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Abstract. Sustainable aviation fuels can reduce contrail ice numbers and radiative forcing by contrail cirrus. We measured

apparent ice emission indices for fuels with varying aromatic content at altitude ranges of 9.1 – 9.8 km and 11.4 – 11.6 km.

Measurement data were collected during the ECLIF II/NDMAX flight experiment in January 2018. The fuels varied in both

aromatic quantity and type. Between a sustainable aviation fuel blend and a reference fuel Jet A-1, a maximum reduction in

apparent ice emission indices of 40% was found. We show vertical ice number and extinction distributions for three different5

fuels and calculate representative contrail optical depths. Optical depths of contrails (0.5 – 3 minutes in age) were reduced by

40 to 52% for a sustainable aviation fuel compared to the reference fuel. Our measurements suggest that sustainable aviation

fuels result in reduced ice particle numbers, extinction coefficients, optical depth and climate impact from contrails.

1 Introduction

In recent years, the scientific knowledge about climate forcing from global aviation emissions has constantly increased. Today,10

we know that air traffic contributes up to 4% to anthropogenic climate forcing (Lee et al., 2021). According to Lee et al. (2021)

contrail cirrus was the biggest aviation climate forcer in 2018 with 57.4 mW m-2, followed by carbon dioxide emissions with

34.3 mW m-2 and nitrogen oxide emissions with 17.5 mW m-2. Besides new propulsion and fuselage concepts to reduce fuel

consumption, the use of sustainable aviation fuels (SAF) can be a solution to implement contrail mitigation. Similar to kerosene,

SAF consist of molecules containing mainly carbon and hydrogen. But in contrast to the crude oil based kerosene, SAF are15

not dependent on fossilized carbon and some have nearly zero aromatic content. The contrails studied in this paper formed by

burning blends of hydrotreated esters and fatty acids (HEFA) and kerosene. HEFA is produced through transesterification and

hydrogenation of bio-based oils (Kaltschmitt and Neuling, 2018). Due to the reduced aromatic content and varied hydrocarbon

types in the fuels, they have the potential to change soot emissions and microphysical contrail properties (Voigt et al., 2021).

The number of initial contrail ice crystals is the driving factor for the development and the climate relevant parameters of the20

contrail (Unterstrasser and Gierens, 2010; Burkhardt et al., 2018). Contrails are formed behind aircraft flying at altitudes above
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8 km and in conditions typically colder than -40◦C. The hot engine exhaust is mixed with ambient air, which cools the exhaust

plume and increases the relative humidity with respect to liquid water (Kaufmann et al., 2014). If the conditions in the exhaust

exceed water saturation, the non-volatile, ultra-fine soot particles emitted by the engines serve as condensation nuclei for water

droplets. The droplets immediately freeze into ice particles (Heymsfield et al., 2010; Kärcher, 2018). The development of a25

line-shaped contrail is governed by the superposition of dynamic and microphysical processes and the particle and trace gas

concentrations are inhomogeneously distributed. A fraction of the ice crystals follow a downward movement and form the

lower primary wake. At the same time the ice crystals in the upper part of the contrail, near the flight level, grow by uptake

of water and form the secondary wake. Schumann et al. (2013) showed that the ice particle concentrations are larger in the

secondary wake of the contrail. Vertical profiles of one to four minutes old contrails were also analysed by Gayet et al. (2012)30

and Jeßberger et al. (2013) with similar results. Kleine et al. (2018) assessed the sublimation effects with data of the ECLIF I

experiment and showed that both soot and ice particle number concentrations are a function of the position behind and below

the contrailing aircraft. An overview of contrail observations has been compiled by Schumann et al. (2017) and microphysical

data on aged contrail cirrus have been analysed by Voigt et al. (2017) and Chauvigné et al. (2018).

The use of alternative jet fuels and their effect on soot emissions has been researched during ground and flight experiments35

before (Zschoke et al., 2012; Moore et al., 2015, 2017; Schripp et al., 2018; Tran et al., 2020). Moore et al. (2017) for example

used in situ data to show that biofuel blending reduces soot particle number and mass emissions by 50 to 70%. A reduction in

contrail ice particle numbers of similar magnitude was first reported by Voigt et al. (2021) for semisynthetic and biofuel blends

observed during the ECLIF I and ECLIF II/NDMAX experiments for limited conditions near 10 km altitude.

