ± 3 

 

Zazzeri et al. 

(2017) 

Non-industrial 

combustion  

SNAP 02 1A4 −25 ± 3 Zazzeri et al. 

(2017) 

Combustion in 

industry 

 

SNAP 03 1A2 −25 ± 3 Zazzeri et al. 

(2017) 

Production processes SNAP 04 2B, 2C1a, 2C1c, 2C1d, 2C1e, 

2C1f, 2C2 

−25 ± 3 Zazzeri et al. 

(2017) 

Extraction and 

distribution of fossil 

fuels 

 

SNAP 05 1A1b, 1A1c, 1A5b1, 1B1a 1B1b, 

1B2a, 1B2b5, 1B2c, 2C1b 

−37 ± 3 Sherwood et al. 

(2017); Zazzeri et 

al. (2017) 

Road transport 

 

SNAP 07 1A3b −20 ± 3 Zazzeri et al. 

(2017) 

Other transport 

 

SNAP 08 1A3a, 1A3c, 1A3d, 1A3e, 1C2 −20 ± 3 Zazzeri et al. 

(2017) 

Waste treatment and 

disposal 

SNAP 09 6A, 6B, 6C, 6D,  −57 ± 3 Zazzeri et al. 

(2017) 

Agriculture SNAP 10 4A, 4B, 4C, 4D −64 ± 3 Zazzeri et al. 

(2017) 

Wetlands 

(WetCHARTs) 

  −71 ± 1 Fisher et al. 

(2017) 

Biomass burning 

(GFED4) 

  −28 ± 3 Zazzeri et al. 

(2017) 

  

 

 250 
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2.4.2 Emissions data  

We used two sources of anthropogenic CH4 emissions data. The first is the Emissions Database for Global Atmospheric 

Research (EDGAR) v4.3.2 for the year 2012 with 0.1o × 0.1o spatial resolution. The second is the UK National Atmospheric 

Emissions Inventory (NAEI) for 2017 with 1 km × 1 km spatial resolution, where we added point source emissions to the 

mapped emissions (which omit point sources) using the locations of the point sources. The NAEI is only available for the UK, 255 

so for simulations using the NAEI we created a hybrid emissions map with NAEI emissions for the UK and EDGAR emissions 

for outside the UK. Both emissions inventories have a yearly time resolution but neither provide gridded numerical 

uncertainties. 

 

The two inventories use different sectoral definitions. The UK NAEI uses CORINAIR Selected Nomenclature for sources of 260 

Air Pollution (SNAP) in which sources are allocated to one of 11 categories, whereas EDGAR follows the 1996 IPCC source 

sector specification. Table 3 shows how we aligned the sources between inventories.  

 

For wetland emissions we used the mean of the 2015 extended ensemble WetCHARTs inventory (Bloom et al., 2017). The 

extended ensemble consists of 18 models with a spatial resolution of 0.5o × 0.5o and a monthly temporal resolution. For 265 

biomass burning emissions we used the Global Fire Emissions Database, v4 (GFED4; Van Der Werf et al., 2017) for 2016 at 

0.25o × 0.25o resolution and a monthly temporal resolution. To avoid double counting we excluded agricultural waste burning 

emissions from GFED4. 

 

The four sets of anthropogenic emissions for the London area are shown in Fig. 3a-d. The UK NAEI emissions are 270 

approximately 2.5 times smaller than the EDGAR emissions for the London area (Table 4; Fig. 3e), but 8 % smaller than the 

EDGAR emissions across the UK (Fig. 3f). The 2 km NAEI and 10 km EDGAR show high emissions from individual grid 

cells that are smoothed out in the coarser 25 km EDGAR grid (Fig. 3a) and 25 km NAEI grid (Fig. 3c). Subtracting the 25 km 

NAEI emissions from the 25 km EDGAR emissions (Fig. 3e-f) indicates the largest differences between inventories were in 

cities; London, Birmingham and the Leeds-Sheffield area, which have higher emissions in the EDGAR inventory. 275 

 

Table 4: EDGAR and NAEI emissions for the UK and London. δ13CH4 is the weighted average of different emission sectors using 

isotopic source signatures in Table 3. 

