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Abstract 20 

Quantifying the dust optical depth (DOD) and its uncertainty across spatiotemporal scales is key to 21 

understanding and constraining the dust cycle and its interactions with the Earth System. This study 22 

quantifies the DOD along with its monthly and year-to-year variability between 2003 and 2017 at 23 

global and regional levels based on the MIDAS (ModIs Dust AeroSol) dataset, which combines 24 

MODIS-Aqua retrievals and MERRA-2 reanalysis products. We also describe the annual and 25 

seasonal geographical distributions of DOD across the main dust source regions and transport 26 

pathways. MIDAS provides columnar mid-visible (550 nm) DOD at fine spatial resolution (0.1° x 27 

0.1°), expanding the current observational capabilities for monitoring the highly variable 28 

spatiotemporal features of the dust burden. We obtain a global DOD of 0.032 ± 0.003 – approximately 29 

a quarter (23.4% ± 2.4%) of the global aerosol optical depth (AOD) – with about one order of 30 

magnitude more DOD in the northern hemisphere (0.056 ± 0.004; 31.8% ± 2.7%) than in the southern 31 

hemisphere (0.008 ± 0.001; 8.2% ± 1.1%) and about 3.5 times more DOD over land (0.070 ± 0.005) 32 

than over ocean (0.019 ± 0.002). The northern hemisphere monthly DOD is highly correlated with 33 

the corresponding monthly AOD (R2=0.94) and contributes 20% to 48% of it, both indicating a 34 

dominant dust contribution. In contrast, the contribution of dust to the monthly AOD does not exceed 35 

17% in the southern hemisphere, although the uncertainty in this region is larger. Among the major 36 

dust sources of the planet, the maximum DODs (~1.2) are recorded in the Bodélé Depression of the 37 



2 

 

northern Lake Chad Basin, whereas moderate-to-high intensities are encountered in the Western 38 

Sahara (boreal summer), along the eastern parts of the Middle East (boreal summer) and in the 39 

Taklamakan Desert (spring). Over oceans, major long-range dust transport is observed primarily 40 

along the Tropical Atlantic (intensified during boreal summer) and secondarily in the North Pacific 41 

(intensified during boreal spring). Our calculated global and regional averages and associated 42 

uncertainties are consistent with some but not all recent observationally based studies. Our work 43 

provides a simple, yet flexible method to estimate consistent uncertainties across spatiotemporal 44 

scales, which will enhance the use of the MIDAS dataset in a variety of future studies.   45 

 46 

1. Introduction 47 

Mineral dust particles are emitted throughout the year across the arid and semi-arid regions of the 48 

planet, when winds exceed a threshold velocity mainly determined by soil texture, soil moisture, and 49 

surface roughness. While dust aerosols have mainly a natural origin, the contribution of 50 

anthropogenic land use is estimated to be between 10% and 25 % (Tegen et al. 2004; Stanelle et al., 51 

2014; Ginoux et al., 2012). Dust is mobilized by microscale to synoptic scale phenomena, from dust 52 

devils developed under strong surface heating (Koch and Renno, 2005), to “haboobs” formed by 53 

intense cold-pool downdrafts related to deep moist convection (Knippertz et al., 2007), to synoptic 54 

patterns associated with intensified pressure gradients (Klose et al., 2010) and low-level jets (LLJ; 55 

Fiedler et al., 2013). Meteorology also plays a key role in the dust transport over maritime areas taking 56 

place mainly across the Tropical Atlantic Ocean (Prospero and Mayol-Bracero, 2013; Yu et al., 2015), 57 

the northern Pacific Ocean (Husar et al., 2001), the Mediterranean (Flaounas et al., 2015; Gkikas et 58 

al., 2015), the Arabian Sea (Ramaswamy et al., 2017) and the southern Atlantic Ocean (Gasso and 59 

Stein, 2007). Dust perturbs the radiation budget through direct (Sokolik and Toon, 1996), semi-direct 60 

(Huang et al., 2006) and indirect (Haywood and Bucher, 2000) processes, leading to impacts upon 61 

weather (Pérez et al., 2006; Gkikas et al., 2018; Gkikas et al., 2019) and climate (Lambert et al., 2013; 62 

