Supplement of

Molecular-level evidence for marine aerosol nucleation of iodic acid and methanesulfonic acid

An Ning¹, Ling Liu¹, Lin Ji², and Xiuhui Zhang¹

¹Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China ²Department of Chemistry, Capital Normal University, Beijing 100048, China

Correspondence to: Xiuhui Zhang (zhangxiuhui@bit.edu.cn)

Table of Contents

Figure S1. The identified stable configurations of the IA-MSA-based clusters at the ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory. IA and MSA are the shorthand for iodic acid and methanesulfonic acid, respectively. The lengths of hydrogen and halogen bonds are given in Å.

Figure S2. (a) Gibbs formation free energy (ΔG) of the $(IA)_x(MSA)_y$ $(0 \le x \le 6, 0 \le y \le 3, x + y \le 6)$ clusters identified at the RI-CC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) level of theory, T = 298 K, p = 1 atm. (b) the total evaporation rate coefficient ($\Sigma \gamma$ in s⁻¹) and (c) ratios of IA monomer collision frequencies versus total evaporation coefficient ($\beta C/\Sigma \gamma$) of the corresponding clusters.

Figure S3. (a) Gibbs formation free energy (ΔG) of the $(IA)_x(MSA)_y$ $(0 \le x \le 6, 0 \le y \le 3, x + y \le 6)$ clusters identified at the RI-CC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) level of theory, T = 258 K, P = 1 atm. (b) the total evaporation rate coefficients ($\Sigma \gamma$ in s⁻¹) and (c) ratios of IA monomer collision frequencies versus total evaporation coefficient ($\beta C/\Sigma \gamma$) of the corresponding clusters.

Figure S4. The simulated cluster formation rate J (cm⁻³ s⁻¹) of the IA-MSA system at different condensention sink (CS) coefficients (CS = $1.0 \times 10^{-4} \sim 2.6 \times 10^{-3} \text{ s}^{-1}$), T = 278 K, [IA] = $10^6 \sim 10^8$ molecules cm⁻³, and [MSA] = 10^6 , 10^8 molecules cm⁻³.

Figure S5. The simulated cluster formation rate J (cm⁻³ s⁻¹) of the IA-MSA system at different temperatures ($T = 218 \sim 298$ K), [IA] = $10^6 \sim 10^8$ molecules cm⁻³, and [MSA] = 0, 10^6 , 10^7 , 10^8 molecules cm⁻³, CS = 2.0×10^{-3} s⁻¹.

Figure S6. Contour plot of the enhancement strength *R* at different [IA] $(10^6 \sim 10^8 \text{ molecules cm}^{-3})$ and [MSA] $(10^6 \sim 10^8 \text{ molecules cm}^{-3})$ under the condition of *T* = (a) 218 K, (b) 238 K, (c) 258 K, (d) 278 K, (e) 298 K,CS = $2.0 \times 10^{-3} \text{ s}^{-1}$. **Table S1.** The bond type, electron density $\rho(r)$ (a.u), Laplacian electron density $\nabla^2 \rho(r)$ (a.u.), Energy density H(r) at corresponding BCPs in the studied IA-MSA-based clusters. The orange balls represent bond critical points (BCPs) in the AIM theory analysis. IA and MSA represent iodic acid (HIO₃) and methanesulfinic acid (CH₃S(O)₂OH), respectively. HB (hydrogen bond), XB (halogen bond).

Table S2. The Gibbs formation free energy ΔG (kcal mol⁻¹) of the studied IA-MSA clusters at the RI-CC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory, P = 1 atm and $T = 218 \sim 298$ K.

Table S3. The Gibbs formation free energy ΔG (kcal mol⁻¹) of the studied IA-MSA clusters at the RI-CC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory, P = 1 atm and T = 253, 268, 270, 287, 290, and 300 K.

Table S4. The evaporation coefficients (γ, s^{-1}) for all evaporation pathways of clusters at 278 K.

Table S5. Boundary conditions in ACDC simulations at $T = 218 \sim 298$ K, respectively.

Table S6. Enhancement strength *R* of MSA on cluster formation rates under different atmospheric conditions: $T = 218 \sim 298$ K, [MSA] = $10^6 \sim 10^8$ molecules cm⁻³, [IA] = $10^6 \sim 10^8$ molecules cm⁻³, and CS = 2.0×10^{-3} s⁻¹.

Table S7. Cartesian coordinates of all molecules and clusters in the present study at the ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory.

Figure S1. The identified stable configurations of the IA-MSA-based clusters at the ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory. IA and MSA are the shorthand for iodic acid and methanesulfonic acid, respectively. The lengths of hydrogen and halogen bonds are given in Å.

Figure S2. (a) Gibbs formation free energy (ΔG) of the $(IA)_x(MSA)_y$ $(0 \le x \le 6, 0 \le y \le 3, x + y \le 6)$ clusters identified at the RI-CC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) level of theory, T = 298 K, p = 1 atm. (b) the total evaporation rate coefficients ($\Sigma \gamma$ in s⁻¹) and (c) ratios of **IA** monomer collision frequencies versus total evaporation coefficient ($\beta C/\Sigma \gamma$) of the corresponding clusters.

Figure S3. (a) Gibbs formation free energy (ΔG) of the $(IA)_x(MSA)_y$ $(0 \le x \le 6, 0 \le y \le 3, x + y \le 6)$ clusters identified at the RI-CC2/aug-cc-pV(T+d)Z(-PP)// ω B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) level of theory, T = 258 K, p = 1 atm. (b) the total evaporation rate coefficients ($\Sigma \gamma$ in s⁻¹) and (c) ratios of IA monomer collision frequencies versus total evaporation coefficient ($\beta C \Sigma \gamma$) of the corresponding clusters.

Figure S4. The simulated cluster formation rate $J \text{ (cm}^{-3} \text{ s}^{-1}\text{)}$ of the IA-MSA system at different condensention sink (CS) coefficients (CS = $1.0 \times 10^{-4} \sim 2.6 \times 10^{-3} \text{ s}^{-1}$), T = 278 K, [IA] = $10^6 \sim 10^8$ molecules cm⁻³, and [MSA] = 10^6 , 10^8 molecules cm⁻³.

Figure S5. The simulated cluster formation rate J (cm⁻³ s⁻¹) of the IA-MSA system at different temperatures ($T = 218 \sim 298$ K), [IA] = $10^6 \sim 10^8$ molecules cm⁻³, and [MSA] = 0, 10^6 , 10^7 , 10^8 molecules cm⁻³, CS = 2.0×10^{-3} s⁻¹.

Figure S6. Contour plot of the enhancement strength *R* at different [IA] $(10^6 \sim 10^8 \text{ molecules cm}^{-3})$ and [MSA] $(10^6 \sim 10^8 \text{ molecules cm}^{-3})$ under the condition of T = (a) 218 K, (b) 238 K, (c) 258 K, (d) 278 K, (e) 298 K,CS = $2.0 \times 10^{-3} \text{ s}^{-1}$.