As ambient conditions have a large impact on microphysical contrail properties (Bräuer et al., 2021), a more comprehensive40

overview of the contrail ice measurements during ECLIF II/NDMAX is needed to assess the impact of biofuel blends on

aviations climate impact. With this publication, we extend the study by Voigt et al. (2021) to a larger altitude range between

9.1 and 9.8 km and we also add observations for higher altitudes between 11.4 and 11.6 km. We also describe our results with

respect to a different reference fuel than the one used by Voigt et al. (2021). In the following, we analyse medium values and

vertical profiles of apparent ice emission indices formed from burning fuels of varying composition. Burkhardt et al. (2018)45

showed with a global simulation that the climate impact of contrails is non-linearly dependent on apparent ice emission indices.

Therefore, we contribute to the assessment of the contrail climate impact by deriving optical parameters like the extinction

coefficients and contrail optical depths in addition to apparent ice emission indices.

2 Experiment and instrumentation

2.1 ECLIF II/NDMAX50

The ECLIF II/NDMAX flight experiment was part of the DLR project Emission and Climate Impact of Alternative Fuels

(ECLIF) and the NASA DLR Multidisciplinary Airborne Experiment (NDMAX). It aimed to quantify the impact of jet fuel

aromatic content and molecular structure on soot emissions, ice crystals formation and contrail properties (Bräuer et al., 2021;

Voigt et al., 2021). The experiment took place in January 2018 over northern Germany. As emissions source aircraft, the DLR
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A320 Advanced Technology Research Aircraft with two V2527-A5 engines was used. The aircraft is shown in the photograph55

of Figure 1. The NASA DC-8 Airborne Science Laboratory followed the A320 in a distance between 4 and 30 km (far field)

and measured non-volatile particle number and mass, ice crystal number size distributions, carbon dioxide (CO2) and other

emissions. The distances correspond to a contrail age between 30 seconds and three minutes. These distances are necessary to

avoid saturation of the optical particle counters. The aircraft followed each other on an elongated, oval flight track at altitudes

between 7.8 and 11.6 km. Distributions of the temperature and the relative humidity with respect to ice over the altitude are60

shown in Figure 1.
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Figure 1. The DLR A320 with contrail in January 2018 during the ECLIF II/NDMAX flight experiment. Source of photograph: DLR (CC-
BY 3.0 DE). The plots show plume encounter mean values of the temperature and the relative humidity with respect to ice (RHI) versus
altitude adapted from Bräuer et al. (2021).

During the ECLIF II/NDMAX airborne measurements, three different jet fuels were studied: a reference fuel Jet A-1 (Ref

3) and two blends of reference fuels and HEFA produced from camelina oil (SAF 1 and SAF 2). Relevant fuel properties

are described in Table 1. By varying blending ratios, different aromatic contents were obtained in the fuels. Aromatics are

cyclic hydrocarbons, characterized by conjugated double bonds. Incomplete combustion of hydrocarbons in the fuels leads to65

the generation of soot particles. One type of aromatics, the stable, bicyclic naphthalene molecules, are thought to increase the

sooting behaviour during fuel combustion (Chin and Lefebvre, 1990; Brem et al., 2015). Therefore, SAF 1 and SAF 2 are

designed to vary in their naphthalene content, while their total aromatic content is in the same range. Results of the ground

measurements during ECLIF II/NDMAX are published by Schripp et al. (2021).
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Table 1. Properties and sample statistic of jet fuels burned during ECLIF II/NDMAX

Sustainable Sustainable
Aviation Aviation Reference Reference
Fuel 1 Fuel 2 Fuel 3 Fuel 4†

Fuel composition 51% Ref 3 + 70% Ref 4 +
49% HEFA 30% HEFA 100% Jet A-1 100% Jet A-1

Aromatics∗ vol% 8.5 9.5 18.6 16.5
Naphthalenes∗∗ mass% 0.61 0.045 1.17 0.13
Hydrogen∗∗∗ mass% 14.40 14.51 13.65 14.08
H:C ratio 2.005 2.023 1.884 1.953
Sulphur∗∗∗∗ mass% 0.007 <0.001 0.012 <0.001
Contrail samples:
9.1 – 9.8 km 103 63 – –
11.4 – 11.6 km 38 54 12 –
∗ASTM D1319, ∗∗ASTM D1840, ∗∗∗ASTM D7171, ∗∗∗∗ISO 20884, †only used during ground tests

