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Abstract. Mineral dust impacts key processes in the Earth system, including the radiation budget, clouds, and nutrient cycles. 

We evaluate dust aerosols in 16 models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) 

against multiple reanalyses and satellite observations. We note that both the reanalyses and observations used here have their 

limitations, and particularly that dust emission and deposition in reanalyses are poorly constrained. Most models, and 

particularly the multi-model ensemble mean (MEM), capture the spatial patterns and seasonal cycles of global dust processes 10 

well. However, large uncertainties and inter-model diversity are found. For example, global dust emissions, primarily driven 

by model-simulated surface winds, vary by a factor of 5 across models, while the MEM estimate is double the amount in 

reanalyses. The ranges of CMIP6 model-simulated global dust emission, deposition, burden and optical depth (DOD) are larger 

than previous generations of models. Models present considerable disagreement in dust seasonal cycles over North China and 

North America. Here, DOD values are overestimated by most CMIP6 models, with the MEM estimate 1.2-1.7 times larger 15 

compared to satellite and reanalysis datasets. Such overestimates can reach up to a factor of 5 in individual models. Models 

also fail to reproduce some key features of the regional dust distribution, such as dust accumulation along the southern edge 

of the Himalayas. Overall, there are still large uncertainties in CMIP6 models’ simulated dust processes, which feature 

inconsistent biases throughout the dust lifecycle between models, particularly in the relationship connecting dust mass to DOD. 

Our results imply that modelled dust processes are becoming more uncertain as models become more sophisticated. More 20 

detailed output, and dust size-resolved variables in particular, relating to the dust cycle in future intercomparison projects are 

needed to enable better constraints of global dust cycles, and enable the potential identification of observationally-constrained 

links between dust cycles and optical properties. 

1. Introduction 

Mineral dust, a key component of the Earth system, has important impacts on the global climate and environment through a 25 

number of pathways (Mahowald et al., 2010; Gassó et al., 2010; Knippertz and Stuut, 2014; Shao et al., 2011; Mahowald et 

al., 2014; Kok et al., 2018; Jin et al., 2021). For example, links have been found between dust emissions and Atlantic 

hurricanes, Amazon Forest fertilisation (Yu et al., 2015), and the African and Indian monsoons (N’Datchoh et al., 2018; 

Skonieczny et al., 2019; Maharana et al., 2019; Jin et al., 2021). There remain considerable gaps in our understanding of dust 

throughout its lifecycle (i.e., emission, transport and deposition) due partly to challenges in dust observations (Richter and 30 

Gill, 2018), hindering complete understanding and modelling of the complex roles of dust aerosols in the Earth system. 

Dust aerosols have been included in global climate and Earth system models since the late 1980s (Shao et al., 2011). These 

models, with increasingly finer resolutions and more sophisticated model physics and parameterisations, demonstrate certain 

capabilities in simulating mesoscale to global scale dust events and processes. However, large uncertainties exist in dust 

simulations stemming from many sources (Evan et al., 2014; Wu et al., 2018, 2020b; Adebiyi and Kok, 2020). For example, 35 

incomplete understanding and representations of the driving mechanisms of dust emission, transport and deposition, dust 

particle size and shape, as well as model structural differences. It also remains a challenge for climate models to accurately 

simulate the meteorological processes that play critical roles in dust processes. Yet, these uncertainties tend to amplify as 
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models become more complex (Kok et al., 2017; Ryder et al., 2019; Adebiyi and Kok, 2020; di Biagio et al., 2020; Kramer et 

al., 2020; Li et al., 2021; Huang et al., 2021). 40 

Uncertainties in the simulation of dust have important implications for interpreting the model-simulated global radiation 

budgets, and many processes that are influenced by dust (e.g., clouds). Also, in the context of global efforts to mitigate 

anthropogenic aerosol and precursor emissions, natural aerosols like dust will potentially play form a relatively greater and yet 

uncertain role contribution to global aerosol concentrations in shaping future climate variability. Therefore, it is crucial to 

understand the performance of dust simulations in the latest generation climate models. 45 

The first multi-model and multi-parameter evaluation of dust simulations was carried out within 15 models participating in 

Phase I of the Aerosol Comparison between Observations and Models (AeroCom I) (Huneeus et al., 2011). These models were 

able to reproduce vertically integrated parameters such as dust aerosol optical depth (DOD) within a factor of two, and the 

dust deposition and surface concentration within a factor of 10. Kim et al. (2014, 2019) evaluated AeroCom phase II model-

simulated DOD over North Africa and East Asia against multiple observational datasets, and found these models significantly 50 

underestimated dust transport to adjacent oceans. The latest AeroCom phase III models are reported to have better resolved 

dust particle size distributions compared to those in phase I and II (Gliß et al., 2021). However, dust particles are still too fine 

compared to the Aerosol Robotic Network retrievals (AERONET) (Holben et al., 1998). Also, large diversities were found 

across different models in the simulations of dust emission, burden and lifetime.  This leads to diversities in dust spatial 

distributions and transport to the oceans. These have implications for interpreting the diversities in model-simulated aerosol 55 

optical properties and aerosol-radiation-cloud interactions.  

Several studies have examined the performances of the CMIP5 models in dust simulations at both regional and global scales. 

For example, Evan et al. (2014) found that the African dust emissions and burdens were systematically underestimated in 23 

CMIP5 models, while their year‐to‐year changes were poorly constrained compared to observations. Similarly, it was shown 

that CMIP5 models significantly underestimated dust transport to the Indian subcontinent because of biases in the model-60 

simulated 850-hPa winds (Sanap et al., 2014). Wu et al. (2019) found large discrepancies between observed and CMIP5 models’ 

simulated decadal variabilities of dust emissions over East Asia, and questioned the implications for long-term variations in 

dust-related processes. Pu and Ginoux (2018) compared seven CMIP5 models’ simulated DOD to the Moderate Resolution 

Imaging Spectroradiometer (MODIS) Deep Blue aerosol product. They found that the multi-model mean was better than most 

individual models in capturing the climatology and seasonal cycles of DOD over most dust source regions, but that it still 65 

underestimated the mean value and the amplitude of the seasonal cycle. This is consistent with the representation of 

wind/precipitation processes in the models (i.e., the multi-model mean outperforms individual models) (Sperber et al., 2013). 

Almost all the seven models failed to capture the DOD interannual variations. Dust cycles in the CMIP5 models were further 

evaluated by Wu et al., (2020a) against the MERRA2 aerosol reanalysis and station observations. They found that CMIP5 

models, compared to the AeroCom II models, featured amplified model diversitiesuncertainties, and attributed this to increases 70 

in model complexities such as the coupling between dust emissions and dynamic vegetation. In short, although CMIP5 models 

were able to simulate some aspects of dust distribution and seasonal cycles well, their ability to represent certain features was 

still limited, and inter-model variability was too large to provide useful constraints on dust interactions with the climate system.   

The CMIP6 models (Eyring et al., 2016) represent significant advances compared to the CMIP5 models in many ways. For 

example, the inclusion of additional Earth system components and processes, such as dynamic vegetation, in a greater 75 

proportion of models. For dust aerosols, given the large uncertainties in previous generations of climate models discussed 

above, it is important to evaluate the performance of the CMIP6 models. Especially, how well do these models simulate dust 

processes compared to each other and compared to observations and previous generations of models. Such understanding 

would serve as a benchmark for the dust-modelling community to interpret a variety of processes related to dust in climate 

models, while also help climate model centres to develop their models into the next phase, and help target future observations 80 

directed towards constraining model processes. 
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Here we provide the first comprehensive intercomparison and evaluation of the CMIP6 models in dust simulations at the global 

scale while focusing on a few key dust source regions. We examine 16 CMIP6 models that performed the Atmospheric Model 

Intercomparison Project (AMIP) experiment to limit the influence of internal variability on inter-model diversity. We compare 

model-simulated dust emission, deposition, burden, lifetime, and DOD to multiple reanalyses and observational datasets. We 85 

also examine the driving processes of dust emissions using a regression technique. This paper is organised as follows. Section 

2 briefly introduces the 16 models and simulations we examine in this work, as well as the reanalysis and observational datasets, 

and statistical analyses. Results are presented in Section 3, followed by a summary of key findings and discussions in Section 

4. 