Table S1. The bond type, electron density $\rho(r)$ (a.u), Laplacian electron density $\nabla^2 \rho(r)$ (a.u.), Energy density H(r) at corresponding BCPs in the studied IA-MSA-based clusters. The orange balls represent bond critical points (BCPs) in the AIM theory analysis. IA and MSA represent iodic acid (HIO₃) and methanesulfinic acid (CH₃S(O)₂OH), respectively. HB (hydrogen bond), XB (halogen bond).

Cluster	Bond	Bond type	ρ(r) (a.u.)	$ abla^2 ho(r)$ (a.u.)	<i>H</i> (<i>r</i>) (a.u.)
and and	O […] H-O	HB	0.0581	0.1104	-0.0166
(IA) ₁ (MSA) ₁	0-I 0	XB	0.0385	0.1079	-0.0015
ď	О Н-О	HB	0.0505	0.1113	-0.0119
	O […] H - O	HB	0.0634	0.1085	-0.0202
June 4	O-I O	XB	0.0349	0.1021	-0.0005
(IA) ₁ ·(MSA) ₂	O-I O	XB	0.0233	0.0740	0.0012
-1-	O H-O	HB	0.0562	0.1105	-0.0156
1 Alexandre	0 H-O	HB	0.0357	0.1066	-0.0032
	O-I O	XB	0.0722	0.1073	-0.0265
(IA) ₁ ·(MSA) ₃	0-IO	XB	0.0283	0.0865	0.0005
	O-I […] O	XB	0.0167	0.0537	0.0012
-	O-I O	XB	0.0311	0.0992	0.0007
L.	О Н-О	HB	0.0598	0.1117	-0.0186
	O-I O	XB	0.0620	0.1370	-0.0116
	O-I O	XB	0.0428	0.1243	-0.0021
(IA) ₂ ·(MSA) ₁	O-I O	XB	0.0266	0.0772	-0.0002
٢	О Н-О	HB	0.0516	0.1110	-0.0126
where the second	OH-O	HB	0.0482	0.1093	-0.0112
and be	0-I O	XB	0.0250	0.0786	0.0011
(IA) ₂ ·(MSA) ₂	● 0-I 0	XB	0.0287	0.0928	0.0010
	0-I 0	XB	0.0634	0.1319	-0.0129
-	O-I O	XB	0.0849	0.1560	-0.0265
	OH-O	HB	0.0203	0.0794	0.0022