2.2 Particle and trace gas measurements70

Ice number concentrations were measured with the Fast Forward Scattering Spectrometer Probe (FFSSP) in a particle size

range between 1 and 25 µm (Baumgardner and Gandrud, 1998). The instrument was mounted next to the CO2 inlet on the

upper side of the DC-8 fuselage. The probe has been previously used for contrail measurements (Voigt et al., 2010, 2011;

Gayet et al., 2012; Chauvigné et al., 2018), and its electronics received an update in 2017, such that the recording of single

particle data is possible. The sampling area of 0.19 mm2 was determined by laboratory calibrations and the instrument was75

size-calibrated on the basis of a T-Matrix calculation for an ice particle aspect ratio of 0.5 (Borrmann et al., 2000; Luo et al.,

2003; Rosenberg et al., 2012). The FFSSP particle size distributions were corrected for small particles, following Bräuer et al.

(2021), so that particle concentration between 0.5 and 1 µm can also be estimated. The correction is based on the Cloud and

Aerosol Spectrometer (CAS), which was also part of the ECLIF II/NDMAX instrumentation and measures ice particles with

diameters between 0.5 and 50 µm. A function was fitted to the ratio between the total CAS number concentration and the CAS80

number concentration for particles larger than 1 µm. The correction function increases exponentially with decreasing contrail

effective diameter (Francis et al., 1994). The FFSSP ice number concentrations are corrected by multiplying them with the size-

dependent correction function. The error of the correction increases with decreasing effective diameter (Bräuer et al., 2021).

CO2 was measured with a commercial Picarro G1301-m greenhouse gas analyser based on wavelength-scanned cavity ring-

down spectroscopy (Crosson, 2008). Air from outside the aircraft was sampled by a backward facing inlet. Several calibrations85

were performed with commercial gas standards. The accuracy depends on the cell pressure of the instrument and its temperature

during operation. Data are corrected for water vapour content following Rella et al. (2013). The time delay of the gas flow on

the way from the inlet to the measurement cell was estimated to be 3.3 s.
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3 Calculation of hydrogen to carbon ratio, emission index and extinction coefficient

Kerosene contains mainly carbon, hydrogen and sulphur. It can be assumed that the sulphur content is negligible (in general90

less than 0.07 mass%) and therefore the hydrogen to carbon (H:C) mole fraction ratio can be calculated for the known mass

fraction of hydrogen wH as followed:

xH
xC

=

wH

MH

100mass% − wH

MC

. (1)

Environmental conditions, instabilities in the trailing vortices and dilution lead to spatial inhomogeneities in the exhaust (Un-

terstrasser, 2016; Schumann and Heymsfield, 2017). Therefore, ice particle concentrations in an aircraft plume are normalized95

by CO2 as a proxy for fuel burn in order to calculate apparent emission indices (AEI). The ice number concentrations are

related to the mass of fuel burnt by scaling the measurements to the fuel-dependent CO2 emission index. For this calculation,

we assume that the combustion system has 100% fuel conversion efficiency. As ice particles are not directly emitted by the

engines, the term apparent ice particle emission index is used. Emission indices are calculated following Moore et al. (2017).

The individual impact of a contrail on radiation through the atmosphere depends on the extinction properties of the ice100

crystals. The extinction coefficient bext depends on the extinction efficiency Qext, the projected area of the ice particles and

the ice number concentration Nice (Schumann et al., 2011):

bext =
∑
i

Qext ·π
(Di

2

)2
·Nice. (2)