2. Data and methods 90 

2.1 CMIP6 AMIP models and simulations 

We examine dust in 16 climate and Earth System models (hereafter ESMs; Table 1) participating in the CMIP6 AMIP (Eyring 

et al., 2016). These models were selected based on solely the criterion that at least the monthly mean DOD field was available 

at the time of writing. AMIP is one of the four CMIP6 baseline Evaluation and Characterization of Klima (DECK) experiments. 

In AMIP, sea surface temperature and sea ice are prescribed from observations, so that the atmospheric and land components 95 
within each model can be evaluated under the constraint of observed ocean conditions. Subcomponent models in each ESM, 

as well as external forcings such as greenhouse gas concentrations and land use, are identical to those in the CMIP6 historical 

simulations. All models analysed here cover at least the period 1979-2014. We focus on the present-day (2005-2014) period 

for model evaluation, guided by the availability of observational (i.e., satellite and ground observations) and reanalysis datasets 

(See Sections 2.2-2.3). In Section 3.2, we also use the 1985-2014 data to ensure the robustness of the regression analysis for 100 

determining dust emission drivers. 

Unlike previous generation CMIP models, dust emissions in almost all the 16 CMIP6 models (except INM-CM4-8) are 

calculated online and resolved into different size bins (see Table 1). However, dust particle size range represented differ 

significantly between models, with the use of bin-based and model schemes, and maximum diameter (bin-based) ranging from 

0.01 up to 63 µm in diameter. Depending on the model, dust emissions are calculated based on factors such asincluding surface 105 

winds, land surface properties, and vegetation. Dust particles interact with clouds by serving as cloud condensation nuclei in 

most of the 16 models; however, only two models (MRI-ESM2-0 and NorESM2-LM) have realised dust particles as ice nuclei. 

For models that have more than one ensemble member, we average these members to produce a model ensemble mean unless 

otherwise stated. The model ensemble mean is used to represent each individual model, and is interpolated to the UKESM-0-

LL model grid (1.25°x1.875°) when calculating the multi-model ensemble mean (MEM). The UKESM-0-LL model grid was 110 
chosen as it is the intermediate horizontal resolution between the highest and the lowest ones. We also calculate the 10th-90th 

percentiles of the multi-model spreads when producing zonal and meridional mean profiles, as well as the seasonal cycles of 

regional mean dust emissions and DOD. The climatological means were calculated as averages of the 2005-2014 annual means 

from each model ensemble mean. 

2.2 Satellite aerosol optical depth productsand ground observations 115 

Satellite observations are one of the most reliable tools for constraining and evaluating ESMs at the global scale (Flato et al., 

2013). Here we use satellite AOD and DOD retrievals at 550 nm to evaluate the performances of the CMIP6 AMIP models 

over the period 2005-2014. 

There are currently several satellite DOD products developed using the MODIS and/or the Advanced Very High Resolution 

Radiometer (AVHRR) observations (Ginoux et al., 2012; Pu and Ginoux, 2018; Voss and Evan, 2020), and each has its own 120 
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limitations and advantages. Here we use the ModIs Dust AeroSol (MIDAS) dataset (Gkikas et al., 2021) that provides global-

scale land and ocean daily DOD with fine spatial resolution (0.1° x 0.1°) for the period 2003-2016. MIDAS was calculated 

using quality filtered MODIS-Aqua AOD retrievals along with DOD-to-AOD ratios provided by the Modern-Era 

Retrospective analysis for Research and Applications version 2 reanalysis (MERRA2). This means that the MIDAS DOD 

estimates are also model-dependent and uncertain. The MIDAS dataset was validated against the AERONET and the LIdar 125 
climatology of vertical Aerosol Structure for space-based lidar simulation (LIVAS) DOD products, and was demonstrated as 

suitable for DOD climatology study and model evaluation (Gkikas et al., 2021). 

We also use the 12-satellite merged AOD product developed by Sogacheva et al., (2020) at the Finnish Meteorological Institute 

(FMI AOD thereafter). FMI AOD provides monthly data for the period 1995-2017 at a 1°x1° horizontal resolution. It has 

better spatial and temporal coverage than any individual satellite AOD products, while the quality of the merged product is at 130 

least as good as that of individual products. 

To evaluate modles’ simulated dust deposition fluxes, we used ground deposition flux of dust with a geometric diameter 

≤10 µm (PM10) in around 110 stations (Figure 1) compiled by Albani et al. (2014). Note due to the availability of surface dust 

concentration from CMIP6 models, we were not able to evaluate dust concentrations against ground observations. 

2.3 CAMS and MERRA2 reanalyses 135 

The Copernicus Atmosphere Monitoring Service (CAMS; Inness et al. (2019)) reanalysis represents the latest global reanalysis 

dataset of the atmospheric composition produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). 

It assimilates satellite retrievals of many atmospheric constituents including CO, NO2, O3, as well as AOD from MODIS Terra 

and Aqua and AATSR (Advanced Along-Track Scanning Radiometer) Envisat, using the ECMWF's Integrated Forecasting 

System. The CAMS reanalysis is available from 2003 onward at a horizontal resolution of ~80 km. Dust emission is calculated 140 

based on Ginoux et al., (2001), and is resolved in three size bins with diameter bounds at 0.06,1.1, 1.8 and 40 µm, respectively 

(Table 1). Monthly mean AOD and DOD are available, while dust cycle fluxes including dust emission and deposition are 

provided at 3-hr intervals which were processed into monthly means. We also use the 2005-2014 monthly mean bare soil 

fraction and leaf area index from CAMS, as well as soil moisture, surface winds, and precipitation from ECMWF Reanalysis 

version 5 (ERA5), to investigate the drivers of dust emissions (See Section 2.4). 145 

In addition to CAMS, we also use the MERRA2 reanalysis which was produced using the Goddard Earth Observing System 

(GEOS-5; Molod et al. (2015)) with a 3D variational data assimilation system (3D-Var) that assimilates a wide range of 

observational datasets (Gelaro et al., 2017). For AOD, MERRA2 assimilates data from AVHRR, MODIS, the Multi-angle 

Imaging SpectroRadiometer (MISR), and AERONET. Dust emission is simulated based on Ginoux et al. (2001), and is 

resolved in five size bins with diameter bounds at 0.2, 2.0, 3.6, 6.0, 12.0 and 20.0 µm respectively (Table 1). In addition to its 150 

AOD and DOD products, MERRA2 also provides dust emission and deposition fluxes at 0.1° horizontal resolution from 1980 

onward, making it a valuable tool for evaluating dust processes in climate models. We use the MERRA2 monthly mean AOD 

and DOD, as well as dust cycle fluxes (emission, dry deposition and wet deposition, and burden) over the period 2005-2014. 

