Secondary Organic Aerosol Formation from Camphene Oxidation: Measurements and Modeling

Qi Li1,2, Jia Jiang1,2, Isaac Afreh1,2, Kelley C. Barsanti1,2, David R. Cocker III1,2
1Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
2The Bourns College of Engineering, Center for Environmental Research and Technology, University of California-Riverside, Riverside, California 92507, United States

Correspondence to: Kelley C. Barsanti (kbarsanti@engr.ucr.edu) and David R. Cocker III (dcocker@engr.ucr.edu)

Abstract. While camphene is one of the dominant monoterpenes measured in biogenic and biomass burning emission samples, oxidation of camphene has not been well-studied in environmental chambers and very little is known about its potential to form secondary organic aerosol (SOA). The lack of chamber-derived SOA data for camphene may lead to significant uncertainties in predictions of SOA from oxidation of monoterpenes using existing parameterizations when camphene is a significant contributor to total monoterpenes. Therefore, to advance the understanding of camphene oxidation and SOA formation, and to improve representation of camphene in air quality models, a series of experiments were performed in the University of California Riverside environmental chamber to explore camphene SOA yields and properties across a range of chemical conditions at atmospherically relevant OH concentrations. The experimental results were compared with modeling simulations obtained using two chemically detailed box models, Statewide Air Pollution Research Center (SAPRC) and Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). SOA parameterizations were derived from the chamber data using both the two-product and volatility basis set (VBS) approaches. Experiments performed with added nitrogen oxides (NOx) resulted in higher SOA yields (up to 64%) than experiments performed without added NOx (up to 28%). In addition, camphene SOA yields increased with SOA mass (M_o) at lower mass loadings, but a threshold was reached at higher mass loadings in which the SOA yields no longer increased with M_o. SAPRC modeling of the chamber studies suggested that the higher SOA yields at higher initial NOx levels were primarily due to higher production of peroxy radicals (RO2) and the generation of highly oxygenated organic molecules (HOMs) formed through unimolecular RO2 reactions. SAPRC predicted that in the presence of NOx, camphene RO2 reacts with NO and the resultant RO2 undergo hydrogen (H)-shift isomerization reactions; as has been documented previously, such reactions rapidly add oxygen and lead to products with very low volatility (i.e., HOMs). The end products formed in the presence of NOx have significantly lower volatilities, and higher O:C ratios, than those formed by initial camphene RO2 reacting with hydroperoxyl radicals (HO2) or other RO2. Moreover, particle densities were found to decrease from 1.47 to 1.30 g cm⁻³ as [HC]0/[NOx]0 increased and O:C decreased. The observed differences in SOA yields were largely explained by the gas-phase RO2 chemistry and the competition between RO2 + HO2, RO2 + NO, RO2 + RO2, and RO2 unimolecular reactions.
Introduction

On a global scale, biogenic monoterpene emissions are estimated to contribute 14% of the total reactive volatile organic compounds (VOC) flux (Guenther, 1995). Camphene is an ubiquitous monoterpene emitted from biogenic sources (Geron et al., 2000; Hayward et al., 2001; Ludley et al., 2009; Maleknia et al., 2007; White et al., 2008) and pyrogenic sources (Akagi et al., 2013; Gilman et al., 2015; Hatch et al., 2015). Many studies have reported camphene as a top contributor by mass in measured biogenic and pyrogenic monoterpene emissions (Benelli et al., 2018; Hatch et al., 2019; Komenda, 2002; Mazza & Cottrell, 1999; Moukhtar et al., 2006). For example, in measurements of laboratory and prescribed fires reported by Hatch et al. (2019), camphene was among the top two monoterpenes emitted from subalpine and Douglas fir fires based on emission factors (mass of compound emitted/mass of fuel burned).

When emitted to the atmosphere, monoterpenes form oxygenated compounds through reactions with trace oxidants such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3); compounds with sufficiently low volatility can then condense to form secondary organic aerosol (SOA). The SOA formation potential of individual monoterpenes can vary greatly based on their molecular structure, atmospheric lifetimes, and the volatility of their oxidation products (Atkinson and Arey, 2003; Griffin et al., 1999; Ng et al., 2007a; Zhang et al., 1992). Previous experimental studies of other monoterpenes (such as α-pinene, β-pinene, d-limonene, etc.) have reported SOA yields from ~10% to 50% through OH oxidation and from ~0 to 65% through NO3 oxidation; among the studied monoterpenes, d-limonene often has the highest reported yields (Mutzel et al., 2016; Griffin et al., 1999; Ng et al., 2007b; Fry et al., 2014). Few studies have been published regarding camphene SOA formation.

Past experimental studies of camphene largely have been focused on gas-phase reactivity with OH, NOx, and/or O3 and gas-phase product identification (e.g., Atkinson et al., 1990; Gaona-Colmán et al., 2017; Hakola et al., 1994). Baruah et al. (2018) performed a kinetic and mechanism study of the camphene oxidation initiated by OH radicals using the density functional theory (DFT), in which the rate constant and atmospheric lifetime were reported. It was also suggested that addition at the terminal double bond carbon atom could account for 98.4% of the initial OH-addition. A product study by Gaona-Colmán et al. (2017) showed obvious NOx dependence in OH + camphene experiments, in which the molar yield of acetone was enhanced by a factor of 3, 33% relative to 10%, in the presence of NOx (2–2.3ppmv of NO).

Hatfield and Huff-Hartz studied SOA formation from ozonolysis of VOC mixtures, in which the added camphene was considered a non-reactive VOC and assumed to have little to no effect on SOA yields (Hatfield & Hartz, 2011). Mehra et al. (2020) recently published a compositional analysis study of camphene SOA. Although SOA yields were not provided, they demonstrated the potential contribution of highly oxygenated organic molecules (HOMs) and oligomers to camphene SOA formed in an oxidation flow reactor (OFR). Afreh et al. (2020) presented the first mechanistic modeling study of camphene SOA formation. While relatively high SOA yields were reported (with final SOA mass and yields in twice that of α-pinene), no chamber-based SOA data were available for measurement–model comparison at that time.