Nabat et al., 2015). Upon deposition, nutrient-rich dust particles can increase the productivity of 63 

oceanic waters (Jickells et al., 2005) and terrestrial ecosystems (Okin et al., 2004) and perturb the 64 

carbon cycle (Jickells et al., 2014). Dust has been associated with epidemics of meningococcal 65 

meningitis in the African Sahel (Pérez García-Pando et al., 2014a, b) and with air quality degradation 66 

in urban areas (Kanakidou et al., 2011) causing respiratory (Kanatani et al., 2010) and cardiovascular 67 

(Du et al., 2016) disease when the population is exposed to high dust concentrations (Querol et al., 68 

2019). Other socio-economic sectors can be regionally affected by dust storms (Middleton, 2017), 69 

including transportation (Weinzierl et al., 2012), agriculture (Stefanski and Sivakumar, 2009) and 70 

solar energy production (Kosmopoulos et al., 2018).  71 



3 

 

Satellite measurements and numerical simulations have repeatedly shown the remarkable contrast 72 

in dust load between the two hemispheres. The substantially higher dust load in the N. Hemisphere 73 

is associated to the wider deserts extending across the so-called “dust belt” (Prospero et al., 2002; 74 

Ginoux et al., 2012) in contrast to the smaller sources in Australia, South Africa and South America. 75 

At global scale, most of the entrained dust loads in the atmosphere originate from tropical and sub-76 

tropical arid regions; yet, it is estimated that up to 5% of the global dust budget consists of particles 77 

emitted from high-latitude sources (Bullard and Austin, 2011; Bullard et al., 2016). Given the key 78 

role of dust aerosols in the Earth system it is imperative to monitor and understand the global dust 79 

cycle along with its multi-scale spatiotemporal variability over long time periods and fine spatial 80 

resolution. This task can be fulfilled to a certain degree using contemporary satellite instruments 81 

providing accurate retrievals and global coverage over extended time periods. With this approach, 82 

one of the key challenges is to discriminate dust from other aerosols. Several studies have combined 83 

AOD and aerosol index (AI) (e.g., Middleton and Goudie, 2001; Prospero et al., 2002) or AOD, single 84 

scattering albedo (SSA) and Ångström exponent (AE) (Ginoux et al., 2012) to identify the most active 85 

dust sources worldwide. Other studies have focused on the dust load and its variability in specific 86 

regions such as the Atlantic Ocean and the Arabian Sea (Peyridieu et al., 2013), the Sistan basin 87 

(Rashki et al., 2015), the Mediterranean (Gkikas et al., 2016), Europe and North Africa (Marinou et 88 

al., 2017) and east Asia (Proestakis et al., 2018), among others. Liu et al. (2008) described the three-89 

dimensional structure of dust aerosols at global scale based on CALIOP vertically resolved retrievals 90 

acquired during the first operational year of the CALIPSO satellite mission. A more advanced 91 

approach has been introduced by Amiridis et al. (2013) and Marinou et al. (2017), who applied a 92 

more realistic lidar ratio for the Saharan dust and a series of quality filters on the CALIOP vertical 93 

profiles, in order to provide information about the vertical structure of dust layers at global scale and 94 

coarse resolution in the LIVAS dataset (Amiridis et al., 2015). Ridley et al. (2016) quantified the 95 

global average DOD and its uncertainty for the period 2004-2008 based on AOD retrievals from 96 

passive spaceborne sensors (MODIS, MISR), ground-based (AERONET) and shipborne (MAN) 97 

measurements from sun-photometers, and numerical simulations. Voss and Evan (2020) provided a 98 

long-term DOD climatology over the Tropics and mid-latitudes at a coarse spatial resolution (1° x 99 

1°) based on MODIS and AVHRR observations, where DOD was estimated based on AOD, SSA and 100 

AE over land following Ginoux et al. (2012) and AOD, fine and coarse AOD (AERONET) and 101 

MERRA-2 winds over ocean. Based on vertically-resolved CALIOP retrievals and columnar MODIS 102 

optical properties, Song et al. (2021) provided a long-term 4D global dust optical depth dataset, 103 

excluding the polar regions, over the period 2007 – 2019. In their approach, they took advantage of 104 

spaceborne observations that can be used for the discrimination/identification of dust aerosols 105 

characterized by their aspherical shape, coarse size and absorption.      106 
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Our study provides a global and regional quantification and description of the DOD based on the 107 

new ModIs Dust AeroSol (MIDAS) dataset (Gkikas et al., 2021). The powerful and innovative 108 

elements of the MIDAS DOD dataset are the: (i) daily availability and fine spatial resolution (0.1° x 109 

