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Abstract. Mineral dust impacts key processes in the Earth system, including the radiation budget, clouds, and
nutrient cycles. We evaluate dust aerosols in 16 models participating in the sixth phase of the Coupled Model
Intercomparison Project (CMIP6) against multiple reanalyses and observations. We note that both the reanalyses
and observations used here have their limitations and particularly that dust emission and deposition in reanaly-
ses are poorly constrained. Most models, and particularly the multi-model ensemble mean (MEM), capture the
spatial patterns and seasonal cycles of global dust processes well. However, large uncertainties and inter-model
diversity are found. For example, global dust emissions, primarily driven by model-simulated surface winds,
vary by a factor of 5 across models, while the MEM estimate is double the amount in reanalyses. The ranges
of CMIP6 model-simulated global dust emission, deposition, burden, and optical depth (DOD) are larger than
previous generations of models. Models present considerable disagreement in dust seasonal cycles over North
China and North America. Here, DOD values are overestimated by most CMIP6 models, with the MEM estimate
1.2–1.7 times larger compared to satellite and reanalysis datasets. Such overestimates can reach up to a factor of
5 in individual models. Models also fail to reproduce some key features of the regional dust distribution, such as
dust accumulation along the southern edge of the Himalayas. Overall, there are still large uncertainties in CMIP6
models’ simulated dust processes, which feature inconsistent biases throughout the dust life cycle between mod-
els, particularly in the relationship connecting dust mass to DOD. Our results imply that modelled dust processes
are becoming more uncertain as models become more sophisticated. More detailed output and dust size-resolved
variables in particular, relating to the dust cycle in future intercomparison projects, are needed to enable bet-
ter constraints of global dust cycles and enable the potential identification of observationally constrained links
between dust cycles and optical properties.

1 Introduction

Mineral dust, a key component of the Earth system, has
important impacts on the global climate and environment
through a number of pathways (Mahowald et al., 2010; Gassó
et al., 2010; Knippertz and Stuut, 2014; Shao et al., 2011;
Mahowald et al., 2014; Kok et al., 2018; Jin et al., 2021).
For example, links have been found between dust emissions
and Atlantic hurricanes, Amazon forest fertilisation (Yu et
al., 2015), and the African and Indian monsoons (N’Datchoh
et al., 2018; Skonieczny et al., 2019; Maharana et al., 2019;
Jin et al., 2021). There remain considerable gaps in our un-
derstanding of dust throughout its life cycle (i.e. emission,

transport, and deposition) due partly to challenges in dust
observations (Richter and Gill, 2018), hindering complete
understanding and modelling of the complex roles of dust
aerosols in the Earth system.

Dust aerosols have been included in global climate and
Earth system models since the late 1980s (Shao et al., 2011).
These models, with increasingly finer resolutions and more
sophisticated model physics and parameterisations, demon-
strate certain capabilities in simulating mesoscale to global-
scale dust events and processes. However, large uncertainties
exist in dust simulations stemming from many sources (Evan
et al., 2014; Wu et al., 2018; M. Wu et al., 2020; Adebiyi
and Kok, 2020) – for example, incomplete understanding
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and representations of the driving mechanisms of dust emis-
sion, transport, and deposition; dust particle size and shape;
and model structural differences. It also remains a challenge
for climate models to accurately simulate the meteorological
processes that play critical roles in dust processes. Yet, these
uncertainties tend to amplify as models become more com-
plex (Kok et al., 2017; Ryder et al., 2019; Adebiyi and Kok,
2020; Di Biagio et al., 2020; Kramer et al., 2020; Li et al.,
2021; Huang et al., 2021).

Uncertainties in the simulation of dust have important im-
plications for interpreting the model-simulated global radia-
tion budgets and many processes that are influenced by dust
(e.g. clouds). Also, in the context of global efforts to miti-
gate anthropogenic aerosol and precursor emissions, natural
aerosols like dust will potentially form a relatively greater
and yet uncertain contribution to global aerosol concentra-
tions in shaping future climate variability. Therefore, it is
crucial to understand the performance of dust simulations in
the latest-generation climate models.

The first multi-model and multi-parameter evaluation of
dust simulations was carried out within 15 models partici-
pating in phase I of the Aerosol Comparisons between Ob-
servations and Models (AeroCom I) (Huneeus et al., 2011).
These models were able to reproduce vertically integrated
parameters such as dust aerosol optical depth (DOD) within a
factor of 2 and the dust deposition and surface concentration
within a factor of 10. Kim et al. (2014, 2019) evaluated Aero-
Com phase II model-simulated DOD over North Africa and
East Asia against multiple observational datasets and found
these models significantly underestimated dust transport to
adjacent oceans. The latest AeroCom phase III models are
reported to have better-resolved dust particle size distribu-
tions compared to those in phase I and II (Gliß et al., 2021).
However, dust particles are still too fine compared to the
Aerosol Robotic Network (AERONET) retrievals (Holben et
al., 1998). Also, large diversities were found across differ-
ent models in the simulations of dust emission, burden, and
lifetime. This leads to diversities in dust spatial distributions
and transport to the oceans. These have implications for in-
terpreting the diversities in model-simulated aerosol optical
properties and aerosol–radiation–cloud interactions.

Several studies have examined the performance of the
CMIP5 models in dust simulations at both regional and
global scales. For example, Evan et al. (2014) found that
the African dust emissions and burdens were systematically
underestimated in 23 CMIP5 models, while their year-to-
year changes were poorly constrained compared to obser-
vations. Similarly, it was shown that CMIP5 models sig-
nificantly underestimated dust transport to the Indian sub-
continent because of biases in the model-simulated 850 hPa
winds (Sanap et al., 2014). Wu et al. (2019) found large dis-
crepancies between observed and CMIP5 models’ simulated
decadal variabilities of dust emissions over East Asia and
questioned the implications for long-term variations in dust-
related processes. Pu and Ginoux (2018) compared seven

CMIP5 models’ simulated DOD to the Moderate Resolution
Imaging Spectroradiometer (MODIS) Deep Blue aerosol
product. They found that the multi-model mean was better
than most individual models in capturing the climatology and
seasonal cycles of DOD over most dust source regions but
that it still underestimated the mean value and the amplitude
of the seasonal cycle. This is consistent with the represen-
tation of wind/precipitation processes in the models (i.e. the
multi-model mean outperforms individual models) (Sperber
et al., 2013). Almost all the seven models failed to capture the
DOD interannual variations. Dust cycles in the CMIP5 mod-
els were further evaluated by TS1C. Wu et al. (2020) against
the MERRA2 aerosol reanalysis and station observations.
They found that CMIP5 models, compared to the AeroCom
II models, featured amplified model diversities and attributed
this to increases in model complexities such as the coupling
between dust emissions and dynamic vegetation. In short, al-
though CMIP5 models were able to simulate some aspects
of dust distribution and seasonal cycles well, their ability to
represent certain features was still limited, and inter-model
variability was too large to provide useful constraints on dust
interactions with the climate system.

The CMIP6 models (Eyring et al., 2016) represent sig-
nificant advances compared to the CMIP5 models in many
ways – for example, the inclusion of additional Earth system
components and processes, such as dynamic vegetation, in
a greater proportion of models. For dust aerosols, given the
large uncertainties in previous generations of climate mod-
els discussed above, it is important to evaluate the perfor-
mance of the CMIP6 models – in particular, how well do
these models simulate dust processes compared to each other
and compared to observations and previous generations of
models. Such understanding would serve as a benchmark for
the dust-modelling community to interpret a variety of pro-
cesses related to dust in climate models, while also helping
climate model centres to develop their models into the next
phase, and help target future observations directed towards
constraining model processes.