Note we were not able to investigate the drivers of dust emissions using MERRA2, because bare soil fraction data is not 

provided.  155 
It is important to note that only AOD from observations is assimilated in CAMS and MERRA2. The DOD and dust mass 

loading are then adjusted based on the contribution of DOD to AOD, which will vary in space and time. Therefore, the accurate 

representation of DOD and dust mass loading in the reanalyses rely on the simulation of correct proportions of dust relative to 

other aerosol species. While this aerosol speciation may be well represented in locations or time periods dominated by dust 

(e.g. over the remote Sahara), it is likely to be less well represented in regions where different aerosol species coexist (e.g. 160 

over northern India, with mixed dust, smoke and anthropogenic aerosol). Additionally, the reanalyses adjust DOD and dust 
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mass loading via data assimilation, but this will not be fed through to changes in dust emission, which remain an unconstrained 

model variable in the reanalyses. This means that despite the assimilation of satellite AOD retrievals, dust processes in CAMS 

and MERRA2 remain model-dependent and entail some level of uncertainty (Xian et al., 2020). Therefore, the comparisons 

between models and the reanalyses presented here should be interpreted with some caution. 165 

2.4 Multiple linear regression 

To investigate factors that drive dust emissions, we performed a multiple linear regression (ordinary least square) on 

standardised dust emissions and their drivers (Seabold and Perktold, 2010) following Pu and Ginoux (2018). We started the 

regression with five dust emission drivers: bare soil fraction, leaf area index, precipitation, soil moisture, and surface winds. 

However, we deleted leaf area index and soil moisture from the regression after the variance inflation factor analysis which 170 

indicates these two variables bear similar information to others included in the regression (not shown). We regressed gridcell 

dust emission to bare soil fraction, precipitation, and surface winds using standardised monthly mean data over the period 

1985-2014 for each individual model and over 2005-2014 for CAMS. Note that due to data availability, we were only able to 

do this with 10 of the 16 CMIP6 models and CAMS (see Section 3.1.3). 
We take the absolute value of the three regression coefficients as an indication of the importance of each in driving dust 175 

emission, and measure their relative importance by normalising each coefficient against the sum of the three. Bootstrap 

resampling is used to test the significance of the regression coefficients. To demonstrate the relative importance of each driver 

at regional scales in different seasons, we repeat the regression for each individual calendar month using standardised regional- 

and monthly-mean data calculated from each of the 10-individual models (not shown) as well as the model ensemble mean. 

Note that here we use monthly data to feed the regression, while strong winds at shorter time scales may account for 180 

disproportionally more dust emissions. However, we were not able to test it due to the lack of high-resolution model outputs. 

3. Results 

3.1 Dust emission 

We start with the climatology and global budget (Figures 12, 2 3 and Table 2) of dust emissions. We then show the seasonal 

cycles (Figure 34) of dust emissions over the eight major source regions (See Figure S1 for region definitions). Next, we look 185 

at the drivers of dust emissions in each individual model and CAMS reanalysis at the global scale (Figure 45), and demonstrate 

the relative importance of each driver in different seasons at regional scales (Figure 56 for MEM and Figure S2 for CAMS). 

We focus primarily on the differences between individual models, while comparing them to the CAMS and MERRA2 

reanalyses. We also compare and discuss our results with previous generation ESMs, with CMIP5 (Evan et al., 2014; Wu et 

al., 2020a, b) and AeroCom III models (Gliß et al., 2021) in particular.  190 

3.1.1 Climatology 

Figure 1 2 shows the 2005-2014 global- and annual-mean climatology of dust emissions in each individual model; the MEM 

is shown in Figure 2a 3a and is compared to CAMS (Figure 2b3b) and MERRA2 (Figure 2c3c). Models generally capture the 

dust emission hotspots, namely the so-called ‘dust belt’ (Ginoux et al., 2012) that extends from North Africa, the Middle East, 

Central Asia, South Asia to East Asia. However, similar to CMIP5 models (Wu et al., 2020a), there are considerable differences 195 

between models in other source regions such as North and South America and Australia. Models show significant differences 

in the intensity and spatial heterogeneity of dust emissions, reflecting the structural differences in dust emission schemes 

implemented in different models. Particularly, CESM2 models (Figures 1a2a-d) and NorESM2-LM (Figure 1o2o) put dust 
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emissions in a few gridcells, whereas dust emissions in HadGEM-GC31-LL (Figure 1i2i), INM-CM4-8 (Figure 1j2j) and INM-

CM5-0 (Figure 1k2k) models have relatively homogeneous spatial patterns and significantly larger source areas (also see 200 

Figure 2e3e). The spatial pattern and magnitudes of dust emission in the MEM are in broad agreement with CAMS and 

MERRA2. Pronounced differences are however found outside major desert dust source regionsdust emission hotspots. This is 

because a few models (HadGEM-GC31-LL, INM-CM4-8, and INM-CM5-0) emit dust over these regions that are rarely 

deemed as potential dust sources (Ginoux et al., 2012). 

The CMIP6 models estimate that between 1.4 (INM-CM4-8) and 7.6 (MIROC-ES2L) Pg dust is emitted into the atmosphere 205 

annually, producing a MEM estimate of around 3.5 Pg yr-1. The CMIP6 model range is just as large as the CMIP5 models 

(0.7-8.2 Pg yr-1 ; Wu et al., (2020a)), and is much larger than the AeroCom phase III models (0.8-5.7 Pg yr-1) and the recent 

observationally-constrained estimates of ~5 Pg yr-1 for PM20 dust particles (Kok et al., 2021). 12 of the 16 models simulate 

significantly more dust emissions than CAMS and MERRA2 reanalyses (~1.6 Pg yr-1; Figure 2d3d), making the MEM more 

than two times larger than CAMS and MERRA2. Noticeably, in CMIP5, HadGEM2-CC has the most dust emission (8.2 Pg 210 

yr-1), which is replaced by UKESM1-0-LL (7.5 Pg yr-1) and MIROC-ES2L (7.6 Pg yr-1) in CMIP6, while HadGEM-GC31-LL 

(3.3 Pg yr-1) lies very close to the CMIP6 MEM estimate. The 2-fold difference in dust emissions between UKESM1-0-LL 

and HadGEM-GC31-LL is attributable to the additional Earth system interactions such as the dynamic vegetation included in 

UKESM1-0-LL (Mulcahy et al., 2020). This demonstrates the strong impact of model complexities on simulated dust 

emissions.  215 

North Africa contributes the most (57 (minimum-maximum: 28-69) %) to global dust emissions in CMIP6 models (Figure 

2d3d), generally agreeing with CAMS (46%) and MERRA2 (60%). This is followed by the Middle East (17 (11-25) %) and 

North China (9 (2-16) %). It is worth noting that the contribution of North Africa to global dust emission may be overestimated, 

while those of the Middle East and North China may be underestimated (Kok et al., 2021). These three regions make up more 

than 80% of global dust emissions, while models disagree fundamentally about the relative contributions of other source 220 

regions. Particularly, South Asian dust emission is only important in UKESM1-0-LL, contrasting to the very limited dust 

emissions in all other models in this region including HadGEM-GC31-LL. 

CMIP6 models also feature diversities in the global surface area of dust emissions (Figure 2e3e), with the smallest area (around 

2.5% of the global surface area) found in the CESM2 family models and NorESM2-LM, and the largest in INM-CM4-8 

(15.0%). The MEM estimate (11.5%) is almost two times larger than that of MERRA2 (6.6%) and CAMS (5.6%). The range 225 

of the CMIP6 model estimates (2.5-15.0%) is almost as large as that of the CMIP5 models (2.9-19%; Wu et al., (2020a)) as 

reported by Wu et. al., (2020a). Note that the models that have the highest dust emissions do not necessarily have the largest 

emission areas, and vice versa. This again suggests the large diversities in dust emission intensities in different models. 

3.1.2 Seasonal cycles 

Figure 3 4 shows the normalised seasonal cycles of dust emissions over the eight source regions (see Figure 1 for definitions 230 

of these regions); the absolute seasonal cycle profiles can be found in Figure S2S1. The MEM agrees well with CAMS and 

MERRA2 in reproducing the patterns of the seasonal cycles. However, noticeable discrepancies are found between individual 

models and reanalysis over a few key regions including North China (Figure 3d4d), North America (Figure 3g4g) and South 

America (Figure 3h4h). Dust emission peak seasons in these regions have large diversities between models. Two models 

behave very differently from others. First, the CanESM5 model simulates very different dust emission peak seasons over the 235 

Middle East (Figure 3c4c), North China, South Asia and North America. Second, MIROC-ES2L is the only model that 

simulates a summer peak while all others show a spring peak over North Africa (Figure 3a4a). 