Region EDGAR emissions 

(Tg CH4 yr-1) 

NAEI emissions 

(Tg CH4 yr-1) 

EDGAR δ13CH4 

signature (‰) 

NAEI δ13CH4 

signature (‰) 

UK 2.25 2.08 -51.7 -30.5 

London 0.10 0.04 -53.7 -47.7 
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We considered four combinations of footprints coupled with anthropogenic emissions data: (i) the 25 km footprints combined 280 

with the EDGAR emissions (EDGAR-25km); (ii) the 10 km footprints nested in the 25 km footprints combined with the 

EDGAR emissions (EDGAR-10km); (iii) the 25 km footprints combined with the UK NAEI emissions for the UK and the 

EDGAR emissions for the rest of the domain (NAEI-25km); and (iv) the 2 km footprints nested in the 10 km and 25 km 

footprints combined with the UK NAEI emissions for the UK and EDGAR for the rest of the domain (NAEI-2km). These are 

summarised in Table 2.  285 
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Figure 3: London CH4 emissions from (a) EDGAR v4.3.2 (2012) scaled at 0.352o  0.234o , (b) EDGAR scaled at 0.10o  0.10o, (c) UK 

NAEI (2017) scaled at 0.352o  0.234o and (d) UK NAEI scaled at0.02o  0.02o. The NAEI scaled at 0.352o  0.234o subtracted from 

the EDGAR emissions (in g s-1) for London is shown in (e) and for the UK in (f). The London region in relation to the UK is shown 

by the black box in (f).  290 
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3 Results 

3.1 Measurements 

The 20-minute averaged CH4 mole fractions and δ13CH4 values from March 2018 to October 2020 along with the Mace Head 

background values are shown in Fig. 4a. Mole fractions ranged from 1895 ppb to 3924 ppb in the ICL measurements with a 

mean value of 2083 ± 145 (1σ) ppb. ICL mole fractions measured during the afternoon (13:00-17:00) were lower on mean, 295 

2028 ± 73 (1σ) ppb, and had a lower maximum value, 2477 ppb, showing that higher concentrations are observed during the 

night-time from the build-up of emissions in the nocturnal boundary layer. The Mace Head background mole fractions ranged 

from 1907-1973 ppb and had a mean value of 1939 ± 13 (1σ) ppb. During the first UK COVID-19 lockdown period (23 

March 2020-15 June 2020) we observe more days with higher CH4 mole fractions compared to the preceding months (Fig. 

4a). This did not result in a difference between the average mole fractions before and during the UK COVID-19 lockdown 300 

period (Fig. 5a).   

 

The δ13CH4 measurements at ICL are shown in Fig. 4b along with the calculated Mace Head background δ13CH4 values. The 

mean δ13CH4 at ICL for this period is −47.1 ± 0.9 (1σ) ‰ with values ranging from -52.4 ‰ to -42.3 ‰. The afternoon 

δ13CH4 mean was nearly the same, −47.2 ± 0.8 (1σ) ‰. Mace Head background δ13CH4 averaged −47.6 ± 0.2 (1σ) ‰ and 305 

ranged from -48.0 ‰ to -47.4 ‰. Observed δ13CH4 at ICL was generally higher than δ13CH4 at Mace Head during 2018, but 

excursions both higher and lower than the background are seen during 2019-20. We see a mean 0.05 ‰ increase in δ13CH4 at 

ICL during the UK COVID-19 lockdown period, but this could be due to seasonal changes rather than anthropogenic 

influences.  
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 310 

Figure 4: The 20-minute averaged measured (a) mole fractions and (b) δ13CH4 values at ICL, along with the daily Mace Head 

background values from March 2018-October 2020. Afternoon (13:00-17:00) data is shown in black. The period of the first UK 

national COVID-19 lockdown is denoted by the pink region. The grey dashed line denotes when the standard and target tanks were 

changed.  

The ICL mole fractions were detrended by fitting a linear polynomial to Mace Head data to find the trend between 2018-2020 315 

with the mole fraction on 1 March 2018 set as the reference point, tref
 . Detrended mole fractions were binned by month to 

evaluate seasonal variations (Fig. 5a). A seasonal cycle is observed with a CH4 minimum occurring in July for both ICL and 

Mace Head measurements. Smaller interquartile ranges and smaller maximum values in the ICL mole fractions are observed 

in the summer months. Diurnal cycles are observed in the detrended ICL mole fractions with daily minimums between 13:00 

and 15:00 (Fig. 6a) with generally smaller mole fractions between April and September. Differences in the diurnal cycles 320 

throughout the week vary depending on the time of year. The average nocturnal build-up of CH4 is significantly larger on 

Monday and Tuesday in the July-August-September (JAS) averaged mole fractions compared to the rest of the week (Fig. 6a), 
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whereas the October-November-December (OND) averaged mole fractions have relatively similar levels of CH4 nocturnal 

build-up throughout the week. 