Here we provide the first comprehensive intercomparison
and evaluation of the CMIP6 models in dust simulations at
the global scale while focusing on a few key dust source
regions. We examine 16 CMIP6 models that performed the
Atmospheric Model Intercomparison Project (AMIP) exper-
iment to limit the influence of internal variability on inter-
model diversity. We compare model-simulated dust emis-
sion, deposition, burden, lifetime, and DOD to multiple re-
analyses and observational datasets. We also examine the
driving processes of dust emissions using a regression tech-
nique. This paper is organised as follows. Section 2 briefly
introduces the 16 models and simulations we examine in this
work, as well as the reanalysis and observational datasets,
and statistical analyses. Results are presented in Sect. 3,
followed by a summary of key findings and discussions in
Sect. 4.
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2 Data and methods

2.1 CMIP6 AMIP models and simulations

We examine dust in 16 climate and Earth system models
(hereafter ESMs; Table 1) participating in the CMIP6 AMIP
(Eyring et al., 2016). These models were selected based on
solely the criterion that at least the monthly mean DOD field
was available at the time of writing. AMIP is one of the four
CMIP6 baseline Diagnostic, Evaluation and Characterization
of Klima (DECK) experiments. In AMIP, sea surface tem-
perature and sea ice are prescribed from observations, so that
the atmospheric and land components within each model can
be evaluated under the constraint of observed ocean condi-
tions. Subcomponent models in each ESM, as well as ex-
ternal forcings such as greenhouse gas concentrations and
land use, are identical to those in the CMIP6 historical sim-
ulations. All models analysed here cover at least the period
1979–2014. We focus on the present-day (2005–2014) pe-
riod for model evaluation, guided by the availability of obser-
vational (i.e. satellite and ground observations) and reanaly-
sis datasets (see Sect. 2.2–2.3). In Sect. 3.2, we also use the
1985–2014 data to ensure the robustness of the regression
analysis for determining dust emission drivers.

Unlike previous-generation CMIP models, dust emissions
in almost all the 16 CMIP6 models (except INM-CM4-8)
are calculated online and resolved into different size bins
(see Table 1). However, the dust particle size range repre-
sented differs significantly between models, with the use of
bin-based and model schemes, as well as maximum diameter
(bin-based) ranging from 0.01 up to 63 µm in diameter. De-
pending on the model, dust emissions are calculated based on
factors including surface winds, land surface properties, and
vegetation. Dust particles interact with clouds by serving as
cloud condensation nuclei in most of the 16 models; how-
ever, only two models (MRI-ESM2-0 and NorESM2-LM)
have realised dust particles as ice nuclei.

For models that have more than one ensemble member, we
average these members to produce a model ensemble mean
unless otherwise stated. The model ensemble mean is used
to represent each individual model and is interpolated to the
UKESM1-0-LL model grid (1.25◦× 1.875◦) when calculat-
ing the multi-model ensemble mean (MEM). The UKESM1-
0-LL model grid was chosen as it is the intermediate horizon-
tal resolution between the highest and the lowest ones. We
also calculate the 10th–90th percentiles of the multi-model
spreads when producing zonal and meridional mean profiles,
as well as the seasonal cycles of regional mean dust emis-
sions and DOD. The climatological means were calculated
as averages of the 2005–2014 annual means from each model
ensemble mean.

2.2 Satellite and ground observations

Satellite observations are one of the most reliable tools for
constraining and evaluating ESMs at the global scale (Flato
et al., 2013). Here we use satellite AOD and DOD retrievals
at 550 nm to evaluate the performance of the CMIP6 AMIP
models over the period 2005–2014.

There are currently several satellite DOD products de-
veloped using the MODIS and/or the Advanced Very High
Resolution Radiometer (AVHRR) observations (Ginoux et
al., 2012; Pu and Ginoux, 2018; Voss and Evan, 2020), and
each has its own limitations and advantages. Here we use the
ModIs Dust AeroSol (MIDAS) dataset (Gkikas et al., 2021)
that provides global-scale land and ocean daily DOD with
fine spatial resolution (0.1◦× 0.1◦) for the period 2003–
2016. MIDAS was calculated using quality-filtered MODIS-
Aqua AOD retrievals along with DOD-to-AOD ratios pro-
vided by the Modern-Era Retrospective analysis for Re-
search and Applications version 2 reanalysis (MERRA2).
This means that the MIDAS DOD estimates are also model-
dependent and uncertain. The MIDAS dataset was validated
against the AERONET and the LIdar climatology of vertical
Aerosol Structure for space-based lidar simulation (LIVAS)
DOD products, and it was demonstrated to be suitable for
DOD climatology study and model evaluation (Gkikas et al.,
2021).

We also use the 12-satellite merged AOD product devel-
oped by Sogacheva et al. (2020) at the Finnish Meteoro-
logical Institute (FMI AOD hereafter). FMI AOD provides
monthly data for the period 1995–2017 at a 1◦× 1◦ horizon-
tal resolution. It has better spatial and temporal coverage than
any individual satellite AOD products, while the quality of
the merged product is at least as good as that of individual
products.

To evaluate models’ simulated dust deposition fluxes, we
used the ground deposition flux of dust with a geometric di-
ameter ≤ 10 µm (PM10) in around 110 stations (Fig. 1) com-
piled by Albani et al. (2014). Note that due to the availability
of surface dust concentration from CMIP6 models, we were
not able to evaluate dust concentrations against ground ob-
servations.

2.3 CAMS and MERRA2 reanalyses

The Copernicus Atmosphere Monitoring Service (CAMS;
Inness et al., 2019) reanalysis represents the latest global re-
analysis dataset of the atmospheric composition produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). It assimilates satellite retrievals of many atmo-
spheric constituents including CO, NO2, O3, and AOD from
MODIS Terra and Aqua and AATSR (Advanced Along-
Track Scanning Radiometer) Envisat, using the ECMWF’s
Integrated Forecasting System. The CAMS reanalysis is
available from 2003 onward at a horizontal resolution of
∼ 80 km. Dust emission is calculated based on Ginoux et
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Figure 1. The CMIP6 AMIP MEM-simulated 2005–2014 annual mean dust emission (g m−2 yr−1) climatology overlaid by boxes used to
define major dust emission source regions. The coloured symbols denote groupings of observations by different regions following Kok et
al. (2021).

al. (2001) and is resolved in three size bins with diameter
bounds at 0.06,1.1, 1.8, and 40 µm, respectively (Table 1).
Monthly mean AOD and DOD are available, while dust cycle
fluxes including dust emission and deposition are provided at
3 h intervals which were processed into monthly means. We
also use the 2005–2014 monthly mean bare soil fraction and
leaf area index from CAMS, as well as soil moisture, sur-
face winds, and precipitation from ECMWF Reanalysis ver-
sion 5 (ERA5), to investigate the drivers of dust emissions
(see Sect. 2.4).

