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Abstract. Long-range transport of continental emission has far reaching influence over remote regions resulting in substantial 

change in the size, morphology, and composition of the local aerosol population and cloud condensation nuclei (CCN) budget. 

Here, we investigate the physicochemical properties of atmospheric particles collected onboard a research aircraft flown over the 25 

Azores during the winter 2018 Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA) campaign. Particles were 

collected within the marine boundary layer (MBL) and free troposphere (FT), after long-range atmospheric transport episodes 

facilitated by dry intrusion (DI) events. Chemical and physical properties of individual particles were investigated using 

complementary capabilities of computer-controlled scanning electron microscopy and X-ray spectro-microscopy to probe particle 

external and internal mixing state characteristics. Furthermore, real-time measurements of aerosol size distribution, cloud 30 

condensation nuclei (CCN) concentration, and back trajectory calculations were utilized to help bring into context the findings 

from off-line spectromicroscopy analysis. While carbonaceous particles were found to be the dominant particle-type in the region, 

changes in the percent contribution of organics across the particle population (i.e., external mixing) shifted from 68% to 43% in 

the MBL and from 92% to 46% in FT samples during DI events. This change in carbonaceous contribution is counterbalanced by 

the increase of inorganics from 32% to 57% in the MBL and 8% to 55% in FT. The quantification of organic volume fraction 35 

(OVF) of individual particles derived from X-ray spectro-microscopy, which relates to the multi-component internal composition 

of individual particles, showed a factor of 2.06±0.16 and 1.11±0.04 increase in the MBL and FT, respectively, among DI samples. 

We show that supplying particle OVF into the κ-Köhler equation can be used as a good approximation of field measured in-situ 

CCN concentrations. We also report changes in the κ values between κMBL, non-DI = 0.48 to κMBL, DI = 0.41 and κFT, non-DI = 0.36 to 

κFT, DI = 0.33, which is consistent with enhancements in OVF followed by the DI episodes. Our observations suggest that 40 

entrainment of particles from long-range continental sources alters the mixing state population and CCN properties of aerosol in 

the region. The work presented here provides field observation data that can inform atmospheric models that simulate sources and 

particle composition in the Eastern North Atlantic. 
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1 Introduction 

Marine low clouds play significant role in the world’s climate and energy balance (Wood et al., 2015). They are the major factor 45 

in increasing the Earth’s albedo   ̶  fraction of solar energy reflected back into space leading to an overall cooling effect (Wood, 

2012; Wood et al., 2015). Marine low clouds represent one of the leading sources of uncertainty in atmospheric models due to 

limited observational data, insufficient understanding of the microphysical changes that regulate these clouds, and the lack in fine 

model resolution to account for such processes (Bony, 2005; Klein et al., 2013). Other relevant boundary layer processes also 

contribute to the challenges in assessing marine low clouds such as turbulent mixing, entrainment, and emissions of aerosols and 50 

their precursors (Pincus and Baker, 1994; Ackerman et al., 2004). In particular, the response of low altitude clouds is sensitive to 

aerosol perturbations, which requires a greater understanding on the processes that govern regional aerosol budget and source 

attribution (Levin and Cotton, 2009; Altaratz et al., 2014; Rosenfeld et al., 2019; Zheng et al., 2018, 2021). Source dependent 

particle size and composition can lead to changes in the clouds albedo and precipitation due to their varying efficiency to act as 

cloud condensation nuclei (CCN) and ice nucleating particles (INP) (Johnson et al., 2004; Hamilton et al., 2014; Zheng et al., 55 

2020a). 

Atmospheric particles exhibit complex internal heterogeneity (Murphy and Thomson, 1997; Buseck and Posfai, 1999; Prather et 

al., 2008; Li et al., 2016; Riemer et al., 2019; Laskin et al., 2019). These particles can come from direct emissions (i.e., primary 

particles), or from gas-particle conversion in atmospheric reactions (i.e., secondary particles) (Reddington et al., 2011). Primary 

particles with complex composition include primary organic aerosols, elemental carbon (i.e., black carbon/soot), inorganic species 60 

from combustion and biomass burning sources (Toner et al., 2006; Souri et al., 2017), and sea spray aerosol with organic 

components influenced by ocean biological activity (Prather et al., 2013; Pham et al., 2017). On the other hand, secondary organic 

aerosol (SOA) is formed from the oxidation products of volatile organic compounds (VOCs) of either biogenic or anthropogenic 

origin. Secondary fine particles of nitrate and sulfate are similarly formed from the oxidation of their inorganic gaseous precursors 

NOx and SO2, respectively (National Research Council (U.S.), 2002). In marine areas, formation of sulfate aerosol is further 65 

influenced by gas-phase emissions of dimethyl sulfide (DMS) from biota, which upon oxidation yield low volatility products such 

as sulfuric acid (H2SO4) (Kulmala et al., 2000) and methylsulfonic acid (MSA) (Andreae et al., 1985; Hodshire et al., 2019). 

Physical and chemical characteristics of individual particles such as morphology, chemical composition, hygroscopicity, lifetime, 

and chemical mixing state have a profound effect on their CCN activity (Cruz and Pandis, 1997; VanReken, 2003; King et al., 

2012; Schmale et al., 2017; Riemer et al., 2019). Note that the term “chemical mixing state” refers to how various chemical species 70 

are mixed within individual particles (Riemer et al., 2019). The chemical mixing state depends on emission sources and 

atmospheric ageing events which include, but are not limited to, biomass burning influence (Levin et al., 2010), anthropogenic 

emissions (Jacobson, 2001), large continental dust events (Fraund et al., 2017; Adachi et al., 2020). For example, previous studies 

found that within a few hours urban non-hygroscopic aerosol (i.e., mixed organic and black carbon aerosol) can accumulate a 

sufficient coating of hygroscopic sulfates and nitrates to increase their hygroscopicity parameter (κ) (Petters and Kreidenweis, 75 

2007) from 0 to 0.1 (Wang et al., 2010).  

The variability within individual atmospheric particles has been well documented by both model and field measurements across 

different regions worldwide such as urban (Wang et al., 2010; Ault et al., 2010, 2012; Wang et al., 2012; Fraund et al., 2017; Ren 

et al., 2018), rural (Vakkari et al., 2018; Tomlin et al., 2020), remote forested areas (Bondy et al., 2018), Arctic (Gunsch et al., 

2017; Gonçalves et al., 2021), and marine (Ault et al., 2013; Zheng et al., 2020a, b). Long-range transport and meteorological 80 

processes such as dry intrusions (DI) and vertical mixing of air also play a significant role in the continuous evolution of particle 

composition in the atmosphere (Raes, 1995; Pratt and Prather, 2010; Cubison et al., 2011; Igel et al., 2017; Zheng et al., 2020b). 
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DI are events of dry, slantwise descending airflow from the upper troposphere in midlatitudes down through the boundary layer at 

lower latitudes (Raveh-Rubin, 2017). Such intrusions of dry air, typically peaking in winter, occur with the passage of extratropical 

cyclones and their trailing cold fronts, i.e., in the post cold-frontal region (Wernli, 1997; Browning, 1997; Catto and Raveh-Rubin, 85 

2019). Events of DI are strongly coupled to the boundary layer, which cools and deepens during DI, and were shown to induce 

enhanced ocean heat fluxes (Raveh-Rubin and Catto, 2019; Ilotoviz et al., 2021). DI events are of particular interests as they can 

contain air mass with a complex distribution of aged particles having drastically different size, morphology, and composition 

compared to local regional aerosols, leading to changes in the local aerosol-cloud interactions and cloud lifetimes (Zheng et al., 