 325 

Figure 5: Seasonal cycles of detrended 20-minute measurements of (a) mole fractions and (b) δ13CH4 at ICL (box plots) and Mace 

Head (lines) where values deviate about March 1, 2018 (tref) for mole fractions and about May 1, 2019 (tref) for δ13CH4. 

We focus on δ13CH4 measurements from May 2019 onwards in our analysis as the associated measurement uncertainty is 

smaller (Sect. 2.2.3). Afternoon measurements of δ13CH4 at ICL were detrended by fitting a linear polynomial to Mace Head 

background δ13CH4 from 2018-2020 with δ13CH4 on 1 May 2019 set as the reference point, tref
 , (Fig. 5b). ICL median δ13CH4 330 

between January and March were generally higher than the Mace Head background, and generally lower from July through to 

September. The δ13CH4 ICL measurements averaged into hourly intervals tend to exhibit lower δ13CH4 during the afternoon 

but no well-defined diurnal or weekly cycle (Fig. 6b). 
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Figure 6: Weekly detrended 20-minute averages of (a) mole fractions and (b) δ13CH4 at ICL (values normalised to 1 March 2018 335 
and 1 May 2019, tref, respectively). Measurements are grouped by season of year and binned by hour-of-day and day-of-week. The 

𝟏𝛔 range is included on both panels. 

3.1.1 Keeling plot analyses 

Three moving time windows of lengths 12 h, 3 days, and 7 days were used in the automated Keeling plot algorithm to find s 

values between May 2019 and October 2020 (Fig. 7-8). The calculated s values may correspond to an individual source sector 340 

(Table 3), but they can reflect mixtures of different sources influencing the measured air in each time window, where the s is 

a weighted average of the different sources. Isotopic source values lower than -47 ‰ suggest the sources are primarily biogenic 

(waste and/or agriculture), and s values higher than -47 ‰ suggest the sources are primarily from gas leaks from the CH4 gas 

distribution network (i.e. natural gas leaks), where -47 ‰ is the midpoint between the waste and the natural gas CH4 isotopic 

signatures (Table 3). Isotopic source values are sorted into 5 ‰ bins therefore we use -45 ‰ to distinguish between primarily 345 

biogenic and primarily natural gas CH4 sources.  

 

The 12 h moving windows, using measurements from all hours, returned 1046 s values, of which 24.5 % were ≤-45 ‰.  Most 

of the 12 h pollution events occurred during the nocturnal CH4 build-up and the large number of s values >-45 ‰ suggests 
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natural gas sources are primarily driving the nocturnal CH4 build-up around ICL. Natural gas leaks are expected to have a 350 

signature of -36±3 ‰ in London (Zazzeri et al., 2017). Uncertainties in s were 2.8 ‰ in the 12 h windows.  

 

The 3 and 7-day windows using 13:00-17:00 measurements returned 41 and 47 s values, respectively, and have higher 

proportions of biogenic influences. In the 3-day windows, 26.3 % of s values were ≤-45 ‰ and in the 7-day windows, 20.5 

% of s values were ≤-45 ‰. Still a majority of pollution events had s values >-45 ‰, showing that natural gas leaks are the 355 

main source of CH4 pollution at ICL sampled in the afternoon and arising from larger-scale regional influences, in addition to 

the presumably more local sources sampled in the night. Uncertainties in s were 4.4 ‰ in the 3 and 7-day windows. 

 

The s values between -30 ‰ and -25 ‰ may arise from a mixture of vehicular and natural gas CH4 but they have mole fraction 

peak strengths (Sect. 2.3) smaller than 200 ppb and they comprise less than 5 % of the isotopic source values, indicating CH4 360 

emissions from the nearby roads and power station are small. 

 

Figure 7: The distributions of the isotopic source values from Keeling plot analysis. The ranges of different UK isotopic signatures 

from Zazzeri et al., 2017 are shown at the top for reference.  
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We looked for a relationship between wind direction and s values (Fig. 8) but we do not find any consistent patterns, which 365 

reflects the collocation and heterogeneity of sources in London. Some events with low isotopic signatures and wind direction 

in the southerly or south-westerly direction may be influenced by the sewage or landfill sites south or southwest of ICL (Fig. 