In addition to CAMS, we also use the MERRA2 reanaly-
sis which was produced using the Goddard Earth Observing
System (GEOS-5; Molod et al., 2015) with a 3D variational
data assimilation system (3D-Var) that assimilates a wide
range of observational datasets (Gelaro et al., 2017). For
AOD, MERRA2 assimilates data from AVHRR, MODIS,
the Multi-angle Imaging SpectroRadiometer (MISR), and
AERONET. Dust emission is simulated based on Ginoux
et al. (2001) and is resolved in five size bins with diame-
ter bounds at 0.2, 2.0, 3.6, 6.0, 12.0, and 20.0 µm respec-
tively (Table 1). In addition to its AOD and DOD products,
MERRA2 also provides dust emission and deposition fluxes
at 0.1◦ horizontal resolution from 1980 onward, making it a
valuable tool for evaluating dust processes in climate models.
We use the MERRA2 monthly mean AOD and DOD, as well
as dust cycle fluxes (emission, dry deposition and wet de-
position, and burden) over the period 2005–2014. Note that
we were not able to investigate the drivers of dust emissions
using MERRA2 because bare soil fraction data are not pro-
vided.

It is important to note that only AOD from observations
is assimilated in CAMS and MERRA2. The DOD and dust
mass loading are then adjusted based on the contribution of
DOD to AOD, which will vary in space and time. Therefore,
the accurate representation of DOD and dust mass loading in
the reanalyses relies on the simulation of correct proportions
of dust relative to other aerosol species. While this aerosol
speciation may be well represented in locations or time pe-
riods dominated by dust (e.g. over the remote Sahara), it is
likely to be less well represented in regions where different
aerosol species coexist (e.g. over northern India, with mixed
dust, smoke, and anthropogenic aerosol). Additionally, the
reanalyses adjust DOD and dust mass loading via data as-
similation, but this will not be fed through to changes in
dust emission, which remain an unconstrained model vari-
able in the reanalyses. This means that despite the assimila-
tion of satellite AOD retrievals, dust processes in CAMS and
MERRA2 remain model-dependent and entail some level of
uncertainty (Xian et al., 2020). Therefore, the comparisons
between models and the reanalyses presented here should be
interpreted with some caution.

2.4 Multiple linear regression

To investigate factors that drive dust emissions, we per-
formed a multiple linear regression (ordinary least square)
on standardised dust emissions and their drivers following
Pu and Ginoux (2018). We started the regression with five
dust emission drivers: bare soil fraction, leaf area index, pre-
cipitation, soil moisture, and surface winds. However, we
deleted leaf area index and soil moisture from the regres-
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sion after the variance inflation factor analysis, which indi-
cates these two variables bear similar information to others
included in the regression (not shown). We regressed grid cell
dust emission to bare soil fraction, precipitation, and surface
winds using standardised monthly mean data over the period
1985–2014 for each individual model and over 2005–2014
for CAMS. Note that due to data availability, we were only
able to do this with 10 of the 16 CMIP6 models and CAMS
(see Sect. 3.1.3).

We take the absolute value of the three regression coef-
ficients as an indication of the importance of each in driv-
ing dust emission and measure their relative importance by
normalising each coefficient against the sum of the three.
Bootstrap resampling is used to test the significance of the
regression coefficients. To demonstrate the relative impor-
tance of each driver at regional scales in different seasons,
we repeat the regression for each individual calendar month
using standardised regional and monthly mean data calcu-
lated from each of the 10 individual models (not shown) as
well as the model ensemble mean. Note that here we use
monthly data to feed the regression, while strong winds at
shorter timescales may account for disproportionally more
dust emissions. However, we were not able to test it due to
the lack of high-resolution model outputs.

3 Results

3.1 Dust emission

We start with the climatology and global budget (Figs. 2 and
3 and Table 2) of dust emissions. We then show the sea-
sonal cycles (Fig. 4) of dust emissions over the eight ma-
jor source regions (see Fig. 1 for region definitions). Next,
we look at the drivers of dust emissions in each individual
model and CAMS reanalysis at the global scale (Fig. 5), and
we demonstrate the relative importance of each driver in dif-
ferent seasons at regional scales (Fig. 6 for MEM and Fig. S2
in the Supplement for CAMS). We focus primarily on the dif-
ferences between individual models, while comparing them
to the CAMS and MERRA2 reanalyses. We also compare
and discuss our results with previous-generation ESMs, with
CMIP5 (Evan et al., 2014; C. Wu et al., 2020; M. Wu et al.,
2020) and AeroCom III models (Gliß et al., 2021) in partic-
ular.

3.1.1 Climatology

Figure 2 shows the 2005–2014 global and annual mean cli-
matology of dust emissions in each individual model; the
MEM is shown in Fig. 3a and is compared to CAMS (Fig. 3b)
and MERRA2 (Fig. 3c). Models generally capture the dust
emission hotspots, namely the so-called “dust belt” (Ginoux
et al., 2012) that extends from North Africa, the Middle East,
Central Asia, and South Asia to East Asia. However, similar
to CMIP5 models (C. Wu et al., 2020), there are considerable

differences between models in other source regions such as
North and South America and Australia. Models show sig-
nificant differences in the intensity and spatial heterogene-
ity of dust emissions, reflecting the structural differences
in dust emission schemes implemented in different models.
Particularly, CESM2 models (Fig. 2a–d) and NorESM2-LM
(Fig. 2o) put dust emissions in a few grid cells, whereas
dust emissions in HadGEM-GC31-LL (Fig. 2i), INM-CM4-
8 (Fig. 2j), and INM-CM5-0 (Fig. 2k) models have relatively
homogeneous spatial patterns and significantly larger source
areas (also see Fig. 3e). The spatial pattern and magnitudes
of dust emission in the MEM are in broad agreement with
CAMS and MERRA2. Pronounced differences are however
found outside major desert dust source regions. This is be-
cause a few models (HadGEM-GC31-LL, INM-CM4-8, and
INM-CM5-0) emit dust over these regions that are rarely
deemed as potential dust sources (Ginoux et al., 2012).

The CMIP6 models estimate that between 1.4 Pg (INM-
CM4-8) and 7.6 Pg (MIROC-ES2L) dust is emitted into the
atmosphere annually, producing a MEM estimate of around
3.5 Pg yr−1. The CMIP6 model range is just as large as
the CMIP5 models (0.7–8.2 Pg yr−1; C. Wu et al., 2020)
and is much larger than the AeroCom phase III mod-
els (0.8–5.7 Pg yr−1) and the recent observationally con-
strained estimates of ∼ 5 Pg yr−1 for PM20 dust particles
(Kok et al., 2021). Twelve of the 16 models simulate sig-
nificantly more dust emissions than CAMS and MERRA2
reanalyses (∼ 1.6 Pg yr−1; Fig. 3d), making the MEM more
than 2 times larger than CAMS and MERRA2. Notice-
ably, in CMIP5, HadGEM2-CC has the most dust emis-
sion (8.2 Pg yr−1), which is replaced by UKESM1-0-LL
(7.5 Pg yr−1) and MIROC-ES2L (7.6 Pg yr−1) in CMIP6,
while HadGEM-GC31-LL (3.3 Pg yr−1) lies very close to
the CMIP6 MEM estimate. The 2-fold difference in dust
emissions between UKESM1-0-LL and HadGEM-GC31-LL
is attributable to the additional Earth system interactions
such as the dynamic vegetation included in UKESM1-0-LL
(Mulcahy et al., 2020). This demonstrates the strong impact
of model complexities on simulated dust emissions.