The seasonal cycles feature a double peak over North China and North America in a few models (CanESM5, MIROC-ES2L, 

INM-CM4-8, INM-CM5-0, MRI-ESM2-0), while the reanalysis datasets and most other models and reanalysis datasets present 



 7 

a single spring emission peak. The underlying mechanisms that drive these double peaks differ between these two regions. 240 

The models that simulate a secondary autumn emission peak in North China are found to have too strong surface winds in 

autumn and winter. In comparison, a deficit in autumn precipitation explains the secondary emission peak in North America 

(Figures not shown). 

The magnitude of the seasonal cycles in MEM and most individual models are much larger (up to 10 times) than those in 

CAMS and MERRA2 (Figure S2S1) which lie very close to the lower bounds of the AMIP multi-model spreads. This is 245 

consistent with our finding above that the CMIP6 models have considerably more dust emissions than reanalysis (Section 

3.3.1). Particularly, UKESM1-0-LL may overestimate dust emissions in South Asia and Australia (Figures S2eS1e, f). By 

contrast, the INM-CM4-8 and INM-CM5-0 models may have too little dust emissions over North Africa (Figure S2aS1a). 

In short, the seasonal cycles of dust emissions over major source regions are well reproduced by the MEM and most individual 

models, but a few models behave very differently to others over North China, North America and South America. 250 

3.1.3 Drivers 

Figure 4 5 shows the dominant driver of dust emissions at each gridcell in the 10 CMIP6 models and the CAMS reanalysis, 

based on the methodology set out in Section 2.4. Surface wind speed is shown as the dominant driver of dust emissions in all 

the models and CAMS. This is consistent with previous studies (Evan, 2018; Pu and Ginoux, 2018). Precipitation only 

dominates dust emissions in the INM-CM4-8 and INM-CM5-0 models over a few regions (Figure 4i5i, j). Our finding is 255 

consistent with Pu and Ginoux (2018) who show that surface winds and precipitation are two of the most important factors 

determining seasonal DOD variations in the CMIP5 models.  

We further examine the relative importance of each individual driver and their seasonal variations over the eight major dust 

source regions in the MEM (Figure 56). The dominant role of surface winds in driving dust emission can be seen over North 

Africa (Figure 5a6a), the Middle East (Figure 5c6c) and North China (Figure 5d6d) throughout the year, whilst surface bareness 260 
also plays an important role in other regions. Precipitation (influencing soil moisture) is shown to influence dust emission in 

North Africa, with the largest impact found in summer. Similarly, precipitation plays an important role in South Asian dust 

emission around the post-monsoon season in October (Figure 5e6e). In other regions, precipitation shows a relatively minor 

contribution. Similar conclusions can be drawn for CAMS as a comparison (Figure S2). 

Overall, we found that surface wind and bareness are the first two most important factors in driving dust emissions in CMIP6 265 

models and CAMS. We hence speculate that future changes to dust emissions may be most sensitive to changes in the surface 

wind related to circulation changes in combination with vegetation changes, rather than the frequency or severity of droughts, 

though the latter may indirectly influence future dust emissions via vegetation changes. However, it should be noted that 

surface bareness was found to play the most important role in controlling DOD over many dusty regions in observations (Pu 

and Ginoux, 2018). The fact that models do not simulate significant trends in surface bareness over time explains why surface 270 

bareness plays a secondary role compared to surface winds in driving dust emissions in models, since the required criteria for 

dust emission are already satisfied. 

3.2 Dust loading, deposition and lifetime 

This section examines atmospheric dust mass loading (Figures 67, S3, S4) and deposition fluxes (Figures 78, 9, and S5-S8) 

which in combination determine the atmospheric dust lifetime (Figure 810). The global budgets of these fluxes in each model 275 
are summarised in Table 2, and their global climatologies are included in Supplementary Figures S3-S5. 

The spatial pattern of the dust mass loading climatology in MEM (Figure 6a7a) shows good agreement with CAMS (Figure 

6b7b) and MERRA2 (Figure 6c7c), while the magnitudes are slightly larger. The global total atmospheric dust burden in MEM 

(25 Tg) is comparable to that of MERRA2 (23 Tg), and is two times larger than that of CAMS (12 Tg). Most models’ simulated 
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global total dust burden lies well around the MEM and reanalysis estimates (Figure 6d7d). However, the CESM2-WACCM-280 

FV2 model simulates significantly more dust in the atmosphere (74 Tg). The range of global total dust burden in CMIP6 with 

the CESM2-WACCM-FV2 model excluded is 9-28 Tg. This is larger than that of the AeroCom III models (6-22 Tg; Gliß et 

al., (2021)), but smaller than the CMIP5 models (3-42 Tg; Wu et al., (2020a)).  

We calculated the meridional mean profiles of dust mass loading and DOD (Figures 6 7 e, f) to examine the gradients associated 

with dust transport from land to the adjacent oceans from the two largest source regions: North Africa and North China (boxes 285 

in Figure 7c). Note here we show the DOD profiles because more model and observational data are available for comparison, 

but similar conclusions can be drawn if one looks at the mass loading profiles (Figure S6S4). Most models, and particularly 

the MEM, reproduce well the gradients compared to both reanalysis and satellite observations. However, the magnitudes of 

the profiles are too low in INM-CM5-0 and UKESM1-0-LL, but too high in CESM2-WACCM-FV2 over the Africa-Atlantic 

region (Figure 6e7e). By contrast, many models (CNRM-ESM2-1, HadGEM3-GC31-LL, MIROC-ES2L, MRI-ESM2-0, INM-290 

CM4-8, INM-CM5-0, and UKESM1-0-LL) do not produce ample gradients over the Asia-Pacific region (Figure 5f7f).  

Figure 7 8 shows the climatology of the total (dry + wet) dust deposition flux and the percentage of wet deposition. Globally, 

CMIP6 models estimate that ~3.5 (1.3-7.4) Pg dust is removed from the atmosphere annually, which is consistent with the 

MERRA2 (1.6 Pg yr-1) and CAMS (6.6 Pg yr-1) estimates. As summarised in Table 2, dust is predominantly removed by dry 

deposition (60-86%) in most models, agreeing with CAMS (69%) and MERRA2 (70%), yet the CESM2 models show that 295 

most (~74%) of the total dust removal is via wet processes (also see Figure S7). Dust removal over the oceans is controlled by 

wet deposition, while dry processes dominate over lands (Figures 7b8b, d, f). The intercomparisons between reanalyses, 

models, and ground observations of total dust deposition fluxes (Figure 9) show that CAMS and MERRA2 give fair 

representations of dust deposition compared to the observations (i.e., with a log-space root mean square error (RMSE) of ~2.0). 

Meanwhile, the MEM and most individual models (Figure S8) are as good as reanalyses. We note however the observational 300 
dust deposition fluxes only include PM10 particles, while models and reanalyses datasets have larger dust particles. Therefore, 

whilst biases are expected, we are not able to quantify them due to the lack of size-resolved dust deposition fluxes from models 

in the CMIP6 archive. 