1). s values observed during the UK COVID lockdown period were ~2 ‰ higher in the 12 h windows and ~5 ‰ higher in the 

3 and 7-day windows compared to the months before and after the lockdown. However, during the UK COVID lockdown 

period there was an unusual predominance of easterly winds.   370 

 

Figure 8: Time-series of isotopic source values for (a) 12 h; (b) 3-day; (c) 7-day windows. The marker colour denotes the mean wind 

direction from the start of the window to the peak of the pollution event. Black markers indicate times when wind direction data 

was not available. The UK COVID-19 lockdown period is shown in pink. 

3.2 Simulations of methane 375 

3.2.1 Simulated CH4 mole fractions 

Simulations of CH4 mole fractions are compared with the observations at ICL in Fig. 9 for 2020 (Fig. S6, S7 for 2018 and 

2019) and in Fig. 10 for all years. Simulated CH4 using EDGAR from all hours tends to be higher than the observations, while 

13:00-17:00 EDGAR simulations tend to be lower. Simulated CH4 using UK NAEI tends to be lower than the ICL 
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measurements in both all hours and afternoon data. Higher simulated mole fractions with EDGAR are expected as emissions 380 

in EDGAR are 2.5 times larger than the NAEI emissions for the London area (Table 4).  

 

 

Figure 9: Excess simulated and observed mole fractions for 2020 where the Mace Head background has been subtracted from the 

ICL measurements. (a) shows data from all hours; (b) from between 13:00-17:00. 385 

The slope of the linear regressions (Fig. 10a-d), the RMSE, and the median simulation-observation differences (Fig. 10e-h) 

are used to compare the simulations with the observations. There are small differences between the slope and intercept values 

obtained by an ordinary least squares and an orthogonal distance regression. Slopes in the afternoon NAEI simulations are 

closer to one than the all data slopes (Fig. 10c-d), whereas the converse is seen for the EDGAR simulations. 

 390 
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Though EDGAR-10km comparisons (Fig. 10b) have slopes closest to one, the EDGAR-10km comparisons also have the 

largest RMSE (~154 ppb; Table 5), whereas the other simulation-measurement RMSE are between 92 ppb (EDGAR-25km; 

Table 5) and 114 ppb (NAEI-25km; Table 5). 

 

 395 

Figure 10: Simulation-observation comparisons of excess mole fractions using linear regressions (top row) and distributions of the 

simulation-observation differences (bottom row) for (a, e) EDGAR-25km; (b, f) EDGAR-10km; (c, g) NAEI-25km; (d, h) NAEI-2km 

from March 2018 to October 2020. 

 

Table 5: Simulation-observation RMSE values, scaling factors and correlation coefficients. 400 

 RMSE  

(all hours) 

RMSE  

(13:00-17:00) 

 (all hours) 

Median (Q1-Q3) 

 (13:00-17:00) 

Median (Q1-Q3) 

  

(all hours) 

  

(13:00-17:00) 

EDGAR-25km 92.1 ppb 44.5 ppb 0.84 (0.63-1.14) 0.97 (0.72-1.29) 0.78 0.74 

EDGAR-10km 154 ppb 61.9 ppb 0.99 (0.70-1.36) 1.07 (0.80-1.46) 0.66 0.66 

NAEI-25km 114 ppb 52.3 ppb 1.46 (1.08-1.96) 1.46 (1.12-1.97) 0.76 0.77 

NAEI-2kn 113 ppb 53.7 ppb 1.59 (1.22-2.15) 1.65 (1.26-2.25) 0.77 0.77 
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Distributions of simulation-observations (Fig. 10e-h) show 13:00-17:00 data have medians closer to zero than data from all 

hours, except in EDGAR-10km. As previously highlighted, afternoon mole fractions are less sensitive to local emissions and 

provide a more accurate representation of regional-scale CH4 sources and mole fraction variations. Afternoon weather 

conditions tend to be represented better in models as errors in the modelled planetary boundary layer are considered smaller 405 

during the afternoon (Brophy et al., 2019; Jeong et al., 2013). EDGAR-10km has the smallest median simulation-measurement 

differences in all hours and 13:00-17:00 data, where the median difference in the latter is 0.93 ppb. The NAEI-25km and 

NAEI-2km simulation-measurement distributions have afternoon median values of -19.6 ppb and -22.5 ppb respectively (Fig. 