North Africa contributes the most (57 %, minimum–
maximum: 28 %–69 %) to global dust emissions in CMIP6
models (Fig. 3d), generally agreeing with CAMS (46 %) and
MERRA2 (60 %). This is followed by the Middle East (17 %,
11%–25 %) and North China (9 %, 2 %–16 %). It is worth
noting that the contribution of North Africa to global dust
emission may be overestimated, while those of the Mid-
dle East and North China may be underestimated (Kok et
al., 2021). These three regions make up more than 80 % of
global dust emissions, while models disagree fundamentally
about the relative contributions of other source regions. Par-
ticularly, South Asian dust emission is only important in
UKESM1-0-LL, contrasting to the very limited dust emis-
sions in all other models in this region including HadGEM-
GC31-LL.
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Table 2. Global total budgets for dust emission, deposition, and burden. Also shown are dust lifetime and global annual mean DOD.

Emission Total deposition Dry deposition Wet deposition Burden Lifetime DOD
(Tg yr−1) (Tg yr−1) (Tg yr−1) (Tg yr−1) (Tg) (days) (#)

Total Landa Totalb Landc Totald Lande

CESM2 2238 2150 1606 (80) 782 (36) 659 (82) 1369 (64) 947 (69) 27 4.6 0.027
CESM2-FV2 2577 2133 1542 (72) 768 (36) 626 (82) 1366 (64) 917 (67) 26 4.4 0.025
CESM2-WACCM 2210 2100 1578 (75) 769 (37) 649 (84) 1341 (63) 929 (69) 27 4.7 0.026
CESM2-WACCM-FV2 7050 5835 4553 (78) 2202 (38) 1794 (81) 3633 (62) 2351 (65) 74 4.6 0.073
CNRM-ESM2-1 2655 2424 1926 (79) 1672 (68) 1415 (85) 753 (32) 511 (68) 14 2.1 0.011
CanESM5 3274 2381 2082 (87) 2056 (86) 1830 (89) 325 (14) 252 (77) 10 1.5 0.027
GISS-E2-1-G 1639 1586 1234 (78) 1055 (67) 924 (88) 531 (33) 311 (59) 23 5.3 0.023
GISS-E2-2-G 1560 1510 1133 (75) 1022 (68) 880 (86) 488 (32) 253 (52) 28 6.8 0.028
HadGEM3-GC31-LL 3255 3251 2912 (89) 2700 (83) 2591 (96) 551 (17) 321 (58) 14 3.4 0.016
INM-CM4-8 1374 1349 923 (68) 851 (63) 654 (77) 498 (32) 269 (54) 0.033
INM-CM5-0 1414 1385 936 (68) 865 (62) 660 (76) 520 (32) 276 (53) 0.034
IPSL-CM6A-LR 21 0.033
MIROC-ES2L 7571 5852 5003 (85) 4978 (85) 4451 (89) 902 (15) 552 (61) 31 1.9 0.045
MRI-ESM2-0 5725 5473 4512 (82) 3575 (65) 3253 (91) 1898 (35) 1259 (66) 27 1.8 0.027
NorESM2-LM 7092 9 0.030
UKESM1-0-LL 7453 7443 6923 (93) 6518 (88) 6288 (96) 925 (12) 635 (69) 18 0.87 0.011
AMIP MEM 3472 3201 2594 (81) 2123 (66) 1895 (89) 1078 (34) 699 (65) 25 2.8 0.029
CAMS 1624 6598 5119 (78) 4548 (69) 4069 (89) 2050 (31) 1050 (51) 12 0.66 0.019
MERRA2 1594 1607 1155 (72) 1123 (70) 930 (83) 485 (30) 225 (46) 23 5.2 0.030

a Numbers in brackets are percentages of total depositions to land relative to global total (dry + wet) depositions. b Numbers in brackets are percentages of total dry depositions relative to
global total (dry + wet) depositions. c Numbers in brackets are percentages of total dry depositions to land relative to global total dry depositions. d Numbers in brackets are percentages of
total wet depositions relative to global total (dry + wet) depositions. e Numbers in brackets are percentages of total wet depositions relative to global total wet depositions.

Figure 2. The CMIP6 AMIP models’ simulated global annual mean (2005–2014) dust emission (g m−2 s−1) climatology. The numbers on
the top right of each panel denote the global total dust emission budget (Tg yr−1).
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Figure 3. Intercomparison of 2005–2014 annual mean dust emissions between models and reanalyses. Maps show the annual mean dust
emissions (g m−2 yr−1) from (a) AMIP MEM, (b) CAMS, and (c) MERRA2. The numbers on the top right of each panel denote the global
total dust emission budget (Tg yr−1). The global annual total dust emission budgets (d; Pg yr−1) and the fraction of total dust emission areas
relative to the global surface area (e; %) are shown for each individual model as well as for the AMIP MEM, CAMS, and MERRA2. The
contributions of major dust source regions are coloured out in panel (d), where the percentage contributions of the first five largest source
regions are given at the centres of each coloured bars.

CMIP6 models also feature diversities in the global sur-
face area of dust emissions (Fig. 3e), with the smallest
area (around 2.5 % of the global surface area) found in the
CESM2 family models and NorESM2-LM and the largest
area found in INM-CM4-8 (15.0 %). The MEM estimate
(11.5 %) is almost 2 times larger than that of MERRA2
(6.6 %) and CAMS (5.6 %). The range of the CMIP6 model
estimates (2.5 %–15.0 %) is almost as large as that of the
CMIP5 models (2.9 %–19 %) as reported by C. Wu et
al. (2020). Note that the models that have the highest dust
emissions do not necessarily have the largest emission areas,
and vice versa. This again suggests the large diversities in
dust emission intensities in different models.

3.1.2 Seasonal cycles

Figure 4 shows the normalised seasonal cycles of dust emis-
sions over the eight source regions (see Fig. 1 for definitions
of these regions); the absolute seasonal cycle profiles can be
found in Fig. S1. The MEM agrees well with CAMS and
MERRA2 in reproducing the patterns of the seasonal cy-
cles. However, noticeable discrepancies are found between

individual models and reanalysis over a few key regions in-
cluding North China (Fig. 4d), North America (Fig. 4g),
and South America (Fig. 4h). Dust emission peak seasons
in these regions have the large diversities between models.
Two models behave very differently from others. First, the
CanESM5 model simulates very different dust emission peak
seasons over the Middle East (Fig. 4c), North China, South
Asia, and North America. Second, MIROC-ES2L is the only
model that simulates a summer peak, while all others show a
spring peak over North Africa (Fig. 4a).

The seasonal cycles feature a double peak over North
China and North America in a few models (CanESM5,
MIROC-ES2L, INM-CM4-8, INM-CM5-0, MRI-ESM2-0),
while the reanalysis datasets and most other models and re-
analysis datasets present a single spring emission peak. The
underlying mechanisms that drive these double peaks differ
between these two regions. The models that simulate a sec-
ondary autumn emission peak in North China are found to
have too strong surface winds in autumn and winter. In com-
parison, a deficit in autumn precipitation explains the sec-
ondary emission peak in North America (figures not shown).
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Figure 4. Normalised seasonal cycles of dust emissions over the eight dust source regions. Dashed curves represent individual models, while
the AMIP MEM is shown in solid black. Also shown are results from CAMS (solid green) and MERRA2 (solid blue). The absolute dust
emission seasonal cycles are included in Fig. S1.

