Supplementary of

How well do the CMIP6 models simulate dust aerosols?

Alcide Zhao et al.

Correspondence to: Alcide Zhao (alcide.zhao@reading.ac.uk)
Figure S1: The CMIP6 AMIP MEM-simulated 2005-2014 annual mean dust emission (g m$^{-2}$ yr$^{-1}$) climatology overlaid by boxes used to define major dust emission source regions.
Figure S2: Seasonal cycles of the 2005-2014 mean dust emissions (g m$^{-2}$ yr$^{-1}$) over the eight major source regions. Dashed curves are for each individual model, while the AMIP MEM is shown in black solid, and the 10th-90th percentiles of the multi-model spreads is shown in grey shadings. Also shown are those for CAMS (green) and MERRA2 (blue) reanalysis.
Figure S3: The CMIP6 AMIP model-simulated global annual mean (2005-2014) dust mass loading (mg m$^{-2}$) climatology. The numbers on the top right of each panel denote the global total dust mass burdens (Tg).
Figure S4: The CMIP6 AMIP model-simulated global annual mean (2005-2014) dry dust deposition fluxes (g m\(^{-2}\) yr\(^{-1}\)). The numbers on the top right of each panel denote the global total dry dust deposition (Tg yr\(^{-1}\)).
Figure S5: The CMIP6 AMIP model-simulated global annual mean (2005-2014) wet dust deposition fluxes (g m\(^{-2}\) yr\(^{-1}\)). The numbers on the top right of each panel denote the global total wet dust deposition fluxes (Tg yr\(^{-1}\)).
Figure S6: Meridionally averaged annual-mean dust mass loading (kg m\(^{-2}\)) over (a) the Africa-Atlantic region and (b) the Asia-Pacific region.
Figure S7: The CMIP6 AMIP models’ simulated global annual mean (2005-2014) AOD climatology. The numbers on the top right of each panel denote the global means.
Figure S8: Seasonal cycles of the 2005-2014 mean DOD over the eight major dust source regions. Dashed curves are for each individual model, while the AMIP MEM is shown in black solid, and the 10th-90th percentiles of the multi-model spreads is shown in grey shadings. Also shown are those for MIDAS (solid purple), CAMS (solid green) and MERRA2 (solid blue) reanalysis.