10g-h).  

 410 

Scaling factors, , based on the simulation-observation median differences, are calculated by adjusting the simulated values 

so that they equal the corresponding excess CH4 observation, 

𝛽 =  
𝐶𝑜𝑏𝑠

𝐶𝑠𝑖𝑚
,   (3) 

where 𝐶𝑜𝑏𝑠 are the Mace Head background mole fractions subtracted from the ICL measurements. Background mole fractions 

exert a significant leverage on the values of . We account for this by randomly varying the background mole fractions based 415 

on their standard deviations and calculating the  values 150 times.  

 

The median  scaling factors are more similar in the 13:00-17:00 data with EDGAR simulations having scaling factors closer 

to one (Table 5) suggesting a strong correspondence between the EDGAR emissions and the observations. On average, 13:00-

17:00 NAEI-2km simulations need to be scaled by 1.61 and NAEI-25km by 1.42. NAEI simulations have larger interquartile 420 

ranges than the EDGAR simulations, suggesting a higher variability in the NAEI simulated mole fractions.  

 

Increasing the spatial resolution in the simulated mole fractions had a small effect in comparison to the differences between 

using NAEI and EDGAR emissions for the UK. Our conservative gridding approach (Sect. 2.4.2) ensures emissions across a 

region will be the same for all spatial resolutions. Differences will arise as a result of the width of the different back-trajectory 425 

plumes and the emissions grid cells they intersect. 

3.2.2 Simulations of 13CH4  

Simulated δ13CH4 values are consistently 13C-depleted relative to the background in all simulations (Fig. 11, S8), which 

contrasts with the observations that show δ13CH4 excursions both above and below the background (Fig. 11). The simulated 

range in δ13CH4 in NAEI-25km and NAEI-2km is only 0.2 ‰, which reflects the strong similarity between the mean isotopic 430 

source signature for London of -47.7 ‰ in NAEI (Table 4) and the background δ13CH4 (-48.0 ‰ to -47.4 ‰). EDGAR-25km 

and EDGAR-10km also underestimated the variation in δ13CH4 as isotopically heavy pollution events were missing, even 
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though the isotopically light spikes are often exaggerated in EDGAR-10km, as was found for the mole fractions. The mean 

isotopic source signature for London is -53.7 ‰ in EDGAR (Table 4) due to a large proportion of emissions from waste (93 

%) and a small proportion from natural gas (3 %). The proportion of emissions from natural gas is higher in NAEI (41 %), but 435 

the mean isotopic source signature for London in both NAEI and EDGAR are much lower than the median in the isotopic 

source signatures calculated in the Keeling plot analysis (-41.6 ‰; Fig. 7) 

 

Simulation-observation comparisons in Fig. 12a-d do not show any correlation between the measurements and the simulations. 

The simulation-observation difference distributions (Fig. 12e-h) are all negatively skewed and have mean differences ranging 440 

from -0.78 ‰, in the NAEI-2km 13:00-17:00 data, to -1.17 ‰, in the EDGAR-25km all data simulations. This indicates the 

source apportionments in the NAEI and EDGAR inventories have fossil-fractions that are too low, and their sources may be 

distributed too homogenously.  
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 445 

Figure 11: Simulated and measured δ13CH4 values for 2020 using data from (a) all hours and (b) 13:00-17:00. The background values 

from Mace Head are included for reference. 
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Figure 12: Simulation-observation comparisons of δ13CH4 using point-by-point comparisons (top row) and distributions of the 450 
simulation-measurement differences (bottom row) for (a, e) EDGAR-25km; (b, f) EDGAR-10km; (c, g) NAEI-25km; (d, h) NAEI-

2km. 

To test whether the underestimates in excess CH4 mole fractions and in δ13CH4 in the NAEI simulations could be explained 

solely by underestimated emissions from natural gas leak we recalculate δ13CH4 in NAEI-25km and NAEI-2km by assuming 

all the missing simulated CH4 is natural gas CH4. Scaling factors for the simulated natural gas mole fractions (Sect. 3.2.3), 455 

calculated from the overall CH4 scaling factors (Table 5), are 3.7 for NAEI-25km and 4.1 for NAEI-2km. The recalculated 

δ13CH4 shows much smaller excursions below background δ13CH4 and now some excursions above background δ13CH4 (Fig. 