The magnitude of the seasonal cycles in MEM and most
individual models is much larger (up to 10 times) than those
in CAMS and MERRA2 (Fig. S1) which lie very close to
the lower bounds of the AMIP multi-model spreads. This
is consistent with our finding above that the CMIP6 mod-
els have considerably more dust emissions than reanalysis
(Sect. 3.3.1). Particularly, UKESM1-0-LL may overestimate
dust emissions in South Asia and Australia (Fig. S1e, f).
By contrast, the INM-CM4-8 and INM-CM5-0 models may
have too little dust emission over North Africa (Fig. S1a).

In short, the seasonal cycles of dust emissions over major
source regions are well reproduced by the MEM and most
individual models, but a few models behave very differently
to others over North China, North America, and South Amer-
ica.

3.1.3 Drivers

Figure 5 shows the dominant driver of dust emissions at each
grid cell in the 10 CMIP6 models and the CAMS reanaly-
sis, based on the methodology set out in Sect. 2.4. Surface
wind speed is shown as the dominant driver of dust emis-
sions in all the models and CAMS. This is consistent with
previous studies (Evan, 2018; Pu and Ginoux, 2018). Pre-
cipitation only dominates dust emissions in the INM-CM4-8
and INM-CM5-0 models over a few regions (Fig. 5i, j). Our
finding is consistent with Pu and Ginoux (2018), who show

that surface winds and precipitation are two of the most im-
portant factors determining seasonal DOD variations in the
CMIP5 models.

We further examine the relative importance of each indi-
vidual driver and their seasonal variations over the eight ma-
jor dust source regions in the MEM (Fig. 6). The dominant
role of surface winds in driving dust emission can be seen
over North Africa (Fig. 6a), the Middle East (Fig. 6c), and
North China (Fig. 6d) throughout the year, whilst surface
bareness also plays an important role in other regions. Pre-
cipitation (influencing soil moisture) is shown to influence
dust emission in North Africa, with the largest impact found
in summer. Similarly, precipitation plays an important role in
South Asian dust emission around the post-monsoon season
in October (Fig. 6e). In other regions, precipitation shows
a relatively minor contribution. Similar conclusions can be
drawn for CAMS as a comparison (Fig. S2).

Overall, we found that surface wind and bareness are the
first two most important factors in driving dust emissions in
CMIP6 models and CAMS. We hence speculate that future
changes to dust emissions may be most sensitive to changes
in the surface wind related to circulation changes in combi-
nation with vegetation changes, rather than the frequency or
severity of droughts, though the latter may indirectly influ-
ence future dust emissions via vegetation changes. However,
it should be noted that surface bareness was found to play
the most important role in controlling DOD over many dusty

https://doi.org/10.5194/acp-22-1-2022 Atmos. Chem. Phys., 22, 1–25, 2022
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Figure 5. The dominant driver of dust emission and its relative importance (scaled to 0–1) in (a–k) models and (l) CAMS reanalysis. Purple
for precipitation, blue for surface wind speed, and brown for bare soil fraction. Data used for regressions are 30 years (1985–2014) for models
and 10 years (2005–2014) for CAMS due to data availability. Surface wind speed and precipitation in panel (l) are taken from ERA5.

regions in observations (Pu and Ginoux, 2018). The fact that
models do not simulate significant trends in surface bareness
over time explains why surface bareness plays a secondary
role compared to surface winds in driving dust emissions in
models, since the required criteria for dust emission are al-
ready satisfied.

3.2 Dust loading, deposition, and lifetime

This section examines atmospheric dust mass loading
(Figs. 7, S3, S4) and deposition fluxes (Figs. 8, 9, and S5–
S8) which in combination determine the atmospheric dust
lifetime (Fig. 10). The global budgets of these fluxes in each
model are summarised in Table 2.

The spatial pattern of the dust mass loading climatology in
MEM (Fig. 7a) shows good agreement with CAMS (Fig. 7b)
and MERRA2 (Fig. 7c), while the magnitudes are slightly
larger. The global total atmospheric dust burden in MEM
(25 Tg) is comparable to that of MERRA2 (23 Tg) and is
2 times larger than that of CAMS (12 Tg). Most models’ sim-
ulated global total dust burden lies well around the MEM
and reanalysis estimates (Fig. 7d). However, the CESM2-
WACCM-FV2 model simulates significantly more dust in the

atmosphere (74 Tg). The range of global total dust burden in
CMIP6 with the CESM2-WACCM-FV2 model excluded is
9–28 Tg. This is larger than that of the AeroCom III mod-
els (6–22 Tg; Gliß et al., 2021) but smaller than the CMIP5
models (3–42 Tg; C. Wu et al., 2020).

We calculated the meridional mean profiles of dust mass
loading and DOD (Fig. 7e, f) to examine the gradients asso-
ciated with dust transport from land to the adjacent oceans
from the two largest source regions: North Africa and North
China (boxes in Fig. 7c). Note here that we show the DOD
profiles because more model and observational data are avail-
able for comparison, but similar conclusions can be drawn if
one looks at the mass loading profiles (Fig. S4). Most mod-
els, and particularly the MEM, reproduce well the gradients
compared to both reanalysis and satellite observations. How-
ever, the magnitudes of the profiles are too low in INM-CM5-
0 and UKESM1-0-LL but too high in CESM2-WACCM-
FV2 over the Africa–Atlantic region (Fig. 7e). By con-
trast, many models (CNRM-ESM2-1, HadGEM3-GC31-LL,
MIROC-ES2L, MRI-ESM2-0, INM-CM4-8, INM-CM5-0,
and UKESM1-0-LL) do not produce ample gradients over
the Asia–Pacific region (Fig. 7f).
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Figure 6. Normalised relative importance (left axis) of the three major dust emission drivers throughout the year over the eight major source
regions in the MEM. Purple for precipitation, blue for surface wind speed, and brown for bare soil fraction. The black curves are AMIP
MEM (models in Fig. 5) seasonal cycles of dust emissions (right axis; mg m−2 d−1).

Figure 8 shows the climatology of the total (dry + wet) dust
deposition flux and the percentage of wet deposition. Glob-
ally, CMIP6 models estimate that ∼ 3.5 (1.3–7.4) Pg dust is
removed from the atmosphere annually, which is consistent
with the MERRA2 (1.6 Pg yr−1) and CAMS (6.6 Pg yr−1) es-
timates. As summarised in Table 2, dust is predominantly
removed by dry deposition (60 %–86 %) in most models,
agreeing with CAMS (69 %) and MERRA2 (70 %), yet the
CESM2 models show that most (∼ 74 %TS3 ) of the total dust
removal is via wet processes (also see Fig. S7). Dust re-
moval over the oceans is controlled by wet deposition, while
dry processes dominate over lands (Fig. 8b, d, f). The in-
tercomparisons between reanalyses, models, and ground ob-
servations of total dust deposition fluxes (Fig. 9) show that
CAMS and MERRA2 give fair representations of dust de-
position compared to the observations (i.e. with a log-space
root mean square error (RMSE) of ∼ 2.0). Meanwhile, the

MEM and most individual models (Fig. S8) are as good as
reanalyses. We note however the observational dust deposi-
tion fluxes only include PM10 particles, while models and re-
analyses datasets have larger dust particles. Therefore, whilst
biases are expected, we are not able to quantify them due to
the lack of size-resolved dust deposition fluxes from models
in the CMIP6 archive.