2020b; Wang et al., 2020). For example, it has been shown that the CCN population in the remote marine boundary layer (MBL) 90 

of Eastern North Atlantic can be influenced by long-range transport of wildfire aerosols originating from North America (Zheng 

et al., 2020b; Wang et al., 2021b). The properties of these wildfire aerosols facilitated by long-range transport processes alters as 

it undergoes ageing (e.g. multiphase particle chemistry, photo-bleaching and gas-particle partitioning of organics), resulting in 

changes in both the optical properties and the cloud-forming potential (Jacobson, 2001; Levin et al., 2010; Zheng et al., 2020b). In 

particular, aged wildfire aerosol is typically dominated by accumulation mode particles, which readily serve as CCN in the region 95 

despite a substantially lower κ value (i.e., 0.2 to 0.4) than regional highly hygroscopic aerosol of marine origin (e.g. sea spray 

aerosol, κ = 1.1) (Zieger et al., 2017; Zheng et al., 2020b). Lastly, long-range transported and atmospherically aged free 

tropospheric particles can contribute to the ice-nucleating particle population and potentially impact cloud formation (China et al., 

2017). 

This paper investigates the physicochemical properties of atmospheric particles during the Aerosol and Cloud Experiment in the 100 

Eastern North Atlantic (ACE-ENA) field campaign conducted at the Azores in January-February 2018. Aircraft measurements and 

onboard sampling of particles (followed by laboratory-based particle analysis) were utilized to characterize the difference in the 

contributions of various sources to FT and MBL aerosols under representative synoptic conditions (i.e., DI vs. non-DI periods) in 

this geographical area. Particle analysis included particle-type classification with statistical depth provided by computer-controlled 

scanning electron microscopy and a subset of particles were sampled by X-ray specto-microscopy to characterize particle chemical 105 

mixing state (internal heterogeneity). The particle-type composition, chemical mixing state, and morphology from analyzed periods 

were then combined with real-time measurement of aerosol size distribution, CCN concentration, and back trajectory calculations 

to obtain the representative composition of particles present in the MBL during the DI events and entrainment of particles originated 

from North America. The data presented here provides observational input for atmospheric process models to simulate sources 

and particle composition in the broader North Atlantic region. 110 

2 Experimental Methods 

2.1 Field Campaign and Meteorological Conditions 

Samples of atmospheric particles were collected aboard the U.S. Department of Energy Gulfstream aircraft (G-1). Flight patterns 

were flown between Terceira Island (38° 45’ 43” N, 27° 5’ 27” W) and Graciosa Island (39° 3’ 12” N, 28° 7’ 26” W), Portugal 

and within 20–30 km of Graciosa Island (Wang et al., 2021a). Flight plans were based on the projected meteorological conditions 115 

from various global forecast modes including Monitoring Atmospheric Composition and Climate, Global Forecast System, and 

European Centre for Medium-Range Weather Forecasts (ECMWF). A subset of collected samples was selected for analysis based 

on synoptic conditions (identifying DI vs. non-DI periods) and altitudes (clear MBL and FT layers) for each day. Samples analyzed 

were collected during the second Intensive Operation Period of ACE-ENA, on the dates of 2018-01-19, 2018-01-21, 2018-01-24, 

2018-01-25, 2018-01-26, 2018-01-28, 2018-01-30, 2018-02-01, 2018-02-08, 2018-02-11, 2018-02-15, 2018-02-16, 2018-02-19. 120 
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These dates were selected due to unique transport episodes that associated with the sampling periods. DI days we identified 

objectively using the Lagrangian analysis tool (LAGRANTO) version 2.0 (Sprenger and Wernli, 2015) and wind field data 

obtained from the ECMWF interim reanalysis (ERA-Interim) with available 6-hourly, interpolated to 1°x1° horizontal grid 

resolution, at 60 vertical hybrid levels (Dee et al., 2011). DI were identified by a systematic calculation of forward trajectories at 

altitudes higher than 600 hPa, while the DI trajectories were identified based on the vertical descent of the airmasses. For a 125 

trajectory to be termed a DI, their pressure must increase (i.e., descend in altitude) by at least 400 hPa in 48 hrs (Raveh-Rubin, 

2017). If such a DI trajectory is found within a 3-degree radius circle around Graciosa, the date is considered as ‘DI’. In addition, 

backward trajectories for each sampling period were calculated for the end points at relevant flight altitudes (Figure S1 and S2) 

using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015; Rolph et al., 2017). 

Atmospheric data from ERA Interim are analyzed additionally for the atmospheric column at Graciosa, namely, potential 130 

temperature, equivalent potential temperature, potential vorticity and boundary-layer height. The latter is diagnosed in ERA Interim 

using the critical bulk Richardson number, upon its first passing of the threshold 0.25, when scanning from the surface upwards 

(ECMWF, 2007). 

2.2 Particle Collection and In-Situ Measurements of Particle and Cloud Properties 

The G-1 aircraft is equipped with sensor modules to deliver precise real-time inertial measurement, GPS, meteorological, and 135 

turbulence data such as position, altitude, temperature, pressure relative humidity, and three-dimensional winds. For particle 

collection, the G-1 was equipped with an isokinetic aerosol inlet, from which ambient aerosol was transported to individual 

instruments. Particle samples were collected using a custom built time-resolved aerosol collector (TRAC) that autonomously 

collected particles on substrates at preset time intervals (Laskin et al., 2006). The TRAC is a single stage impactor with an 

aerodynamic cutoff size (D50%) of 0.36 µm (Laskin et al., 2003) coupled to a rotating disk that can hold up to 160 samples. The 140 

disk was preloaded with microscopy substrates (Carbon Type-B film coated 400 mesh copper grids, Ted Pella, Inc.). The sampling 

was performed at a single spot on the center of each substrate for 7–10 min, depending upon the flight. After each flight, sample 

discs were taken off the TRAC, plated, and hermetically sealed prior to transport. Once samples were received in the lab, the 

sample grids used for the analysis were removed from the sealed plate and transferred into TEM grid boxes stored at room 

temperature and dry conditions in a desiccator cabinet. Online measurements of aerosols abroad the G-1 include a passive cavity 145 

aerosol spectrometer-100X probe (PCASP, Dp = 0.1–3.0 µm, 1 Hz resolution) and a fast integrated mobility spectrometer (FIMS, 

Dp = 0.01–0.5 µm, 1 Hz resolution), which provided size distributions and concentrations of ambient particles (Kulkarni and Wang, 

2006; Wang et al., 2018). During all research flights, a Nafion dryer reduced the relative humidity of the air stream in the sampling 

line. A CCN counter (Droplet Measurement Technologies) measured the concentration of particles that activate at a supersaturation 

of 0.14%. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed onboard to characterize bulk 150 

non-refractory aerosol composition (i.e., organics, sulfate, ammonium, and chlorine) (DeCarlo et al., 2006; Zawadowicz et al., 

2021). The particle size distributions and CCN concentrations were analyzed when the liquid water content was below 0.001 g/m3 

to avoid periods when cloud shattering artifacts could influence the sampled particles (Korolev et al., 2011). The liquid water 

content was obtained by integrating the droplet size distributions measured by a fast cloud droplet probe (FCDP; Droplet 

Measurement Technologies).  155 

Additional information on the sampling conditions is presented in the Table S1 of the supplemental file and incudes sampling 

time/date, average sampling altitude, boundary layer height, particle concentration, and wind speed. The boundary layer height 

was calculated based on potential temperature measurements collected for each flight. The boundary layer is limited by a well-

defined temperature inversion resulting in a maximum value of the temperature gradient as a function of height (Stull, 1988). A 
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summary of each flight (altitude and aerosol particle concentration vs. time) with the collection times highlighted is shown in 160 

Figures S3 and S4. Guided by meteorological analysis and wind field data to identify DI periods, we performed offline microscopy 

analysis of collected particle samples across different atmospheric layers and transport episodes during the ACE-ENA campaign. 

