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Abstract. The COVID-19 pandemic created an extreme natural experiment in which sudden changes in human 32 

behavior and economic activity resulted in significant declines in nitrogen oxide (NOx) emissions, immediately after 33 

strict lockdowns were imposed. Here we examined the impact of multiple waves and response phases of the 34 

pandemic on nitrogen dioxide (NO2) dynamics and the role of meteorology in shaping relative contributions from 35 

different emission sectors to NO2 pollution in post-pandemic New York City. Long term (> 3.5 years), high 36 

frequency measurements from a network of ground-based Pandora spectrometers were combined with TROPOMI 37 

satellite retrievals, meteorological data, mobility trends, and atmospheric transport model simulations to quantify 38 

changes in NO2 across the New York metropolitan area. The stringent lockdown measures after the first pandemic 39 

wave resulted in a decline in top-down NOx emissions by approx. 30% on top of long-term trends, in agreement 40 

with sector-specific changes in NOx emissions. Ground-based measurements showed a sudden drop in total column 41 

NO2 in spring 2020, by up to 36% in Manhattan and 19-29% in Queens, New Jersey and Connecticut, and a clear 42 

weakening (by 16%) of the typical weekly NO2 cycle. Extending our analysis to more than a year after the initial 43 

lockdown captured a gradual recovery in NO2 across the NY/NJ/CT tri-state area in summer and fall 2020, as social 44 

restrictions eased, followed by a second decline in NO2 coincident with the second wave of the pandemic and 45 

resurgence of lockdown measures in winter 2021.  Meteorology was not found to have a strong NO2 biasing effect 46 

in New York City after the first pandemic wave. Winds, however, were favorable for low NO2 conditions in 47 

Manhattan during the second wave of the pandemic, resulting in larger column NO2 declines than expected based on 48 

changes in transportation emissions alone. Meteorology played a key role in shaping the relative contributions from 49 

different emission sectors to NO2 pollution in the city, with low-speed (< 5 ms-1) SW-SE winds enhancing 50 

contributions from the high-emitting power-generation sector in NJ and Queens and driving particularly high NO2 51 

pollution episodes in Manhattan, even during – and despite - the stringent early lockdowns. These results have 52 

important implications for air quality management in New York City, and highlight the value of high resolution NO2 53 

measurements in assessing the effects of rapid meteorological changes on air quality conditions and the 54 

effectiveness of sector-specific NOx emission control strategies. 55 

  56 
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1. Introduction 57 

The global outbreak of the Coronavirus Disease 2019 (COVID-19) profoundly changed the world. From school closures 58 

to remote work and other physical distancing measures, this crisis changed the way we move within our communities, 59 

potentially with long term implications (Barbieri et al., 2021; Przybylowski et al., 2021). Altered mobility patterns led to 60 

sudden and significant worldwide decreases in nitrogen oxide (NOx) emissions from the transportation sector, as 61 

documented in many studies focusing on air quality changes immediately after the initial lockdowns (e.g., Liu et al., 62 

2020; Goldberg et al., 2020; Gkatzelis et al., 2021). Yet, the impact of multiple pandemic waves over longer time periods, 63 

and the role of meteorology and sector-specific emissions as key drivers of high NOx pollution episodes that occurred in 64 

major cities such as New York - even during, and despite, the most stringent early lockdown periods - remain largely 65 

unknown, driving this study. 66 

 67 

New York City, the most populous and most densely populated city in the Unites States, was hit particularly hard by 68 

the pandemic. By late-March 2020, the tri-state region of New York (NY), New Jersey (NJ) and Connecticut (CT) 69 

declared a disaster emergency and issued stay-at-home restrictions in response to COVID-19. Almost 8 million New 70 

Yorkers sheltered-in-place, while roughly 5% of New York City residents (about 420,000 people) left the city between 71 

March and May (Quealy, 2020; Bounds, 2020). The largest decrease in residential population occurred in Manhattan  ̶72 

with more than 30% reduction in relatively wealthy neighborhoods including Upper West and Upper East Side ̶ while 73 

the rest of the city saw comparably modest losses (Quealy, 2020). The entire New York metropolitan area (approx. 74 

12,000 km2, McCarthy 2021) remained in lockdown with strict social distancing measures, including school and non-75 

essential business closures, limited transit services, and suspension of public events and gatherings, for more than two 76 

months, from mid-March through June 2020. Lockdown measures were relaxed and the first phase of reopening began 77 

in June with the area progressing to the final stage of reopening in July. Yet, social distancing measures became strict 78 

again, including school closures, as the city experienced a surge in COVID-19 cases in late fall 2020 that reached a 79 

maximum in mid-January 2021 with more reported cases to NYC Department of Health and Mental Hygiene than 80 

during the first wave of the pandemic (Fig. S1). Early studies using satellite data from the Ozone Monitoring 81 

Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI) revealed 31(±14)% and 28(±11)% 82 

reduction, respectively, in nitrogen dioxide (NO2) tropospheric column amount within a 100-km radius of New York 83 

City during the three weeks following the onset of the pandemic compared to the same period in 2019 (Bauwens et 84 

al., 2020). Similarly, Goldberg et al. (2020) reported a 20% drop in TROPOMI NO2 within a 22-km radius of New 85 

York City between March 13 and April 30, 2020.   86 

 87 

Emitted to the atmosphere primarily during fossil fuel combustion, nitrogen oxides (NOx=NO+NO2) are a major 88 

source of air pollution and necessary precursors of tropospheric ozone, impacting climate as well as human and 89 

ecosystem health (Fares et al., 2013; Duan et al., 2019; Lim et al., 2012; Burnett et al., 2004). High NO2 levels have 90 

been associated with lung irritation and reduced lung function, increased asthma attacks, cardiovascular disorders, as 91 

well as lower birth weight in newborns and increased risk of premature death (U.S. EPA 2016). In addition, through 92 

wet and dry deposition, the atmosphere is a major source of excess nitrogen to many terrestrial and aquatic ecosystems 93 
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worldwide (Paerl et al., 2002; Pardo et al., 2011). Prior studies have indicated atmospheric deposition accounts for a 94 

third or more of total nitrogen loading in systems such as the Chesapeake Bay and Long Island Sound, with important 95 

implications for soil biogeochemistry, aquatic biology, development of coastal eutrophication, harmful algal blooms, 96 

and hypoxia (e.g., Stacey et al., 2001; Decina et al., 2017; Decina et al., 2020). A combination of strict air quality 97 

regulation policies (e.g., Clean Air Interstate Rule, CAIR, 2009) and technological improvements over the past two 98 

decades has resulted in significant declines in NOx emissions over the continental United States (van der A et al., 99 

2008; Duncan et al., 2016; Krotkov et al., 2016). Satellite Aura/OMI observations have captured an approximately 100 

4% yr-1 decrease in tropospheric column NO2 levels between 2005 and 2015 over the eastern United States (Krotkov 101 

et al., 2016) and a 46% decline in NOX emissions has been reported for New York City over the period from 2006 to 102 

2017 (Goldberg et al., 2019a). Despite these improvements, air pollution continues to be the single biggest 103 

environmental health risk in the United States and globally today (Burnett et al., 2018; Thakrar et al., 2020; WHO 104 

2019). With significant NOx emissions from various sectors (e.g., transportation, energy, industrial), the New York 105 

metropolitan area experiences among the highest national NO2 levels (Herman et al., 2018) and has the worst 106 

nonattainment record of ozone in eastern North America (based on the EPA 2015 standard) (Karambelas et al., 2020).     107 