	OH-O	HB	0.0528	0.1106	-0.0136
	0 H-O	HB	0.0704	0.1122	-0.0255
(IA) ₂ (MSA) ₃	0 H-O	HB	0.0531	0.1084	-0.0142
	O-I O	XB	0.0342	0.1035	0.0000
	O-I O	XB	0.0252	0.0832	0.0011
	O-I O	XB	0.0492	0.1445	-0.0039
	O-I […] O	XB	0.0202	0.0658	0.0016
	OH-O	HB	0.0655	0.1105	-0.0219
	O-I O	XB	0.0255	0.0829	0.0014
25	O-I O	XB	0.0244	0.0768	0.0013
- You	O-I O	XB	0.0608	0.1583	-0.0088
(IA) ₃ ·(MSA) ₁	O-I O	XB	0.0171	0.0562	0.0015
	O-I […] O	XB	0.0549	0.1380	-0.0067
	OH-O	HB	0.0493	0.1094	-0.0117
	O H-O	HB	0.0796	0.0929	-0.0332
· · · · · · · · · · · · · · · · · · ·	O-I […] O	XB	0.0426	0.1200	-0.0020
	O-I […] O	XB	0.0153	0.0531	0.0018
	Vo-I…O	XB	0.0180	0.0564	0.0009
(IA) ₃ ·(MSA) ₂	O-I […] O	XB	0.0610	0.1562	-0.0091
	O-I O	XB	0.0288	0.1006	0.0017
	O-I O	XB	0.0610	0.1576	-0.0091
	О Н-О	HB	0.0373	0.1035	-0.0046
۶	O […] H-O	HB	0.0517	0.1117	-0.0128
p	О Н-О	HB	0.0660	0.1040	-0.0226
	OH-O	HB	0.0688	0.1014	-0.0249
the second	O-I O	XB	0.0498	0.1365	-0.0044
(IA), (MSA),	🏴 О-І-О	XB	0.0167	0.0529	0.0012
~~~/3 (/3	O-I  O	XB	0.0546	0.1414	-0.0067
	O-I […] O	XB	0.0302	0.0993	0.0011

	O-I  O	XB	0.0183	0.0638	0.0019
	O-I […] O	XB	0.0535	0.1440	-0.0056
	O-I […] O	XB	0.0197	0.0594	0.0009
	О […] Н-О	HB	0.0373	0.1030	-0.0043
	О  Н <b>-</b> О	HB	0.0601	0.1090	-0.0185
Print	О…Н-О	HB	0.0232	0.0814	0.0013
the second	O-I  O	XB	0.0667	0.1589	-0.0127
	O-I  O	XB	0.0296	0.0899	0.0006
	O-I  O	XB	0.0526	0.1329	-0.0060
$(IA)_4(IVISA)_1$	O-I  O	XB	0.0529	0.1339	-0.0063
	O-I  O	XB	0.0415	0.1205	-0.0017
-	O-I  O	XB	0.0244	0.0730	0.0009
	0  H-O	HB	0.0738	0.1020	-0.0285
	О  Н-О	HB	0.0411	0.1096	-0.0068
	О  Н-О	HB	0.0621	0.1095	-0.0199
	O-I  O	XB	0.0192	0.0587	0.0012
	O-I  O	XB	0.0291	0.0815	-0.0005
	O-I […] O	XB	0.0435	0.1118	-0.0038
	<b>↓</b> 0-I…O	XB	0.0547	0.1416	-0.0067
	O-I  O	XB	0.0143	0.0409	0.0007
- Ar	O-I  O	XB	0.0636	0.1576	-0.0106
$(IA)_4$ $(MSA)_2$	O-I  O	XB	0.0146	0.0471	0.0013
	O-I  O	XB	0.0425	0.1186	-0.0023
	O-I  O	XB	0.0202	0.0661	0.0016
	O-I  O	XB	0.0190	0.0632	0.0016
	O  H <b>-</b> O	HB	0.0744	0.1063	-0.0288
	О  Н-О	HB	0.0421	0.1076	-0.0073
	О  Н <b>-</b> О	HB	0.0375	0.1082	-0.0043
	O-I  O	XB	0.0557	0.1463	-0.0069

	O-I […] O	XB	0.0288	0.0810	-0.0003
	0-I  0	XB	0.0554	0.1361	-0.0074
	O-I […] O	XB	0.0578	0.1463	-0.0081
	O-I […] O	XB	0.0244	0.0802	0.0017
$(IA)_5 (MSA)_1$	0-I  0	XB	0.0558	0.1535	-0.0065

**Table S2.** The Gibbs formation free energy  $\Delta G$  (kcal mol⁻¹) of the studied IA-MSA clusters at the RI-CC2/aug-cc-pV(T+d)Z(-PP)//  $\omega$  B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory, p = 1 atm and  $T = 218 \sim 298$  K.

		2	$\Delta G$ (kcal mol ⁻¹ )		
Clusters	218 K	238 K	258 K	278 K	298 K
(MSA) ₂	-13.40	-12.59	-11.78	-10.97	-10.17
(MSA) ₃	-20.76	-19.21	-17.65	-16.10	-14.56
(IA)1·(MSIA)1	-13.67	-12.88	-12.10	-11.32	-10.55
$(IA)_1 \cdot (MSIA)_2$	-24.47	-22.90	-21.34	-19.78	-18.23
(IA) ₁ ·(MSIA) ₃	-42.27	-39.78	-37.30	-34.83	-32.36
$(IA)_2 \cdot (MSA)_1$	-25.83	-24.21	-22.60	-21.01	-19.43
(IA) ₂ ·(MSA) ₂	-39.30	-36.83	-34.36	-31.91	-29.48
(IA) ₂ ·(MSA) ₃	-56.76	-53.54	-50.33	-47.14	-43.97
(IA) ₃ ·(MSA) ₁	-39.22	-36.87	-34.55	-32.24	-29.96
(IA) ₃ ·(MSA) ₂	-61.64	-58.41	-55.19	-52.00	-48.83
(IA) ₃ ·(MSA) ₃	-77.91	-73.68	-69.47	-65.28	-61.12
(IA) ₄ ·(MSA) ₁	-64.32	-60.90	-57.51	-54.14	-50.80
(IA)4·(MSA)2	-84.23	-79.99	-75.77	-71.58	-67.42
(IA)5·(MSA)1	-76.29	-72.16	-68.06	-63.99	-59.96
(IA) ₂	-11.66	-10.94	-10.22	-9.51	-8.80
(IA) ₃	-23.55	-21.95	-20.36	-18.79	-17.24
(IA) ₄	-45.88	-43.39	-40.92	-38.48	-36.05
(IA)5	-66.26	-62.91	-59.58	-56.28	-53.02
(IA) ₆	-87.48	-83.09	-78.73	-74.41	-70.12

**Table S3.** The Gibbs formation free energy  $\Delta G$  (kcal mol⁻¹) of the studied IA-MSA clusters at the RI-CC2/aug-cc-pV(T+d)Z(-PP)//  $\omega$  B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory, p = 1 atm and T = 253, 268, 287, 290 and 300 K.

Clusters		Δ	G (kcal mol ⁻¹	)	
Clusters	300 K	290 K	287 K	268 K	253 K
(MSA) ₂	-10.08	-10.49	-10.61	-11.37	-11.98
(MSA) ₃	-14.41	-15.18	-15.41	-16.88	-18.04
(IA)1·(MSIA)1	-10.47	-10.85	-10.97	-11.71	-12.29
(IA)1·(MSIA)2	-18.08	-18.85	-19.08	-20.56	-21.73
(IA)1·(MSIA)3	-32.12	-33.35	-33.72	-36.06	-37.92
$(IA)_2 \cdot (MSA)_1$	-19.27	-20.06	-20.30	-21.80	-23.01
(IA) ₂ ·(MSA) ₂	-29.24	-30.45	-30.81	-33.13	-34.97
(IA) ₂ ·(MSA) ₃	-43.66	-45.23	-45.71	-48.73	-51.13
(IA) ₃ ·(MSA) ₁	-29.74	-30.87	-31.21	-33.39	-35.13