The extinction efficiencies were calculated for an aspect ratio of 1.0 and a wavelength of 550 nm and approach a value of 2 for

large ice particles.105

4 Results and discussion

4.1 Fuel-dependent apparent ice emission indices

As shown in Bräuer et al. (2021), temperatures near the contrail formation threshold temperature prevail when contrails are

formed at altitudes below 9 km, leading to an incomplete activation of soot particles into water (Kärcher and Voigt, 2017). At

these low altitudes, even small temperature variations under 1 K significantly change the particle activation fraction and the ice110

number concentrations in the contrails. Therefore, we concentrate our study on altitudes above 9 km. Voigt et al. (2021) showed

a subset of the data at 9.1 to 9.8 km altitude, restricted to fuel flows of 1100±100 kg h-1 and relative humidity with respect

to ice larger than 108%. Here, we use the complete data set for the fuel intercomparison and discuss the resulting impact and

limitations.
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Figure 2. AEI with respect to the hydrogen to carbon (H:C) ratio of the fuels at two different flight altitudes. H:C ratio of Ref 3 (black):
1.884, SAF 1 (dark green): 2.005, SAF 2 (light green): 2.022. Small symbols show upper 15% of the single plume encounters. Error bars
show the standard deviations of the single plume encounters.

To present ice crystal number in contrails independent of contrail age and dilution, we calculate apparent ice emission115

indices (AEI). In Figure 2, AEI are compared on the basis of the hydrogen to carbon (H:C) ratio of the varying fuels. For the

contrails measured during ECLIF II/NDMAX (age between 30 seconds and three minutes), sublimation effects can affect the

ice numbers in the vortex phase and have to be excluded to receive a climate-relevant value for AEI. Therefore, we follow

Bräuer et al. (2021) and calculate the mean of the upper 15% AEI. To ensure only contrails with full soot activation are

considered, relative humidity with respect to ice is restricted to larger than 100% for altitudes between 9.1 and 9.8 km and120

larger than 120% for altitudes between 11.4 and 11.6 km.

For high altitudes, we report a 23% reduction of AEI when burning SAF 1 compared to Ref 3 and a reduction of 40% when

burning SAF 2. For altitudes between 9.1 and 9.8 km, a 6% reduction is achieved when burning SAF 2 compared to SAF 1.

These values are in general agreement with previous observations. Voigt et al. (2021) found AEI reductions in the range of 50

to 70%, when comparing to a different Jet A-1 reference fuel with lower hydrogen content. It can be stated, that the number of125

ice crystals is reduced through the reduction of fuel aromatic content, which is also monitored by an increase in fuel hydrogen

content. Changes in fuel polycyclic aromatic composition can further increase the reductions.

4.2 Vertical profiles of contrail properties

Figure 3 shows the vertical profiles of AEI (a and b) and the extinction coefficients (c and d) for the contrails resulting from

burning each of the assessed fuels. The flight altitude of the A320 is the reference level and corresponds to 0 m vertical130

displacement on the y-axes of the figures. For reasons of simplicity, the mean values of several plume encounters are calculated
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in 30 m altitude sections. Because of the reduced number of plume encounters for the reference fuel Ref 3, sections with a

depth of 60 m are calculated for this fuel. Only a selection of section-based standard deviations is shown to increase the clarity

and readability of the plots. Due to unfavourable weather conditions, no contrails resulting from burning Ref 3 were observed

at flight altitudes between 9.1 and 9.8 km. The number of plume encounters per altitude and fuel type can be found in Table 1.135
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Figure 3. Profiles of mean AEI (a and b) and mean extinction coefficients (c and d) in 30 m sections (60 m for Ref 3). The A320 flight level
is depicted by the grey, horizontal reference line at 0 m. Dashed, vertical lines show overall means. Error bars show a selection of standard
deviations of the single plume encounters in 30 m sections (60 m for Ref 3). The shaded areas in panel (c and d) show the calculation of the
contrail optical depths by integration of the extinction coefficients. (a and c) 9.1 - 9.8 km (diamonds). (b and d) 11.4 - 11.6 km (squares).
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The vertical profiles of AEI in Figure 3a and b show typical distributions for the aircraft type A320 (Jeßberger et al., 2013;

Schumann et al., 2013; Kleine et al., 2018). The measurements are distributed over a vertical range of 60 m above and up

to 240 m beneath the reference level of the aircraft. The physical depth of a contrail varies with ambient conditions such as

atmospheric stability and the humidity distribution. Produced by the same aircraft and at the same flight altitude in similar

conditions, the physical depth is constant for varying fuels, even though in theory, different particle sizes lead to variations in140

sedimentation and sublimation processes (Unterstrasser and Görsch, 2014; Kleine et al., 2018).