 108 

Restrictions on human and economic activities, particularly reductions in transportation emissions due to the COVID-109 

19 stay-at-home orders, provide a unique opportunity to assess the importance of different sources of air pollution in 110 

New York City and how further sector-specific NOx emission reductions may impact nitrogen pollution in this major 111 

urban center. The overarching objective of this study was to examine how NO2 dynamics changed in the New York 112 

metropolitan area during the multiple phases of the pandemic and across regions experiencing different shifts in 113 

mobility patterns. Ground-based measurements conducted over a period of 3.5 years (2017-2021) allowed us to 114 

capture inter-annual variability, impacts of meteorology, and changes in air quality as human behavior changed during 115 

the multiple pandemic waves and as vehicle traffic started to return to near pre-pandemic levels a year after the initial 116 

lockdown. Combining these high-frequency observations with model simulations and satellite imagery uniquely 117 

captured NO2 dynamics across multiple scales and highlighted the impact of COVID-19 restrictions not only on NO2 118 

column amounts but also on NO2 spatiotemporal behavior, including seasonal and weekly cycles. 119 

 120 

Meteorological factors have a significant impact on atmospheric chemistry as well as transport, transformation, and 121 

dispersion of air pollutants (Xu et al., 2011; Banta et al., 2011; Goldberg et al., 2020). Elucidating the role of 122 

meteorology is thus important in assessments of COVID-19 impacts on urban air quality (Gkatzelis et al., 2021). 123 

Seasonality and local meteorology were previously reported to drive NO2 changes in New York City as large as a 124 

factor of two over the course of a year (Goldberg et al., 2020). Although meteorological patterns were especially 125 

favorable for low NO2 in much of the United States in spring 2020, varying meteorological conditions in New York 126 

City were not found to have a biasing effect in TROPOMI estimates of NO2 declines during the initial lockdown 127 

period (Goldberg et al., 2020). Because our study extended over a longer time-period, we explicitly investigated how 128 

weather conditions may have impacted observed changes in NO2 pollution and the relative contribution of different 129 

NOx emissions sectors (i.e., energy versus transportation) during the multiple phases of the pandemic.  130 
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2. Methods  131 

2.1 Ground-based measurements of column NO2 dynamics 132 

To assess the impact of COVID-19 restrictions on NO2 spatiotemporal behavior we used high-frequency (approx. 133 

every 1 min) measurements of total column NO2 (TCNO2) from the ground-based Pandonia Global Network (PGN, 134 

https://www.pandonia-global-network.org/, data last accessed on 4 June 2021). Sponsored by the National Aeronautics 135 

and Space Administration (NASA) and the European Space Agency (ESA), PGN focuses on providing long-term, 136 

real-time and verified QA/QC data on air quality and atmospheric composition from a network of standardized and 137 

calibrated Pandora spectrometer instruments (PSIs, Herman et al., 2019). The PGN global network serves as a 138 

validation resource for UV-visible satellite sensors on low-earth and geostationary orbit, and recent studies have 139 

included Pandora measurements for ground-based validation of TROPOMI NO2 measurements near New York City 140 

and Long Island Sound (Judd et al., 2020; Verhoelst et al., 2021). In the New York metropolitan area, PGN sites 141 

include Manhattan, NY (PSI #135), Queens, NY (PSIs #55, #140), New Brunswick, NJ (PSIs #56, #69), and New 142 

Haven, CT (PSIs #20, #64) (Table 1, Fig. 1). PSI #135 in Upper West Manhattan, NY, has the longest data record 143 

(since Dec 2017) among these instruments and is located on the Advanced Science Research Center (ASRC) Rooftop 144 

Observatory at the City College of New York campus, an intensive urban air-quality monitoring site. The Pandora 145 

sensor in Queens, NY, is located at the CUNY Queens College, a New York Department of Environmental  146 

 147 

Pandora name, #, location 
(Principal Investigator) 

Temporal 
range 

of data 

            TCNO2 (in DU)  

 Apr-May June-Aug Sept-Nov Dec-Feb 

Pre- Post- Pre- Post- Pre- Post- Pre- Post- 

Manhattan, NY 
PSI #135 
40.8153°, -73.9505° 

12/2017 
- 5/2021 

mean 
stdev 
max 

0.61 
0.34 
3.11 

0.39 
0.25 
3.25 

0.59 
0.35 
3.77 

0.44 
0.24 
2.09 

0.59 
0.38 
2.94 

0.46 
0.27 
1.89 

0.71
0.45
3.13 

0.48 
0.30 
2.05 

(M. Tzortziou)  change -36% -25% -22% -32% 

Queens, NY 
PSI #140, #55 
40.7361°, -73.8215° 

5/2018 
- 5/2021 

mean 
stdev 
max 

0.61 
0.35 
3.42 

0.48 
0.21 
3.60 

0.54 
0.28 
2.74 

0.51 
0.19 
1.54 

0.57 
0.33 
3.36 

0.51 
0.22 
2.34 

0.73 
0.40 
3.04 

0.70 
0.38 
2.81 

(J. Szykman)  change -21% -6% -11% -4% 
 New Brunswick, NJ* 
PSI #56, #69 
40.4622°, -74.4294° 

5/2018 
- 1/2021  

mean 
stdev 
max 

0.32 
0.15 
1.46 

0.26 
0.18 
2.06 

0.29 
0.15 
1.98 

0.28 
0.20 
2.42 

0.34 
0.24 
2.55 

0.30 
0.21 
4.59 

0.42 
0.31 
2.72 

0.26 
0.10 
0.53 

(J. Szykman)  change -19% -3% -12% -38% 

New Haven, CT 
PSI #20, #64 
41.3014°, -72.9029° 

5/2018 
- 5/2021 

mean 
stdev 
max 

0.38 
0.11 
0.75 

0.27 
0.08 
0.78 

0.34 
0.09 
0.77 

0.29 
0.08 
0.83 

0.34 
0.15 
1.71 

0.29 
0.13 
1.13 

0.36 
0.17 
1.37 

0.33 
0.18 
1.83 

(J. Szykman) change -29% -15% -15% -8% 

* The Dec – Feb period for New Brunswick contains 16 days of data in December 2020, 1 day of data in January 2021, 148 
and no data in February 2021. 149 

 150 
Table 1: Pandora sites (including names of Local Principal Investigator (PI)), and mean, standard deviation (stdev) and 151 
maximum (max) total column NO2 (TCNO2) amounts (based on half-hour averages) measured pre- and post- the COVID-152 
19 lockdown in New York.  153 



6 
 

Conservation (NYDEC) Air Toxics and NCore monitoring site within a dense residential neighborhood and near 154 

several major roadways. The Pandora in New Haven, CT, is located at the Connecticut Department of Energy and 155 

Environmental Protection (CTDEEP) Photochemical Assessment Monitoring Station (PAMS) in Criscuolo Park, at 156 

the confluence of the Mill and Quinnipiac Rivers surrounded by a residential neighborhood near the elevated 157 

intersection of three major highways and industrial activities across the rivers. The New Jersey Department of 158 

Environmental Protection (NJDEP) Photochemical Assessment Monitoring Station (PAMS) in New Brunswick, NJ, 159 

includes a Pandora sensor located on the roof of the Rutgers (NJDEP) research shelter dedicated to atmospheric 160 

research, on a university research farm in a suburban neighborhood and approximately 20 km from the coast. 161 