(IA) ₃ ·(MSA) ₂	-48.52	-50.10	-50.57	-53.59	-55.99
(IA)3·(MSA)3	-60.71	-62.78	-63.41	-67.37	-70.52
(IA) ₄ ·(MSA) ₁	-50.48	-52.13	-52.64	-55.82	-58.36
(IA) ₄ ·(MSA) ₂	-67.02	-69.08	-69.71	-73.67	-76.82
(IA)5·(MSA)1	-59.57	-61.57	-62.18	-66.02	-69.08
(IA) ₂	-8.74	-9.08	-9.19	-9.86	-10.40
(IA) ₃	-17.09	-17.86	-18.09	-19.58	-20.76
(IA) ₄	-35.82	-37.02	-37.38	-39.70	-41.54
(IA)5	-52.70	-54.32	-54.81	-57.93	-60.41
(IA) ₆	-69.71	-71.83	-72.48	-76.57	-79.82

Evaporation pathways	Evaporation coefficients ( $\gamma$ , s ⁻¹ )
$(IA)_2 \rightarrow IA + IA$	$1.23 \times 10^{2}$
$(IA)_3 \rightarrow (IA)_2 + IA$	5.64×10 ²
$(IA)_4 \rightarrow (IA)_3 + IA$	3.67×10 ⁻⁶
$(IA)_5 \rightarrow (IA)_4 + IA$	1.47×10 ⁻⁴
$(IA)_6 \rightarrow (IA)_5 + IA$	7.97×10 ⁻⁵
$(MSA)_2 \rightarrow MSA + MSA$	1.43×10 ¹
$(MSA)_3 \rightarrow (MSA)_2 + MSA$	$1.57 \times 10^{6}$
$(IA)_{l} \cdot (MSA)_{l} \rightarrow IA + MSA$	$1.22 \times 10^{1}$
$(IA)_1 \cdot (MSA)_2 \rightarrow IA + (MSA)_2$	1.56×10 ³
$(IA)_1 \cdot (MSA)_2 \rightarrow MSA + (IA)_1 \cdot (MSA)_1$	3.54×10 ³
$(IA)_1 \cdot (MSA)_3 \rightarrow IA + (MSA)_3$	3.38×10 ⁻⁵
$(IA)_1 \cdot (MSA)_3 \rightarrow MSA + (IA)_1 \cdot (MSA)_2$	2.71×10 ⁻²
$(IA)_2 \cdot (MSA)_1 \rightarrow (IA)_1 \cdot (MSA)_1 + IA$	2.89×10 ⁻²
$(IA)_2 \cdot (MSA)_1 \rightarrow (IA)_2 + MSA$	1.36×10 ⁻¹
$(IA)_2 \cdot (MSA)_2 \rightarrow (IA)_2 \cdot (MSA)_1 + MSA$	$4.15 \times 10^{1}$
$(IA)_2 \cdot (MSA)_2 \rightarrow (IA)_1 \cdot (MSA)_2 + IA$	$4.00 \times 10^{0}$
$(IA)_2 \cdot (MSA)_3 \rightarrow (IA)_2 \cdot (MSA)_2 + MSA$	2.15×10 ⁻²
$(IA)_2 \cdot (MSA)_3 \rightarrow (IA)_1 \cdot (MSA)_3 + IA$	$2.96 \times 10^{0}$
$(IA)_3 \cdot (MSA)_1 \rightarrow (IA)_2 \cdot (MSA)_1 + IA$	$1.68 \times 10^{1}$
$(IA)_3 \cdot (MSA)_1 \rightarrow (IA)_3 + MSA$	4.04×10 ⁻¹
$(IA)_3 \cdot (MSA)_2 \rightarrow (IA)_2 \cdot (MSA)_2 + IA$	2.39×10 ⁻⁶
$(IA)_3 \cdot (MSA)_2 \rightarrow (IA)_3 \cdot (MSA)_1 + MSA$	4.91×10 ⁻⁶
$(IA)_3 \cdot (MSA)_3 \rightarrow (IA)_2 \cdot (MSA)_3 + IA$	8.38×10 ⁻⁵
$(IA)_3 \cdot (MSA)_3 \rightarrow (IA)_3 \cdot (MSA)_2 + MSA$	8.10×10 ⁻¹
$(IA)_4 \cdot (MSA)_1 \rightarrow (IA)_3 \cdot (MSA)_1 + IA$	7.41×10 ⁻⁸
$(IA)_4 \cdot (MSA)_1 \rightarrow (IA)_4 + MSA$	9.73×10 ⁻³
$(IA)_4 \cdot (MSA)_2 \rightarrow (IA)_3 \cdot (MSA)_2 + IA$	6.59×10 ⁻⁶
$(IA)_4 \cdot (MSA)_2 \rightarrow (IA)_4 \cdot (MSA)_1 + MSA$	3.69×10 ⁻⁴
$(IA)_5 \cdot (MSA)_1 \rightarrow (IA)_4 \cdot (MSA)_1 + IA$	2.47×10 ²
$(IA)_5 \cdot (MSA)_1 \rightarrow (IA)_5 + MSA$	$1.72 \times 10^{4}$

**Table S4**. The evaporation coefficients ( $\gamma$ , s⁻¹) for all evaporation pathways of clusters at 278 K.

Temperature (K)	Boundary cluster			
	(IA)7			
298 K	$(IA)_{6} \cdot (MSA)_{1}$			
	(IA)4·(MSA)3			
258, 278 K	(IA) ₇			
	$(IA)_6 \cdot (MSA)_1$			
	(IA)4·(MSA)3			
	(IA)5·(MSA)2			
	(IA) ₇			
	(IA)6·(MSA)1			
218, 238 K	(IA)4·(MSA)3			
	(IA) ₃ ·(MSA) ₄			
	(IA)5·(MSA)2			

**Table S5.** Boundary conditions in ACDC simulations at  $T = 218 \sim 298$  K, respectively.

**Table S6.** Enhancement strength *R* of MSA on cluster formation rates under different atmospheric conditions:  $T = 218 \sim 298$  K, [MSA] =  $10^6 \sim 10^8$  molecules cm⁻³, [IA] =  $10^6 \sim 10^8$  molecules cm⁻³, and CS =  $2.0 \times 10^{-3}$  s⁻¹.

[IA]	R	[MSA]	R	<i>T</i> (K)	R
1.0E+06	93.4	1.0E+06	1.0	218	25.7
1.8E+06	24.0	1.8E+06	1.1	228	471.6
3.2E+06	7.6	3.2E+06	1.1	238	1850.1
5.6E+06	3.2	5.6E+06	1.3	248	752.5
1.0E+07	1.8	1.0E+07	1.8	258	126.4
1.8E+07	1.4	1.8E+07	3.9	268	10.3
3.2E+07	1.2	3.2E+07	13.6	278	1.8
5.6E+07	1.1	5.6E+07	64.9	288	1.3
1.0E+08	1.0	1.0E+08	346.9	298	1.3

**Table S7.** Cartesian coordinates of all molecules and clusters in the present study at the  $\omega$ B97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ(-PP) with ECP28MDF (for I) level of theory.

IA:			
Atoms	Х	Y	Z
Ι	-0.0972210	0.0049300	-0.2430950
0	-0.8431630	-1.3456500	0.6284330
0	-0.5271120	1.5031140	0.6021730
0	1.7795500	-0.1822800	0.2317520
Н	1.8785260	-0.0627760	1.1851670

MSA:

Atoms	Х	Y	Z
С	1.6002660	-0.3584400	-0.0280610
Н	1.7053540	-1.3498820	0.4023310
Н	2.1691410	0.3683770	0.5465350
Н	1.9071020	-0.3432120	-1.0698640
S	-0.0884700	0.1352070	0.0652370
Ο	-0.2299430	1.3852010	-0.5885960
Ο	-0.5695130	-0.0688710	1.3923850
Ο	-0.7848540	-0.9581670	-0.8605600
Н	-1.2931960	-1.5532640	-0.3002540

$(\mathbf{W}, \mathbf{S}, \mathbf{A})_2$	

Atoms	Х	Y	Z
S	-1.8655950	0.0944030	0.0515410