SOA formation has been shown to be highly dependent on gas-phase NOx concentrations; and more precisely, the relative ratios of NO:HO2, hydroperoxyl radicals:RO2, peroxy radicals (Henze et al., 2008; Ng et al., 2007b; Presto et
VOCs are subject to oxidation by OH, O₃ and/or NO₃. For some precursors, NOₓ levels influence the amount of SOA produced in the initial oxidation steps by controlling the relative proportions of oxidants, the fractional reactivity with those oxidants, and thus the volatility distribution of the products formed (Hurley et al., 2001; Nøjgaard et al., 2006; Kroll and Seinfeld, 2008). For other precursors, NOₓ levels influence the amount of SOA produced via fate of RO₂. The reactions between RO₂ and HO₂ form hydroperoxides, which can have sufficiently low volatility to condense into the particle phase. In the presence of NOₓ, RO₂ will react with NO, forming organic nitrate and carbonyl compounds that have higher volatilities than the products formed through the HO₂ pathway (Kroll and Seinfeld, 2008; Ziemann and Atkinson, 2012). Previous studies of relatively small compounds (carbon number ≤ 10), including monoterpenes such as α-pinene, have reported that SOA yields generally increase as initial NOₓ decreases, with a proposed mechanism of competitive chemistry between RO₂ + HO₂ and RO₂ + NO pathways, of which the latter would form more volatile products (Kroll et al., 2006; Ng et al., 2007; Song et al., 2005). The NOₓ dependence of camphene oxidation and SOA formation has been relatively understudied.

Here, we present the first systematic study of SOA formation from camphene using laboratory-based chamber experiments and chemically detailed box models. The experiments were conducted at varying NOₓ levels and the chamber data were used to provide SOA parameterizations based on the two-product (Odum et al., 1996) and volatility basis set (VBS) modeling approaches (Donahue et al., 2006; Donahue et al., 2009). Two chemically detailed box models, Statewide Air Pollution Research Center (SAPRC) and Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A), were used to provide mechanistic insights into the chamber observations and to elucidate the connections between the fate of RO₂ and camphene SOA formation.

2 Methods

2.1 Chamber Facility and Instrumentation

The camphene photooxidation experiments were conducted in the University of California, Riverside (UCR) dual indoor environmental chamber. Chamber characterization and features have been previously described in detail (Carter et al., 2005). Briefly, the UCR environmental chamber consists of two 90 m³ collapsible Teflon reactors (2mil FEP film) kept at a positive pressure differential (0.015–0.020 in H₂O) to the enclosure where the reactors are located to minimize contamination during experiments. The enclosure is relative humidity controlled (<0.1%), temperature controlled (300 ± 1 K), and continuously flushed with dry purified air (dew point < -40 °C). Prior to and between experiments, reactors were collapsed to a volume < 20 m³ for cleaning. The cycle of filling-purging the reactors was repeated until particle number concentrations were < 5 cm⁻³ and NOₓ mixing ratios were < 1 ppb. The reactors were then flushed with dry purified air and filled up to 90 m³ overnight. The filling-purging of the reactors is controlled by an “elevator” program in LabView.

NO and NO₂ mixing ratios were monitored by a Thermo Environmental Instruments Model 42C chemiluminescence NOx analyzer. O₃ mixing ratios were monitored by a Dasibi Environmental Corp. Model 1003-
AH O₃ analyzer. An Agilent 6890 gas chromatograph with flame ionization detector (GC-FID) was used to measure the camphene levels during the experiments.

Multiple instruments were used for particle-phase monitoring. Each reactor was equipped with a scanning mobility particle sizer (SMPS), including a TSI 3081 differential mobility analyzer (DMA), to measure the particle mass concentration. Particle wall loss corrections were performed following the method described in Cocker et al. (2001). Semi-volatile vapor wall losses were assumed to be negligible based on previous measurements made during similar experiments in the UCR CE-CERT chamber of other compounds (such as α-pinene and m-xylene), in which negligible differences were observed between seed and no seed experiments (Clark et al., 2016; L. Li et al., 2015). In addition, stability tests on camphene resulted in negligible vapor wall loss of the parent compound. Particle effective density was directly measured by an Aerosol Particle Mass Analyzer (APM, Kanomax) with a SMPS built in-house (Malloy et al., 2009). Chemical composition of SOA was measured using HR-ToF-AMS (DeCarlo et al., 2006) and analyzed to obtain O:C and H:C ratios by applying the method of Canagaratna et al. (2015). Data processing was performed using the ToF-AMS Analysis Toolkit 1.57 and PIKA 1.16 on Igor Pro 6.36.

2.2 Experimental Conditions

A series of 13 photooxidation experiments of camphene were carried out under varying levels of camphene and NOₓ with modeling simulations accordingly (Table 1). Due to the relatively high melting point of camphene (51 °C), camphene (Sigma-Aldrich, purity > 96 %, FG) was injected into a glass manifold (heated to 50 °C by heating tape) using a preheated (~50-55 °C) microliter syringe. As camphene evaporated it was carried to the reactors by dry purified compressed air flowing through a glass manifold at 8 LPM for 15 mins. Injection lines from the glass manifold to the reactors were also heated to reduce losses of camphene. H₂O₂ (Sigma Aldrich, 50 wt.% in H₂O) was injected by adding 200 μl onto glass wool in glass tubing and then placing the tubing in a 56 °C oven with 10 LPM of dry purified compressed air flowing through the tubing for 15 mins and into the reactors. An inert tracer, perfluorohexane (Sigma-Aldrich, 99 %) or perfluorobutane (Sigma-Aldrich, 99 %), was injected to the reactors through the heated glass manifold by a carrier gas of 50 °C pure N₂. NO (Matheson, UHP) at known volume and pressure was transferred and injected through the same glass manifold as the inert tracer. When gaseous injection of camphene, H₂O₂, inert tracer, and NO (when used) was completed, the reactors were internally mixed using built-in blowers to ensure uniform distribution of chemicals, and then irradiated using UV black lights (115w Sylvania 350BL) to start photooxidation. No seed aerosol was used in this study. All experiments were conducted under dry conditions (relative humidity < 0.1 %) at 300 K. The initial conditions of the experiments are summarized in Table 1.
Table 1. Summary of initial conditions for chamber experiments and box model simulations.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Initial Conditions for Chamber Experiments and SAPRC Simulations</th>
<th>Initial Conditions for GECKO-A Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Camphene (ppb)</td>
<td>Added NO\textsubscript{x} (ppb)</td>
</tr>
<tr>
<td>WO1</td>
<td>7</td>
<td>854</td>
</tr>
<tr>
<td>WO2</td>
<td>9</td>
<td>1148</td>
</tr>
<tr>
<td>WO3</td>
<td>28</td>
<td>1212</td>
</tr>
<tr>
<td>WO4</td>
<td>57</td>
<td>1182</td>
</tr>
<tr>
<td>WO5</td>
<td>120</td>
<td>1212</td>
</tr>
<tr>
<td>WO6</td>
<td>223</td>
<td>1576</td>
</tr>
<tr>
<td>W1</td>
<td>7</td>
<td>89</td>
</tr>
<tr>
<td>W2</td>
<td>25</td>
<td>138</td>
</tr>
<tr>
<td>W3</td>
<td>32</td>
<td>62</td>
</tr>
<tr>
<td>W4</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>W5</td>
<td>60</td>
<td>94</td>
</tr>
<tr>
<td>W6</td>
<td>131</td>
<td>98</td>
</tr>
<tr>
<td>W7</td>
<td>172</td>
<td>60</td>
</tr>
</tbody>
</table>

*H\textsubbox{2}O\textsubbox{2} mixing ratio was targeted at 1ppm but corrected base on tracer (perfluorohexane or perfluorobutane) concentration to offset initial reactor volume bias. Corrected H\textsubbox{2}O\textsubbox{2} mixing ratios were used in SAPRC modeling.