 162 

Pandora is a sun/sky/lunar passive UV/Visible spectrometer system, driven by a highly accurate sun tracker that points 163 

an optical head at the sun and transmits the received light to an Avantes low stray light CCD spectrometer (spectral 164 

range: 280-525 nm; spectral resolution: 0.6 nm with 4 times oversampling) through a fiber optic cable (Herman et al., 165 

2019; Tzortziou et al., 2014). The spectrometer is temperature stabilized at 20oC inside a weather resistant container. 166 

Trace gas abundances along the light path are determined using differential optical absorption spectroscopy (DOAS). 167 

The system can operate in both direct-sun and sky-scan mode for retrievals of O3, NO2, SO2 and CH2O total columns 168 

and information on vertical profile (Tzortziou et al., 2018; Herman et al., 2018; Spinei et al., 2018), and is an enhanced 169 

monitoring instrument for characterizing upper air pollutants under the U.S. EPA PAMS program (Szykman et al., 170 

2019). The estimated TCNO2 error in Pandora retrievals is approximately 0.05 DU (1 DU = 2.69x1016 molecules cm-171 

 
Figure 1: Map of study area, indicating location of Pandora sensors (white symbols) in Manhattan NY, Queens NY, New 
Brunswick NJ, and New Haven CT, overlaid with mean 2019 annual total column NO2 from TROPOMI (in DU). Major 
pollutant emitters (red circles) in the area are included, specifically the PSEG Bergen Generating Station in Ridgefield 
(BG), the Linden Generating Station (LG) and the Phillips 66 Bayway (PB) Refinery in Linden (major emission sources 
in NJ), and the Astoria (AG) and Ravenswood Generating (RG) Stations in Queens, NY (among the largest greenhouse 
gas polluters in the state of NY in 2018 and 2019). 
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2) (Herman et al., 2019). Pandora data were filtered here for normalized root-mean square of weighted spectral fitting 172 

residuals less than 0.05, uncertainty in NO2 retrievals less than 0.05 DU, and TCNO2 > 0.  173 

2.2 TROPOMI satellite retrievals  174 

Jointly developed by the Netherlands and ESA, TROPOMI is an air quality monitoring sensor onboard the sun-175 

synchronous Copernicus Sentinel-5 Precursor satellite, launched on 13 October 2017 (Veefkind et al., 2012). On a 176 

low-earth (825 km) orbit, Sentinel-5P has a daily equator overpass time of approximately 13:30 local time and global 177 

daily coverage. TROPOMI has a spatial resolution of 7.2 km (5.6 km as of 6 August 2019) along-track by 3.6 km 178 

across-track at nadir, a significant improvement compared to its predecessors OMI (Ozone Monitoring Instrument) 179 

(Levelt et al., 2006) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) 180 

(Bovensmann et al., 1999). Here, we also used data from OMI due to its long-time record exceeding 17 years.  181 

TROPOMI has several spectral bands in the ultraviolet to shortwave-infrared (270-2385 nm) and a spectral resolution 182 

between 0.25 and 1 nm, allow observations of cloud, aerosol properties, and key atmospheric trace gases including 183 

O3, NO2, CO, SO2, CH4 and CH2O (Veefkind et al., 2012). NO2 retrievals from TROPOMI are based on measurements 184 

in the 405–465 nm spectral window. Using a DOAS technique, similar to the Pandora instrument, the top-of-185 

atmosphere spectral radiances are converted into slant column amounts of NO2 between the sensor and the Earth's 186 

surface (Boersma et al., 2018). In two additional steps, subtraction of the stratospheric component and incorporation 187 

of an air mass factor, the slant column quantity is converted into a tropospheric vertical column content (Beirle et al., 188 

2019; Dix et al., 2020; Goldberg et al., 2019b; Griffin et al., 2019; Ialongo et al., 2020; Reuter et al., 2019; Zhao et 189 

al., 2020). For this analysis, we used the operational “off-line” TROPOMI NO2 data set, Version 1.02 between 30 190 

April 2018 – 19 March 2019 and Version 1.03 20 March 2019 – 28 November 2020.  We do not continue the 191 

TROPOMI analysis beyond 28 November 2020 due to a significant change in the algorithm (to version 1.04) on 29 192 

November 2020. TROPOMI data are filtered using a quality assurance flag (QA), in which pixels with QA values 193 

greater than 0.75 are utilized; no other filter has been applied. Validation of TROPOMI NO2 V1.02 tropospheric 194 

columns over the New York City metropolitan area indicate columns are biased low, varying 19-33% (Judd et al., 195 

2020). 196 

2.3 Satellite-derived NOx emissions 197 

We used an inverse statistical modeling technique (Goldberg et al., 2019b; Laughner & Cohen 2019) to derive the 198 

New York City NOX emission rates from a combination of TROPOMI satellite data and re-analysis meteorology. This 199 

method accounts for daily changes in temperature, sun angle, wind speed and wind direction by calculating a 200 

spatiotemporally specific NO2 lifetime. In brief, all NO2 satellite data over New York City were compiled and rotated 201 

based on the daily-observed wind direction, so that the oversampled plume is decaying in a single direction. We used 202 

the closest gridded value without interpolation of the 100-m (above the surface) horizontal wind speed and direction 203 

from the ERA5 re-analysis dataset (Hersbach et al., 2020) generated at 0.25º × 0.25º. Once all daily plumes were 204 
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rotated to be aligned as an effective horizontal plume and averaged together during a 5-month warm season period 205 

(May-Sept; usually ~75 snapshots), we integrated ±0.5º along the y-axis about the x-axis to compute a one-206 

dimensional line density in units of mass per distance. The line densities, which are parallel to the wind direction, 207 

peak near the primary NOX emissions source and gradually decay downwind from a combination of atmospheric 208 

dispersion, chemical transformation, and deposition. The line densities were fit to a statistical exponentially modified 209 

Gaussian (EMG) model (Beirle et al., 2011; de Foy et al., 2014; Valin et al., 2013; Verstraeten et al., 2018). The five 210 

fitted parameters of the statistical fit are the NO2 background, NO2 mass perturbed above the background threshold 211 

(burden), decay distance, horizontal location of apparent source (ideally at the origin), and sigma of the Gaussian 212 

plume. The NOX emissions rate from the source can be calculated from the NO2 burden, decay distance, and NOX/NO2 213 

ratio, which previous work has shown to be 1.33 (Beirle et al., 2011). After accounting for a systematic low bias of 214 

TROPOMI in polluted areas (Judd et al., 2020; Verhoelst et al., 2021), the NOX emissions compare well with known 215 

emissions from power plants (Goldberg et al., 2019b). For this project, we do not correct for TROPOMI low bias, but 216 

instead assume the low bias is consistent between years and calculate changes between years. A full description of the 217 

method can be found in Goldberg et al. (2019a; b). 218 

2.4 STILT model simulations 219 

We used STILT, the Stochastic Time-Inverted Lagrangian Transport model, to calculate the surface influence and 220 

contributions from different sources of NO2 pollution to the city. STILT is a Lagrangian particle dispersion model, in 221 

this case driven by NOAA High-Resolution Rapid Refresh (HRRR) meteorology at 3 km horizontal resolution, that 222 

follows the trajectory of 500 air parcels released from the receptor (measurement site) position backward in time over 223 

the previous 24 hours. The motion of each parcel is determined by both advection by the large-scale wind fields and 224 

random turbulent motion, independent of the other parcels. The proportion of parcels residing in the lower half of the 225 

planetary boundary layer determines the influence of surface fluxes on the measured mole fractions. This surface 226 

influence is tracked in time and space, which allows for the calculation of a two-dimensional footprint at hourly 227 

intervals over the travel period and spatial domain of the particles. The unit of surface influence is defined as the 228 

response of each receptor concentration measurement to a unit emission of a trace gas at each grid square (e.g., ppb 229 