О	-1.7145970	1.5028880	-0.1091770
О	-1.1965300	-0.5078530	1.1812570
Ο	-1.4477700	-0.6580090	-1.2394410
S	2.0382990	-0.1223980	-0.0694780
Ο	1.4791460	-0.6020900	1.3003370
Н	0.4902990	-0.6039330	1.3098130
Ο	1.1722560	-0.6075090	-1.1193350
Ο	3.4103790	-0.4661750	-0.1158210
Н	-0.4527540	-0.6891120	-1.2922900
С	-3.5649490	-0.3308100	0.1101160
Н	-3.6544980	-1.4096200	0.1919040
Н	-3.9767470	0.1597460	0.9882970
Н	-4.0395940	0.0409130	-0.7933260
С	1.8582430	1.6265820	0.0024120

Н	2.4366140	1.9917240	0.8460990
Н	2.2478990	2.0245460	-0.9311990
Н	0.8026770	1.8690200	0.1099650

## (MSA)₃:

Atoms	Х	Y	Z
S	0.0564930	1.1175030	-0.1377890
О	1.2765290	1.8091120	-0.4633360
О	-1.1634920	1.7430090	-0.5381060
Н	-2.8341590	1.2692020	-0.4159030
С	0.0299390	0.7899000	1.5818620
О	0.0694330	-0.2847490	-0.8023270
О	-3.7572320	0.9391720	-0.3934740
S	-3.8058890	-0.5213070	0.1698510
С	-3.3590140	-1.4913230	-1.2333690
О	-5.1591800	-0.7835340	0.5059120
О	3.7635710	0.8703400	-0.5354730
Н	2.8949610	1.3473270	-0.5573380
О	-2.7777110	-0.6705970	1.1556430
О	3.3346740	-0.4147440	1.5109760
Н	0.9730140	-0.6960240	-0.7721770
О	2.5416270	-1.2384710	-0.6494100
S	3.5486390	-0.5289340	0.1069390
С	5.1103730	-1.2519930	-0.2179590
Н	-2.3492560	-1.2233980	-1.5343830
Н	-4.0755220	-1.2987220	-2.0263640
Н	-3.3997350	-2.5332860	-0.9257330
Н	5.2625120	-1.2941460	-1.2920820
Н	5.0803460	-2.2505310	0.2104630
Н	5.8715550	-0.6495920	0.2694270
Н	0.9419650	0.2552260	1.8414230
Н	-0.8649540	0.2072280	1.7897580
Н	-0.0021500	1.7547310	2.0824740

#### (IA)₁·(MSA)₁:

Atoms	Х	Y	Z
С	2.3555390	1.4150570	0.7767370
Н	1.3798610	1.6097900	1.2173730
Н	2.6170500	2.2012050	0.0730370
С	3.1267240	1.3033180	1.5334940
Н	2.2673230	-0.0820010	-0.1388570

Н	3.5283760	-0.3795930	-0.7071300
Н	1.1263090	0.0291050	-1.0384610
Ν	1.9247750	-1.1505350	0.9232180
С	0.9261270	-1.2411260	1.0163970
Н	-1.2941080	-0.0006480	-0.2498380
Н	-1.0464710	1.5856110	0.5005280
Н	-0.6713610	-1.1829160	0.9523370
0	-3.1769260	-0.2594150	0.1083110
Н	-3.3500450	-0.1552010	1.0519590

## (IA)1[·](MSA)2:

()1 (			
Atoms	Х	Y	Z
Ι	0.0965070	1.4223980	-0.2022120
0	1.7993570	1.8524080	0.1782290
0	-0.5094530	0.8792200	1.3872710
0	-0.6367360	3.2022210	-0.1880090
Н	-0.5599360	3.5772990	0.6985750
С	-1.8486310	-2.5930040	-0.1304480
Н	-0.8175510	-2.3590480	0.1219300
Н	-1.9104810	-3.0085150	-1.1330950
Н	-2.2888610	-3.2738950	0.5922830
S	-2.7893770	-1.1057280	-0.1286540
0	-4.1486050	-1.4052610	-0.3960590
0	-2.1042000	-0.1494140	-0.9673270
Ο	-2.6809590	-0.6177760	1.3434360
Н	-1.8738310	-0.0446300	1.4477500
С	3.5723970	-1.5836000	-1.1814690
Н	3.6885360	-0.6264470	-1.6826900
Н	3.2130500	-2.3413180	-1.8728130
Н	4.5039660	-1.8973040	-0.7188590
S	2.3681390	-1.4135490	0.0886020
Ο	2.2809760	-2.6235150	0.8197140
Ο	1.1521870	-0.9140390	-0.5360320
Ο	2.9426110	-0.3047230	0.9891800
Н	2.5660400	0.6018720	0.7332320

## (IA)1[·](MSA)3:

Atoms	Х	Y	Z
Ι	-0.4480450	-1.1263200	-0.4233170
0	-1.7824640	-2.3005740	-0.2621890
0	0.8362600	-2.1057790	-1.2066770

Ο	-1.1673120	-0.2695050	-1.9839290
Н	-0.6183050	0.5160580	-2.1394310
С	4.4591370	-1.7206060	1.5005960
Н	4.0252040	-2.7102460	1.6107990
Н	4.6232830	-1.2587330	2.4705140
Н	5.3835860	-1.7586300	0.9312750
S	3.3139930	-0.7143730	0.6316030
Ο	3.9260230	0.5777610	0.4606570
0	2.0443680	-0.7447810	1.3069440
0	3.2022020	-1.4062960	-0.7263040
Н	2.2337260	-1.7044880	-0.9390210
С	0.5729280	2.3791980	1.2786270
Н	1.1028130	1.5470560	1.7376550
Н	-0.4973260	2.1808950	1.2537650
Н	0.7816260	3.3148760	1.7890020
S	1.1140770	2.5351340	-0.3861320
Ο	0.5290030	3.6775970	-0.9860200
Ο	0.9212880	1.2515960	-1.0324200
0	2.6371220	2.7880280	-0.2662700
Н	3.1345970	1.9590390	-0.0448520
С	-4.2734690	0.8548190	-0.7705280
Н	-3.6946650	0.3569400	-1.5448370
Н	-4.1209330	1.9304750	-0.8124280
Н	-5.3298370	0.6142280	-0.8473280
S	-3.6947140	0.3093420	0.7986310
Ο	-4.4920010	0.8750170	1.8237710
Ο	-2.2633650	0.5320260	0.8340020
0	-3.9422080	-1.2192910	0.7676190
Н	-3.1539760	-1.7010310	0.3794200

#### (IA)2[·](MSA)1:

Atoms	Х	Y	Z
Ι	-2.0664560	-0.4865060	0.2507680
0	-1.1566250	-2.0285160	0.2432210
0	-1.6098320	0.3846870	-1.2465170
0	-3.7341770	-1.2061510	-0.4237360
Н	-3.6182770	-1.5339380	-1.3231110
Ι	0.6921080	1.5835940	-0.2265200
0	2.1523570	2.0900450	0.6333680
0	-0.1636970	0.6127430	1.0657050
0	-0.3272140	3.2115260	0.0137720
Н	0.0344910	3.6788900	0.7775100
С	2.6722520	-1.2118790	1.4622710