2.3 Model Configurations and Conditions

The chamber experiments were modeled using two different box models, SAPRC and GECKO-A. The SAPRC model was chosen because it has been designed to evaluate gas-phase chemistry in the UCR chamber. The GECKO-A model was chosen because of the ability to predict both gas and particle phase composition, and the prior work of Afreh et al. (2020), in which GECKO-A was used to study SOA formation from camphene.

2.3.1 SAPRC

A gas-phase oxidation mechanism was derived using the SAPRC mechanism generation system (MechGen) with modified initial rate constants (camphene with OH, NO\textsubscript{x} and O\textsubscript{3}) based on published literature data (Atkinson et al., 1990). MechGen, described elsewhere (Carter, 2021; Carter, 2020b; Jiang et al., 2020), is capable of generating fully explicit mechanisms for the atmospheric reactions of many types of organic compounds and the intermediate radicals they form. MechGen uses experimentally derived rate constants and branching ratios if data are available and otherwise uses estimated rate constants and branching ratios based on group additivity and other estimation methods.

This system was used to derive reactions of explicit and lumped organic compounds and products in the development of the SAPRC-18 mechanism (Carter, 2020a) and a detailed SAPRC furans mechanism (Jiang et al., 2020).

The MechGen-derived camphene mechanism was implemented into the SAPRC box model to simulate chamber experiments under the same chemical conditions as the chamber experiments, where the initial hydrocarbon concentrations and NO\textsubscript{x} levels were as defined in Table 1. The SAPRC box model system has been used for chemical mechanism development, evaluation, and box modeling applications since the mid-1970s (Carter, 1990, 1994, 2000, 2010).
The initial conditions and relevant chemical parameters for environmental chamber experiments are required inputs; simulations can be performed using multiple versions of the SAPRC gas-phase chemical mechanism. In this work, the recently published version, SAPRC-18 (Carter, 2020a), was selected as the base mechanism because it represents the current state of the science and includes the most up-to-date model species and explicit representation of RO2 chemistry.

2.3.2 GECKO-A

GECKO-A is a nearly explicit mechanism generator and SOA box model. GECKO-A relies on experimental data and structure-activity relationships (SARs) to generate detailed oxidation reaction schemes for organic compounds. The generated reaction schemes are applied in the SOA box model to simulate SOA formation based on the absorptive gas/particle partitioning model of Pankow (1994), where thermodynamic equilibrium between the gas and an ideal particle phase is assumed. Detailed descriptions of GECKO-A, including mechanism generation and SOA formation, are provided by Aumont et al. (2005) and Camredon et al. (2007). GECKO-A has been used to predict SOA in a number of studies (e.g., Aumont et al., 2012; Lannuque et al., 2018; McVay et al., 2016), including camphene (Afreh et al., 2020). Details of the camphene mechanism and SOA box modeling were described in Afreh et al. (2020). Briefly, the camphene mechanism includes 1.3×10^6 reactions and 1.8×10^5 oxidation products; vapor pressures of products were calculated based on the Nannoolal method (Nannoolal et al., 2008).

In this work, the initial conditions for the GECKO-A simulations were chosen to best represent idealized chamber conditions; that is, initial camphene and NOx mixing ratios were fixed based on target values for the chamber experiments and not modified to reflect actual values used. GECKO-A simulations were performed under two NOx conditions, with 80 ppb of NOx, and without NOx (Table 1). For both NOx conditions, the initial hydrocarbon mixing ratios were set at 10, 25, 50, 100, and 150 ppb. All simulations were run under the following initial conditions: 1000 ppb of H2O2, 1 µg m$^{-3}$ of organic seed with molecular weight of 250 g mol$^{-1}$, 298 K temperature, 1% relative humidity, and 50° solar zenith angle (required to compute the photolysis frequencies). Simulation results for camphene were compared with chamber data including SOA yield, precursor decay rates, and oxidant levels.

3. Experimental and Modeling Results

Table 2 summarizes the measured initial NO/NO2 mixing ratios, initial camphene concentration ([HC]$_0$), reacted camphene concentration (Δ[HC]), SOA mass (M_o) formed, particle density, final peak particle diameter (d_p), photochemical aging time, irradiation time, and SOA yield for all 13 experiments. Measured and predicted gas-phase species are presented in Sect. 3.1; SOA mass and yields are presented in Sect. 3.2. The predicted fate of RO2 in the context of initial HC to initial NOx mixing ratio ([HC]$_0$/[NOx]$_0$) is presented in Sect. 3.3.
Table 2. Chamber SOA data, WO indicates experiments without added NOx and W with added NOx.