(μmol m-2s-1)-1). In this study, we ran hourly STILT simulations for the 10 hours surrounding daily peak NO2, for cases 230 

of particularly high total column NO2 amounts (> 1.8 DU, more than three times the average of pre-pandemic levels) 231 

measured at the Manhattan and Queens Pandora sites during the COVID-19 lockdown in April 2020 and after the 232 

shutdown in October 2020. Simulated particles originated at the elevation of the Pandora instruments. We also 233 

performed simulations for one low TCNO2 case in April 2020 for comparison. The STILT footprints were multiplied 234 

by 2015 annual gridded maps of NOx emissions (μmol m-2s-1) at 0.1° horizonal resolution from the Emissions Database 235 

for Global Atmospheric Research (EDGAR) v5.0, which combine atmospheric pollutant data categorized by 236 

anthropogenic emissions sector (e.g., power, manufacturing, transportation), to predict the NO2 concentration 237 

enhancement (ppb) that would be expected for each observed hour. 238 
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2.5 Meteorological Data 239 

Wind speed and direction data from the ERA5 Model (Copernicus Climate Change Service (C3S), 2017) were used 240 

to examine the impact of meteorology on TROPOMI retrieved NO2 column amounts. To downscale the 0.25° × 0.25° 241 

grid ERA5 reanalysis, we spatially interpolate daily averaged winds to 0.01° × 0.01° using bilinear interpolation 242 

(Goldberg et al., 2020). The average 100‐m winds during 16–21 UTC (i.e., approximately the TROPOMI overpass 243 

time over North America) were used in our analysis. To assess impacts of meteorology on ground-based measurements 244 

of TCNO2 from the Manhattan Pandora PSI#135, we used in situ measurements of wind speed and wind direction 245 

(measured at a resolution of 0.01 m/s and 1o, respectively) collected by a collocated ATMOS 41 All-In-One weather 246 

station on a 15-minute timescale. 247 

2.6 Calculation of change in NO2 column amounts 248 

Change in NO2 column amounts was estimated by comparing post-lockdown TROPOMI and Pandora measurements 249 

to the same timeframe in 2018-2019, to account for seasonality and interannual variability (Goldberg et al., 2020; 250 

Bauwens et al., 2020). The impact of meteorology on these estimates was explicitly quantified using ERA5 and in situ 251 

meteorological data. We estimated changes in NO2 over the different phases of the pandemic in New York City (i) 252 

immediately following the initial lockdown in April-May 2020, (ii) as restrictions gradually eased in June-August 253 

2020, (iii) during the re-opening phase in September-November 2020, (iv) as restriction became strict again in 254 

December 2020-February 2021 due to the second wave of the pandemic, and (v) in March-May 2021, one year after 255 

the initial lockdown. Pandora data were first averaged in half-hour bins to eliminate bias towards times of day with 256 

more data, then averaged on weekly, monthly, and seasonal time scales. To examine weekly cycles from satellite 257 

observations, TROPOMI data were averaged over longer timescales (April-November), due to the lower temporal 258 

resolution and impacts of clouds on satellite retrievals. All computed means for seasonal and weekly cycles were 259 

calculated with 95% confidence intervals using a two-tailed single sample t-test. While NO2 data is non-normally 260 

distributed, all sample sizes are large (n > 100), and statistics (e.g., p-values) were also calculated using the 261 

nonparametric Mann-Whitney and Kruskal Wallis tests which confirmed the validity of t-test results. 262 

2.7 Changes in mobility patterns 263 

To examine changes in mobility patterns, we looked at sector-specific mobility indices provided by Apple (Forster et 264 

al., 2020) and traffic counts from the Metropolitan Transport Authority (MTA) day-by-day transit data, focusing on 265 

bridge and tunnel ridership to represent passenger vehicles (buses, motorcycles, cars, trucks) (NY MTA). Apple 266 

mobility data (accessed on 4 June 2021) tracked mobile phone movements and compared post-COVID-19 data with 267 

the average on February 13, 2020 (Forster et al., 2020). For MTA data (https://new.mta.info/coronavirus/ridership, 268 

accessed on 4 June 2021), bridge and tunnel traffic was quantified from E-ZPass and cash toll collection, and percent 269 

(%) changes in ridership were calculated through comparison to traffic on the pre-COVID equivalent day in the 270 

previous year.  271 
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3. Results and Discussion  272 

3.1. Changes in NO2 column amounts and spatiotemporal dynamics    273 

Satellite imagery from TROPOMI captured significant post-shutdown NO2 reductions in the New York metropolitan 274 

area, particularly during the first three months after the initial lockdowns (Fig. 2). As MTA bridge and tunnel traffic 275 

plummeted by up to 80% in April 2020 (Fig. S2), TCNO2 over a 50 x 50 km area around Manhattan dropped by 32% 276 

in March-May 2020 compared to the same period in 2018-2019 (Fig. 2, left panel). Smaller declines (< 30%) were 277 

found in the surrounding areas of NJ, upstate NY, and CT. These results are consistent with Bauwens et al., (2020) 278 

reporting a decline in TROPOMI tropospheric NO2 column by 28(±11)% within a 100-km radius around New York 279 

City during the three weeks following the onset of the pandemic compared to the same period in 2019. By June-280 

August 2020, total NO2 columns ̶ lower during summer due to increased photochemical loss ̶ rose closer to pre-281 

pandemic levels, with approx. 15% decline over New York City and even smaller changes (<10%) in western NJ, CT, 282 

and eastern Long Island (Fig. 2, mid panel). This recovery in NO2 coincided with the city of New York commencing 283 

the first phase of its reopening plan in June 2020 and gradually relaxing lockdown measures, including the opening 284 

of restaurants (outdoor dining) and some workplaces. Daily traffic on New York City bridges and tunnels increased 285 

to 22% lower than baseline in summer 2020 (Fig. S2). This trend continued in fall 2020, with TCNO2 showing 13% 286 

drop over New York City and smaller declines over more rural areas in northern NJ and eastern Long Island (Fig. 2, 287 

right panel).  288 

 
Figure 2: TROPOMI total vertical column NO2 differences between 2018-2019 and 2020, over the New York metropolitan 
area. Results are shown for 13 March through May (left panels), June through August (middle panels) and September 
through November (right panel). Upper panels show the absolute difference between the 3-month period in 2018-2019 
and 2020 in Dobson units. Bottom panels show the ratio between the 3-month period in 2018-2019 and 2020. Values 
denoted in bottom right of each panel are area-averaged difference within a 50 x 50km area around Manhattan (black 
box). 13 March – 29 April 2019 data are double counted in the March through May 2018 – 2019 period due to unavailable 
data in the 13 March – 29 April 2018 timeframe. 
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These values can be compared to long-term NO2 trends from OMI (Fig. S3), which shows a ~3.8% yr-1 drop between 289 

2005 and 2019. The abrupt TCNO2 changes during the initial phase of the COVID lockdowns, occurring within a 290 

matter of days, were approximately equivalent to the drop seen over the prior 10-year period between 2009 and 2019. 291 

 292 

These abrupt spatiotemporal changes in TCNO2 detected by TROPOMI were remarkably consistent with the higher 293 

resolution TCNO2 measurements from the ground-based Pandora network. Prior to lockdown, TCNO2 in Manhattan 294 

and Queens, NY, was characterized by high variability, often surpassing 2 DU (Fig. 3). NO2 total columns in New 295 