Н	1.7440220	-0.8521480	1.8999020
Н	3.4079870	-0.4120050	1.4343860
Н	3.0547060	-2.0800500	1.9910340
S	2.3631490	-1.6907520	-0.1998750
0	3.5241700	-2.2740990	-0.7612650
0	1.7915150	-0.5431900	-0.8910310
0	1.2770510	-2.7742480	-0.0899170
Н	0.3452040	-2.4055010	0.0107030

#### (IA)2[·](MSA)2:

$(1A)_2$ (WIC	<i>h</i> , <u>)</u> ,		
Atoms	Х	Y	Z
Ι	0.8005820	2.1871330	-0.2929970
0	2.2358830	1.8455890	0.7075060
0	-0.5688460	1.2404140	0.4728810
0	0.3168600	3.8249190	0.6243920
Н	0.3744710	3.7171770	1.5806100
Ι	-0.3591180	-0.8308600	-0.6148410
0	1.0018670	0.2347220	-1.3029550
0	-1.6536680	-0.3706900	-1.7582540
0	0.2222900	-2.3588440	-1.6455800
Н	-0.1453460	-2.2677600	-2.5337380
С	-3.8137380	0.8834760	1.4930300
Н	-2.9520660	1.4074770	1.0863970
Н	-3.6908430	0.7209810	2.5608400
Н	-4.7397260	1.4135760	1.2899160
S	-3.9107400	-0.7050230	0.7415710
0	-5.0743660	-1.3724110	1.1972790
0	-2.6241670	-1.3421320	0.9055360
0	-4.0923630	-0.3764000	-0.7674560
Н	-3.2019580	-0.3526790	-1.2153880
С	3.5096590	-2.0284650	-0.8089970
Н	3.0505610	-1.2643700	-1.4307790
Н	3.0952500	-3.0054910	-1.0434800
Н	4.5911700	-2.0303060	-0.9089720
S	3.1146530	-1.6950080	0.8726560
0	3.7970450	-2.6140230	1.7073220
0	1.6768820	-1.5974190	0.9800770
0	3.7239480	-0.2890990	1.1138380
Н	3.0918530	0.4523380	0.9215350

(IA)2[·](MSA)3:

Atoms	Х	Y	Z
Ι	0.2165770	2.2546010	-0.0049540
0	0.2199900	1.6788360	1.6945110
0	-1.5069750	2.6624920	-0.2600130
0	0.8280600	4.0362710	0.3902550
Н	0.2937890	4.4214250	1.0956100
Ι	-0.5095520	-1.6897400	-1.0156040
0	1.0260920	-2.0057870	-1.8582820
0	-0.4799210	0.0798470	-0.7260630
0	-1.5507200	-1.6833940	-2.6202860
Н	-2.4633270	-1.4853670	-2.3558800
С	4.1180310	-1.3948400	-0.3167060
Н	3.2407130	-2.0146150	-0.1427060
Н	4.6489300	-1.2058800	0.6130650
Н	4.7831080	-1.8400350	-1.0508630
S	3.5827000	0.1668480	-0.9293600
0	4.6992720	0.9778970	-1.2562230
0	2.6137220	0.6814060	0.0083600
0	2.8699100	-0.1901740	-2.2598950
Н	2.1113030	-0.8249580	-2.1256990
С	-3.4553150	0.4652150	1.5883870
Н	-2.3929980	0.6938410	1.5924110
Н	-3.6678140	-0.3690340	2.2516020
Н	-4.0407450	1.3385360	1.8609460
S	-3.9305380	-0.0245060	-0.0313950
0	-5.3357550	-0.1861140	-0.1180140
0	-3.1243620	-1.1773030	-0.3923930
0	-3.5387550	1.1757780	-0.9199100
Н	-2.6724220	1.6263350	-0.6923060
С	2.2822820	-0.8188460	2.9836130
Н	2.4522120	-0.0093290	2.2761050
Н	3.0843830	-1.5513370	2.9365860
Н	2.1602770	-0.4513500	3.9984190
S	0.8063000	-1.6531430	2.5212200
0	0.5205500	-2.7136840	3.4170610
0	0.9378390	-1.9862140	1.1137860
0	-0.2954240	-0.5859000	2.6787480
Н	-0.0832750	0.2861240	2.1999540

(IA)3'(MSA)1:	A)3 (MSA)	1:
---------------	-----------	----

Atoms	Х	Y	Z
Ι	-2.3099380	-0.7282310	-0.6512250
0	-2.6190820	-0.2400040	1.0477060
0	-0.8909390	-1.8029610	-0.5287830
0	-3.6371200	-2.1414220	-0.7379360
Н	-3.4408350	-2.8353170	-0.0981490
Ι	0.6134140	1.9773010	-0.9278990
0	-1.0274070	1.1867040	-0.9540300
0	0.8908160	2.3678380	-2.6243080
0	-0.0841250	3.7079990	-0.3508090
Н	-0.5578750	4.1254680	-1.0796330
Ι	1.7894290	-1.5430070	-0.0965000
0	3.4914190	-1.4946520	0.3784450
0	1.6495920	-0.1457520	-1.2407360
0	1.8864070	-2.9342000	-1.4270080
Н	2.7884520	-2.9402910	-1.7745750
С	-0.7690580	2.0337070	2.8786800
Н	-1.4666370	2.0164980	2.0436900
Н	-0.0479670	2.8391240	2.7631530
Н	-1.2923190	2.1214330	3.8264270
S	0.1273080	0.5197010	2.8890760
0	0.9408000	0.4213770	4.0438860
0	0.7763240	0.4180620	1.5931350
0	-0.9678060	-0.5615440	2.9800990
Н	-1.6003960	-0.5172570	2.1925900

## (IA)3[·](MSA)2:

Atoms	Х	Y	Ζ
Ι	-0.4043110	-1.8012940	-1.3619690
0	-2.1615210	-1.9049260	-1.6523470
0	-0.3339150	-1.6576460	0.4325000
0	-0.0827700	-3.7147400	-1.4254580
Н	-0.8102580	-4.1849870	-1.0018350
Ι	1.0832020	-0.3989200	2.0580890
0	-0.2587600	-0.4617580	3.1968120
0	0.7926610	1.0736200	1.0327940
0	2.3169470	0.4836050	3.2508230
Н	3.1124080	0.6841240	2.7376910
Ι	-0.4381850	2.0458870	-0.6750690
0	-0.5050630	0.5041390	-1.6173260
0	1.1463950	2.6768820	-1.2398730
0	-1.4636470	3.0708930	-1.9448290

Н	-0.9932420	3.1064490	-2.7863420
С	-3.2943200	-0.8799550	1.9760990
Н	-4.1242340	-1.5432180	2.2020230
Н	-3.0070850	-0.2971510	2.8473280
Н	-2.4284980	-1.4220920	1.6040710
S	-3.8171650	0.2516440	0.7393830
0	-2.6793580	1.0770270	0.4094590
0	-5.0194890	0.8914390	1.1333880
0	-4.1550080	-0.6500040	-0.4764570
Н	-3.3508950	-1.0458270	-0.9088190
С	4.9690490	-0.4324250	-1.4740570
Н	4.8210560	-0.3590570	-2.5472320