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Initial NO/NO₂</th>
<th>[HC]₀</th>
<th>Δ[HC]</th>
<th>M₀</th>
<th>PM den.</th>
<th>dₚ</th>
<th>Irradiation time</th>
<th>Photochemical aging time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppb</td>
<td>μg m⁻³</td>
<td>μg m⁻³</td>
<td>g cm⁻³</td>
<td>nm</td>
<td></td>
<td>hour</td>
<td>hour</td>
<td></td>
</tr>
<tr>
<td>WO1</td>
<td>0/0</td>
<td>41</td>
<td>41</td>
<td>6.1</td>
<td>1.42</td>
<td>126</td>
<td>4.9</td>
<td>16.1</td>
<td>0.15</td>
</tr>
<tr>
<td>WO2</td>
<td>0/0</td>
<td>49</td>
<td>49</td>
<td>3.7</td>
<td>1.42</td>
<td>125</td>
<td>5.0</td>
<td>16.7</td>
<td>0.08</td>
</tr>
<tr>
<td>WO3</td>
<td>0/0</td>
<td>155</td>
<td>153</td>
<td>42.0</td>
<td>*1.36</td>
<td>214</td>
<td>6.1</td>
<td>17.7</td>
<td>0.27</td>
</tr>
<tr>
<td>WO4</td>
<td>0/0</td>
<td>313</td>
<td>305</td>
<td>84.4</td>
<td>*1.34</td>
<td>270</td>
<td>6.7</td>
<td>15.8</td>
<td>0.28</td>
</tr>
<tr>
<td>WO5</td>
<td>0/0</td>
<td>663</td>
<td>597</td>
<td>158.6</td>
<td>1.30</td>
<td>286</td>
<td>6.7</td>
<td>9.5</td>
<td>0.27</td>
</tr>
<tr>
<td>WO6</td>
<td>0/0</td>
<td>1230</td>
<td>844</td>
<td>162.4</td>
<td>*1.31</td>
<td>492</td>
<td>6.1</td>
<td>5.0</td>
<td>0.19</td>
</tr>
<tr>
<td>W1</td>
<td>86/2</td>
<td>40</td>
<td>40</td>
<td>14.6</td>
<td>1.46</td>
<td>120</td>
<td>5.1</td>
<td>50.6</td>
<td>0.36</td>
</tr>
<tr>
<td>W2</td>
<td>114/24</td>
<td>140</td>
<td>140</td>
<td>46.1</td>
<td>1.47</td>
<td>188</td>
<td>5.2</td>
<td>40.6</td>
<td>0.33</td>
</tr>
<tr>
<td>W3</td>
<td>51/11</td>
<td>177</td>
<td>177</td>
<td>112.3</td>
<td>*1.44</td>
<td>185</td>
<td>6.0</td>
<td>42.0</td>
<td>0.64</td>
</tr>
<tr>
<td>W4</td>
<td>5/2</td>
<td>238</td>
<td>237</td>
<td>96.0</td>
<td>1.35</td>
<td>290</td>
<td>5.9</td>
<td>16.1</td>
<td>0.41</td>
</tr>
<tr>
<td>W5</td>
<td>45/49</td>
<td>334</td>
<td>334</td>
<td>199.5</td>
<td>*1.44</td>
<td>430</td>
<td>5.8</td>
<td>33.6</td>
<td>0.60</td>
</tr>
<tr>
<td>W6</td>
<td>42/56</td>
<td>724</td>
<td>724</td>
<td>428.8</td>
<td>*1.42</td>
<td>665</td>
<td>5.8</td>
<td>12.7</td>
<td>0.59</td>
</tr>
<tr>
<td>W7</td>
<td>45/15</td>
<td>956</td>
<td>950</td>
<td>494.3</td>
<td>*1.39</td>
<td>800</td>
<td>6.4</td>
<td>8.75</td>
<td>0.52</td>
</tr>
</tbody>
</table>

* Estimated using best fit line shown in Fig. S6.

3.1 Gas-Phase Reactivity

Figure 1 shows measured and predicted camphene consumption for the 13 photooxidation experiments, and the calculated time-dependent β values (ratio of RO₂ + NO to the sum of RO₂ + NO and RO₂ + HO₂)(Henze et al., 2008; Pye et al., 2010) based on SAPRC predictions for each experimental condition. Additional comparisons of measured and predicted gas-phase species are shown in Fig. S1 and Fig. S2. Higher camphene decay rates and higher OH levels (0.15–0.88 ppt with added NOx; 0.05–0.29 ppt without added NOx) were observed and predicted for experiments with added NOx than without; likely due to the fast recycling of OH when NOx was present (Fig. 1). For all experiments, the β values changed as a function of time due to changing chemical conditions. Note that due to off-gassing of NOx from the Teflon reactor (Carter et al., 2005), β values simulated here were larger than 0 even for experiments without added NOx. Experiments with added NOx have β values from 0.12–1, while experiments without added NOx have values < 0.12. For all parameters (camphene consumption, NOx decay, O₃ formation, and OH levels), the SAPRC simulation results were generally in good agreement with the experimental data. This consistency between experimental data and SAPRC simulations supports the use of the MechGen generated gas-phase camphene mechanisms and SAPRC box model results to interpret chamber observations.
3.2 SOA Mass and Yield

Measured SOA yields (SOA mass formed, \(M_0/\text{hydrocarbon reacted, } \Delta \text{HC}\)) are shown in Fig. 2 as a function of SOA mass (\(M_0\)) for experiments with (solid circles) and without (solid squares) added NO\(_x\). The SOA yields were much higher in experiments with added NO\(_x\) (0.33–0.64) than experiments without added NO\(_x\) (0.08–0.28). The observed trends in SOA yields were unexpected based on prior chamber studies of SOA formation from monoterpenes, such as OH oxidation studies of \(\alpha\)- and \(\beta\)-pinene, in which SOA yields were reported to be suppressed under high-NO\(_x\) conditions (Eddingsaas et al., 2012; Pullinen et al., 2020; Sarrafzadeh et al., 2016).
Figure 2 shows another unexpected observation: the SOA yields decreased at high SOA mass under both NOx conditions, which was captured in the measurements and also in the GECKO-A model simulations (see Sect. 5). In the presence of NOx, the observed SOA yields increased with M_o for $M_o \leq 112 \, \mu g \, m^{-3}$, plateaued between $112 \, \mu g \, m^{-3} < M_o \leq 429 \, \mu g \, m^{-3}$, and then decreased for $M_o > 429 \, \mu g \, m^{-3}$. Without NOx, the observed SOA yields increased for $M_o \leq 42 \, \mu g \, m^{-3}$, plateaued between $42 \, \mu g \, m^{-3} < M_o \leq 159 \, \mu g \, m^{-3}$, and then decreased for $M_o > 159 \, \mu g \, m^{-3}$. These unexpected trends in SOA yields were further investigated using the SAPRC and GECKO-A box models (Sect. 4 & 5).

The varying [OH] levels in the chamber experiments led to a wide range of photochemical aging times, from hours to days. The irradiation time was converted to equivalent photochemical aging time in the ambient atmosphere using equation (1) (Aumont et al., 2012):

$$\tau = \frac{1}{[OH]_{atm}} \int_{0}^{\tau} [OH]_{sim} dt$$

where $[OH]_{sim}$ was assumed to be 2×10^6 molecule cm$^{-3}$. Figure 3 shows the measured SOA yields as a function of aging time calculated using OH values predicted by SAPRC ($[OH]_{sim}$). The SOA yields in experiments with and without added NOx are dependent on OH levels and thus photochemical aging time. Higher [HC]$_0$ generally led to steeper increases in SOA yield as a function of aging time. Experiments with added NOx generally had longer photochemical aging times than experiments without added NOx. In addition, in experiments with added NOx, the yield curves mostly plateaued by the end of the experiment; however, in most of the experiments without added NOx, the yield curves were still increasing at the end of the experiments. The higher SOA yields in experiments with added NOx may partially be attributed to the difference in [OH] levels and extents of aging. Similar NOx effects have been reported in many previous studies (e.g., Ng et al., 2007a; Sarrafzadeh et al., 2016). Sarrafzadeh et al. (2016) proposed that in a study of β-pinene the OH level was the main factor that accounted for differences in SOA yields under varying
In the camphene experiments presented herein, except for some of the experiments without added NOx, the aging effects were determined to be less important than RO2 chemistry, since the SOA yield curves as a function of photochemical aging already plateau or nearly plateau by the end of experiments (Fig. 3).