2.3  Methods of Particle Analysis 

Morphology and elemental analysis of individual particles was performed using computer-controlled scanning electron microscopy 

coupled with energy dispersive X-ray spectroscopy operated at 20 kV (CCSEM/EDX; FEI Quanta 3D, EDAX Genesis). During 165 

CCSEM/EDX analysis particle samples were systematically imaged and particles larger than 100 nm are recognized. Of note, the 

particle size reported from CCSEM/EDX analysis is defined as the area equivalent diameter (AED, µm), which is based on fitting 

a circle with area equivalent to the particle’s 2D projected image. This is followed by an automated acquisition of their individual 

EDX spectra for each particle (Laskin et al., 2005). EDX spectra with sufficient X-ray counting statistics (40–1500 photons/s) 

were then processed to quantify relative atomic fractions of 15 elements: C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, and Cu. 170 

The EDX peak of Cu is heavily influenced by a background signal from the copper TEM grid and the sample holder made of 

beryllium-copper alloy. Therefore, quantified atomic fractions of Cu were excluded from particle-type classification of the 

analyzed particles. Two independent methods were employed for the particle-type grouping and classification: (1) k-means 

clustering and (2) rule-based particle classification. The k-means clustering is an unsupervised machine learning algorithm 

designed to group similar data sets without user intervention (Rebotier and Prather, 2007; Moffet et al., 2012). The second approach 175 

for the categorization of particles utilizes a series of user-defined rules to separate analyzed particles into groups of typical 

elemental contribution (Laskin et al., 2012). For this work, the k-means clustering was used as a primary method for particle-type 

classification while the rule-based approach was used as a complementary method to build confidence on the identification of 

different particle-types. Details of the classification schemes are provided in the Supporting Information (Figures S5 and S6) and 

in previous works (Moffet et al., 2012; Tomlin et al., 2020). 180 

Scanning transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM/NEXAFS) spectroscopy was used 

to elucidate the chemical mixing state of individual particles based on the NEXAFS spectral data acquired at the Carbon K-edge 

(278–320 eV) (Hopkins et al., 2007; Moffet et al., 2010b, c). The STXM/NEXAFS was performed at the synchrotron facilities on 

beamlines 11.0.2.2 and 5.3.2.2 in the Advance Light Source, Lawrence Berkeley National Laboratory and on beamline 10ID-1 in 

the University of Saskatchewan, Canadian Light Source. STXM instrument operation is similar in both locations as described 185 

elsewhere (Kilcoyne et al., 2003). Briefly, a set of raster scan STXM images at each of the pre-set energy levels was acquired from 

a synchrotron monochromated incident light focused on the sample using a Fresnel zone plate. The transmitted light is detected at 

each of the energy settings, and spectra of individual particles could then be reconstructed based on the Beer-Lambert law from 

the intensity of transmitted light over the projection area of particles compared to the particle-free regions. The recorded intensity 

at each energy setting (E) across individual pixels were converted into optical density (ODE) as follows: 190 

OD = – ln(
𝐼(𝐸)

𝐼0(𝐸)
) = µρt                                                                      (1) 

where I(E) is the intensity of light transmitted through a particle, I0(E) is the intensity of incoming light (determined as intensity 

of light in the particle-free areas), µ is the mass absorption coefficient, ρ corresponds to the density, and t is the thickness of a 

particle. Sequences of STXM images are acquired at closely spaced energies of I0(E) to record a “stack” of images. Then, NEXAFS 

spectra from individual pixels of detected particles are extracted from the stack (~96 energies over 278 to 320 eV range, 30–35 nm 195 

spatial resolution, 1 ms dwell time).  
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In addition, faster acquisition of STXM images at four key energies of 278 eV (pre-edge), 285.4 eV (C=C), 288.5 eV (-COOH), 

and 320 eV (post-edge) (15x15 µm, 30–35 nm spatial resolution, 1 ms dwell time) was employed to construct “maps” of individual 

particles using image processing methods reported in our earlier studies (Moffet et al., 2010a, 2013, 2016; Fraund et al., 2017). 

Briefly, a series of thresholds were used to identify the mapping components including “inorganics” (IN), “organic carbon” (OC), 200 

and “soot/elemental carbon” (EC). The total carbon (TC) was calculated as the difference between the carbon post-edge and pre-

edge OD (TC = OD320eV – OD278eV). “IN” rich regions were defined with pixels having an OD278eV / OD320eV ratio greater than 0.5. 

“OC” regions are those with the abundant features corresponding to carboxylic acid functional group (-COOH), defined by the 

difference between intensity of the -COOH peak and carbon pre-edge peak greater than 0 (i.e., OD288.5eV – OD278eV > 0). Finally, 

EC areas are identified by comparing the value of the sp2/total carbon to that of highly oriented pyrolytic graphite (HOPG) 205 

according to: (OD285.4eV /TC)*(ODHOPG, TC/ODHOPG, C=C) > 0.35, which indicates extensive sp2 bonding of carbon corresponding to 

graphitic-like components (Hopkins et al., 2007). 

3 Results and Discussion 

3.1 Identification of dry intrusion periods 

Research flights were conducted under different synoptic conditions to allow for the characterization of common aerosols, trace 210 

gases, clouds, and precipitation. Figure 1A illustrates the typical flight pattern of the G-1 aircraft which includes multiple legs at 

different altitudes, while maneuvering perpendicular and along the wind direction. These patterns allowed for the full profile of 

aerosol and cloud layer along the MBL and lower FT altitudes. Figure 1B shows daily time series between 2018-01-01 to 2018-

02-28 in relation to DI events identified from ERA-Interim reanalysis. The marked black dots indicate DI air masses within a 3° 

radius from 39°N, 28°W (i.e., the ENA site). The high frequency of the black dots (i.e., vertical distribution) indicates an increase 215 

in trajectories that satisfy the DI criterion at different pressure altitudes. For example, on 2018-01-24 in Figure 1B, we see a series 

of DI air parcels (black dots) at different pressure altitudes ranging from 611 m to 2360 m MSL and found to be below/above the 

boundary layer as indicated by the dashed red line. Guided by the frequency of the DI air masses, we selected a subset of the time-

tagged particle samples for analysis by the complementary microscopy techniques as summarized in Table S1. To evaluate the 

consistency of the sources and long-range transport trajectories, we calculated back trajectories using the HYSPLIT model (Stein 220 

et al., 2015; Rolph et al., 2017). Figure 1C shows results of a representative HYSPLIT 72 hrs back trajectory calculations for the 

research flight on 2018-01-24, which identifies long-range transport an airmass originating from North America. Trajectories were 

calculated every 6 hrs from 1300 UTC 2018-01-24 to 1200 UTC 2018-01-22 at 3 starting altitudes: 100 m, 2000 m, and 3000 m. 