13), particularly in NAEI-2km where the correlation between observed and simulated δ13CH4 increased from 0.37 to 0.56. 

However, it appears that the recalculated δ13CH4 reflects a rather homogeneous fossil fraction in excess CH4 with an isotopic 

signature near to background δ13CH4, which therefore produces very small variations in δ13CH4 in contrast with the 460 

observations. This indicates the locations of natural gas and waste emissions in London are more spatially distinct than in the 

NAEI inventory. 
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Figure 13: Timeseries comparison of simulated (a) NAEI-25km and (c) NAEI-2km δ13CH4 recalculated by scaling the simulated 

natural gas mole fractions, along with observations for afternoon hours. Simulation-observation comparisons of δ13CH4 using linear 465 
regressions for (b) NAEI-25km and (d) NAEI-2km for 2020 afternoon hours.  

3.2.3 Sectoral source apportionment in the simulations 

The mean source apportionment at ICL for each set of simulations are given in Table 6. In all four sets of simulations, CH4 

from the waste sector dominated at ICL, accounting for between 30.0 % (NAEI-2km) and 71.1 % (EDGAR-25km) of added 

CH4 (Table 6). Whilst waste CH4 at ICL was more than three times larger than any other source sector in EDGAR-25km and 470 

EDGAR-10km, waste CH4 was lower and more comparable to natural gas CH4 in NAEI-25km and NAEI-2km. Natural gas 

CH4 at ICL formed the third largest source in the NAEI-25km (20.4 %) and second largest in the NAEI-2km (28.3 %) but it 

was significantly smaller in EDGAR-25km (6.2 %) and EDGAR-10km (8.1 %). Agricultural sources at ICL accounted for the 

second largest source in EDGAR-25km (13.8 %), EDGAR-10km (18.8 %), and NAEI-25km (22.2 %).  

 475 
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Table 6: Mean simulated source apportionment for excess CH4 at Imperial College London and in the CH4 emissions for London.  

 Imperial 

EDGAR-25km 

(%) 

Imperial 

EDGAR-10km 

(%) 

Imperial  

NAEI-25km  

(%) 

Imperial  

NAEI-2km  

(%) 

Total 

London: 

EDGAR (%) 

Total 

London: 

NAEI (%) 

 

Source Sector  

All 

data 

13:00-

17:00 

All 

data 

13:00-

17:00 

All 

data 

13:00-

17:00 

All 

data 

13:00-

17:00 

  

Biomass burning 0.1  0.1 0.2 0.1 0.2 0.1 0.2 0.1 - - 

Combustion 2.5 2.3 4.1 3.4 3.5 3.2 4.4 3.7 2.9 5.5 

Natural gas 6.2 7.4 8.1 8.7 20.4 17.8 28.3 22.6 3.3 41.2 

Road vehicles 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.5 

Agricultural 13.8 18.3 18.8 24.3 22.2 26.9 24.8 30.1 0.3 0.8 

Waste 71.1 62.7 61.0 52.6 43.8 38.7 32.1 30.0 93.2 52.0 

Wetlands 6.0  8.9 7.4 10.5 9.6 13.0 9.8 13.1 - - 

 

Higher resolution simulations decreased the proportion of waste sources and increased the proportion of natural gas CH4 

sources. The distribution of emissions in lower resolution simulations are likely to unrealistically smooth the point source 

emissions from landfills across the London area, increasing the probability of the back-trajectories interacting with emissions 480 

from these grid cells. For example, NAEI-2km waste emissions are located towards the outskirts of London (Fig. S9d) but 

NAEI-25km waste emissions are uniformly distributed across London (Fig. S9c). Similarly, natural gas emissions are located 

near the centre of London (Fig. S10d) but not uniformly distributed in the coarser resolution emissions due to the absence of 

natural gas emissions on the outskirts/ outside of London (Fig. S10c). 

 485 

Simulated CH4 from biomass burning sources (GFED4) were negligible (<0.2 %; Table 6) in comparison to the contributions 

from other sources. However, CH4 from wetlands formed a more significant proportion of added CH4 (6.0-9.8 %; Table 6), 

with higher contributions during the summer. A pollution event on 16 August 2019 that had a low isotopic source signature 

(Sect. 3.1.1) coincided with an 80 ppb simulated wetland mole fraction on the same day. 