SOA yields were shown as a function of $\Delta[HC]$, $[HC]_0/[NOx]_0$, and photochemical aging time in Fig. 4. For the experiments without added NOx, a constant value of 1 ppb was used in the calculations of $[HC]_0/[NOx]_0$ to account for NOx off-gassing from the Teflon reactors. Based on recent characterization experiments, the UCR chamber has a NOx off-gassing rate of 2.8 ppt/min in the form of HONO; the camphene experiments lasted for ~300 to 360 mins. Over low $\Delta[HC]$ range, when $\Delta[HC]$ increases, SOA yield increases as well. When $\Delta[HC]$ is larger than approximately 200 ug m$^{-3}$, this correlation becomes less apparent, due to the high sensitivity of SOA formation on $[HC]_0/[NOx]_0$ over the range of $\Delta[HC]$ sampled. At a given $\Delta[HC]$ level, a relatively smaller $[HC]_0/[NOx]_0$ (when it was within 0.5–200) would lead to a higher SOA yield (decreasing $[HC]_0/[NOx]_0$ by approximately 100 times may double the SOA yield).

The chamber data presented here exhibit a general trend that, under the regular regime (distinguished from the extreme [NOx] regime), higher SOA yields are observed from camphene oxidation at higher $\Delta[HC]$ and smaller $[HC]_0/[NOx]_0$. This is different from studies of α-pinene, in which smaller $[HC]_0/[NOx]_0$ generally led to smaller SOA yield (Eddingsaas et al., 2012).
Figure 4. SOA yield dependence on [HC]₀/[NOₓ]₀, Δ[HC], and photochemical aging time.

3.3 [HC]₀/[NOₓ]₀ and the Fate of Peroxy Radicals

Table S1 shows the experimental [HC]₀/[NOₓ]₀ and the SAPRC predicted fate of total RO₂ (the summation of all the RO₂ radicals formed from camphene and camphene products) for all the chamber runs. In Fig. 5, the fate of total RO₂ is shown as a function of [HC]₀/[NOₓ]₀. The majority of RO₂ was predicted to undergo bimolecular reactions with HO₂ or NO across the range of [HC]₀/[NOₓ]₀ values sampled. At [HC]₀/[NOₓ]₀ < 6, > 50% of the RO₂ was predicted to react with NO; and at [HC]₀/[NOₓ]₀ > 10, > 50% of the RO₂ was predicted to react with HO₂. A roughly 50:50 branching of RO₂ between NO and HO₂ was reached when [HC]₀/[NOₓ]₀ was 6:1, which is close to the ratio that was suggested in Presto et al. (2005). When [HC]₀/[NOₓ]₀ increased over 50, the total fraction of bimolecular RO₂ + RO₂ and unimolecular RO₂ reactions increased from 0 to 40%. In addition, the normalized total RO₂ concentration (accumulated total [RO₂]/[HC]₀, ppbv/ppbv) increased as [HC]₀/[NOₓ]₀ decreased (Fig. 4 and Fig. 6). There is a general trend of increasing SOA yield with decreasing [HC]₀/[NOₓ]₀ (Fig. 4 and Fig. 6), with the exception of four outliers (W1, W2, WO1, and WO2) that have relatively low SOA yields. Experiments WO1, WO2, W1 had the lowest Δ[HC] (49, 41, and 40 μg/m³, respectively, Table 2), indicating the SOA yields were influenced by Δ[HC] as well as RO₂ chemistry. The connections between the fate of RO₂ and observed SOA yields are further discussed in Sect. 4.
Figure 5. Fractions of total RO₂ reactions of each type as a function of [HC]/[NOₓ]₀ based on Table S1.

Figure 6. Relationship between accumulated total [RO₂]/[HC]₀, [HC]/[NOₓ]₀, and SOA yields.

By assuming the gas-phase chemistry and product distribution were similar when RO₂ + NO accounted for more than 80% of the total RO₂ consumption and when RO₂ + HO₂ accounted for more than 80% of the total RO₂ consumption, experiments with (W₁–₃, 5–₆) and without (WO₁–₄) added NOₓ were grouped and used to derive SOA parameters using the two-product (Odum et al., 1996) and VBS approaches (Donahue et al., 2006; Donahue et al., 2009). The resultant parameters are shown in Table 3 and Table 4.

<table>
<thead>
<tr>
<th>Table 3. Two-Product Model SOA parameters.</th>
<th>(a₁)</th>
<th>(\log_{10} C^*₁)</th>
<th>(a₂)</th>
<th>(\log_{10} C^*₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without NOₓ</td>
<td>0.0017</td>
<td>1.08</td>
<td>0.3139</td>
<td>0.92</td>
</tr>
<tr>
<td>With NOₓ</td>
<td>0.4484</td>
<td>1.77</td>
<td>0.2398</td>
<td>-2.94</td>
</tr>
</tbody>
</table>
Table 4. VBS Model SOA parameters.

<table>
<thead>
<tr>
<th>log10 C*</th>
<th>α_{wo}</th>
<th>α_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0001</td>
<td>0.2657</td>
</tr>
<tr>
<td>0</td>
<td>0.0152</td>
<td>0.0008</td>
</tr>
<tr>
<td>10</td>
<td>0.3069</td>
<td>0.0357</td>
</tr>
<tr>
<td>100</td>
<td>0.0001</td>
<td>0.4222</td>
</tr>
<tr>
<td>1000</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

α_{wo} refers to without added NOx; α_w refers to with added NOx.

4 Discussion

The reaction rate constant of camphene with O3 is relatively low compared to OH, and thus it is expected that OH is the dominant oxidant in the photooxidation of camphene under chamber conditions; especially with the high initial H2O2 (~1 ppm) concentrations. This is supported by SAPRC simulation results (see Fig. S3 in SI), in which SAPRC predicted that O3 accounts for 0–3% and NO3 for 0–16% of camphene oxidation, demonstrating the important role of OH oxidation in these studies.