Н	5.1863460	-1.4561460	-1.1810810
Н	5.7544440	0.2394290	-1.1403400
S	3.4732730	0.0215140	-0.6765570
0	3.6931620	-0.0228600	0.7476720
0	2.4055180	-0.8124290	-1.1592930
0	3.3247470	1.4565380	-1.1657710
Н	2.3772430	1.8832940	-1.1353880

## (IA)3⁻(MSA)3:

____

Atoms	Х	Y	Z
Ι	-0.0395200	-0.6454130	1.9428920
Ο	0.9211290	-2.1482000	2.0008380
0	-0.7448340	-0.7381860	0.2831540
0	-1.6066370	-1.2309220	2.8500370
Н	-2.1593180	-1.8087290	2.2739360
Ι	2.3619750	1.0464780	-0.7033110
0	1.8462970	0.4702690	0.9235030
0	2.3153210	2.8237640	-0.4495780
0	4.2665050	0.9322440	-0.3551960
Н	4.5157200	1.7301100	0.1275860
Ι	-1.5446850	0.7287120	-1.4005840
0	-1.5251950	-0.7798160	-2.3704540
0	0.1541080	1.3222740	-1.5590710
0	-2.2506890	1.7915320	-2.8459240
Н	-2.0664780	1.3220250	-3.6689360
С	-1.5774850	4.5836300	2.1354880
Н	-0.9096420	4.6634440	2.9879270
Н	-2.5519980	4.2104470	2.4394140
Н	-1.6741440	5.5347100	1.6201860
S	-0.9155930	3.4061280	1.0156290
0	-1.7604670	3.3377430	-0.1424270

Ο	-0.7125050	2.1608430	1.7106490
Ο	0.4249920	4.0738940	0.6962330
Н	1.1210790	3.4963080	0.2148460
С	4.1436450	-2.3163580	0.7966670
Н	3.5363640	-1.7123690	1.4667820
Н	4.9755540	-1.7337410	0.4098190
Н	4.4904420	-3.2233050	1.2828690
S	3.1494780	-2.7745920	-0.5819130
Ο	3.8487620	-3.6830690	-1.4163400
Ο	2.6526710	-1.5551780	-1.1779480
Ο	1.9715850	-3.5465670	0.0580870
Н	1.4687830	-2.9918090	0.7176370
С	-5.0161810	-3.1821560	-0.5666030
Н	-5.2935270	-2.9141950	-1.5817920
Н	-5.7930260	-2.8973100	0.1380080
Н	-4.7975480	-4.2432620	-0.4867220
S	-3.5696660	-2.2865470	-0.1300960
Ο	-3.1845630	-2.7187590	1.1841650
Ο	-3.8017100	-0.8813430	-0.3252840
Ο	-2.5536050	-2.7950110	-1.1649740
Н	-2.1007870	-2.0251590	-1.6554260

#### (IA)4⁻(MSA)1:

Atoms	Х	Y	Z
Ι	-2.2423260	1.8691210	0.0199620
0	-0.9661490	1.5637320	-1.2034900
0	-1.6033190	1.2228940	1.5619660
0	-1.7972180	3.7223600	0.2983320
Н	-0.8317660	3.8111090	0.2017610
Ι	1.7766550	1.6534800	-0.6180490
0	3.4565190	2.2107590	-0.6458920
0	1.6131350	0.9945350	1.0596060
0	1.0378800	3.4260710	-0.2108520
Н	1.7707200	3.9434430	0.1469180
Ι	-2.0232090	-1.7322390	-1.0551330
0	-3.0352730	-0.3367480	-0.4959490
0	-2.2693470	-2.9559750	0.2195740
0	-3.3570510	-2.4539880	-2.2575850
Н	-4.0788120	-2.8456280	-1.7516090
Ι	0.1880970	-0.7633210	1.8794400
0	1.6335420	-1.8106580	1.9939940
0	-0.2007430	-0.9859150	0.1106010
0	-1.1309760	-1.9845440	2.5147950
Н	-1.5491470	-2.4681590	1.7646310
С	4.5857330	-0.7570610	0.3066070

Н	3.9588400	-0.4342600	1.1354040
Н	5.0272200	0.1050980	-0.1867230
Н	5.3431930	-1.4631040	0.6338620
S	3.5680080	-1.5710020	-0.8718970
О	4.3486810	-2.1630350	-1.8945960
0	2.5434540	-0.6253380	-1.2932180
0	2.8967570	-2.7036040	-0.0724720
Н	2.3396000	-2.3676670	0.6982360

## (IA)4⁻(MSA)2:

(111)4 (111)	51 1 1 2 •		
Atoms	Х	Y	Z
Ι	-1.8602190	-2.0437490	-0.4521340
Ο	-3.4319860	-1.2076210	-0.2207840
Ο	-1.4112860	-2.5133780	1.2199060
0	-2.5765110	-3.7634630	-0.9565370
Н	-2.9916400	-4.1642850	-0.1831210
Ι	0.0382960	1.3035270	-1.5668790
0	-1.3145680	0.3986930	-2.2789010
0	1.3846850	0.0957680	-1.7424580
0	0.4748640	2.3219510	-3.1456340
Н	0.1057180	1.8530900	-3.9049170
Ι	2.3416970	-1.6339110	-0.5540040
0	0.9448180	-2.6533870	-0.9790130
0	1.8659020	-0.9457080	1.0535400
0	3.4176490	-3.0722430	0.1869990
Н	2.8445160	-3.7132030	0.6231640
Ι	-0.1453540	-0.2695430	2.1253970
Ο	-0.7539880	0.0274770	0.4196150
0	0.7142610	1.2650620	2.4488200
Ο	-1.7746530	0.1661430	2.9780710
Н	-2.2836980	0.8463200	2.4752760
С	-4.5518000	3.5834190	0.0619740
Н	-4.7079240	3.7872440	-0.9932620
Н	-4.1573580	4.4600060	0.5688670
Н	-5.4657530	3.2384840	0.5357750
S	-3.3382180	2.3235610	0.2058500
Ο	-3.2201740	1.9633370	1.5945660
0	-2.1402890	2.7807200	-0.4408790
Ο	-4.0136890	1.2092450	-0.5914120
Н	-3.6772530	0.2497140	-0.4321220
С	4.6791270	3.2780090	0.4890500
Н	4.2477690	4.1606440	0.9511730
Н	4.9869350	3.4850270	-0.5325340

Н	5.5136240	2.8959350	1.0699710
S	3.4447910	2.0317020	0.4046540
0	4.0324760	0.8561710	-0.1658170
0	2.2767890	2.5711580	-0.2371040
0	3.1594490	1.8259600	1.9049420
Н	2.2016620	1.5560210	2.0880230

## (IA)5⁻(MSA)1:

Atoms	Х	Y	Z
Ι	0.1505380	-0.2791510	-1.9128560
0	0.3866870	-1.5359970	-0.6482260
0	1.4642930	0.9261960	-1.6135090
0	1.1220070	-1.2685180	-3.2179940
Н	1.9262050	-1.6239890	-2.7823710
Ι	-0.1893680	-1.9540780	1.6035950
0	-1.8867400	-2.0539580	1.0945930
0	0.1198750	-0.2065320	1.9905360
0	-0.4661900	-2.5060050	3.4381150