Figure 10 summarises the differences in global dust bur-
den, deposition fluxes, and lifetime (global dust burden di-
vided by total deposition fluxes) between models and anal-
ysis datasets. Dust lifetime in CMIP6 models ranges by a
factor of 4 from around 1.8 to 6.8 d, with a MEM estimate
of 4.3 d. The range is larger than the CMIP5 models (1.3–
4.4 d; C. Wu et al., 2020) and is just as large as the Ae-
roCom III models (1.4–7.0 d; Gliß et al., 2021). MERRA2
(5.2 d) lies within the range of the CMIP6 model estimates.
In comparison, CAMS is likely to underestimate dust life-
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Figure 7. Intercomparison of 2005–2014 annual mean dust mass loading (mg m−2) between (a) AMIP MEM, (b) CAMS, and (c) MERRA2.
The numbers on the top right of each panel denote the global total dust burden (Tg). Maps for individual models can be found in Fig. S3.
(d) Global total dust burden from each individual model as well as those of panels (a)–(c): boxes denote the 10th–90th percentiles of the
annual variability; red pluses denote outliers that are outside 1.5 times the annual standard deviation. The vertical pink shading represents the
10th–90th percentiles of the multimodal spread. Also shown is the meridionally averaged DOD over (e) the Africa–Atlantic region (0–35◦ N,
60–0◦W; box in panel c) in June–July–August and (f) the Asia–Pacific region (10–40◦ N, 100–150◦ E; box in panel c) in April–May–June.

time (0.6 d) because of high deposition rates which lead to
less dust in the atmosphere (see above). We found a linear
relationship between dust lifetime and the ratio of global dry-
to-total depositions across different models (Fig. 10b). This
suggests that dry processes control dust lifetime, which is
further demonstrated by the strong (weak) linear correlation
between dust lifetime and dry (wet) deposition across differ-
ent datasets (Fig. 10c, d). That is, the fewer the dry processes,
the longer dust resides in the atmosphere before being finally
removed by the relatively infrequent wet depositions events,

occurring mostly further from dust sources compared to dry
deposition.

3.3 AOD and DOD

In this section, we turn to DOD that is associated with the
above-presented dust processes. In addition to evaluating
CMIP6 model-simulated DOD, we also examine whether
models’ performance in simulating the optical depth of dust
differs from those of other aerosol species. We first show
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Figure 8. Intercomparison of 2005–2014 mean of annual total (dry + wet) dust deposition (a, c, e; g m−2 yr−1) and the ratio of wet-to-total
depositions (b, d, f; %). (a, b) AMIP MEM, (c, d) CAMS, and (e, f) MERRA2. The numbers on the top right of each panel denote the global
total dust deposition flux to land (Tg yr−1) and the fraction of global wet-to-total dust depositions (%).

differences in model-simulated AOD (Fig. 11) and DOD
(Figs. 12–13) and then examine where such differences come
from (Fig. 14). Finally, we examine the seasonal cycles of
DOD, whilst comparing them with the seasonal cycles of
dust emissions, over the eight major dust source regions
(Fig. 15).

Figure 11 shows an intercomparison of the AOD clima-
tology between the MEM and those from satellite and re-
analyses. The AOD climatology in each individual model is
included in Fig. S9. The MEM, and most individual mod-
els, reproduces the AOD climatology well. However, a few
models (GISS-E2-1-G, GISS-E2-2-G, INM-CM4-8, INM-
CM5-0) struggle to capture the AOD spatial pattern: the
spatial correlation (R2) between these models and satellite
and reanalysis datasets are less than 0.2 (Fig. 11h). By con-
trast, the HadGEM3-GC31-LL, MIROC-ES2L, MRI-ESM2-
0, and UKESM1-0-LL models’ simulated AOD have even
greater spatial correlations to satellite and reanalysis datasets
compared to the MEM. Compared to AOD, the MEM DOD
climatology (Fig. 13a) has slightly greater spatial correla-

tions with satellite (R2
= 0.76) and reanalyses (R2

= 0.85
and 0.86). However, the models that simulate the spatial pat-
tern of DOD well do not necessarily perform well in sim-
ulating AOD (comparing Fig. 11h to Fig. 13h). For exam-
ple, the two GISS models (denoted by letters g and h, also
see Fig. S9g, h) are top-ranked in capturing the spatial pat-
tern of DOD (Fig. 13h) but are lowest-ranked in simulating
the spatial pattern of AOD (Fig. 11h). This highlights the
inconsistent behaviour of CMIP6 models in simulating the
optical depth of different aerosol species. However, it may
also question the reliability of the MIDAS retrievals which
are largely based upon MERRA2. More importantly, careful
comparisons between Figs. 11e–g and 13e–g indicate that the
magnitudes of DOD have larger biases than AOD.

CMIP6 model-simulated global mean DOD varies by a
factor of 7 from 0.011 to 0.073, with the MEM estimate of
0.029. This is consistent with an observationally constrained
estimate of 0.030± 0.005 for PM20 dust (Ridley et al., 2016),
0.033 (0.031–0.040) in MIDAS, and 0.031 (0.028–0.036)
in MERRA2 but is ∼ 1.5 times that of CAMS (∼ 0.019).
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Figure 9. Scatterplots of annual mean total dust deposition flux at ground stations between (a) MEERA2 and CAMS, (b) AMIP MEM and
observations, (c) CAMS and observations, and (d) MERRA2 and observations. The stations are marked with different styles and colours for
different locations (see Fig. 1). The correlation coefficients and root mean square errors (RMSE) are calculated in log space. The 1 : 1 (solid)
and 1 : 10/10 : 1 (dotted) lines are plotted for reference. The scatterplots between each individual model and the observations can be found in
Fig. S8.

There are however significant biases in the MEM-simulated
DOD magnitudes at regional scales. For example, models
tend to overestimate DOD, which can be seen over the Sa-
hara and the Chinese deserts in the MEM and in most models
(Fig. 12). More specifically, the AMIP MEM estimate of the
regional mean DOD in North Africa (0.278) is 1.2–1.7 times
larger than those of satellite (0.228) and reanalysis datasets
(0.165 in CAMS and 0.238 in MERRA2). Similarly, the
MEM overestimates North China mean DOD (0.142) by 1.2–
1.5 times compared to satellite (0.097) and reanalyses (0.118
in CAMS and 0.099 in MERRA2). Such overestimates can
reach up to 4–5 times in a few models such as CESM2-
WACCM-FV2 (Fig. 12d) and MIROC-ES2L (Fig. 12m). We
note however that previous studies using CMIP5 and Aero-
Com III models concluded that DOD in these regions were
well captured (Pu and Ginoux, 2018; Gliß et al., 2021). Fi-
nally, it is important to point out that none of the 16 models,
nor the reanalyses, are able to capture the dust transportation
and atmospheric accumulation to the south of the Himalayas

over the Indo-Gangetic Plain as shown by satellite data (box
in Fig. 13a). Also, none of the AMIP models captures the re-
gional DOD variability over the Middle East, Central Asia,
the Chinese desert, and eastern China (Fig. 13a).