Figure 8 10 summarises the differences in global dust burden, deposition fluxes and lifetime (global dust burden divided by 

total deposition fluxes) between models and analysis datasets. Dust lifetime in CMIP6 models ranges by a factor of 4 from 305 

around 1.8 days to 6.8 days; with a MEM estimate of 4.3 days. The range is larger than the CMIP5 models (1.3-4.4 days; Wu 

et al., (2020a)), and is just as large as the AeroCom III models (1.4-7.0 days; Gliß et al., (2021)). MERRA2 (5.2 days) lies 

within the range of the CMIP6 model estimates. In comparison, CAMS is likely to underestimate dust lifetime (0.6 days) 

because of high deposition rates which lead to less dust in the atmosphere (see above). We found a linear relationship between 

dust lifetime and the ratio of global dry-to-total depositions across different models (Figure 8b10b). This suggests that dry 310 

processes control dust lifetime, which is further demonstrated by the strong (weak) linear correlation between dust lifetime 

and dry (wet) deposition across different datasets (Figures 108c, d). That is, the less the dry processes, the longer dust resides 

in the atmosphere before being finally removed by the relatively infrequent wet depositions events, occurring mostly further 

from dust sources compared to dry deposition. 

3.3 AOD and DOD 315 

In this section, we turn to DOD that is associated with the above-presented dust processes. In addition to evaluating CMIP6 

model-simulated DOD, we also examine whether models’ performances in simulating the optical depth of dust differ to those 

of other aerosol species. We first show differences in model-simulated AOD (Figure 911) and DOD (Figures 1012-1113) and 

then examine where such differences come from (Figure 1214). Finally, we examine the seasonal cycles of DOD, whilst 

comparing them with the seasonal cycles of dust emissions, over the eight major dust source regions (Figure 15). 320 
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Figure 9 11 shows an intercomparison of the AOD climatology between the MEM and those from satellite and reanalyses. The 

AOD climatology in each individual model is included in Figure S7S9. The MEM, and most individual models, reproduces 

the AOD climatology well. However, a few models (GISS-E2-1-G, GISS-E2-2-G, INM-CM4-8, INM-CM5-0) struggle to 

capture the AOD spatial pattern: the spatial correlation (R2) between these models and satellite and reanalysis datasets are less 

than 0.2 (Figure 9h11h). By contrast, the HadGEM3-GC31-LL, MIROC-ES2L, MRI-ESM2-0, and UKESM1-0-LL models’ 325 
simulated AOD have even greater spatial correlations to satellite and reanalysis datasets compared to the MEM. Compared to 

AOD, the MEM DOD climatology (Figures 11a13a) has slightly greater spatial correlations with satellite (R2=0.76) and 

reanalyses (R2=0.85 and 0.86). However, the models that simulate the spatial pattern of DOD well do not necessarily perform 

well in simulating AOD (comparing Figure 9h 11h to Figure 11h13h). For example, the two GISS models (denoted by letters 

g and h, also see Figures S7gS9g, h) are top-ranked in capturing the spatial pattern of DOD (Figure 131h), but are lowest-330 

ranked in simulating the spatial pattern of AOD (Figure 9h11h). This highlights the inconsistent behaviour of CMIP6 models 

in simulating the optical depth of different aerosol species. However, it may also question the reliability of the MIDAS 

retrievals which are largely based upon MERRA2. More importantly, careful comparisons between as Figures 9e11e-g and 

Figures 11e13e-g indicate that the magnitudes of DOD have larger biases than AOD. 

CMIP6 model-simulated global mean DOD varies by a factor of 7 from 0.011 to 0.073, with the MEM estimate of 0.029. This 335 

is consistent with observationally constrained estimate of 0.030±0.005 for PM20 dust (Ridley et al., 2016), 0.033 (0.031-0.040) 

in MIDAS, 0.031 (0.028-0.036) in MERRA2, but is ~1.5 times that of CAMS (~0.019). There are however significant biases 

in the MEM-simulated DOD magnitudes at regional scales. For example, models tend to overestimate DOD, which can be 

seen over the Sahara and the Chinese deserts in the MEM and in most models (Figure 112). More specifically, the AMIP MEM 

estimate of the regional mean DOD in North Africa (0.278) is 1.2-1.7 times larger than those of satellite (0.228) and reanalysis 340 

datasets (0.165 in CAMS and 0.238 in MERRA2). Similarly, the MEM overestimate North China mean DOD (0.142) by 1.2-

1.5 times compared to satellite (0.097) and reanalyses (0.118 in CAMS and 0.099 in MERRA2). Such overestimates can reach 

up to 4-5 times in a few models such as CESM2-WACCM-FV2 (Figure 10d12d) and MIROC-ES2L (Figure 10m12m). We 

note however that previous studies using CMIP5 and AeroCom III models concluded that DOD in these regions were well 

captured (Pu and Ginoux, 2018; Gliß et al., 2021). Finally, it is important to point out that none of the 16 models, nor the 345 

reanalyses, are able to capture the dust transportation and atmospheric accumulation to the south of the Himalayas over the 

Indo-Gangetic Plains as shown by satellite data (box in Figure 11a13a). Also, none of the AMIP models captures the regional 

DOD variability over the Middle East, Central Asia, the Chinese desert and eastern China (Figure 11a13a).  

We showed above the biases in model-simulated DOD magnitudes. Here we further investigate such biases by looking at the 

DOD probability density distributions of the models in comparison to satellite and reanalyses, as a function of the difference 350 

in the magnitude of the DOD. This gives an insight into how well the models represent weaker vs heavier dust events. Model 

gridcell DOD values are grouped into three categories (≤0.1, 0.1-0.4 and >0.4) to calculate the normalised probability density 

function independently (Figure 12a14a-c). Almost all models and the MEM underestimate small (≤0.1) DOD values (Figure 

12a14a) while significantly overestimating large (>0.4) DOD values (Figure 12c14c). By contrast, the moderate DOD values 

(Figure 12b14b) are relatively well reproduced. We note that models overestimate small DOD values compared to CAMS, 355 

while the CAMS DOD is low compared to the other datasets (see above). To further understand where the biases in models’ 

simulated DOD come from, we examine the global zonal mean DOD profile and the distribution of regional mean DOD over 

the eight major dust source regions in Figure 12d14d. The overestimates (black crosses, denoting the MEM), compared to both 

satellite and reanalysis datasets (blue/green/purple crosses), can be seen over North Africa, North China, South Africa and 

Australia. Meanwhile, DOD is underestimated over South Asia, which again implies that models fail to capture the dust 360 

accumulations in the Indian subcontinent. 

The model-simulated seasonal cycles of DOD (Figures 13 15 and S108) are in broad agreement with reanalysis and satellite 

observations. However, noticeable discrepancies are again found in South Africa (Figure 13b15b), North China (Figure 
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13d15d), North America (Figure 13g15g), and South America (Figure 13h15h) where there are also large inter-model 

discrepancies in the simulated seasonal cycles of dust emission. By contrast, the Middle East (Figure 13c15c) and South Asia 365 

(Figure 13e15e) show good agreement between observed and model-simulated DOD seasonal cycles. Finally, it is interesting 

to note that the seasonal cycle of DOD over North Africa (Figure 15a)  peaks slightly later (early summer) than dust emission. 

This may indicate the importance of dust transport in influencing dust optical depth and its seasonal cycles. In comparison, the 

seasonal cycles of DOD are synchronised with dust emissions in MEM over all other regions. Therefore, model biases in dust 

emissions are likely to be reflected in DOD.  AlsoIn North Africa, there seems to be a split into 2 groups of models between 370 

the ones that sustain DOD over the summer versus the ones which drop off in June/July (Figure 13a15a). Overall, similar to 

dust emissions, the seasonal cycles of DOD are well reproduced by most models, and the MEM does a good job in capturing 

DOD seasonal cycles in most regions. However, a few models still struggle to capture the seasonal cycles over North China, 

North America and South America. 