This process was repeated with the same HYSPLIT input meteorological parameters for all research flights utilized in this work, 

as shown in Figures S1 and S2. 225 

3.2 Particle-type classification 

A total of 38 particle sample grids from 13 (out of 19) research flights were analyzed. First, CCSEM/EDX analysis was carried 

out to characterize the particle-type composition typical of different synoptic scenarios. Figure 2 shows the results of the size-

segregated particle-type population (right column) obtained from k-means clustering analysis of ~36,400 individual particles with 

the backscattering mode SEM imaging of a representative subset of particles (left column), separated between MBL versus FT 230 

flight altitudes and between synoptic conditions of DI and non-DI sampling periods. The onboard FIMS instrument measurement 

provided particle size distribution data in a range of 0.01–0.5 µm. By superimposing the CCSEM/EDX particle analysis data with 

the FIMS size distribution data, we can approximate the representative composition and number concentration of potentially CCN 

active particles (>0.1 µm) in the MBL and FT, during non-DI and DI periods, respectively. Note that the error bars in the particle 
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number concentration indicate variation in the particle size distribution values averaged across different days and synoptic 235 

conditions. Also, comparison of AED and FIMS sizes needs to be considered with caution because particle flattering on the 

substrate which results in overestimated of AED sizes, compared to more realistic FIMS values. Here, the AED based particle 

distributions are scaled to match Y-axis of FIMS data and therefore to provide visual illustration of the chemical makeup of CCN 

particles. 

The k-means algorithm identified 4 key clusters and were termed as: “Carbonaceous”, “Ammonium Nitrates/Sulfates”, “Mixed 240 

Sea Salt” and “Aged Sea Salt” based on the mean elemental contribution (Figure S5). Note that the element fraction values obtained 

from individual EDX spectra were filtered to remove values less than 0.5%. “Carbonaceous” is the dominant type and represents 

majority of analyzed particles. It is defined based on the sole contributions of C- and O- elements in the particle EDX spectra. The 

second most abundant cluster is the “Ammonium Nitrates/Sulfates”, where the contribution of N, O, and S are greater than 1%. 

The “Aged Sea Salt” and “Mixed Sea Salt” clusters contain similar elemental signatures with the latter containing significant 245 

amounts of refractory elements typical for sea salt and mineral dust including Mg, Cl, K, Ca, Mn, and Fe. 

First, we compared the change in particle-type population among samples in the MBL during non-DI and DI periods. The fraction 

of “Carbonaceous” particles within the MBL contributed around 68% in non-DI samples and decreased to 43% in DI samples. 

Organic aerosol in the remote MBL has been suggested to originate from VOCs such as isoprenes, monoterpenes, formic acid, 

nitrogenated, and aliphatic organics released from biological activities near the sea surface, which undergo oxidation reactions 250 

leading to SOA formation (Facchini et al., 2008; Dall’Osto et al., 2012; Mungall et al., 2017). The lower fraction of “Carbonaceous” 

particles during DI periods is counterbalanced by the increased of “Inorganics” shifting from 32% (non-DI periods) to 57% (DI 

periods). Here, we operationally defined “Inorganics” as the sum of “Mixed Sea Salt” (4%) + “Aged Sea Salt” (20%) + 

“Ammonium Nitrate/Sulfate” (33%), which in fact may also contain organic carboxylic acids as components of aged sea salt. 

Regardless, shifting focus to the comparison of FT samples during non-DI and DI periods, we found that background 255 

“Carbonaceous” particles contribute to around 92% (non-DI periods) and decrerases to 46% (DI periods). Similar to MBL 

observations, the shift in “Carbonaceous” contribution can be attributed to an increase in “Inorganic” influence during DI events 

changing from 8% (non-DI periods) to 55% (DI periods). We observed that most of the “Inorganic” influence is originating from 

“Ammonium Nitrate/Sulfate” contributing between 32–33% during DI periods regardless of sampling altitude (MBL vs. FT). Both 

“Carbonaceous” particles and “Ammonium Nitrate/Sulfate” can originate from ocean biological activity or anthropogenic sources. 260 

Typically, over marine areas, sulfate aerosol forms from oxidation of dimethyl sulfide (DMS), a common gas species emitted by 

biota. Sulfates are major components of accumulation mode particles in the remote marine environment (Sanchez et al., 2018; 

Korhonen et al., 2008). Nitrate in marine particles can also come from vertical mixing in the ocean that surges nitrate-rich deep 

waters to the surface, followed by the aerosolization through wave motion (Zehr and Ward, 2002). However, the elevated 

contribution of “Ammonium Nitrates/Sulfates” during the DI periods suggests likely influence from anthropogenic emissions 265 

originating from North America. Inorganic aerosols such as “Ammonium Nitrates/Sulfates” are predominantly formed from the 

condensation of atmospheric precursors such as SO2, NH3, HOx, and NOx, which are common components of biomass burning 

emissions, urban areas, and agriculture activities among others (Reff et al., 2009). A study utilizing regional chemical models have 

found that the mass enhancements in inorganic aerosol can reach 23% of carbonaceous enhancements as biomass burning processes 

accelerate secondary formation of inorganic aerosols (Souri et al., 2017). Uptake of S- and N-containing acidic species, as well as 270 

soluble organic acids, onto the preexisting sea salt particles modifies their composition through acid-displacement reactions that 

can be expressed in a general form of (Finlayson-Pitts, 2003; Laskin et al., 2012): 

*NaCl(aq) + HA(aq, g)  → *NaA(aq) + HCl(aq,g)                                        (2) 
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where *NaCl denotes seasalt, HA represents atmospheric water-soluble acids (e.g., HNO3, H2SO4, CH3SO3H and carboxylic acids). 

These reactions release volatile HCl(g) product, leaving particles depleted in chloride and enriched in corresponding HA(aq) salts. 275 

Related to this acid-displacement chemistry “Mixed Sea Salt” and “Aged Sea Salt” particle-types were identified by the k-clustering 

analysis as illustrated in Figure S5. The “Mixed Sea Salt” particles contain key components of seawater (i.e., Na, Mg, and Cl; 

atomic fractions of Na and Cl >10% with characteristic ratio of Cl/Na ~0.6) and minor fractions (<2%) of additional elements (e.g., 

Ca, Mn, Fe, Al, and Si) suggesting internal mixing of relatively fresh sea salt with other inorganic components without extensive 

chloride depletion. The other cluster of “Aged Sea Salt” particles shows significant fractions of Na (~10%), but with substantially 280 

lower ratios of Cl/Na<0.1 which indicates chloride depletion (Figure S5) due to atmospheric ageing. Atomic fractions of C and N 

elements in this type of particles are much higher than those in the “Mixed Sea Salt” cluster, while the fraction of S is much smaller. 

These observations suggest that in this geographical region acid-displacement reactions in the “Aged Sea Salt” particles are mostly 

driven by water-soluble carboxylic acids (common components of SOA) (Laskin et al., 2012) and nitric acid (Finlayson-Pitts, 

2003), while contributions by sulfonic or sulfuric acids are minor during the wintertime. Based on the k-means clustering, fractions 285 

of “Mixed Sea Salt” range from 0.5 to 3% while fractions of “Aged Sea Salt” are overall more populous and range between 0.1 

and 20% across all investigated samples. Additionally, both “Aged Sea Salt” and “Mixed Sea Salt” cluster groups include minor 

contributions of Al and Si indicative of possible mixing with mineral dust transported from the long-range continental sources. 