Н	-1.2923090	-2.1283090	3.7641400
Ι	2.7997530	2.2906770	-0.2397440
0	3.5869790	0.8813780	0.5356580
0	1.3888220	2.6644360	0.7826660
0	3.9961130	3.6207190	0.5056390
Н	3.9878110	3.5759420	1.4688480
Ι	-3.6207100	-0.2288560	-0.7025630
0	-2.6806470	-0.7599100	-2.1294410
0	-3.9635880	1.5017220	-0.9724000
0	-5.3504200	-0.9325490	-1.2165610
Н	-5.6506920	-0.4763120	-2.0121540
Ι	-1.1659060	1.6789780	1.3135330
0	-2.6074320	0.9621020	2.0557530
0	-1.1700620	0.8117290	-0.3056410
0	-2.0123220	3.2212060	0.5460990
Н	-2.7615450	2.8939200	0.0094400
С	5.0952230	-2.8333570	0.0217680
Н	5.6212790	-1.8847670	-0.0458800
Н	5.4549670	-3.5262110	-0.7345390
Н	5.1888410	-3.2654130	1.0137470
S	3.3886640	-2.5487330	-0.3027530
0	2.6591970	-3.7513930	-0.0910430
0	3.3056180	-1.8839860	-1.5752360
0	2.9744290	-1.5758120	0.8343600
Н	3.1642890	-0.6048190	0.6411780

(
---

Atoms	Х	Y	Z
Ι	2.2549570	-0.0178470	0.1703430
0	1.0444520	-1.1922840	0.7836320
0	2.3984610	-0.2943900	-1.5718140
0	1.3168040	1.6259870	0.3119740
Н	0.4027420	1.5274470	-0.0812950
Ι	-2.2549520	0.0178440	-0.1703530
0	-2.3985330	0.2944080	1.5717940
0	-1.0444320	1.1922830	-0.7836050
0	-1.3167860	-1.6259860	-0.3119240
Н	-0.4027230	-1.5274350	0.0813460

## (IA)3:

Atoms	Х	Y	Z
Ι	2.0502760	-1.0029130	-0.1065160
0	3.2118700	-1.9599240	1.1228970
Н	4.0825390	-1.5475730	1.1536720
0	0.5510230	0.4182740	-1.0709420
0	3.1917700	-0.8150810	-1.4395200
Ι	0.5179410	1.8407360	0.0856120
0	-0.9109420	2.6638930	-0.8913050
Н	-1.5848740	1.9783540	-1.0872330
0	-0.4384840	1.3191470	1.5020620
0	2.2089230	0.5746000	0.8581940
Ι	-2.7728430	-0.9500980	-0.0681520
0	-2.6271120	-0.1362110	1.6403860
Н	-1.8123930	0.4415940	1.6403940
0	-1.2674910	-1.8883370	-0.1858000
0	-2.6495640	0.4584130	-1.1593330

## (IA)4:

Atoms	Х	Y	Z
Ι	2.9241890	0.0435110	-0.8635460
0	3.4950440	-0.6745010	0.6711170
0	1.9713920	1.4750800	-0.3687730
0	4.5693860	0.9748140	-1.2764300
Н	4.9240130	1.3900130	-0.4811820
Ι	0.2317490	-2.0071310	0.7956480
0	-0.0713050	-0.5315140	1.7446800

0	1.0258200	-1.4171480	-0.7295220	
О	1.8394770	-2.5933650	1.6451140	
Н	2.5536030	-1.9454660	1.4363170	
Ι	-0.3259520	2.0528480	0.7034780	
Ο	-1.0643480	1.0904900	-0.6857680	
0	-0.2420710	3.6804340	0.0405260	
О	-1.9324550	2.2147620	1.7238760	
Н	-2.6001000	1.5685270	1.3920640	
Ι	-2.8044640	-0.3056100	-0.9144760	
0	-3.5466570	0.3829290	0.5550570	
0	-1.8552880	-1.7279890	-0.3078030	
Ο	-4.3636280	-1.3633030	-1.3845380	
Н	-4.8331290	-1.6303950	-0.5859930	

(	IA)	)5:
•		,

()51			
Atoms	Х	Y	Z
Ι	-3.5344100	0.1308410	-0.2864200
0	-2.3106830	0.4860440	-1.5573360
О	-2.8863020	0.8466670	1.2197090
0	-4.7264700	1.6024060	-0.7214750
Н	-4.2652980	2.4482090	-0.7101150
Ι	0.5419420	-0.3031000	2.1338430
О	-0.0741840	-0.0385660	0.4181770
0	0.9630280	1.3736900	2.5290590
О	-1.1922830	-0.4342310	2.8969190
Н	-1.8540270	0.0348080	2.3268070
Ι	-0.6603030	-1.9860300	-0.6874280
Ο	-2.3422030	-1.8028680	0.0183110
0	0.1904330	-2.7400970	0.6892570
Ο	-1.0382730	-3.6578070	-1.5878760
Н	-1.1153910	-4.3629530	-0.9345750
Ι	3.1946460	-0.4312220	-0.6996330
О	1.8776140	-1.2203240	-1.6029460
0	2.7205390	-0.5548800	1.0381290
0	4.4015030	-1.9487530	-0.6485380
Н	3.9425020	-2.7354500	-0.3313170
Ι	0.7506300	2.6262840	-0.3288090
О	2.2075810	1.6687680	-0.8598400
0	1.2180120	4.2713930	-0.7484960
0	-0.3987350	2.2831850	-1.7974870
Н	-1.0871970	1.5894170	-1.6076160

(IA)6:

Atoms	Х	Y	Z
Ι	2.0142330	-1.9502430	0.1062340
0	3.5813460	-2.3077960	-0.6609640
0	1.2147740	-0.8403890	-1.0583760
0	1.0568390	-3.5830250	-0.4682790
Н	1.3933920	-3.8971680	-1.3144030
Ι	4.0616510	1.1772010	0.5078450
0	3.6480600	1.4144440	-1.2121400
0	2.9102220	-0.0865740	1.1649480
0	5.4562590	-0.1115870	0.2184390
Н	5.0709030	-0.9080240	-0.1938550
Ι	-1.9509040	-2.0075870	1.2785530
0	-0.3728890	-1.2094910	1.5384160
0	-2.2436270	-1.9045460	-0.4983290
0	-1.2923970	-3.8204880	1.2425070
Н	-0.5887520	-3.9170540	0.5764410
Ι	-3.5541860	1.5105690	0.6518740
0	-4.9348430	2.0979990	1.5719390
0	-3.0518940	0.0320430	1.5940770
0	-4.5205320	0.6939320	-0.7634460
Н	-3.9463030	0.3947540	-1.5156220
Ι	0.6743480	1.8105790	0.3807700
0	2.2811220	2.5127150	0.9739480
0	-0.4695840	3.0879240	0.7922740
0	1.0853560	2.2419120	-1.4546750
Н	2.0513300	2.0382580	-1.5418810
Ι	-1.2858540	-0.3923390	-2.1824110
0	-1.2960600	0.8181160	-0.8255000
0	-2.9363330	-0.1593290	-2.8052690
0	-0.3635120	0.7547110	-3.4115000
Н	0.1587040	1.3911450	-2.8870510