Brunswick, NJ, and New Haven, CT, were overall considerably lower than measurements in New York City, in 296 

 
Figure 3: Long term (December 2017- February 2021, May 2021 in Manhattan only) data record of TCNO2 (in DU) 
measured by Pandoras in (a) Upper West Side Manhattan (blue circles), (b) Queens (yellow circles), (c) New Brunswick 
NJ (green circles) and (d) New Haven CT (pink circles). Total column TROPOMI overpass data at locations of the 
Pandora instruments is also shown (red squares). No data averaging was performed on Pandora or TROPOMI values. 
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agreement with pre-pandemic TROPOMI retrievals (Table 1, Figs. 1, 3). Across all sites, pre-pandemic TCNO2 297 

showed a clear seasonal cycle typical of Northern Hemisphere mid-latitude locations, with maxima occurring during 298 

the winter (Figs. 3, 4) due largely to increased fossil fuels for domestic heating, the longer tropospheric NO2 lifetime 299 

at colder temperatures, less light availability, and a shallower and more stable planetary boundary layer (A et al., 2008; 300 

Semple et al., 2012). Post-shutdown, all Pandora sensors measured a significant drop in TCNO2. In the two months 301 

following the initial lockdown, TCNO2 in Manhattan decreased by 36% compared to pre-pandemic levels, with 302 

smaller declines, 21%, 19% and 29% respectively, in Queens, New Brunswick, and New Haven (Table 1). Variability 303 

in TCNO2 (Table 1) also decreased at most locations, indicating a reduction in the magnitude of high NO2 pollution 304 

episodes. As social distancing restrictions gradually started to ease in June, TCNO2 in Manhattan started to slowly 305 

recover, reaching 25% lower than the pre-pandemic seasonal mean in summer and 22% lower in fall 2020. NO2 rose 306 

even closer to pre-pandemic levels in Queens, New Brunswick, and New Haven, showing less than 15% decline in 307 

summer and fall 2020 (Table 1), consistent with TROPOMI (Fig. 2). TCNO2 in Manhattan, however, dropped again 308 

significantly below pre-pandemic levels during the second wave of the pandemic in late 2020 (Table 1, Fig. 4). The 309 

decline in TCNO2 reached 39% in January 2021, consistent with both a decline in mobility (i.e., re-closing of 310 

businesses and transition from in-person to online learning in many schools in the area; Fig. S1) as well as favorable 311 

meteorological conditions for low NO2 (discussed in section 3.4). As restrictions eased again, NO2 levels rebounded 312 

to 11% and 21% below pre-pandemic levels in April and May 2021, respectively, more than a year after the COVID-313 

19 outbreak in the U.S. (Table 1, Fig. 4).  314 

 315 

These changes resulted in a departure from typical seasonal NO2 behavior, maximum in winter and minimum in 316 

summer, with instead a maximum in monthly mean TCNO2 in July 2020 and two minima tightly linked to the two 317 

pandemic waves in May 2020 and January 2021 (Fig. 4). In agreement with Gkatzelis et al. (2021), the NO2 decrease 318 

closely followed changes in the stringency of lockdown measures and particularly decreases in traffic, further 319 

 

 
Figure 4:  Monthly mean seasonal cycle of TCNO2 in Upper West Manhattan pre-lockdown (Dec 2017-Dec 2019, cyan) 
and post-lockdown (Apr 2020-Dec 2020, blue and January-May 2021, red), as measured by PSI #135 (30 min averaged 
data; 95% confidence intervals indicated by error bars; data not available during Jan-Mar 2020). The percent (%) change 
is also shown below each bar.  
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confirming the importance of the transportation sector as a source of NOx pollution in Manhattan. Still, as discussed 320 

in the next section, other emission sectors also contributed significantly to the observed spatiotemporal changes in 321 

NO2 pollution over the New York metropolitan area during the multiple waves of the pandemic.   322 

3.2. Impacts of COVID-19 measures on NOx emissions  323 

While meteorology plays a significant role in air pollution levels, our estimates of top-down NOx emissions from 324 

TROPOMI indicate that sudden reductions in NOx emissions due to COVID-19 measures were the dominant factor 325 

driving the observed NO2 decline in New York City during the first wave of the pandemic (Fig. 5). Five-month (May 326 

to September) averaged top-down NOx emissions suggest a 34.5% drop between 2019 and 2020 (Fig. 5). This 327 

reduction in NOx emissions is significantly larger than the long-term decline of approx. 4% yr-1 captured by OMI 328 

(Fig. S3) and reported in previous studies for the eastern U.S. and New York City (Krotkov et al., 2016; Goldberg et 329 

al., 2019a), and suggests that COVID-19 measures during the first pandemic wave led to ~30% reduction in NOx 330 

emissions in New York City, on top of the long-term trend resulting from air-quality regulations and technological 331 

improvements. The reason TROPOMI TCNO2 changes (Fig. 2) are smaller than NOx changes during the coincident 332 

timeframe (ΔTCNO2: ~24% vs. ΔNOx: ~35%) is because there is a background component to NO2.  333 

 334 

The EPA National Emissions Inventory (NEI) provides context for expected changes in NOx emissions due to the 335 

COVID-19 pandemic. According to 2017 NEI data, mobile sources account for about 59% of annual NOx emissions 336 

in New York City (25% on-road, and 34% non-road transportation including non-road equipment (15%) and 337 

locomotives/aircrafts/marine vessels (19%)). The next largest contributing sector is energy (41%), which includes 338 

electric generation, and residential, commercial, and industrial fuel combustion. Wildfires, biogenic sources, and 339 

waste disposal contribute a negligible amount (<1%; NEI 2017).  New York City NOx emissions are more heavily 340 

 

 

Figure 5: Five-month averaged (May-September) top-down NOx emission estimates for the New York metropolitan area, 
for 2018 (left panel), 2019 (middle panel) and 2020 (right panel). TROPOMI NO2 data is rotated based on daily wind 
direction. Bottom panels show the TROPOMI NO2 line densities, which are integrals along the y-axis ± 50 km about the 
x-axis. The statistical EMG fit to the top-down line densities is shown in light blue. 
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weighted in the energy sector than other major U.S cities such as Los Angeles (13%) and Chicago (26%) (NEI, 2017). 341 

During spring 2020, MTA bridge and tunnel traffic decreased on average by 55%, nation-wide commercial passenger 342 

airline and business aviation travel decreased by approx. 75% and 70% (Transportation Research Board 2020; 343 

FlightAware 2020; Bureau of Transportation Statistics (BTS) 2020), while operation of commercial marine vessels, 344 

non-road equipment, and locomotives dropped by an estimated ~6%, ~45%, and ~15-20%, respectively (United 345 

Nations Conference on Trade and Development2020; Procore, 2020; BTS 2020). Applying these reported changes in 346 

activity to corresponding estimated NOx contributions from different components of the mobility sector in New York 347 

City (EPA) results in an approx. 26% decrease in NOx emissions. Declines in power generation demand/usage in New 348 

York City, however, were considerably smaller, on average 15% in spring 2020 (New York Independent Systems 349 

Operator, 2020). These changes in emissions from the transportation and power generation sector suggest 350 

approximately 32% decrease in NOx emissions in New York City during the first wave of the pandemic, which is 351 

consistent with our estimated reduction in top-down NOx emissions from TROPOMI.  352 