To better discriminate particle-type groups according to their composition and the acid-displacement chemistry identified through 

the k-means clustering, a supplmental rule-based classification was performed using previously published definitions of particle-290 

type classes common in marine environments (Laskin et al., 2012; Tomlin et al., 2020). Results of the particle-type characterization 

utilizing the rule-based assessment of their elemental composition (assigned into 5 major classes) are presented in Figure S6. The 

applied rule-based classification scheme distinguishes among particle-types common in the remote marine environment of “Sea 

Salt”, “Sea Salt/Sulfate”, “Carbonaceous/Sulfate”, “Carbonaceous”, and “Other” (Figure S6). For each sample, 600–3000 particles 

were analyzed, depending on particle loading on the substrates. The size-resolved particle-type classification identified using rule-295 

based schematic were overlaid on the acquire FIMS size distribution as shown in Figure S7. Similar to the k-means clustering 

break down, we first compared the impact of DI events in MBL samples. Significant fractions of “Carbonaceous” and 

“Carbonaceous/Sulfate” particles were identified in the background MBL samples amounting to 86% (non-DI periods) while 

decreasing to 49% (DI period). Furthermore, the combined fraction of “Sea Salt” and mixed “Sea Salt/Sulfate” are substantially 

smaller around 10% (non-DI periods) to 21% (DI period). Fractions of uncategorized “Other” particles contributes to around 30% 300 

(DI period) while only having minimal contribution of 4% during non-DI events. In contrast, background FT samples were 

dominated by “Carbonaceous” and “Carbonaceous/Sulfate” contributing to as high as 95% (non-DI periods) then decreasing to 

55% (DI period). Unlike the MBL samples, there were only minimal change in larger “Sea Salt” + mixed “Sea Salt/Sulfate” from 

2% (non-DI period) to 4% (DI period). However, the reduction in “Carbonaceous” and “Carbonaceous/Sulfate” contribution 

among FT samples during DI periods is due to associated with the large change in “Other” fraction shifting from 4% (non-DI 305 

period) to 41% (DI period). Based on the mean elemental composition of the “Other” category, this group contains a combination 

of dust, sea salt, and carbonaceous components suggesting extensive internal mixing of particles consistent with long-range 

transport (Froyd et al., 2019). This finding is also consistent with the k-means clustering results that indicated elevated contributions 

of particles with inorganic components during the DI periods. Overall, the particle-type fraction identified by both the k-means 

clustering and the rule-based classification schemes are consistent across all samples suggesting that the mixing state population 310 

significantly changes from heavily organic dominated to a mixture of inorganic-organic particle-type distribution resulting in the 

observation of more complex particle compositions during DI periods. 
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Relative contributions of the particle-type fractions among separate DI events show substantial variability between different flights 

and MBL versus FT altitudes (Figure S8). Furthermore, the dominant “Carbonaceous” particle-type groups identified by 

CCSEM/EDX elemental analysis may exhibit significant differences in the spectral characteristics of carbon bonding indicative of 315 

its long-range transport from North America during the DI periods. Furthermore, a previous study have tracked the origin of air 

masses transported over long distances across the Atlantic Ocean to the Azores utilizing a Lagragian Flexible Particle 

(FLEXPART) dispersion model to show detailed spatial resolution of air masses across different locations and altitudes (China et 

al., 2017). The influence of North American emissions on distant remote regions is well documented with occurrences of 

continental pollutant transport events accompanied by strong influence from urban city emissions spanning from Boston, Toronto, 320 

Detroit, and Chicago (Owen et al., 2006). On the other hand, extensive boreal wildfires in northern North America release large 

amounts of trace gases and aerosols into the atmosphere, which then can be transported to other remote regions including North 

America (Val Martín et al., 2006). In particular, boreal wildfires emit around 10% of the annual anthropogenic aerosol black carbon 

in the Northern Hemisphere (Bond et al., 2004). The eastward transport of North American emissions begins as hot plumes of 

biomass burning emissions from wildfires rapidly rise to high altitudes (~8 to 13 km AGL) under favorable conditions (Zhu et al., 325 

2018; Yu et al., 2019; Kloss et al., 2019). These plumes can be lofted into a warm conveyor belt preceeding a cold front from an 

associated cyclone, which is followed by the entrainment of a cold descending air stream (from the same cyclone) that ultimately 

results in the air parcels containing continental emissions reaching the lower altitudes of the Eastern North Atlantic (Owen et al., 

2006; Zheng et al., 2020b). The transported aerosol undergoes substantial atmospheric ageing through photochemical reactions 

(Hems et al., 2021), gas-particle partitioning (Vakkari et al., 2018), and coagulation (Ramnarine et al., 2019) processes as it travels 330 

across the Atlantic ocean and descends into the MBL during the DI events. 

3.3 Internal mixing of individual particles 

Results of the elemental microanalysis of particles presented above provides statistics on broad particle classes identified and 

shows well the significant contribution of organic dominated particles in the region. However, CCSEM/EDX analysis is limited in 

providing detailed information on the carbon speciation within individual particles and other metrics of particle internal 335 

composition (chemical mixing state). To investigate chemical differences in the carbon components of particles we employed 

STXM/NEXAFS spectro-microscopy methods, which provide spatially resolved carbon bonding speciation and differentiate 

between EC and OC regions within individual particles (Moffet et al., 2010a, c). It is also worth mentioning that the definitions of 

“Carbonaceous” particles identified by CCSEM/EDX and described in the previous section is somewhat different from OC 

particles defined by STXM/NEXAFS. The former corresponds to the distribution of organics across a population of particles (i.e., 340 

external mixing) while the latter is related to the multi-component internal heterogeneity of individual particles (i.e., internal 

mixing). Figure 3A shows an illustrative carbon K-edge map of individual particles from one of the DI period samples (the 

cumulative map of all ~4,300 particles from all samples analyzed in this study is included in SI, Figure S9). The carbon K-edge 

composition map distinguishes 3 main components based on the spectral information (Moffet et al., 2010a) as described earlier: 

IN (blue), OC (green), and EC (red). Each pixel within an individual particle may contain either single or multiple components 345 

(i.e., components can overlap) that are grouped to yield 5 typical classes based on the internal mixing between OC, EC, and IN 

components: (1) IN, (2) OC-EC-IN, (3) OC-EC, (4) OC-IN, and (5) OC. The size-resolved histograms of these 5 classes 

superimposed with the onboard particle size distribution data measured by FIMS is shown in Figure 3B to highlight the 

organic/inorganic contributions within individual particles as a function of particle size. A mixture of organic and inorganic 

particles (OC-IN) appears to be the dominant class across all samples, contributing 40–76% to the total particle population. 350 

Furthermore, the consideration of multiple sources of EC from wildfires (Park et al., 2007), residential wood smoke (Allen and 
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Rector, 2020), agricultural burning (Liu et al., 2016; Holder et al., 2017), and urban emissions (Paredes-Miranda et al., 2013) in 

North America led us to expect large contribution of EC within our sample. However, OC-EC and OC-EC-IN particles contributed 

only 0.4–1.3% to the total particle population. EC/soot lifetime is primarily governed by its wet deposition rate, which is dependent 

on the particle’s affinity to absorb water (Barrett et al., 2019). Freshly emitted soot particles are hydrophobic, however atmospheric 355 

processes can increase the hydroscopicity properties of soot particles through the accumulation of OH initiated oxidation of 

organics during long-range transport and atmospheric ageing (Dzepina et al., 2015) leading to decreased atmospheric lifetime of 

EC regardless of initial composition (Khalizov et al., 2013; Browne et al., 2015; China et al., 2015). IN particles (i.e., inorganics 

such as sea salt and sulfates) appear to be consistent with the particle-type observations inferred from CCSEM/EDX data. Singe-

component IN particles contribute up to 15% in the MBL at the time of no-DI periods, while their contribution during DI decreases 360 

to ~0.8%. Subject to long-range transport, IN dominant particles also accumulate substantial OC components encountering the DI, 

and as they entrain into the MBL and create ensembles of ambient particles with complex multi-component internal mixing states 

through different atmospheric processes such as condensation (Mozurkewich, 1986) and coagulation (Holmes, 2007). Consistently, 

fractions of single-component OC particles within the MBL during DI periods increased (from 7% to 22%) and slightly decreased 

in the FT layer (from 26% to 20%). These observations suggest that entrainment of aerosols with higher extents of internal mixing 365 

(from long-range transport) are present in the MBL and can contribute to the regional aerosol composition, which in turn may 

modify aerosol-cloud interactions typical for the area. 