4 Discussion 490 

Continuous measurements of CH4 mole fractions and δ13CH4 in central London show, through Keeling plot analyses, a range 

of different CH4 sources exist in London. Most isotopic source values are >-45 ‰ indicating a high fossil-fraction of added 

CH4 for central London. Comparisons between measurements and the simulated excess mole fractions show a good 

correspondence between the EDGAR-25km, EDGAR-10km simulations and observations. The NAEI simulations at 2 km and 

25 km significantly underestimate the observations, but retain a good correlation. We calculate the NAEI emissions for London 495 
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need to be scaled by 1.52 and EDGAR emissions by 0.99, when using the 13:00-17:00 data, which is more representative of 

the London area and has smaller errors in the modelled boundary layer mole fractions than when night-time data is included. 

In contrast, we do not observe a correlation between the measured and simulated δ13CH4 values. Simulations of δ13CH4 fail to 

capture any δ13CH4 excursions above the background as seen in the observations suggesting the NAEI and EDGAR inventories 

are underestimating natural gas emissions for the London area.  500 

 

Under-reported natural gas emissions are reflected in all four δ13CH4 simulations, where there are few simulated values above 

the background in contrast to the observations. While the EDGAR-25km and EDGAR-10km mole fraction simulations are 

most comparable to the observed mole fractions, discrepancies in simulated δ13CH4 show that the apportionment of sources is 

incorrect in EDGAR. Over 90 % of EDGAR CH4 emissions for London are allocated to the waste sector, which would require 505 

leak rates in natural gas infrastructure to be very low, in contrast to observations in other cities with older infrastructure (e.g. 

McKain et al., 2015). The underestimation of mole fractions in the NAEI-25km and NAEI-2km might be accounted for by 

missing natural gas emissions in the NAEI inventory for London. Scaling the natural gas mole fractions in the NAEI 

simulations to match the overall excess mole fraction (which increased the natural gas fraction from 22.6 % to 52.1 %) 

improved the correspondence between the observations and simulated δ13CH4 slightly, however, it appears the spatial allocation 510 

of waste and natural gas emissions in the inventory is too homogeneous. Overall, it does not seem possible to improve the 

model-data comparison for both CH4 mole fractions and δ13CH4 without increasing CH4 emissions from natural gas leaks in 

the London area in the inventories. More explicit use of δ13CH4 and CH4 data with high-resolution NAME simulations in an 

inversion framework including consideration of uncertainties in measured, background and modelled δ13CH4 and CH4 could 

help to specify the fossil fraction in London more precisely. 515 

 

Both Helfter et al. (2016) and Zazzeri et al. (2017) reported gas leaks are underestimated in London in the emissions inventories 

as found in other urban areas (Brandt et al., 2014). The median differences between the NAEI simulations and the ICL 

measurements are not as large as those found by Helfter et al. (2016), however the 2015 NAEI inventory, used by Helfter et 

al. (2016), was 46 kt CH4 yr-1 larger than the 2017 NAEI inventory across the UK. Our results contrast with Pitt et al. (2019) 520 

which found the NAEI inventory was overestimating CH4 emissions for London compared to measurements on a single aircraft 

flight on 4 March 2016.  

 

The results from these continuous long-term CH4 and δ13CH4 measurements show that they can be used for effective evaluation 

of CH4 emissions from natural gas and waste sources in urban areas. Measurements from a single site would be significantly 525 

enhanced by a larger urban network of CH4 and δ13CH4 measurements encompassing the spatial heterogeneity in different CH4 

sources. Measuring from a greater height would also be useful as this would increase the geographical size of the footprint and 

allow greater mixing of individual sources before measurement.  
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5 Conclusion 

This study presents over two years of atmospheric measurements of CH4 mole fractions and δ13CH4 from Imperial College 530 

London. Isotopic source values from Keeling plot analysis revealed a predominance of natural gas CH4 with source values 

higher than -45 ‰ in ~74-80 % of the afternoon data. In contrast, simulated sectoral contributions using UK NAEI and EDGAR 

inventories showed the largest fractions from waste sectors, leading to a simulated underestimation of observed δ13CH4. These 

results suggest that natural gas leaks in London are under-reported in both inventories, consistent with previous studies in 

London and some other global cities.  535 
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