 353 

The overall less dramatic declines in TCNO2 observed at locations outside Manhattan (e.g., CT and NJ) during the 354 

first two months following the initial lockdowns agree with reported changes in population, with many city residents 355 

across the US relocating (temporally and long term) to their suburban areas, more so from wealthier than lower-income 356 

neighborhoods (Quealy et al., 2020). They are also consistent with mobility trends across our study region, with the 357 

strongest mobility declines occurring in New York City. According to Apple mobility data, transportation associated 358 

with driving and transit during March-May 2020 were 36% and 72% lower than baseline, respectively, in New York 359 

City, compared to 32% and 54% in Middlesex County NJ and 19% and 49% in New Haven, CT (Fig. S4). Moreover, 360 

the mobile sector constitutes a larger portion of total NOx emissions in Middlesex County NJ (72%) and New Haven 361 

CT (71%) than in New York City, with significantly larger contributions from diesel at 36% of Middlesex total 362 

emissions (22% in CT, 25% in NYC). National U.S diesel sales experienced a relatively smaller decrease from 2019 363 

– 2020 than gasoline sales did, with a maximum decrease of ~10% in spring (vs. a mean -40% for gas) (U.S. Energy 364 

Information Administration, 2021), so the relatively larger contribution from diesel in NJ could also partially explain 365 

the smaller decreases in NO2 at these locations compared to those observed in NY. 366 

3.3 Changes in NO2 weekly cycles during the pandemic 367 

Anthropogenic NOx emissions often display a clear weekly cycle in major cities around the world, with minima on 368 

rest days (e.g., Beirle et al., 2003; Kaynak et al., 2009; Tzortziou et al., 2013). The amplitude of this weekly cycle has 369 

been shown in OMI data (2015-2017) to be strengthening in regions undergoing rapid emission growth, while it has 370 

been weakening over European and U.S. cities due to the long-term decline in anthropogenic emissions (Stavrakou et 371 

al., 2020). Yet, recent data from TROPOMI (2018-2019) show that significant NO2 decreases on Sunday are still 372 

prevalent in cities of North America, Europe, Australia, Korea and Japan (Stavrakou et al., 2020). In New York City, 373 

TROPOMI captured 30% lower tropospheric column NO2 on Sundays compared to a typical weekday in 2018-2019 374 

(Goldberg et al., 2021), in agreement with pre-pandemic MTA and Apple data showing lower traffic into and around 375 
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the city on Sundays. Similarly, Pandora measurements in Manhattan showed a clear weekly NO2 dependence before 376 

the pandemic, with minima consistently observed on Sunday on average 33% lower than weekday values (Figs. 6, 7). 377 

A strong diurnal variability in NO2 was also found (e.g., Fig 8), although diurnal patterns were highly variable spatially 378 

and temporally, consistent with previous studies (Tzortziou et al., 2013).  The Sunday-to-weekday TCNO2 ratio varied 379 

seasonally from 0.64 and 0.63 in spring and summer, to 0.75 and 0.88, respectively, in fall and winter (Figs. 6, 7b), 380 

most likely due to the longer tropospheric NO2 lifetime and an increase in relative contribution of NOx sources that 381 

have no weekly cycle (e.g., heating) in winter (Beirle et al., 2003).   382 

The COVID-19 measures significantly impacted this weekly NO2 behavior. Over the nine months following the 383 

 
Figure 6:  Histogram of TCNO2 measured in Upper West Manhattan by PSI#135 for pre-lockdown (grey, 2018-2019) and 
post-lockdown winter (blue) and post-lockdown spring (pink) conditions. Results are shown for weekdays (left column) and 
Sunday (right column) across seasons from April 2020 to May 2021. The mean NO2 pre- and post-lockdown is also shown. 
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lockdown in New York (Apr-Nov 2020), TROPOMI captured a clear increase in the Sunday-to-weekday TCNO2 ratio 384 

from 0.76 to 0.92 (Fig. 7a). Higher frequency Pandora measurements enabled comparison on seasonal timescales, 385 

revealing a disproportionate drop in weekday TCNO2 immediately after the initial lockdown (Figs. 6, 7). Weekday 386 

NO2 decreased by as much as 36% and 29% in spring and summer 2020, respectively, while Sunday NO2, decreased 387 

only by 26% and 15% (Fig. 6). The Sunday-to-weekday TCNO2 ratio, thus, increased by 16% in the post-pandemic 388 

spring months with a similar trend into the summer (Fig. 7b). By fall, although TCNO2 was still significantly lower 389 

than pre-pandemic levels (-22% on weekdays and -19% on Sundays, Fig. 6), the typical weekly cycle re-emerged with 390 

a post-pandemic ratio of 0.78. Surprisingly, the weekly cycle in TCNO2 increased during the winter (Fig. 7b), as a 391 

result of a larger decrease in Sunday NO2 (49%) compared to weekday NO2 (27%, Fig. 6). A large departure from 392 

typical weekend travel patterns during the second wave of the pandemic, with MTA bridge and tunnel traffic data 393 

showing a relatively larger decrease in traffic on Sundays during winter 2021 (Fig. S4), could partly explain these 394 

results while the adoption of socially distanced protocols by 2021 may have resulted in relatively fewer reductions of 395 

weekday activities such as construction or shipping. By the reopening phase in March-May 2021, the weekly NO2 396 

cycle strengthened significantly (Fig. 7b). With the exception of two Sundays in March and April that showed high 397 

peaks in TCNO2 due to strong influence of low-speed (<5 ms-1) south and westerly winds, the Sunday-to-weekday 398 

ratio approached pre-pandemic levels in spring 2021, likely reflecting a gradual return to “normal” as the city-wide 399 

COVID infection rate dropped (Fig. SI). 400 

 401 

Long-term declines in anthropogenic NOx emissions and the resulting growing importance of background NO2 had 402 

already led to a significant dampening of the weekly NO2 cycle in pre-pandemic New York City over the past 15 403 

years, as shown by an increase in the OMI retrieved Sunday-to-week column ratio by 17% from 2005 to 2017 (Qu et 404 

al., 2021; Stavrakou et al., 2020). Interestingly, the early stringent COVID-19 lockdown measures and related abrupt 405 

changes in human behavior resulted in an additional 16% weakening of the TCNO2 weekly cycle, in just three months. 406 

 

Figure 7: (a) Sunday-to-weekday TCNO2 ratios averaged over Apr-Nov 2018–2019 (pre-lockdown) and 2020 (post-
lockdown) from TROPOMI and Pandora (PSI#135); (b) Seasonal change in Sunday-to-weekday column ratios pre- and 
post-lockdown from Pandora (PSI#135).  
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Including these changes (both weakening and recovery) in weekly cycles of emissions and pollutant concentrations in 407 

chemistry-transport models is important in efforts to quantify and simulate the impacts of the COVID-19 pandemic 408 

on regional air quality, human health, and ecosystems.  409 

3.4. Meteorology as a driver of NO2 decline and high pollution episodes during the pandemic 410 

Despite the significant reduction in NO2 emissions during and following the COVID-19 lockdown, both ground-based 411 

and satellite sensors captured cases of high pollution in the New York metropolitan region with TCNO2 often 412 

exceeding three times the pre-pandemic levels (Table 1, Figs. 4, 8). April 23 and 25, 2020, during the initial lockdown, 413 

are such instances of TCNO2 exceeding 1.8 DU (three times the pre-pandemic seasonal TCNO2 mean) and showing 414 

remarkably similar diurnal behavior at the Manhattan and Queens locations (Figs. 8c, d). TROPOMI data was not 415 

available, but OMI captured TCNO2 of 1.12 DU over New York city on April 25 (Fig. 8d)). At the early stage of the 416 

second wave of the pandemic, TCNO2 also exceeded 1.8 DU on October 9 in both Manhattan and Queens with a time-417 

lag of approximately 2 hours between the maximum observed by the two instruments (Fig. 8e). On the same day, 418 