4.1 Camphene + OH Gas-phase Mechanism

Figure 7 shows the MechGen predicted reactions and products of OH-initiated oxidation of camphene in the presence of NOx through one major pathway, which had a yield of 0.83 (a more detailed reaction mechanism schematic is presented in Fig. S4). The reaction starts with OH addition to the CH2=(C) position to form a ring-retaining alkyl radical, which further reacts with O2 to form the camphene peroxy radical, RO2-a. RO2-a can react with oxidants (NO, NO3, HO2, and/or other RO2) to create an alkoxy radical, RO-a, with NO to NO2 conversion; or form stable products such as organic nitrate (NO3CAMP1), hydroperoxide (HO2CAMP1), and phenolic (RO2CAMP1) compounds. The cyclic alkoxy radical RO-a can undergo prompt beta (β)-scission ring-opening reaction, and then O2 addition to form another peroxy radical, RO2-b. In the presence of NOx, rapid β-scission decomposition, or ring-opening reactions of the camphene alkoxy radicals (RO-b and RO-c) occur through the RO2 + NO pathway, leading to the generation of the proxy radical RO2-d with lower carbon number and higher O:C ratio (increases from 0.30 for RO2-a to 0.71 for RO2-d).
Figure 7. Schematic of the OH-initiated oxidation of camphene mechanism in SAPRC at 298 K and atmospheric pressure in the presence of NOx. Check Fig. S4 for more details.
MechGen predicted that RO\textsubscript{2}-d could undergo 1,5 H-shift isomerization nearly instantaneously, even in the presence of ~ 100 ppb NO\textsubscript{x}. Subsequent rapid addition of O\textsubscript{2} can form a new peroxy radical RO\textsubscript{2}-d* which could undergo 1,7 H-shift isomerization and form the peroxy radical RO\textsubscript{2}-d**. RO\textsubscript{2}-d** can participate in termination reactions with NO and HO\textsubscript{2} to form organic nitrate (NO3CAMP4) and hydroperoxide (HO2CAMP4) products, which are known as highly oxygenated organic molecules (HOMs). In the presence of NO\textsubscript{x}, RO\textsubscript{2}-d** can also react with NO to form the alkoxy radical RO-d that can undergo 1,4 H-shift isomerization and then O\textsubscript{2} addition to form the new peroxy radical RO\textsubscript{2}-e which will also lead to the formation of HOMs such as NO3CAMP5, HO2CAMP5, and UNICAMP. A recent SOA study by Mehra et al. (2020) demonstrated the formation of HOMs in camphene chamber experiments under both low NO\textsubscript{x} (30 ppb camphene, ~ 0 ppb NO\textsubscript{x}) and medium NO\textsubscript{x} (30 ppb camphene, 2.2 ppb NO, 58.4 ppb NO\textsubscript{2}) conditions. Based on their observations and analysis, the average molecular formula of the camphene SOA was C\textsubscript{7.26}H\textsubscript{9.85}O\textsubscript{4.03} for low NO\textsubscript{x} and C\textsubscript{6.63}H\textsubscript{9.7}N\textsubscript{0.12}O\textsubscript{4.21} for the medium NO\textsubscript{x} conditions, which also suggested the occurrence of ring-opening and decomposition reactions during camphene photooxidation, as predicted by MechGen.

4.2 The Formation of HOMs and Influence on SOA Yields

<table>
<thead>
<tr>
<th>Species</th>
<th>Atom</th>
<th>O:C</th>
<th>(\log_{10} C^*)</th>
<th>Species</th>
<th>Atom</th>
<th>O:C</th>
<th>(\log_{10} C^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO2CAMP1</td>
<td>10</td>
<td>18</td>
<td>3 0</td>
<td>0.30</td>
<td>2.5</td>
<td>NO3CAMP1</td>
<td>10</td>
</tr>
<tr>
<td>HO2CAMP2</td>
<td>10</td>
<td>18</td>
<td>4 0</td>
<td>0.40</td>
<td>1.7</td>
<td>NO3CAMP2</td>
<td>10</td>
</tr>
<tr>
<td>HO2CAMP3</td>
<td>7</td>
<td>12</td>
<td>4 0</td>
<td>0.57</td>
<td>2.5</td>
<td>NO3CAMP3</td>
<td>7</td>
</tr>
<tr>
<td>HO2CAMP4</td>
<td>7</td>
<td>12</td>
<td>7 0</td>
<td>1.00</td>
<td>-1.3</td>
<td>NO3CAMP4</td>
<td>7</td>
</tr>
<tr>
<td>HO2CAMP5</td>
<td>7</td>
<td>12</td>
<td>8 0</td>
<td>1.14</td>
<td>-4.3</td>
<td>NO3CAMP5</td>
<td>7</td>
</tr>
<tr>
<td>RO2CAMP1</td>
<td>10</td>
<td>18</td>
<td>2 0</td>
<td>0.20</td>
<td>3.8</td>
<td>NOCAMP1</td>
<td>6</td>
</tr>
<tr>
<td>UNICAMP</td>
<td>7</td>
<td>10</td>
<td>7 0</td>
<td>1.00</td>
<td>-3.9</td>
<td>NOCAMP2</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 6. Fractions of peroxy radical RO₂-a reactions of each type, calculated based on SAPRC simulations.

<table>
<thead>
<tr>
<th>Expt</th>
<th>[HC]₀</th>
<th>*[HC]₀/[NOₓ]₀</th>
<th>SOA Yield</th>
<th>Fraction of RO₂-a Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ppb)</td>
<td>(ppbv/ppbv)</td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>WO1</td>
<td>7</td>
<td>7</td>
<td>0.15</td>
<td>0.03</td>
</tr>
<tr>
<td>WO2</td>
<td>9</td>
<td>9</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>WO3</td>
<td>28</td>
<td>28</td>
<td>0.27</td>
<td>0.02</td>
</tr>
<tr>
<td>WO4</td>
<td>57</td>
<td>57</td>
<td>0.28</td>
<td>0.03</td>
</tr>
<tr>
<td>WO5</td>
<td>120</td>
<td>120</td>
<td>0.27</td>
<td>0.03</td>
</tr>
<tr>
<td>WO6</td>
<td>223</td>
<td>223</td>
<td>0.19</td>
<td>0.03</td>
</tr>
<tr>
<td>W1</td>
<td>7</td>
<td>0.08</td>
<td>0.36</td>
<td>1.00</td>
</tr>
<tr>
<td>W2</td>
<td>25</td>
<td>0.18</td>
<td>0.33</td>
<td>1.00</td>
</tr>
<tr>
<td>W3</td>
<td>32</td>
<td>0.51</td>
<td>0.64</td>
<td>0.97</td>
</tr>
<tr>
<td>W4</td>
<td>43</td>
<td>5.91</td>
<td>0.41</td>
<td>0.46</td>
</tr>
<tr>
<td>W5</td>
<td>60</td>
<td>0.64</td>
<td>0.60</td>
<td>0.97</td>
</tr>
<tr>
<td>W6</td>
<td>131</td>
<td>1.33</td>
<td>0.59</td>
<td>0.88</td>
</tr>
<tr>
<td>W7</td>
<td>172</td>
<td>2.88</td>
<td>0.52</td>
<td>0.65</td>
</tr>
</tbody>
</table>

*The [HC]₀/[NOₓ]₀ for WO1–6 experiments were estimated assuming 1 ppb of NOₓ.