4. Conclusions and discussions 375 

In this study, we examine dust aerosols in 16 state-of-the-art Earth system models participating in the CMIP6 AMIP. We 

evaluated models’ present-day (2005-2014) dust aerosol processes (emission, deposition, burden, lifetime), as well as dust 

aerosol optical depth (DOD), against several global reanalysis and observational datasets. Note that we did not evaluate the 

models against ground-based measurements but instead perform a large-scale analysis focussing on the more spatio-temporally 

available fields from reanalyses that are in good agreement with ground-based observations where they exist (Wu et al., 2020a, 380 

b). We presented our findings in the context of CMIP5 and AeroCom III models. Out key findings are: 

• The CMIP6 models generally capture the spatial patterns of global dust emission, mass loading, and removal 

processes. However, large uncertainties and inter-model diversities (a factor of 4-5) are found in all these fields. 

• The global dust emission is predominantly driven by surface winds (as opposed to bare soil fraction and precipitation) 

in models and the CAMS reanalysis. 385 

• Most models, and particularly the MEM, capture dust seasonal cycles over major source regions. However, the 

seasonal cycles are poorly constrained over North China, North America and South America. 

• CMIP6 models simulate large diversities in global mean DOD that range by a factor of 7. The MEM estimate however 

is consistent with both satellite and reanalyses. 

• Almost all CMIP6 models underestimate small DOD values but significantly overestimate large DOD values 390 

compared to satellite and reanalyses; the overestimates are found mainly over the dustiest regions such as North 

Africa (1.2-1.7 times in MEM) and North China (1.2-1.5 times in MEM). 

• The CMIP6 models consistently fail to capture certain key features of regional dust distributions. For example, 

atmospheric dust accumulation to the south of the Himalayas over the Indo-Gangetic Plains, and regional DOD 

variability over East and Central Asia and the Middle East. 395 

• Dust processes in CAMS and MERRA2 datasets are very uncertain, as demonstrated by the twofold difference in 

global dust load (23 Tg in MERRA2 vs 12 Tg for CAMS).  
Additionally, it is worth summarising the following quantitative findings: 

• Around 3.5 (1.4-7.6) Pg of dust are emitted annually in the CMIP6 models, the MEM estimate is double the amount 

in the MERRA2 and CAMS reanalyses. A similar overestimate was highlighted in previous studies for CMIP5. Also, 400 
there are large diversities in the extent (2.5-15.0% of global surfaces) and intensity of dust emission between models.  

• North Africa, the Middle East and North China combined make up over 80% of global total dust emissions. However, 

models disagree considerably about the contributions from other dust source regions.  
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• There are large uncertainties in the global total dust burden (9-74 Tg) in the atmosphere; the estimated range is much 

larger than that in CMIP5 (3-42 Tg) and AeroCom III (6-22 Tg) models. 405 

• The global dust removal (~3.5 (1.3-7.4) Pg yr-1) is dominated by dry deposition processes (60-86%) which are found 

to control global dust lifetime that varies by a factor of 4 from 1.8 to 6.8 days in CMIP6 models. 

Overall CMIP6 models generally reproduce global dust processes, and the MEM performs better than most individual models. 

Nevertheless, large model uncertainties and diversities still exist. This may be associated with increases in model complexities, 

as demonstrated by the difference between HadGEM-GC31-LL and UKESM-0-LL (Mulcahy et al., 2020). Models still suffer 410 

from deficiencies in simulating the dust seasonal cycles, distribution and optical depth over key source regions. Also, models 

struggle to agree about the seasonal cycles of dust over a few key source regions such as North China, and South and North 

America. The North China region appears to be particularly challenging for models, which overestimate DOD and frequently 

represent the seasonal cycle incorrectly in this region. 

One limitation of this study is that we were not able to investigate the uncertainties in dust processes associated with the very 415 

different assumptions on dust size ranges across models. This is because CMIP6 models only archived particle size-integrated 

variables. Difference in dust size ranges might partly explain diversities in models’ simulated dust processes such as emission, 

deposition, load, and lifetime. We investigated the relationship between maximum particle size represented in each model, and 

global model dust emission, lifetime and deposition. However, no clear relationship was found (not shown). Therefore, 

although the maximum size simulated and the transported size distribution clearly contribute to these variables, other model-420 

dependent processes and parameters also contribute. It is therefore challenging to understand the contributions from dust 

particle maximum size and size distribution without specifically designed experiments and more detailed outputs of dust-

related processes such as particle size-resolved dust fluxes. 

The variability across CMIP6 models is generally larger than those in the CMIP5 and AeroCom phase III models. Despite the 

fact these are different subsets of models with some overlaps, it may indicate that dust processes are becoming more uncertain 425 

as models become more sophisticated (Wu et al., 2018). Further, there are inconsistent biases along the lifecycle of dust in 

different models. This indicates the challenges in simulating the links between dust emission, mass loading, AOD (relating to 

size, optical properties), and deposition in CMIP6 models. These challenges come from various sources such as difficulties in 

accurately simulating dust-land-vegetation-climate interactions. One particular issue is that different models have various 

assumptions on dust particle size range. This means that diversities in dust sizes, on top of those in model physical processes, 430 

add uncertainties to models’ simulated dust processes ranging from emission and deposition to mas loading, lifetime and DOD. 

We therefore recommend more detailed output relating to the dust cycle in future model intercomparison projects. For example, 

size-resolved dust cycle variables, dust loading and transport at different altitudes. We therefore recommend more detailed 

output relating to the dust cycle in future model intercomparison projects, such as, size-resolved dust cycle variables, dust 

three-dimensional dust burdens, and dust aerosol optical properties. This will enable us to better constrain global dust cycles, 435 

as well as the potential identification of observationally-constrained links between dust cycles and optical properties. It should 

be noted that here we examined the AMIP model simulations. It is therefore reasonable to speculate even greater model 

uncertainties and deficiencies exist in fully-coupled models due to the couplings between dust and many other components of 

the Earth system.  

There are large diversities in CMIP6 models’ simulated spatial patterns and magnitudes of DOD. This is particularly true over 440 

the dustiest regions such as North Africa, North China and the Middle East. Almost all models significantly overestimate DOD 

values over these regions. It is difficult to investigate the reasons behind this overestimate using the CMIP6 experiments 

because many dust variables are not available. We suggest that sensitivity experiments may be a better approach to understand 

this overestimate in future work. One of the outstanding questions to answer in the future centres around the dust particle size 

distributions over these dust source regions. For example, can model biases in dust particle size distributions explain the 445 

overestimation of large DOD values over dust source regions? 
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It is worthwhile stressing that both the CMIP6 models and the reanalysis datasets fail to capture the spatial patterns of dust 

over the Middle East, East China and South Asia. Given that the meteorological drivers (i.e., winds and precipitation) of dust 

emissions over these regions are largely influenced by large-scale monsoonal circulations, the biases in dust simulations may 

be ascribed to the poorly represented monsoon systems in CMIP6 models (Wu et al., 2018; Wilcox et al., 2020; Jin et al., 450 

2021). In the meantime, these biases may also cast doubt on model-simulated regional- to global-scale atmospheric circulations 

and climate states through dust-radiation-climate interactions. For example, the location of the Pacific Interhemispheric 

Convergence Zone (ITCZ) which is found to be linearly correlated to dust mass loadings over these regions (Evans et al., 

2020). 

In summary, the CMIP6 models, and particularly the MEM, generally capture key features of global dust processes. For 455 

example, the global dust emission regions, global DOD distribution, and dust seasonal cycles over a few key source regions. 