TROPOMI TCNO2 reached 0.9 DU, more than two times higher than the pre-pandemic satellite monthly NO2 mean 419 

 
Figure 8: Despite the decline in traffic and physical distancing restrictions, cases of high NO2 pollution (TCNO2 > 1.8 
DU) were observed in the New York metropolitan area during and post the COVID-19 lockdown. TCNO2 
measurements are shown here for (a) April 2020 and (b) October 2020, from Pandora systems in Manhattan, Queens, 
New Brunswick, and New Haven, and TROPOMI over Manhattan. Diurnal dynamics in TCNO2 during specific days of 
exceedances are shown for (c) April 23, (d) April 25 (square indicates OMI TCNO2 over Manhattan), and (e) October 9, 
2020. The EDGAR power-sector near-surface NOx concentration enhancements in Manhattan are shown by the grey 
line in (c)-(e). 
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(Fig. 8e).  Overall, there were 12 days when ground-based measured TCNO2 exceeded 1.8 DU in post COVID-19 420 

New York City, despite a 34.5% drop in top-down NOx emissions (Fig. 5). Considering the significant decline in 421 

transportation emissions, the post-lockdown high NO2 pollution episodes are most likely associated with power plant 422 

emissions and specific meteorological conditions. Indeed, the EDGAR v5.0 inventory shows that spatial patterns in 423 

NOx emissions over the New York metropolitan area are primarily driven by the power generation sector, while 424 

contributions from road traffic, buildings, and manufacturing show more even distribution with slight peaks of 425 

 

Figure 9: Twenty-four hour total STILT surface influence contours for total column NO2 exceedances on April 23 (a, d),  
April 25 (b, e), and October 9 (f-k) and a low NO2 case on April 16 (c), 2020 for comparison. Contour lines represent 
surface influence of 1 ppb (μmol m-2 s-1)-1and are colored by hour-of-day of the receptor. October 9 is overlaid with 
EDGAR inventories of NOx for 2015 (kg NOx m-2yr-1).  The area encircled by each contour indicates the region of emissions 
that reaches the Manhattan and Queens observation sites for a given time and day.  
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approximately 0.05 kg NOx m-2yr-1 in Brooklyn, Queens, and Manhattan (Fig. 9). Among the many power plants in 426 

the area, the Astoria Energy LLC and Astoria and Ravenswood Generating Stations in Queens were among the largest 427 

greenhouse gas polluters in the state of NY in 2018 and 2019, with total reported greenhouse emissions >3,500,000 428 

metric tons CO2e (EPA FLIGHT GHG Inventories) (Fig. 1). In NJ, the PSEG Bergen Generating Station in Ridgefield 429 

(NW of Manhattan/NW of Harlem) and the Linden Cogeneration Facility (SW of Manhattan) are major power plants 430 

located West of Manhattan with total reported emissions >7,000,000 metric tons CO2e both in 2018 and 2019.   431 

 432 

Consistent with the location of these power plants, we found that meteorological conditions on days when high TCNO2 433 

was measured in Manhattan were characterized by low-speed southerly and westerly winds. STILT footprints showed 434 

that on April 23 air masses from the high-emitting power sector in NJ and along the East River persisted over Upper 435 

West Manhattan from 1600 to 2100 UTC (Fig. 9a) when TCNO2 peaked in PSI #135 observations (Fig. 8c). A strong 436 

increase in wind speed and change in direction, effectively mixing in clean ocean air, after 2100 UTC coincided with 437 

a rapid decline in measured TCNO2. A similar pattern was observed on April 25 (Figs. 8d, 9b,e), when air intercepted 438 

by the Manhattan and Queens Pandoras shifts from the NW to SE, slowing while passing over NJ and the East River 439 

power plants around 1800 UTC to produce the observed TCNO2 peak at these sites. On October 9, westerly airflow 440 

from NJ shifted to accumulate NOx emissions over the Manhattan Pandora location from 1700 to 1900 UTC when 441 

observed TCNO2 peaked at 1.95 DU. Wind accelerated and shifted SW in the evening, coinciding with a TCNO2 442 

decrease to <0.5 DU (Figs. 8e, 9f,g). Low-speed westerly winds brought Manhattan and East River power plant 443 

emissions to the Queens location approximately 2 hours earlier that day, in agreement with the earlier peak in TCNO2 444 

measured by the Pandora (Fig. 8e). Strong winds, persisting in a single direction for several hours, consistently 445 

dispersed pollution resulting in low NO2 column amounts over Manhattan and Queens. An example is April 16 (Fig. 446 

9c), when high-speed NW winds persisted throughout the day dispersing local and regional pollution and transporting 447 

NO2 out to the ocean. 448 

 449 

 
Figure 10: Relationship between column NO2 amounts (DU, PSI #135 data, 15-min averaged) and (a) wind direction (in 
degrees from north) and (b) wind speed (in m s-1; ATMOS 41 data) organized by post-lockdown season, measured from 

June 2019 to February 2021 in Upper West Manhattan.  
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Combining the STILT footprints, which account for the meteorology described above, with the sector-specific 450 

EDGAR NOx emission maps allows us to approximate the fraction of expected NOx concentration enhancements 451 

from each emission sector observed at each Pandora station. For 25 April, we find that the largest contribution of NOx 452 

at the Manhattan site is from power generation (42%), with manufacturing dominating at the Queens site (30%). Road 453 

transportation (using pre-pandemic estimates) contributes only 13% and 18% at the Manhattan and Queens sites, 454 

respectively. Despite the constant NOx emissions rate for each month in EDGAR (i.e., no diurnal cycle), the diurnal 455 

pattern of the meteorology-driven simulated power-sector near-surface NOx concentration enhancement was 456 

consistent with the TCNO2 observed by the Pandoras on both April 23 and 25, 2020 (Fig. 8(c)-(e)). This result supports 457 

the large role played by meteorology in causing NO2 accumulation and demonstrates a clear connection between the 458 

near-surface and total column NOx concentrations on these days.  459 

 460 

Our measurements showed that the observed correlation between particularly high post-pandemic NO2 pollution 461 

episodes and low-speed winds is typical of NO2 dynamics in Manhattan. In large cities with relatively flat topography, 462 

including New York City, increasing wind speeds from nearly stagnant to >8 m s-1 were previously shown to decrease 463 

NO2 by 40–85% (Goldberg et al., 2020). Indeed, coincident measurements of wind conditions and NO2 at the 464 

Manhattan Pandora location before the pandemic showed that TCNO2 rarely rose above 1 DU at wind speeds faster 465 

than 8 m s-1 (Fig. 10b). The highest TCNO2 amounts occurred when surface winds were in the range 1-5 m s-1. Under 466 

such conditions, winds are strong enough to transport pollution from local sources as well as major pollutant emitters 467 

in the tri-state area but can still lead to accumulation of pollution in Manhattan.  468 