NEXAFS spectra (285–294 eV) of individual particles were used to assess carbon chemical bonding environment allowing us to 

identify representative types of OC containing particles (Moffet et al., 2010a). Figure 4 shows the representative NEXAFS spectra 

acquired over 103 individual carbon containing particles. This resulted in the identification of 6 carbon “types,” as shown along 370 

with their illustrative secondary electron mode SEM imaging. Each carbon “type” is classified based on characteristic spectral 

features such as peak positions and relative intensities. For all spectra shown in Figure 4A, the individual contribution of carbon 

energy transitions was quantified via spectral deconvolution. Details on the deconvolution process are described in previous works 

(Moffet et al., 2010b, 2013; Tomlin et al., 2020). Figure 5A shows the deconvolution fit of the averaged NEXAFS spectra for each 

carbon “type” identified across different sampling conditions with Figure 5B illustrating the contribution of each functional group 375 

based on the individual peak area. It is worth noting that the difference in absorption between the post-edge (OD320 eV) and pre-

edge (OD278 eV) energies is a measure of the amount of total carbonaceous material in the particles.  

“Type 1 – biological” class has some contribution from alkene groups (C*=C @ 285.4 eV) with significant enhancement of 

aliphatic hydrocarbons (C*–H @ 287.7 eV) and alcohol groups (C*–OH @ 289.5 eV). These spectra appear to be similar to the 

reported NEXAFS spectrum for phospholipids, a constituent of cell walls (Lawrence et al., 2003; Nováková et al., 2008). Lipid 380 

material is concentrated in the sea surface microlayer through the rupturing of phytoplankton cell membranes (i.e. , cell lysis) 

(Wang et al., 2015b). A majority of lipid compounds produced by phytoplankton in seawater include glyceroglycolipids, 

phospholipids, and triacylglycerols containing significant amounts of aliphatic, and alcohol groups (Harwood and Guschina, 2009). 

The transition of aliphatic-rich organic species into the aerosol phase is governed by the bursting of bubble films (Blanchard, 1989) 

enriched in lipid organic species found on the surface of seawater (Wang et al., 2015b). “Type 2 – homogeneous organic particles” 385 

have almost equivalent peak contributions from each reported functional group as shown in Figure 5B. The NEXAFS spectrum 

for type 2 is quantitatively similar to those reported for organic particles from anthropogenic emissions in urban areas of of Mexico 

City (Moffet et al., 2010b) and Central California (Moffet et al., 2013). As the aerosol plume is transported away from the source 

of emission, organic mass increases while the fraction of C=C decreases (Doran et al., 2007; Kleinman et al., 2008; Moffet et al., 

2010b). As a result, organic functional groups build up with particle age such as carboxylic acids, carbonyl, alcohol, and other 390 

carbon–oxygen functional groups. It has been suggested that formation of these homogeneous organic particles likely results from 
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the accumulation growth of primary emitted particles as they traveled further way from their emission source (Moffet et al., 2010b). 

“Type 3 – soot” had the largest contribution of C*=C @ 285.4 eV spectral feature (42% of peak area contribution). Based on 

reported literature, this spectrum is comparable with atmospheric particles collected during various field studies of biomass burning 

emissions (Hopkins et al., 2007). Interestingly, particles collected from aircraft measurements during the Aerosol Characterization 395 

Experiment in Asia (ACE-Asia) campaign (Maria et al., 2004) from emissions over mixed combustion sources had near identical 

% sp2 value around 41% (Hopkins et al., 2007). 

Field and laboratory studies showed that sea salt particles can react with atmospheric water-soluble organic acids leading to 

chloride depletion within particles (Laskin et al., 2012; Wang et al., 2015a). Consistent with these previous studies, fresh sea salt 

typically has an intact rectangular inorganic core with a carbon outer shell arising from a thin layer of carboxylic acid coating as 400 

indicated by the peak for R(C*=O)OH @ 288.5 eV. Accordingly, “Type 4” is referred to as “fresh sea salt” in this work. In addition, 

the minor quantity of carbonaceous material in Type 4, as inferred from the small difference between the post- and pre-edge 

energies (OD320 eV – OD278 eV) apparent from Figure 5A, further supports the observation of freshly emitted sea salt particles. In 

contrast, “Type 5 – aged sea salt/organics” are sea salt particles that have reacted with carboxylic acid components of organic 

aerosol condensate which results in a substantial contribution of the R(C*=O)OH @ 288.5 eV peak while retaining the carbonate 405 

peak C*O3 @ 290.4 eV. Of note, “Type 5 – aged sea salt/organics” contain significantly more carbon mass than “Type 4–fresh sea 

salt/organics,” as indicated by their NEXAFS spectrum. Finally, “Type 6 – K dominated” class is identified based on the 

appearance of characteristic potassium peaks at 297.1 eV (K*L2), and 299.7 eV (K*L3) with a percent contribution of ~51% relative 

to the total peak area. Potassium-salt particles are common markers of biomass burning smoke (Andreae, 1983; Li et al., 2003). 

Large fractions of KCl particles are commonly emitted from both flaming and smoldering fires, while atmospheric ageing can 410 

transform them into K2SO4 and KNO3 through multi-phase acid displacement reactions similar to those of NaCl (Li et al., 2003). 

However, these K dominated particles can also be release as mixed secondary particles containing fractions of organic species, 

methylsulfonic acid, trimethylamine, SO4
2-, NH4

+, and K from potential biogenic sources in oceans (Willis et al., 2017).  

3.4 Organic volume fraction of individual mixed organic-inorganic particles 

Organic volume fraction (OVF) is a practical parameter to assess reactivity (Worsnop et al., 2002; Folkers et al., 2003) and 415 

hygroscopicity (Wang et al., 2008; Schill et al., 2015; Ruehl et al., 2016) of mixed inorganic–organic particles. Based on the 

STXM/NEXAFS measurements of individual particles, OVF is defined as a ratio of the optical thickness of the organic components 

(𝑡𝑜𝑟𝑔) divided by the total optical thickness of the particle (𝑡𝑜𝑟𝑔 + 𝑡𝑖𝑛𝑜𝑟𝑔) (Moffet et al., 2010a; Pham et al., 2017; Fraund et al., 

2019). STXM images collected at the carbon K-edge were used to calculate the OVF. The values of absorbance at the pre-edge 

(278 eV) and the post edge (320 eV) energies are related to the inorganic mass and the sum of inorganic + organic mass, 420 

respectively. Assuming specific values for densities (ρ) and mass absorption coefficients (µ) for the organic and inorganic 

components, values of 𝑡𝑜𝑟𝑔  and 𝑡𝑖𝑛𝑜𝑟𝑔  can be determined, allowing OVF calculation (Fraund et al., 2019). For this study, we 

assumed the inorganic component of particles corresponds to (NH4)2SO4 based on the particle elemental composition identified by 

CCSEM/EDX analysis, while oxalic acid (C2H2O4) is used as a proxy for the organic component. Oxalic acid was chosen to 

represent biomass burning (Yamasoe et al., 2000) and vehicular exhaust (Kawamura and Kaplan, 1987). Of note, based on previous 425 

reported studies, assumptions of chemically different organic components has minor effect on the resulting OVF values, while 

choice of the inorganic components resulted in a larger variation in the OVF calculations (Pham et al., 2017; Fraund et al., 2019). 