Table 5 lists the log C* values and O:C ratios for the major camphene products predicted; vapor pressures of products were calculated based on the Nannoolal method (Nannoolal et al., 2008). HOMs have much lower volatilities than the earlier terminal products such as NO3CAMP1, HO2CAMP1, and RO2CAMP1. HOMs formed by autoxidation steps in camphene radical chain reactions are mediated by the H-shift isomerization of RO2-d and RO-d. Table 6 shows the SAPRC predicted fate of RO₂-a for all chamber runs; the fate of summed RO₂ is shown in Table S1, which includes RO2-a~d and all the RO₂ radicals formed from other minor pathways. For the experiments without added NOₓ (WO1–6), once the initial peroxy radical RO₂-a was formed, a large fraction of RO₂-a (0.54-0.98) quickly reacted with HO₂ to form the terminal product HO2CAMP1, while only 2–3% of RO₂-a reacted through the NO pathway and led to the generation of HOMs. For the experiments with added NOₓ, (W1–7), much higher RO₂-a + NO fractions (0.65–1.00) were predicted by SAPRC. The fates of summed RO₂ also suggested that not only RO₂-a, but also the other RO₂ radical intermediates would tend to favor further reactions through the NO reaction chain to form lower volatility products.

Based on the predicted fate of RO₂ in SAPRC simulations, the higher SOA yields in experiments with NOₓ were due to the formation of HOMs through autoxidation in the presence of NOₓ. In general, faster RO₂ reaction with NO, HO₂ or other RO₂ limits HOM formation by autoxidation (Bianchi et al., 2019). In previous monoterpene SOA studies, HOM formation was often observed when NOₓ was absent or under lower NOₓ conditions (Pye et al., 2019; Schervish and Donahue, 2020; Zhao et al., 2018). For example, Zhao et al. (2018) demonstrated that autoxidation for some RO₂ is competitive with RO₂ + NO at ppb levels of NO for O₃-initiated α-pinene oxidation. They also reported that HOM formation decreased as the initial NO concentration increased from 0 ppb to 30 ppb. In the camphene experiments presented herein, the reverse trend was observed (see experiments WO4, W4 and W5 conducted with ~50 ppb...
camphene at different NOx levels). This was due to the key RO2 species, RO2-d, which was predicted to form only in the presence of NOx and had a fast enough autoxidation rate constant to effectively compete with bimolecular reactions.

The decreasing SOA yields at high [HC]0, and Mo in all experiments (shown in Fig. 2) can also be explained by RO2 chemistry. For experiments with added NOx, the decreasing SOA yield trend was most likely due to the shift of RO2 reaction pathways from NO to HO2. The fraction of RO2-a + NO decreased from 0.97 (W5) to 0.65 (W7) while the fraction of RO2-a + HO2 increased from 0.03 (W5) to 0.23 (W7). For the experiments without NOx, the shift from RO2 + HO2 to self- and cross-reactions of RO2 at high [HC]0 and Mo led to decreasing SOA yields. When [HC]0 increased from 57 ppb to 223 ppb, the fractions of RO2-a + HO2 decreased from 0.89 (WO4) to 0.54 (WO6) and the fraction of RO2-a + RO2 increased by a factor of five, from 0.08 to 0.41. Moreover, this shift from bimolecular reactions with HO2 to RO2 as [HC]0 increased also occurred in the context of the total RO2 (Table S1). Generally, products that were predicted to form from one RO2 reacting with another RO2 in the absence of NOx had relatively higher volatility than those formed from that RO2 reacting with HO2; for example, RO2CAMP1 formed from RO2-a + RO2 was more volatile than HO2CAMP1 formed from RO2-a + HO2 (Table 5). The increasing fraction of self- and cross-reactions of RO2 therefore is one likely explanation for the decreasing SOA yields at high ΔHC and Mo in the experiments without NOx.

In experiments W1 and W2, the relatively low SOA yields (0.36 and 0.33) can be partially attributed to differences in product distribution. A comparison of the product distributions between W1, W2, W3 and W5 suggested similar yields of NO3CAMP1–5 and NOCAMP1–2, but major differences in yields of UNICAMP and HO2CAMP1–5 (Fig. S5). Experiments W3 and W5 were selected for comparison because of their closest total RO2 fractional reaction distribution (approximately 90% RO2 + NO and 10% RO2 + HO2) to W2 (96% RO2 + NO and 4% RO2 + HO2) and W1 (93% RO2 + NO and 7% RO2 + HO2) but higher SOA yield (0.64 and 0.6). W1 and W2 were predicted to have much smaller SOA yield than W3 and W5 in the low volatility products HO2CAMP1-5 (especially product HO2CAMP5, the lowest volatility among all listed products in Table 5, log10C* = -4.3) and UNICAMP (the second lowest volatility shown in Table 5, log10C* = -3.9), which can contribute to the lower SOA yield. Further analysis of W1 and W2 revealed a likely cause for the different yields of HO2CAMP1–5 and UNICAMP. W1 and W2 were predicted to have delayed peaks of [OH] (after 3–4 hours of irradiation) which likely was due to the high NOx concentrations (Fig. S2). Correspondingly, the [HO2] was highly suppressed during the first 2 hours of irradiation. Under high [NOx], the RO2-e + HO2 pathway shown in Fig. 7 therefore could be suppressed, resulting in a lower yield of HO2CAMP5. This indicates a second regime may exist at high [NOx] and significantly lower [HC]0/[NOx]0.

5 GECKO-A simulations

5.1 SOA Mass and Yield

The comparison of gas- and particle-phase species between chamber experiments and GECKO-A model simulations are shown in Fig. S1 and Fig. S2. Without added NOx, GECKO-A predicts much smaller camphene consumption rates and no formation of O3, while both the chamber data and SAPRC simulations suggest a final O3 mixing ratio of ~10 ppb (Fig. S1). This may be due to an underrepresentation of data and relevant pathways for low to no NOx conditions.
in the GECKO-A mechanism generation system, and the incomplete treatment of wall effects in the application of the GECKO-A box model. The without added NOx simulations are not further discussed. With added NOx, GECKO-A shows good agreement with the experimental data and SAPRC simulations in the context of camphene consumption, O3, and OH levels.

Figure 8. Predicted SOA yields based on GECKO-A model simulations.

Figure 8 shows the predicted SOA yields based on GECKO-A. For simulations with added NOx, while the model predicted higher SOA yields (0.64–0.93) than were observed (0.33–0.64), the trends in the SOA yields were similar between chamber observation and simulations. The simulated SOA yield increased with SOA mass for SOA mass < 260µg m⁻³, plateaued for SOA mass between 260 and 524 µg m⁻³, and then decreased for SOA mass > 524 µg m⁻³.