However, dust aerosols in CMIP6 models still present large uncertainties, and the uncertainty ranges tend to expand compared 

to previous generations climate models. The dust processes have inconsistent biases in different models, adding the urgency 

to better constrain the whole life cycle of dust and the links between different dust processes in climate models. This also 

provides caveats in interpreting the impacts of dust on other Earth system processes such as the radiation budget, clouds, 460 

precipitation and atmospheric circulations.  
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Table 1: summary of models and simulations used in this study.  730 

N

o. 
Models 

Ensemble 

members 

Resolutio

n 

(Lat x lon 

x Lev) 

Dust size diameter 

boundaries (μm) 
Dust emission scheme Model references 

a CESM2-CAM 10 
0.9°x1.25

°x 32L 

Three modes:  

Aikten: 0.01-0.1;  

Accumulation: 0.1-1.0;  

Coarse: 1.0-10.0  

Zender et al., (2003) 

Liu et al., (2015) 

Danabasoglu et al., 

(2020) 

b CESM2-CAM-
FV2 

3 
1.9°x2.5°

x32L 

c 
CESM2-

WACCM 
3 

0.9°x 

1.25°x70

L 

d 
CESM2-

WACCM-FV2 
3 

1.9°x2.5x

70L 

e CNRM-ESM2-1 1 
1.4°x1.41

°x90L 

3 bins: 0.01-1.0, 1.0-2.5, 

2.5-20 

Marticorena and 

Bergametti (1995) 

Kok (2011) 

Séférian et al., 

(2019) 

f CanESM5 5 
2.8°x2.8°

x49L 

Bulk concentrations 

 

Marticorena and 

Bergametti (1995) 
Swart et al., (2019) 

g GISS-E2-1-G 5 
2°x2.5°x4

0L 6 bins: <1, 1-2, 2-4, 4-8, 8-

16,16-32 

Cakmur et al., (2006) 

Miller et al., (2006) 

Bauer et al., (2020) 

h GISS-E2-2-G 5 
2°x2.5°x1

02L 
Rind et al., (2020) 

i 
HadGEM3-

GC31-LL 
1 

1.25°x1.8

75°x85L 

6 bins : 0.064-0.2, 0.2-0.63, 

0.63-2.0, 2.0-6.32, 6.32-20, 

20-63 

Marticorena and 

Bergametti (1995) 

Woodward (2001) 

Williams et al., 

(2018) 

j INM-CM4-8 1 
1.5°x2°x2

1L 
Bulk concentration Prescribed 

Volodin et al., 

(2018) 

k INM-CM5-0 1 
1.5°x2°x7

3L 
Bulk concentration 

Volodin and kostrykin 

(2016) 

Volodin and 

Gritsun (2018) 

l IPSL-CM6A-LR 4 
1.26°x2.5

°x79L 

1 lognormal modes with  
mass median diameter  
(geometric standard   
deviation): 2.5 (2)  

 

Di Biagio et al. (2020) 
Boucher et al., 

(2020) 

m MIROC-ES2L 2 
4.5°x2.8°

x40L 

10 bins :0.1-0.16, 0.16-

0.25,  
Takemura et al.(2000) 

Hajima et al., 

(2020) 
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0.25-0.40, 0.40-0.63, 0.63-

1.00, 1.00-1.58, 1.58, 2.51, 

2.51-3.98, 3.98-6.31, 6.31-

10 

n MRI-ESM2-0 1 

1.125°x1.

125°x 

80L 

6 bins: 0.2-2, 2-4, 4-6, 6-8, 

8-10, 10-12, 12-20 
Tanaka and Chiba (2005) 

Yukimoto et al., 

(2019) 

o NorESM2-LM 1 
1.875°x 

2.5°x 32L 
Same as CESM2  Zender et al., (2003) 

Seland et al., 

(2020) 

p UKESM1-0-LL 1 
1.25°x1.8

75°x85L 

6 bins :0.064-0.2, 0.2-0.63, 

0.63-2.0, 2.0-6.32, 6.32-20, 

20-63 

Marticorena and 

Bergametti (1995) 

Woodward (2001) 

 

Senior et al., 

(2020) 

 

MERRA2  
0.5°x0.62

5°x72L 

5 bins: 0.2-2, 2-3.6, 3.6-6, 

6-12, 12-20 
Ginoux et al., (2001) 

Randles at al., 

(2017) 

CAMS  
0.75°x0.7

5°x60L 

3 bins: 0.06-1.1, 1.1-

1.8,1.8-40 
Ginoux et al., (2001) 

Inness et al., 

(2019) 
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Table 2: Global total budgets for dust emission, deposition and burden. Also shown are dust lifetime and global annual mean 

DOD.  

 Emission 
(Tg yr-1) 

Total 
deposition 
(Tg yr-1) 

Dry deposition 
(Tg y-1) 

Wet deposition 
(Tg yr-1) 

Bur
den 
(Tg) 

Lifetime 
(days) 

DOD 
(#) 

Tota
l 

Landa Totalb landc Totald Lande 

CESM2 2238 2150 1606 (80) 782 (36) 659 (82) 1369 (64) 947 (69) 27 4.6 0.027 

CESM2-FV2 2577 2133 1542 (72) 768 (36) 626 (82) 1366 (64) 917 (67) 26 4.4 0.025 

CESM2-WACCM 2210 2100 1578 (75) 769 (37) 649 (84) 1341 (63) 929 (69) 27 4.7 0.026 

CESM2-WACCM-

FV2 

7050 5835 4553 (78) 2202 (38) 1794 (81) 3633 (62) 2351 (65) 74 4.6 0.073 

CNRM-ESM2-1 2655 2424 1926 (79) 1672 (68) 1415 (85) 753 (32) 511 (68) 14 2.1 0.011 

CanESM5 3274 2381 2082 (87) 2056 (86) 1830 (89) 325 (14) 252 (77) 10 1.5 0.027 

GISS-E2-1-G 1639 1586 1234 (78) 1055 (67) 924 (88) 531 (33) 311 (59) 23 5.3 0.023 

GISS-E2-2-G 1560 1510 1133 (75) 1022 (68) 880 (86) 488 (32) 253 (52) 28 6.8 0.028 

HadGEM3-GC31-LL 3255 3251 2912 (89) 2700 (83) 2591 (96) 551 (17) 321 (58) 14 3.4 0.016 

INM-CM4-8 1374 1349 923 (68) 851 (63) 654 (77) 498 (32) 269 (54)   0.033 

INM-CM5-0 1414 1385 936 (68) 865 (62) 660 (76) 520 (32) 276 (53)   0.034 

IPSL-CM6A-LR        21  0.033 

MIROC-ES2L 7571 5852 5003 (85) 4978 (85) 4451 (89) 902 (15) 552 (61) 31 1.9 0.045 

MRI-ESM2-0 5725 5473 4512 (82) 3575 (65) 3253 (91) 1898 (35) 1259 (66) 27 1.8 0.027 

NorESM2-LM 7092       9  0.030 

UKESM1-0-LL 7453 7443 6923 (93) 6518 (88) 6288 (96) 925 (12 635 (69) 18 0.87 0.011 

AMIP MEM 3472 3201 2594 (81) 2123 (66) 1895 (89) 1078 (34) 699 (65) 25 2.8 0.029 

CAMS 1624 6598 5119 (78) 4548 (69) 4069 (89) 2050 (31) 1050 (51) 12 0.66 0.019 

MERRA2 1594 1607 1155 (72) 1123 (70) 930 (83) 485 (30) 225 (46) 23 5.2 0.030 

a. Numbers in brackets are percentages of total depositions to land relative to global total (dry + wet) depositions 
b. Numbers in brackets are percentages of total dry depositions relative to global total (dry + wet) depositions 735 
c. Numbers in brackets are percentages of total dry depositions to land relative to global total dry depositions 
d. Numbers in brackets are percentages of total wet depositions relative to global total (dry + wet) depositions 
e. Numbers in brackets are percentages of total wet depositions relative to global total wet depositions  
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740 

 741 
Figure 1: The CMIP6 AMIP MEM-simulated 2005-2014 annual mean dust emission (g m-2 yr-1) 742 
climatology overlaid by boxes used to define major dust emission source regions. The coloured symbols 743 
denote groupings of observations by different regions following Kok et. al., (2021).744 