Here, we estimate the systematic error in OVF when assuming different inorganic-organic components, as shown in Table S2. 

Assuming NaCl to be the inorganic component instead of (NH4)2SO4 yields a difference of ~35%. On the other hand, assuming 
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the organic component to be oxalic acid yields a ~5–30% difference in OVF when compared to other organics depending such as 430 

sucrose, adipic acid, and glucose. 

Figure 6 shows representative chemical mixing state maps and OVF values of particles sampled during different atmospheric 

transport episodes during this study. Particles appear to have varying amount of organic coating for different sampling episodes as 

shown in the OVF maps. The comparison of the OVF map and the carbon speciation map illustrates overlap between the two 

mapping schemes. Finally, histograms show particle fractions at varying OVF values during different atmospheric transport 435 

episodes. Layers of organics are seen encapsulating inorganic cores. As expected, background particles collected in the MBL show 

inorganic NaCl cores (as indicated by a rectangular core morphology) with modest organic coating (OVF <30%), consistent with 

a previous report (Chi et al., 2015). However, during the DI periods, the majority of particles have equal or greater fractions of 

organic to inorganic components (40–60% OVF), while only a few particles exhibit core/shell morphology typical for background 

particles (i.e., non-DI periods). Furthermore, FT particles during non-DI periods have OVF <10%, when compared to FT samples 440 

during DI periods (10–20% OVF). In general, samples collected at the FT altitudes show reduced OVF values compared to the 

MBL samples regardless of the occurrence of DIs. Core-shell particle morphologies were also observed in FT sample, albeit not 

frequently (see Figure S9). FT samples were dominated by inorganic-organic particles in the size range of 0.20–0.25 µm, which 

are likely mixed sulfate-organic particles based on the size-resolved particle-type datasets obtained from CCSEM/EDX analysis. 

A recent study conducted in central Oregon found that the organic mass fraction from FT samples were between 27–84% while 445 

sulfate mass fractions were ranging from 39–50% (Zhou et al., 2019). Based on these reported studies the elevated contributions 

of organic and sulfate in the FT may be attributed to the enrichment of organonitrates and organosulfate compounds originating 

from biogenic sources in the absence of wildfire influence. However, FT organic and sulfate aerosol mass is also known to be 

associated with urban and biomass burning emissions (Bahreini, 2003; Dunlea et al., 2009; Roberts et al., 2010; Wang et al., 

2021b). Studies in the northeast Pacific found that submicron aerosol mass was dominated by sulfate and organic components 450 

originating from aged Asian pollution plumes (Dunlea et al., 2009). FT organic and sulfate particles can then experience long-

range transport and ageing as the air parcels are carried across the Atlantic and descend into the MBL of the ENA site (China et 

al., 2017). To summarize, we observe enhancements in the OVF values of individual particles during the DI periods, quantified as 

2.06±0.16 and 1.11±0.04 fold increase of OVF for the MBL and FT samples, respectively, assuming (NH4)2SO4–oxalic acid 

components. The larger total OVF in the MBL (relative to FT samples) regardless of DI events is most likely due to additional 455 

contribution of marine organic sources within the boundary layer. The background organic concentration in the MBL is different 

than FT due to other sources of organics such as dissolved organic matter on the seawater surface (Doval et al., 2001; Miyazaki et 

al., 2018). The transport of organics from the ocean surface directly into the atmosphere is primary driven by turbulent winds 

(O’Dowd et al., 2004; Prather et al., 2013) resulting in the enhancement in the background organic concentration in the MBL. 

Furthermore, the observed enhancements in OVF in the MBL during DI periods could be the result of organic-rich air parcels 460 

(originating from North America) descending from the FT into the MBL leading to changes in total organic concentration (Zheng 

et al., 2020b; Wang et al., 2021b).  

3.5 Evaluating CCN activity of mixed organic-inorganic particles 

CCN activity of individual particles is governed by both their size and chemical composition. In particular, condensation of organic 

carbon onto atmospheric inorganic particles can impact the efficiency at which particles of mixed organic-inorganic composition 465 

can act as CCN and INP due to changes in particles’ hygroscopicity and viscosity (Beydoun et al., 2017; Ovadnevaite et al., 2017; 

Altaf et al., 2018). To account for the effects of organics on aerosol hygroscopicity, we use κ-Köhler equation (Petters and 

Kreidenweis, 2007) to estimate the hygroscopicity parameter κ corresponding to mixed inorganic–organic particles: 
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κ = (1 – 𝑓org) κinorg + 𝑓org κorg                                                    (2) 

where, 𝑓org is the OVF values derived from the STXM data, κorg = 0.1 is the hygroscopicity of the organic component, and κinorg = 470 

0.6 is that of (NH4)2SO4 (Petters and Kreidenweis, 2007). We derived κ values for different synoptic and atmospheric layer 

conditions using the size-resolved OVF ratio shown in Figure S10, and found that κMBL, DI = 0.41 and κFT, DI = 0.33 for DI periods, 

and κMBL, non-DI = 0.48 and κFT, non-DI = 0.36 for non-DI periods. The lower κ values under DI periods are consistent with 

enhancements in the organic contribution. Of note, the values of κ obtained here using Eq. 2 needs to be considered as the low 

limit values, which might be somewhat higher considering possible contributions from more hygroscopic components of particles 475 

related to original and aged sea salt (𝜅NaCl = 1.3 and 𝜅Na2SO4
= 0.8). 

Using κ, we can calculate the critical size of a dry particle (Figure S11) that can be activated under the supersaturation of 0.14% 

(setting of the CCN counter deployed on G-1) (Petters and Kreidenweis, 2007). The theoretical CCN number concentrations are 

then estimated by integrating the FIMS-measured aerosol size distributions above the critical dry particle diameter. Figure 7 shows 

the results for the OVF-based calculations of theoretical CCN concentrations compared to the onboard CCN measurements at 480 

0.14% supersaturation. There is a general agreement between calculated and measured CCN concentration, but FT cases appear to 

have a better agreement. The uncertainty in the calculated CCN is due to the supersaturation fluctuation of the CCN counter (0.13–

0.15%), as shown in Figure S11. The large error bars in the measured CCN are a result of the variability of the measured CCN 

during different sampling periods. We also note that the exact value of κorg may play a role in affecting the CCN calculation. So, 

theoretical CCN concentrations were also calculated using κorg = 0, and the results were compared against the measured CCN 485 

concentrations in Fig. 7b. However, the impact of this change of κorg does not significantly change the agreement between the 

calculated and measured CCN concentrations. This result shows that calculating the CCN concentration using OVF values derived 

from the STXM data and the κ-Köhler theory can be a good estimate of the actual CCN concentrations.  