The decreasing trend in SOA yields is represented in the predicted and measured O:C ratio (Fig. 9). The average carbon number used in this study was defined as the mole-weighted averaged carbon number for the main products (~95% by mass). The calculation was based on equation (2), where n_{Ci}, $M_{o,i}$, and MWi are the carbon number, mass, and molecular weight of species i, respectively.

$$\text{Average carbon number} = \frac{\sum n_{Ci} \times M_{o,i}}{\sum M_{o,i}}$$ \hspace{1cm} (2)

With added NOx, the average carbon number of both the particle and gas phase increases as [HC]₀ increases (Fig. 9). Higher average product carbon numbers suggest that less oxygenated products with smaller O:C (higher volatility) were formed. The average vapor pressure of products may then increase as [HC]₀ increases, reducing the SOA yield. This is consistent with the chamber results and could contribute to the decreasing SOA yield at higher mass loadings ($M_o > 524 \mu g \text{m}^{-3}$) in Fig. 8. In addition, the GECKO-A simulation of 150 ppb HC with NOx predicts the highest fraction of precursor reacted by O₃ and NO₃ among all 5 runs, suggesting a large fraction of nitrogen-containing products (Fig. S7). Available AMS data suggest a clear difference in the abundance of nitrogen-containing species between the experiments with and without added NOx. NO₃ was predicted to account for an average ~14% of total SOA mass in simulations with NOx, and only 1% of total SOA without NOx.
5.2 Particle Density and O:C

Figure 10a shows the GECKO-A predicted O:C ratio and measured O:C ratio as a function of [HC]₀/[NOₓ]₀ for all experiments. A good agreement in O:C ratios was observed between the model predictions and chamber data. The O:C ratio decreased from 1.21 to 0.39 as [HC]₀/[NOₓ]₀ increased from 0.13 to 223, supporting that more highly oxygenated products were formed at lower [HC]₀/[NOₓ]₀.

A negative correlation was also observed between measured particle density and [HC]₀/[NOₓ]₀. The final density of particles decreased from 1.47 g cm⁻³ to 1.30 g cm⁻³ as [HC]₀/[NOₓ]₀ increased from 0.08 to 120 (Fig. 10b). The change in O:C ratio could account for the change in density. O:C and H:C have been used in SOA density prediction by semi-empirical equation (Nakao et al., 2013; Kuwata et al., 2012), in which O:C plays a dominant role in determining organic particle density compared to H:C. Consistent with the semi-empirical formulations, the density of particles formed from oxidation of camphene increased as O:C (ranged from 0.39 to 1.21) increased, while H:C varies over a small range (from 1.42 to 1.79). The change in density supports the proposed explanation that more oxygenated products were formed under lower [HC]₀/[NOₓ]₀. The wide range in final density and the correlation with
\[\text{[HC]}_0/\text{[NOx]}_0\] shown here is reported for the first time. The SOA mass of each experiment in this study was calculated with its own density of SOA, instead of applying an averaged density. A list of particle densities used in this study can be found in Table 2.

6 Conclusions

Here we present for the first time SOA yields from oxidation of camphene based on experiments performed in UCR environmental chamber with varying \([\text{NOx}]_0\). Higher SOA yields were measured with added NO\(_x\) \((0.33–0.64)\) than without added NO\(_x\) \((0.08–0.26)\) generally at atmospherically relevant OH concentration. SOA formation from oxidation of camphene showed different NO\(_x\) dependence from other known monoterpenes (e.g., \(\alpha\)-pinene, d-limonene) and other \(n\)-alkanes \((\text{carbon} \leq 10)\), in studies of which higher SOA yields were measured when \([\text{NOx}]_0\) was low. Here, higher \(\Delta[\text{HC}]\) and lower \([\text{HC}]_0/\text{[NOx]}_0\) \((\text{within 0.5–200})\) generally led to higher SOA yields. Similar NO\(_x\) dependence of camphene oxidation has been found with two sesquiterpenes (longifolene and aromadendrene) but was attributed to the production of nonvolatile organic nitrates with no detailed mechanistic analysis provided at that time (Ng et al., 2007b).

Although \([\text{HC}]_0/\text{[NOx]}_0\) shows clear correlation with SOA yield but cannot represent the RO\(_2\) chemistry completely. The dependence of SOA yields on HC and NO\(_x\) can be explained by RO\(_2\) chemistry and the competition between varying bimolecular RO\(_2\) and unimolecular RO\(_2\) reaction pathways generated using SAPRC MechGen. The RO\(_2\) + NO pathway favored in experiment with added NO\(_x\) led to the highest production of RO\(_2\) and formed HOMs products with much lower volatilities than products from other pathways. In addition to the regular regime introduced above, our study suggested an extreme regime where significantly high \([\text{NOx}]_0\) may suppress the SOA yield. High NO\(_x\) concentration may suppress the HO\(_2\) concentration at the beginning of the reactions, causing the reduction in yield of low volatility products such as UNICAMP and HO2CAMP5. This indicates that if the reactions happened under NO\(_x\)-rich environment with extremely high ratio of NO to HO\(_2\) \((\text{HO}_2/\text{NO})\), the SOA yield from oxidation of camphene could possibly be significantly suppressed. Simulations with chemically detailed box models such as SAPRC are recommended in identifying SOA formation regimes. Constant \(\beta\) values controls are preferred to be applied in future SOA formation study of monoterpenes to achieve stable HO\(_2\)/NO.

Overall, SOA formation from oxidation of camphene may be potentially larger in polluted environments (e.g., urban environments) than NO\(_x\)-free environments. This reveals a possible underestimation of SOA formed from oxidation of camphene and possibly other BVOC in current models by assuming similar SOA yield dependence.

Chamber studies of other understudied BVOC are therefore important to evaluate and improve model predictions.

Data Availability

The experimental data is available upon request from the corresponding authors. The modeling data used in this paper can be downloaded online: https://github.com/jia-jiang/SAPRC_Camphene.
Supplement
The supplement related to this article is available online at:

Author Contributions
QL and JJ contributed equally to the study. QL performed chamber experiments, data analysis and led the first draft of the manuscript. JJ derived and implemented the camphene mechanism in SAPRC, conducted SAPRC model simulations and led discussions on the chemistry of camphene SOA formation. IS carried out GECKO-A model simulations. QL and JJ interpreted the results and wrote the manuscript with IS. QL, JJ, KB and DC finalized the final manuscript. All the listed authors contributed to the revisions of the manuscript. The project was supervised by KB and DC.

Competing Interests
The authors declare that they have no conflict of interest.

Acknowledgements
The authors acknowledge support from the National Science Foundation grant AGS-1753364.

Reference