We showed above the biases in model-simulated DOD
magnitudes. Here we further investigate such biases by look-
ing at the DOD probability density distributions of the mod-
els in comparison to satellite and reanalyses, as a function of
the difference in the magnitude of the DOD. This gives an
insight into how well the models represent weaker vs. heav-
ier dust events. Model grid cell DOD values are grouped into
three categories (≤ 0.1, 0.1–0.4, and > 0.4) to calculate the
probability density function independently (Fig. 14a–c). Al-
most all models and the MEM underestimate small (≤ 0.1)
DOD values (Fig. 14a) while significantly overestimating
large (> 0.4) DOD values (Fig. 14c). By contrast, the mod-
erate DOD values (Fig. 14b) are relatively well reproduced.
We note that models overestimate small DOD values com-
pared to CAMS, while the CAMS DOD is low compared to
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Figure 10. Scatterplots of (a) global annual mean total dust burdens (Tg) vs. annual total dust deposition (Pg yr−1), and global dust lifetime
(days) vs. (b) the ratio of global dry-to-total deposition (%), (c) total dry depositions (Pg yr−1), and (d) total wet depositions (Pg yr−1).
Model colour codes are the same as in other figures, along with CAMS (green cross) and MERRA2 (blue cross). The AMIP multi-model
mean and spread (10th–90th percentiles) are shown by the black pluses. The dotted slope lines in panel (a) denote dust lifetime intervals
(days). The solid slope lines in panels (b) and (c) are the linear fitting between x and y axis using all data points. All results shown are
2005–2014 annual mean.

the other datasets (see above). To further understand where
the biases in models’ simulated DOD come from, we exam-
ine the global zonal mean DOD profile and the distribution
of regional mean DOD over the eight major dust source re-
gions in Fig. 14d. The overestimates (black crosses, denoting
the MEM), compared to both satellite and reanalysis datasets
(blue/green/purple crosses), can be seen over North Africa,
North China, South Africa, and Australia. Meanwhile, DOD
is underestimated over South Asia, which again implies that
models fail to capture the dust accumulations in the Indian
subcontinent.

The model-simulated seasonal cycles of DOD (Figs. 15
and S10) are in broad agreement with reanalysis and
satellite observations. However, noticeable discrepancies
are again found in South Africa (Fig. 15b), North China
(Fig. 15d), North America (Fig. 15g), and South Amer-
ica (Fig. 15h) where there are also large inter-model dis-
crepancies in model-simulated seasonal cycles of dust emis-
sion. By contrast, the Middle East (Fig. 15c) and South
Asia (Fig. 15e) show good agreement between observed and
model-simulated DOD seasonal cycles. Finally, it is interest-
ing to note that the seasonal cycle of DOD over North Africa
(Fig. 15a) peaks slightly later than dust emission. This may
indicate the importance of dust transport in influencing dust

optical depth and its seasonal cycles. In comparison, the sea-
sonal cycles of DOD are synchronised with dust emissions
in MEM over all other regions. Therefore, model biases in
dust emissions are likely to be reflected in DOD. In North
Africa, there seems to be a split into two groups of models
between the ones that sustain DOD over the summer versus
the ones which drop off in June/July (Fig. 15a). Overall, sim-
ilar to dust emissions, the seasonal cycles of DOD are well
reproduced by most models, and the MEM does a good job
in capturing DOD seasonal cycles in most regions. However,
a few models still struggle to capture the seasonal cycles over
North China, North America, and South America.

4 Conclusions and discussions

In this study, we examine dust aerosols in 16 state-of-the-
art Earth system models participating in the CMIP6 AMIP.
We evaluated models’ present-day (2005–2014) dust aerosol
processes (emission, deposition, burden, lifetime), as well as
dust aerosol optical depth (DOD), against several global re-
analysis and observational datasets. We presented our find-
ings in the context of CMIP5 and AeroCom III models. Our
key findings are the following.
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Figure 11. Intercomparison of 2005–2014 annual mean AOD from (a) FMI merged satellite retrievals, (b) CAMS, (c) MERRA2, and
(d) AMIP MEM. Panels (e)–(g) show the density (10−4) scatterplots of observation/reanalyses (a–c; y axes) vs. AMIP MEM (d; x axes):
the black lines are the 1 : 1 correspondence while the red lines are the linear fitting (R2 and the regression equation given at top left corners).
Panel (h) is a summary of the performance of each individual model measured by the spatial correlation (R2, x axis) between each individual
model and observation/reanalyses. The y axes do not have any physical meaning and are used to make the plot readable. Models are shown
by letters (see Table 1). The red vertical bars denote where the AMIP MEM stands. The blue vertical bar shows the spatial R2 between
CAMS and FMI. Similarly, orange bars are for MERRA2 vs. FMI, and purple bars are for CAMS vs. MERRA2.

– The CMIP6 models generally capture the spatial pat-
terns of global dust emission, mass loading, and re-
moval processes. However, large uncertainties and inter-
model diversities (a factor of 4–5) are found in all these
fields.

– The global dust emission is predominantly driven by
surface winds (as opposed to bare soil fraction and pre-
cipitation) in models and the CAMS reanalysis.

– Most models, and particularly the MEM, capture dust
seasonal cycles over major source regions. However,
the seasonal cycles are poorly constrained over North
China, North America, and South America.
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Figure 12. The CMIP6 AMIP models’ simulated global annual mean (2005–2014) DOD climatology. The numbers on the top right of each
panel denote the global means.

– CMIP6 models simulate large diversities in global mean
DOD that range by a factor of 7. The MEM estimate
however is consistent with both satellite and reanalyses.

– Almost all CMIP6 models underestimate small DOD
values but significantly overestimate large DOD values
compared to satellite and reanalyses; the overestimates
are found mainly over the dustiest regions such as North
Africa (1.2–1.7 times in MEM) and North China (1.2–
1.5 times in MEM).

– The CMIP6 models consistently fail to capture certain
key features of regional dust distributions – for exam-
ple, atmospheric dust accumulation to the south of the
Himalayas over the Indo-Gangetic Plain and regional
DOD variability over East and Central Asia and the
Middle East.

– Dust processes in CAMS and MERRA2 datasets are
very uncertain, as demonstrated by the 2-fold difference
in global dust load (23 Tg in MERRA2 vs. 12 Tg for
CAMS).

Additionally, it is worth summarising the following quantita-
tive findings.

– Around 3.5 (1.4–7.6) Pg of dust is emitted annually in
the CMIP6 models, and the MEM estimate is double
the amount in the MERRA2 and CAMS reanalyses. A

similar overestimate was highlighted in previous studies
for CMIP5. Also, there are large diversities in the extent
(2.5 %–15.0 % of global surfaces) and intensity of dust
emission between models.

– North Africa, the Middle East, and North China com-
bined make up over 80 % of global total dust emissions.
However, models disagree considerably about the con-
tributions from other dust source regions.

– There are large uncertainties in the global total dust bur-
den (9–74 Tg) in the atmosphere; the estimated range is
much larger than that in CMIP5 (3–42 Tg) and Aero-
Com III (6–22 Tg) models.

– The global dust removal (∼ 3.5 (1.3–7.4) Pg yr−1) is
dominated by dry deposition processes (60 %–86 %)
which are found to control global dust lifetime that
varies by a factor of 4 from 1.8 to 6.8 d in CMIP6 mod-
els.