Sublimation effects, which lead to a decrease of the ice crystal numbers in vertical direction below the A320, depend on the

relative humidity over ice, temperature and atmospheric stability. Figure 4 shows two image recordings of the DC-8 forward

camera during ECLIF II/NDMAX. Figure 4a shows a contrail unaffected by sublimation and Figure 4b shows a contrail

strongly affected by sublimation with a secondary wake forming above the descending contrail vortices. In Figure 3a and b,145

sublimation effects of different emphasis can be observed in the vertical profiles of AEI. For both altitudes, AEI are increased at

the level of the secondary wake near the initial emission level at 0 m. For altitudes between 9.1 and 9.8 km, AEI are also slightly

increased in the lower primary wake and sublimation effects are reduced at these altitudes. However, the highest AEI are always

found in the upper secondary wake as also shown by Kleine et al. (2018). Mean values of AEI are depicted by dashed, vertical

lines and in contrast to mean AEI in Figure 2, these values consider all sublimation effects. At altitudes between 9.1 and 9.8150

km the mean AEI is 1.3·1015 kg-1 for SAF 1 and 7.4·1014 kg-1 for SAF 2. The mean AEI at altitudes between 11.4 and 11.6

km is 5.9·1014 kg-1 for SAF 1, 5.8·1014 kg-1 for SAF 2 and 1.2·1015 kg-1 for Ref 3.

(a) (b)

Figure 4. Contrails of the A320 recorded by the DC-8 forward camera at two different days and for different ambient conditions during
ECLIF II/NDMAX. (a) Contrail unaffected by sublimation. (b) Contrail affected by sublimation with a secondary wake forming above the
descending contrail vortices.

The global climate impact of contrails is non-linearly dependent on the reduction of initial ice crystal numbers (Burkhardt

et al., 2018). The dependence of contrail microphysical and radiative properties on initial ice crystal numbers then remains over

the contrail cirrus life cycle. We calculate the extinction coefficients of the contrails to present the relation between contrail ice155

crystals and radiation. Unterstrasser and Gierens (2010) show that extinction is a suitable variable for comparing similar aged

contrails. The contrail life cycle further depends on meteorological parameters like temperature and humidity, vertical wind
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shear, atmospheric stability, the depth of the supersaturated layer in which the contrails are formed and the radiation budget

(Schumann and Heymsfield, 2017; Unterstrasser et al., 2017).

The vertical profiles of the extinction coefficients are shown in Figure 3c and d. At altitudes between 9.1 and 9.8 km the160

mean extinction coefficients are 2.5 km-1 for SAF 1 and 1.5 km-1 for SAF 2. The mean extinction coefficients at altitudes

between 11.4 and 11.6 km are 0.4 km-1 for SAF 1 and 0.6 km-1 for SAF 2. The mean Ref 3 extinction coefficient at the altitude

between 11.4 and 11.6 km is 1.5 km-1 and hence a factor of 2.5 higher than the mean extinction coefficients of both biofuels at

the same altitude. In the following section the extinction coefficients are used to calculate the fuel-dependent contrail optical

depths.165

4.3 Fuel-dependent contrail optical depth

The contrail optical depth (COD) is a dimensionless measure of the degradation that a beam of radiation directed straight

downwards experiences when passing through a contrail (Wallace and Hobbs, 2006). It is derived by integrating the extinction

with respect to the vertical physical contrail depth. The ECLIF II/NDMAX CODs for the measured fuels are calculated by

integration of the extinction coefficients shown in Figure 3c and d (shaded areas). The resulting COD for the three fuels at two170

different altitudes are presented in Figure 5. The bars show the COD range for the uncertainty in physical contrail depths and

are estimated based on the distribution of the measurements over the vertical range of the contrails. Fewer plume encounters

were made for the Ref 3 fuel, which results in large variability bars.
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Figure 5. Individual contrail optical depths (COD) determined from observations and models. Concerning the ECLIF II/NDMAX data, the
fuels are distinguished by color and the altitudes by symbol. Bars show the COD range for the uncertainty of the physical depths of the
contrails.
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For high altitudes, a COD reduction of 40 to 52% can be calculated when comparing the biofuel blends to the reference