4 Conclusion  

Here, we presented detailed chemical imaging of individual atmospheric particles collected over the Azores during long-ranged 490 

transport events. Air mass back trajectory calculations suggest that air parcels in the ENA region can be traced from more than 

4000 km away from North America within a span of 48-72 hours. During these long-range transport episodes, aerosols undergo 

substantial changes in size, morphology, and chemical composition among others as they are carried across the Atlantic Ocean and 

descend from the FT into the MBL altitudes over the ENA region. Chemical composition of elements of individual particles 

(~36,400) were quantified using CCSEM/EDX while a subset of particles (~4,300) was analyzed using STXM/NEXAFS to 495 

determine the particle internal mixing state and organic spatial distribution. Based on CCSEM/EDX analysis, we observe a 

substantial contribution of “Carbonaceous” particles which are the dominant particle-type across all samples. The fraction of 

externally mixed “Carbonaceous” particles decreases during the DI periods, compensated by the increase of “Ammonium 

Nitrate/Sulfate” fraction. The elevated contribution of atmospheric nitrate suggests influence from anthropogenic and biomass 

burning emissions (Reff et al., 2009). This observation is consistent with the DI periods suggesting air masses originating from 500 

North America descend from FT to MBL over the ENA region. Interestingly, there is also an increase in particle-type diversity in 

the FT during DI periods most likely due to significant mixing during DI episodes based on measured particle number 

concentrations. Among these identified “Carbonaceous” particles, the OVF across individual particles derived from STXM 

measurements is enhanced in DI samples. Aged aerosols accumulate organics through condensation of secondary semi-volatile 

species resulting in an increase in organic contribution among individual particles. We utilize the STXM-derived OVF values and 505 

implemented it into the calculation of particle hygroscopicity using κ- Köhler theory (Petters and Kreidenweis, 2007). Particles 
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collected during DI periods resulted in lower κ value with respect to background marine aerosols common in the ENA region 

resulting in reduced CCN propensity. We calculated κ values between ~0.29 and ~0.44 corresponding to mixed organic-inorganic 

aerosol in the FT and MBL, respectively. These values are consistent with previous reported studies on mixed organic particles 

(Petters and Kreidenweis, 2007; Schmale et al., 2018; Zheng et al., 2020b).  510 

Current atmospheric models lack the representation of aerosol mixing states limiting to only simple assumptions leading to high 

uncertainty of aerosol impact on the Earth’s system. It is traditionally assumed that sulfate particles dictate particle growth over 

remote ocean regions while underestimating the influence of organic particles on the CCN activity over remote oceans. We have 

shown that particles transported from North America can have a substantial impact on the aerosol mixing state and aerosol 

population over the region of study, as organic contribution and particle-type diversity is significantly enhanced during the DI 515 

periods. These observations need to be considered in current atmospheric models to have a better predictive understanding of the 

impact of long-range transport episodes to the source apportionment of specific aerosol particle types and the extent of particle 

internal heterogeneity. 
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Figure 1. A) A representative flight path of G-1 aircraft during one of the DI events (2018-01-24) during ACE-ENA campaign (Azores, 995 
Portugal). Size and color scale correspond to organic concentration provided by onboard Aerodyne HR-ToF-AMS. B) A time-height 

cross section at 39°N,28°W using ERA Interim reanalysis of ECMWF, showing equivalent potential temperature (K, shading), potential 

temperature (black contours) and boundary-layer height (red dashed line). The solid red line is the 2-PVU contour of potential vorticity, 

marking the tropopause. The time periods of DI events (marked by black dots and indicated by yellow arrows) were identified from 

calculated forward trajectories based on the wind field data (ERA Interim, see text for more details). C) Calculated HYSPLIT 72 hrs 1000 
back trajectory for 2018-01-24 utilizing GDAS1 archived data sets starting at three elevations: 100 m (red), 2000 m (blue), 3000 m (green). 
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Figure 2. Representative backscattering mode SEM imaging of particles (left column) and relative particle-type populations (right 

column) determined by CCSEM/EDX and k-means clustering analysis, summarized as a 16 bin/decade histogram representative of MBL 

and FT atmospheric layers and DI versus non-DI synoptic conditions. The composition of the size-segregated particle-type population 

were broken down into “Carbonaceous” and “Inorganics” (i.e., Mixed Sea Salt + Aged Sea Salt + Ammonium Nitrate/Sulfate). The 1015 
average FIMS aerosol size distribution measured onboard G1 is superimposed and anchored at 0.25 µm to facilitate a visual assessment 

of particle types and number concentrations for CCN active particles (>100 nm). Lognormal mode diameter (Dg) and standard deviation 

(σg) were fitted for the FIMS particle size distribution (grey dashed lines). 
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Figure 3. A) Carbon speciation map of a subset of particles acquired by STXM from DI periods. Note that components can overlap 1030 
where each pixel can contain different combination of the individual components: EC + IN constituents as purple; OC + EC as yellow; 

OC + IN as cyan. B) Size distribution of analyzed particles identified via STXM/NEXAFS shown as an 8 bin/decade histogram to compare 

particle multi-component internal mixing state between atmospheric transport events. FIMS particle size distribution is overlaid to 

facilitate a visual comparison from the same atmospheric episodes. Shown legends are as follows: IN–inorganics, OC–organic carbon 

(i.e., COOH), EC–elemental carbon (i.e., sp2 C=C carbon). 1035 
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Figure 4. A) Individual NEXAFS spectra showing differences in carbon content of representative particles collected at MBL and FT 

altitudes under different synoptic conditions. Identified Carbon types are: “Type 1–biological” (green), “Type 2–homogeneous organic 

particles” (orange), “Type 3–soot” (red), “Type 4–fresh sea salt/organics” (blue), “Type 5–aged sea salt/organics” (pink), “Type 6–K 

dominated salt” (teal). Dashed lines correspond to the transition energies: 285.4 eV (C*=C), 286.7 eV (C*=O), 287.7 eV (C*–H), 288.3 

eV (R-NH(C*=O)R), 288.5 eV (R(C*=O)OH), 289.5 eV (RC*–OH), 290.0 eV (C edge step), 290.4 eV (C*O3), 297.1 eV (K*L2), and 299.7 1045 
eV (K*L3). B) Representative secondary electron mode SEM imaging of particles corresponding to the different carbon types identified 

with the STXM/NEXAFS analysis. 
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Figure 5. A) Carbon K-edge NEXAFS spectra of 6 carbon types identified in individual particles: “Type 1 – biological” (green), “Type 

2 – homogeneous organic particles” (orange), “Type 3 – soot” (red), “Type 4 – fresh sea salt/organics” (blue), “Type 5 – aged sea 

salt/organics” (pink), “Type 6 – K dominated salt” (teal). B) Contributions of the different carbon functional groups reported as a 

percentage of the total peak area. 1060 
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Figure 6. A) Representative organic volume fraction (OVF) maps of individual particles. B) Carbon speciation maps of the identical 

particles; Teal – inorganic dominant regions; Green – organic dominant regions (i.e., COOH); Red – elemental carbon (i.e., sp2 carbon). 

C) Histogram of particle fractions as a function of their OVF values with average OVF (red dashed line). The rows correspond to the 

different atmospheric layers and synoptic conditions to highlight the differences in organic/inorganic composition and multi-component 

internal mixing state of particles identified in this study. 1070 
 

 

 

Figure 7. Comparison of the CCN concentration predicted from the particle size distribution and OVF with field measured CCN by 

onboard instruments across the different atmospheric layer and transport event. A) κorg = 0.1; B) κorg = 0.0. Grey dashed line corresponds 1075 
to the 1:1 calculated CCN to measured CCN. 

 