 469 

 
Figure 11: TROPOMI NO2 plumes over New York City (May 2018-December 2019) segregated into 100-m wind direction 
quadrants NW (top left), NE (top right), SW (bottom left), and SE (bottom right). The percentages of each direction are 
shown at the bottom right corner of each panel. 
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Moreover, the frequency of high NO2 pollution events varies by wind direction, which correlate with sources of NOx 470 

pollution. Most events with TCNO2 > 1 DU, and all cases with TCNO2 > 2DU, occurred with SE-SW winds (90-270° 471 

in Fig. 10a). These air mass origins encompass influences from Queens and Brooklyn (SE), lower Manhattan, and 472 

northern New Jersey (SW-W) where most of the major power plants and economic activity are located (Fig. 1). Mean 473 

TCNO2 for SE-SW winds was 0.6 DU, compared to 0.4 DU for NE-NW winds. Pre-pandemic TROPOMI retrievals 474 

(2018-2019) also showed that SE-SW winds yield the highest NO2 levels in New York City, on average twice as high 475 

compared to winds from the NW and NE (Fig. 11), where there are fewer upwind sources.  Satellite imagery over the 476 

2018-2019 period was evenly distributed across SE-SW (high NO2) and NW-NE (low NO2) wind directions. 477 

TROPOMI retrievals also demonstrate a strong negative relationship between satellite NO2 columns and wind speed 478 

(Fig. 12), with the highest NO2 occurring at wind speed < 4 m s-1 and the lowest at wind speed >6 m s-1 over the New 479 

York metropolitan area before the pandemic. 480 

 481 

These meteorological factors, in addition to explaining the particularly high TCNO2 values measured even under strict 482 

social distancing restrictions during the COVID-19 lockdowns in the tri-state area, were also found to contribute to 483 

the significantly reduced NO2 values in winter 2021. January and February 2021 showed a drop in NO2 by 39% and 484 

30%, respectively, similar to the NO2 decline observed immediately after the initial strict lockdowns (Fig. 4). Although 485 

traffic (based on both MTA data and Apple mobility trends) showed a noticeable decrease during the second wave of 486 

the pandemic, mobility was not nearly as restricted as in April-May 2020 (Figs. S1, S2). Bridge and tunnel traffic was 487 

approximately 30% lower in winter 2021 compared to 55% lower in spring 2020. Interestingly, in winter 2021 wind 488 

in Upper West Manhattan was mostly (72% in January and 65% in February) from NW-NE directions, which yields 489 

the cleanest conditions and favors low NO2 columns (Fig. 10a). For comparison, wind at the same location in January 490 

 
Figure 12: TROPOMI NO2 (May 2018-December 2019) segregated by 100-m wind speed in 2 m s-1 intervals from ERA5 
daily meteorology. The percentages of each wind-speed interval are shown at the bottom right corner of each panel. 
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and February 2020 was 49% and 50% from NW-NE direction. In contrast to winter 2021, in spring, summer, and fall 491 

2020, wind was 54%, 33% and 42% from NW-NE directions (compared to 49% in pre-covid conditions, Fig. 10) and 492 

mean wind speed was in the range 3.8-5.5 m s-1, suggesting that wind conditions were not favorable for lower NO2 in 493 

Manhattan in 2020. Hence, our estimates of NO2 decline in April-December 2020 primarily reflect the impact of 494 

changes in anthropogenic emissions, particularly reductions in emissions from the transportation sector. These 495 

findings corroborate results from Goldberg et al., (2020), who concluded that varying meteorological conditions (wind 496 

speed and direction) in New York City, while different between years, did not have a strong biasing effect in their 497 

estimates of the effects of COVID‐19 physical distancing on NO2 in the month directly following the initial 498 

lockdowns. The prevalence of northerly winds in winter 2021, however, minimized the relative contribution of 499 

emissions from the energy sector to New York City, favoring low NO2 conditions. This led to stronger NO2 declines 500 

compared to pre-pandemic levels than would be expected based on just changes in emissions from the transportation 501 

sector during the second wave of the pandemic.    502 

4. Summary and conclusions  503 

Stringent lockdown measures following the COVID-19 outbreak resulted in an abrupt and significant decline in 504 

TROPOMI top-down NOx emissions in New York City, by ~30% on top of long-term trends. A sudden drop in total 505 

column NO2 (by up to 36% in Manhattan), along with a weakening of the weekly NO2 cycle and a disruption of typical 506 

seasonal patterns were observed by the ground-based Pandora network in the New York metropolitan area. Yet, during 507 

the same timeframe, traffic in New York City bridges and tunnels plummeted by 55%, on average, compared to pre-508 

pandemic levels, reaching as much as 80% reduction in early April 2020. These results highlight that although on-509 

road transportation is an important source of emissions in New York City, emissions from non-road transportation 510 

and the power generation sector (not as strongly affected by the lockdown measures) critically affect NO2 pollution 511 

levels in New York. Accounting for each sector’s contribution to total emissions, resulted in a change in NOx 512 

emissions by approx. 32%, which was consistent with satellite top-down estimates.  513 

 514 

Disentangling the impacts of meteorology and NOx emission changes on urban air quality is key for designing and 515 

implementing improved emission-control strategies. Meteorology had different impacts across the different pandemic 516 

waves in New York City. Although it was not found to have a strong biasing effect after the first pandemic wave in 517 

spring to fall 2020, meteorology strongly favored clean air conditions over Manhattan after the second pandemic wave 518 

in winter 2021, lowering NO2 levels beyond what would be expected based on lockdown measures alone. The key 519 

role that meteorology plays in shaping the relative contributions from different emission sectors to NO2 pollution in 520 

New York City was further demonstrated by the occurrence of several high NO2 pollution events even during – and 521 

despite - the extreme reductions in transportation emissions during the stringent early lockdowns. High total NO2 522 

columns, often exceeding three times the pre-pandemic levels, were consistently characterized by low-speed (< 5m s-523 
1) SW-SE winds that enhanced contributions from the high-emitting power-generation sector and accumulation of 524 

pollution over New York City. A subsequent increase in wind speed and change in wind direction typically coincided 525 
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with a decrease in NO2 over the city, indicating dispersion of pollutants across the coastal environment with potentially 526 

negative effects on downwind communities as well as terrestrial and aquatic ecosystems (Loughner et al., 2016). 527 

 528 

The COVID-19 pandemic resulted in immediate and multifaceted impacts on human behavior that affected various 529 

pollutant sectors and their relative contributions to urban NOx emissions differently. During this extreme natural 530 

experiment, long-term and high-temporal resolution retrievals from the Pandora network were essential in capturing 531 

the response of total column NO2 – declines and high pollution episodes - during the multiple pandemic waves and 532 

reopening phases in the New York metropolitan area. Incorporating observed NOx emissions changes across 533 

timescales is important for improving air quality modeling and forecasting, especially in the context of sub-daily 534 

stagnation events that produce NOx exceedances despite low emissions. Such high-resolution observations from 535 

ground-based networks, and soon from geostationary satellite sensors such as TEMPO (Chance et al., 2013), enable 536 

the characterization of fine-scale features in NO2 behavior as well as assessment of the possible effects of rapid 537 

meteorological changes on air quality conditions. In New York, a city transitioning to a NOx limited ozone production 538 

environment during summer (Jin et al., 2017), NOx plays an important role in the oxidation of VOC’s ozone 539 

production as well as secondary aerosol formation. Integration of high-resolution NO2 measurements from ground-540 

based networks and geostationary satellite platforms is, thus, critical in further assessing changes in NO2, aerosol, and 541 

ozone pollution as the world re-opens, and in evaluating the effectiveness of future sector-specific NOx emission 542 

control strategies and their impacts on air quality, human health, and urban ecosystems. 543 
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