fuel. Due to atmospheric variability, it is not possible to evaluate the tendencies of the contrail optical depth that result from175

the sustainable aviation fuels. SAF 2 with reduced naphthalene content produces reduced AEI compared to SAF 1. But when

calculating the climate relevant parameter of optical depth during this early contrail age, the differences are reduced or even

reversed. The reason is, that reduced particle numbers under similar contrail formation conditions, will lead to larger particles,

as there is more water vapour available for particle growth. The ice particle sizes are in the further contrail evolution strongly

influenced by atmospheric conditions and therefore, they are highly variable. The total contrail extinction (Unterstrasser and180

Gierens, 2010; Unterstrasser and Görsch, 2014) and the radiative forcing of contrail cirrus (Burkhardt et al., 2018) are strongly

dependent on initial ice crystal numbers. The optical depth varies strongly during the life cycle of a contrail (Unterstrasser and

Gierens, 2010; Vázquez-Navarro et al., 2015).

In Figure 5, the calculated COD are compared with in situ and satellite observations (dashed and dotted lines) and model-

derived values (compact lines). Freudenthaler et al. (1995) detected contrail height and width with a ground-based scanning185

lidar. Results covered a COD range of 0.05 to 1 for contrail ages between 1 and 60 minutes (Schumann et al., 2017). Voigt

et al. (2011) determined optical depths of up to 6 minutes old contrails by in situ measurements. Data of the 2008 CONCERT

experiment were used to derive the optical depth by multiplying the extinction with physical contrail depths calculated using

dynamic vortex simulations by Holzäpfel (2006). Vázquez-Navarro et al. (2015) detected contrails with an automatic contrail

tracking algorithm (ACTA) from Meteosat observations. The mean optical depth of contrails with an averaged lifetime of 1190

h was 0.34. Finally, Bock and Burkhardt (2016) used a contrail cirrus parameterisation developed for the ECHAM5 model

to describe the mean optical depth of contrails in a vertical profile. Contrails were simulated to form between 30 and 70◦N

with optical depths greater than 0.05 and to have an age of 7.5 minutes. Larger COD at the lowest altitudes result from

neglecting incomplete contrail activation near the contrail formation temperature and have been changed in subsequent studies

(Burkhardt et al., 2018; Bock and Burkhardt, 2019). Figure 5 shows the variability and the range of contrail optical depths as195

a quantification of the individual contrail radiative impact. Varying averaging volumes and contrail ages lead to differences

between COD derived from simulations and observations.

For contrail optical depths (COD) smaller than 1, the contrail radiative forcing is proportional to COD (Meerkötter et al.,

1999). Lee et al. (2021) give a consolidated estimate of contrail cirrus effective radiative forcing of 57.4 mW m-2. The estima-

tions are based on several global climate models (Burkhardt and Kärcher, 2011; Chen and Gettelman, 2013; Schumann et al.,200

2015; Bock and Burkhardt, 2016; Bickel et al., 2020). A study by Gettelman et al. (2021) calculates a similar effective contrail

radiative forcing of 62 mW m-2. Uncertainties for these values are high, inter alia, because the COD remains highly uncertain

(Schumann et al., 2021a, b). Sanz-Morère et al. (2020) state that global estimations of average COD can vary from 0.065 to

0.3. The individual COD of ECLIF II/NDMAX are slightly higher than the underlying COD values of the current best effective

radiative forcing estimate in Lee et al. (2021), which can be explained by the early development stage of the ECLIF II/NDMAX205

contrails.
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5 Conclusions and outlook

For ECLIF II/NDMAX, up to 40% reduction in apparent ice emission indices was measured. SAF 1 and 2 had similar aromatic

content but varied in aromatic type. An additional reduction in AEI of up to 20% was measured for the SAF with reduced naph-

thalene content. The individual contrail optical depth was reduced between 40–52% for a sustainable aviation fuel compared to210

the reference fuel. For the future, a drastic reorientation of fuel compositions could provide strong benefits for climate, which

comes without the cost of enhanced CO2 emissions when rerouting air traffic. Significant reduction of aviation climate forcing

can be achieved by the widespread implementation of SAF blends in airport fuelling systems and by the use of unblended

sustainable aviation fuels.
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