Overall CMIP6 models generally reproduce global dust pro-
cesses, and the MEM performs better than most individual
models. Nevertheless, large model uncertainties and diver-
sities still exist. This may be associated with increases in
model complexities, as demonstrated by the difference be-
tween HadGEM-GC31-LL and UKESM1-0-LL (Mulcahy et
al., 2020). Models still suffer from deficiencies in simulating
the dust seasonal cycles, distribution, and optical depth over
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Figure 13. Intercomparison of 2005–2014 annual mean DOD from (a) MIDAS, (b) CAMS, (c) MERRA2, and (d) AMIP MEM. The black
box in (a) denotes the region of dust accumulation along the southern slope of the Himalayas. Panels (e)–(g) show the density (10−4)
scatterplots of observation/reanalyses (a–c; y axes) vs. AMIP MEM (d; x axes): the black lines are the 1 : 1 correspondence while the red
lines are the linear fitting (R2 and the regression equation given at top left corners). Panel (h) is a summary of the performance of each
individual model measured by the spatial R2 (x axis) between each individual model and observation/reanalyses. Models are shown by
letters (see Table 1). The red vertical bars denote where the AMIP MEM stands. The blue vertical bar shows the spatial R2 between CAMS
and MIDAS. Similarly, orange bars are for MERRA2 vs. MIDAS, and purple bars are for CAMS vs. MERRA2.

key source regions. Also, models struggle to agree about the
seasonal cycles of dust over a few key source regions such
as North China and South and North America. The North
China region appears to be particularly challenging for mod-
els, which overestimate DOD and frequently represent the
seasonal cycle incorrectly in this region.

One limitation of this study is that we were not able
to investigate the uncertainties in dust processes associated
with the very different assumptions on dust size ranges
across models. This is because CMIP6 models only archived
particle-size-integrated variables. The difference in dust size
ranges might partly explain diversities in models’ simulated
dust processes such as emission, deposition, load, and life-
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Figure 14. (a–c) The frequency (y axis in absolute terms) distribution of models to observation/reanalyses DOD differences (x axis) in three
categories, sampled by a size bin of 0.005. Solid green curves are for AMIP MEM minus CAMS, solid blue curves are for AMIP MEM
minus MERRA2, and solid purple curves are for AMIP MEM minus MIDAS. The dashed vertical lines denote the mean of the distributions.
The dashed curves represent individual models minus MIDAS. The distribution is calculated using 10 years (2005–2014) of monthly mean
data from all grid cells that lie in the corresponding DOD category. The DOD categories refer to AMIP MEM and individual models where
applicable. Negative values indicate a model underestimation of DOD. (d) Zonal mean DOD profiles (curves; grey shading for 10th–90th
percentiles of multi-model spread) and regional mean distributions (error bars for 10th–90th percentile spreads and crosses in the middle for
mean values of 2005–2014 annual mean) over the eight dust source regions.

time. We investigated the relationship between maximum
particle size represented in each model and global model
dust emission, lifetime, and deposition. However, no clear
relationship was found (not shown). Therefore, although the
maximum size simulated and the transported size distribution
clearly contribute to these variables, other model-dependent
processes and parameters also contribute. It is therefore chal-
lenging to understand the contributions from dust particle
maximum size and size distribution without specifically de-

signed experiments and more detailed outputs of dust-related
processes such as particle-size-resolved dust fluxes.

The variability across CMIP6 models is generally larger
than those in the CMIP5 and AeroCom phase III models. De-
spite the fact these are different subsets of models with some
overlaps, it may indicate that dust processes are becoming
more uncertain as models become more sophisticated (Wu
et al., 2018). Further, there are inconsistent biases along the
life cycle of dust in different models. This indicates the chal-
lenges in simulating the links between dust emission, mass
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Figure 15. Seasonal cycles of DOD over the eight dust source regions. Dashed curves represent individual models, with the AMIP MEM
in solid black. Dotted black lines show the AMIP MEM dust emission. Also shown are results from CAMS (solid green), MERRA2 (solid
blue), and MIDAS (solid purple). Each curve is normalised against its minimum and maximum. The absolute DOD seasonal cycles are
included in Fig. S10.

loading, AOD (relating to size, optical properties), and depo-
sition in CMIP6 models. These challenges come from vari-
ous sources such as difficulties in accurately simulating dust–
land–vegetation–climate interactions. One particular issue is
that different models have various assumptions on dust par-
ticle size range. This means that diversities in dust sizes, on
top of those in model physical processes, add uncertainties to
models’ simulated dust processes ranging from emission and
deposition to mass loading, lifetime, and DOD. We therefore
recommend more detailed output relating to the dust cycle in
future model intercomparison projects, such as size-resolved
dust cycle variables, dust three-dimensional dust burdens,
and dust aerosol optical properties. This will enable us to bet-
ter constrain global dust cycles, as well as the potential iden-
tification of observationally constrained links between dust
cycles and optical properties. It should be noted that here
we examined the AMIP model simulations. It is therefore
reasonable to speculate even greater model uncertainties and
deficiencies exist in fully coupledCE1 models due to the cou-
plings between dust and many other components of the Earth
system.

There are large diversities in CMIP6 models’ simulated
spatial patterns and magnitudes of DOD. This is particularly
true over the dustiest regions such as North Africa, North
China, and the Middle East. Almost all models significantly
overestimate DOD values over these regions. It is difficult

to investigate the reasons behind this overestimate using the
CMIP6 experiments because many dust variables are not
available. We suggest that sensitivity experiments may be
a better approach to understand this overestimate in future
work – one of the outstanding questions to answer in the fu-
ture centres around the dust particle size distributions over
these dust source regions. For example, can model biases in
dust particle size distributions explain the overestimation of
large DOD values over dust source regions?

It is worthwhile to stress that both the CMIP6 models and
the reanalysis datasets fail to capture the spatial patterns of
dust over the Middle East, East China, and South Asia. Given
that the meteorological drivers (i.e. winds and precipitation)
of dust emissions over these regions are largely influenced by
large-scale monsoonal circulations, the biases in dust simu-
lations may be ascribed to the poorly represented monsoon
systems in CMIP6 models (Wu et al., 2018; Wilcox et al.,
2020; Jin et al., 2021). In the meantime, these biases may
also cast doubt on model-simulated regional- to global-scale
atmospheric circulations and climate states through dust–
radiation–climate interactions – for example, the location of
the Pacific Intertropical Convergence Zone (ITCZ), which is
found to be linearly correlated to dust mass loadings over
these regions (Evans et al., 2020).

In summary, the CMIP6 models, and particularly the
MEM, generally capture key features of global dust pro-
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cesses – for example, the global dust emission regions, global
DOD distribution, and dust seasonal cycles over a few key
source regions. However, dust aerosols in CMIP6 models still
present large uncertainties, and the uncertainty ranges tend
to expand compared to previous-generation climate models.
The dust processes have inconsistent biases in different mod-
els, adding the urgency to better constrain the whole life cy-
cle of dust and the links between different dust processes in
climate models. This also provides caveats in interpreting the
impacts of dust on other Earth system processes such as the
radiation budget, clouds, precipitation, and atmospheric cir-
culations.

Code and data availability. This work uses simulations from
16 models participating in the AMIP project as part of
the Coupled Model Intercomparison Project (Phase 6; https://
www.wcrp-climate.org/wgcm-cmip, World Climate Research Pro-
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can be found through references listed in Table 1. Model outputs
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