745 



 22 

 
Figure 2: The CMIP6 AMIP models’ simulated global annual mean (2005-2014) dust emission (g m-2 s-1) climatology. The 
numbers on the top right of each panel denote the global total dust emission budget (Tg yr-1).  
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Figure 3: Intercomparison of 2005-2014 annual mean dust emissions between models and reanalyses. Maps show the annual 750 
mean dust emissions (g m-2 yr-1) from (a) AMIP MEM, (b) CAMS and (c) MERRA2. The numbers on the top right of each 
panel denote the global total dust emission budget (Tg yr-1). The global annual total dust emission budgets (d; Pg yr-1) and the 
fraction of total dust emission areas relative to the global surface area (fe; %) are shown for each individual model as well as 
for the AMIP MEM, CAMS and MERRA2. The contributions of major dust source regions are coloured out in (ed), where the 
percentage contributions of the first five largest source regions are given at the centres of each coloured bars. 755 
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Figure 4: Normalised seasonal cycles of dust emissions over the eight dust source regions. Dashed curves represent individual 
models, while the AMIP MEM is shown in solid black. Also shown are results from CAMS (solid green) and MERRA2 (solid 
blue). The absolute dust emission seasonal cycles are included in Supplementary Figure S2S1. 
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 760 
Figure 5: The dominant driver of dust emission and its relative importance (scaled to 0-1) in (a-k) models and (l) CAMS 
reanalysis. Purple for precipitation, blue for surface wind speed, and brown for bare soil fraction. Data used for regressions are 
30 years (1985-2014) for models and 10 years (2005-2014) for CAMS due to data availability. Surface wind speed and 
precipitation in panel (l) are taken from ERA5. 



 26 

 765 
Figure 6: Normalised relative importance (left axis) of the three major dust emission drivers throughout the year over the eight 
major source regions in the MEM. Purple for precipitation, blue for surface wind speed, and brown for bare soil fraction. The 
black curves are AMIP MEM (models in Figure 45) seasonal cycles of dust emissions (right axis; mg m-2 day-1). 
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Figure 7: Intercomparison of 2005-2014 annual mean dust mass loading (mg m-2) between (a) AMIP MEM, (b) CAMS and 770 
(c) MERRA2. The numbers on the top right of each panel denote the global total dust burden (Tg). Maps for individual models 
can be found in Supplementary Figure S3. (d) Global total dust burden from each individual model as well as those of (a-c): 
boxes denote the 10th-90th percentiles of the annual variability; red pluses denote outliers that are outside 1.5 times of annual 
standard deviation. The vertical pink shading represents the 10th-90th percentiles of the multimodal spread. Also shown are the 
meridionally-averaged DOD over (e) the Africa-Atlantic region (0-35N, 60W-0W; box in (c)) in June-July-August and (f) the 775 
Asia-Pacific region (10-40N, 100E-150E; box in (c))) in April-May-June. 
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Figure 8: Intercomparison of 2005-2014 mean of annual total (dry + wet) dust deposition (left; g m-2 yr-1) and the ratio of wet-
to-total depositions (right; %). Top row for AMIP MEM, middle for CAMS and bottom for MERRA2. The numbers on the 
top right of each panel denote the global total dust deposition flux (Tg yr-1) and the fraction of global wet-to-total dust 780 
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depositions (%). 

 
Figure 9: Scatterplots of annual mean total dust deposition flux at ground stations between (a) MEERA2 and CAMS, (b) AMIP 
MEM and Observations, (c) CAMS and observations, and (d) MERRA2 and observations. The stations are marked with 
different styles and colours for different locations (cf. Figure 1). The correlation coefficients and root mean square errors 785 
(RMSE) are calculated in log space. The 1:1 (solid) and 1:10/10:1 (dotted) lines are plotted for reference. The scatter plots 
between each individual models and the observations can be found in Supplementary Figure S8.
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Figure 10: Scatterplots of (a) global annual mean total dust burdens (Tg) vs. annual total dust deposition (Pg yr-1), and global 
dust lifetime (days) vs. (b) the ratio of global dry-to-total deposition (%), (c) total dry depositions (Pg yr-1), and (d) total wet 790 
depositions (Pg yr-1). Model colour codes are the same as in other figures, along with CAMS (green cross) and MERRA2 (blue 
cross). The AMIP multi-model mean and spread (10th-90th percentiles) are shown by the black pluses. The dotted slope lines 
in (a) denote dust lifetime intervals (days). The solid slope lines in (b) and (c) are the linear fitting between X and Y axis using 
all data points. All results shown are 2005-2014 annual mean. 
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 795 
Figure 11: Intercomparison of 2005-2014 annual mean AOD from (a) FMI merged satellite retrievals, (b) CAMS, (c) 
MERRA2 and (d) AMIP MEM. (e-g) show the density (10-4) scatter plots of observation/reanalyses (a-c; y-axes) vs. AMIP 
MEM (d; x-axes): the black lines are the 1:1 correspondence while the red lines are the linear fitting (R2 and the regression 
equation given at top left corners). (h) is a summary of the performance of each individual model measured by the spatial 
correlation (R2, X-axis) between each individual model and observation/reanalyses. The Y-axes do not have any physical 800 
meaning, and is used to make the plot readable. Models are shown by letters (cf. Table 1). The red vertical bars denote where 
the AMIP MEM stands. The blue vertical bar shows the spatial R2 between CAMS and FMI. Similarly, orange bars for 
MERRA2 vs. FMI, and purple for CAMS vs. MERRA2. 
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Figure 12: The CMIP6 AMIP models’ simulated global annual mean (2005-2014) DOD climatology. The numbers on the top 805 
right of each panel denote the global means. 
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Figure 13: Intercomparison of 2005-2014 annual mean DOD from (a) MIDAS, (b) CAMS, (c) MERRA2 and (d) AMIP MEM. 
the black box in (a) denotes the region of dust accumulation along the southern slope of the Himalayas. (e-g) show the density 810 
(10-4) scatter plots of observation/reanalyses (a-c; y-axes) vs. AMIP MEM (d; x-axes): the black lines are the 1:1 
correspondence while the red lines are the linear fitting (R2 and the regression equation given at top left corners). (h) is a 
summary of the performance of each individual model measured by the spatial R2 (X-axis) between each individual model and 
observation/reanalyses. Models are shown by letters (cf. Table 1). The red vertical bars denote where the AMIP MEM stands. 
The blue vertical bar shows the spatial R2 between CAMS and MIDAS. Similarly, orange bars for MERRA2 vs. MIDAS, and 815 
purple for CAMS vs. MERRA2. 
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Figure 14: (a-c) The frequency (Y-axis in absolute terms) distribution of models to observation/reanalyses DOD differences 
(X-axis) in three categories, sampled by a size bin of 0.005. Solid green curves are AMIP MEM minus CAMS, solid blue 
curves for AMIP MEM minus MERRA2, and solid purple curves for AMIP MEM minus MIDAS. The dashed vertical lines 820 
denote the mean of the distributions. The dashed curves represent individual models minus MIDAS. The distribution is 
calculated using 10 years (2005-2014) of monthly mean data from all grid cells that lie in the corresponding DOD category. 
The DOD categories refer to AMIP MEM and individual models where applicable. Negative values indicate a model 
underestimation of DOD. (d) zonal mean DOD profiles (curves; grey shading for 10th -90tth percentiles of multi-model spread) 
and regional mean distributions (error-bars for 10th -90tth percentile spreads and crosses in the middle for mean values of 2005-825 
2014 annual mean) over the eight dust source regions. 
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Figure 15: Seasonal cycles of DOD over the eight dust source regions. Dashed curves represent individual models, with the 
AMIP MEM in solid black. Dotted black lines show the AMIP MEM dust emission. Also shown are results from CAMS (solid 
green), MERRA2 (solid blue) and MIDAS (solid purple). Each curve is normalized against its minimum and maximum. The 830 
absolute DOD seasonal cycles are included in Supplementary Figure S10. 