0.1°), (ii) full global coverage including the sources and downwind areas (both over land and sea), 110 

(iii) 15-year temporal range (2003 – 2017) using the most updated MODIS data collection, (iv) grid-111 

cell level uncertainty quantification. In this contribution, we first describe the annual and seasonal 112 

geographical distribution of DOD across the main dust source regions and transport pathways 113 

(Section 4.1). We then quantify the average DOD and its monthly and year-to-year variability at 114 

global, hemispherical and regional levels, along with its fractional contribution to the AOD (Section 115 

4.2). We summarize the main findings in Section 5.          116 

2. ModIs Dust AeroSol (MIDAS) dataset 117 

Our study is based on the MIDAS global fine resolution dataset described in detail in Gkikas et 118 

al. (2021). We analyse the DOD at 550 nm, at 0.1° x 0.1° spatial resolution, between 2003 to 2017. 119 

The MIDAS DOD results from the combination of the quality-filtered MODIS aerosol optical depth 120 

(AOD, Collection 6.1, Level 2; Levy et al., 2013) and the MERRA-2 (Modern-Era Retrospective 121 

Analysis for Research and Applications, version 2; Gelaro et al., 2017) fraction of AOD that is due 122 

to dust (MDF). In Gkikas et al. (2021), the MDF was evaluated against the dust fraction obtained 123 

from quality-assured dust and non-dust CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization; 124 

Winker et al., 2009) profiles, available from the LIVAS database (Amiridis et al., 2015; Marinou et 125 

al., 2017; Proestakis et al., 2018). The MDF compares well with the LIVAS dust fraction over the 126 

dust-abundant areas extending across the NH dust belt, with maximum underestimations of 10 % in 127 

Asian deserts. The agreement is more limited in North America and the Southern Hemisphere 128 

(Figures 1 and 2 in Gkikas et al., 2021). Overall, the MIDAS DOD is well correlated with AERONET 129 

dust-dominant retrievals (R=0.89 at global scale) and the absolute biases are mainly below 0.12 at 130 

stations near sources (Figures 3 and 4 in Gkikas et al., 2021). The MIDAS DOD dataset was further 131 

verified against the LIVAS DOD and compared with MERRA-2 DODs (Figure 5 in Gkikas et al., 132 

2021). Among the three datasets, there is good agreement on the monthly variability of the global and 133 

hemispherical DODs as well as on their long-term averages (Figure 6 and Table 1 in Gkikas et al., 134 

2021). Moreover, the annual and seasonal DOD patterns are broadly similar in the three datasets 135 

throughout the period 2007 – 2015. Nevertheless, regionally differences are found due to the different 136 

techniques (passive and active remote sensing, numerical simulations) applied for the DOD 137 

derivation.   138 

 139 

 140 
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3. Spatiotemporal averaging and propagation of grid-cell level uncertainties 141 

In section 4.2 we provide DOD estimates that are averaged in space (regionally and globally) and 142 

in time (over months, seasons and years) along with their respective uncertainties. Averaging is 143 

performed according to the upper branch of Figure 5 in Levy et al. (2009), i.e. spatial averaging is 144 

performed after grid cell temporal averaging for any of the timescales considered. The uncertainties 145 

of the DOD averages at the different spatiotemporal scales are based on the propagation of the daily 146 

grid cell uncertainties provided within the MIDAS dataset and presented in Gkikas et al. (2021). In 147 

short, the daily grid cell uncertainties combine the uncertainties of the MODIS AOD and the 148 

MERRA-2 MDF with respect to AERONET and LIVAS, respectively. The former is based on linear 149 

equations expressing the uncertainty with respect to AERONET AOD over ocean (Levy et al., 2013) 150 

and land (Levy et al., 2010; Sayer et al. 2013) with updated coefficients for C061 data depending on 151 

vegetated and arid surface types (see equations 4 to 7 in Gkikas et al., 2021). The latter is based on a 152 

quartic (fourth degree) polynomial equation expressing the uncertainty with respect to the LIVAS 153 

dust fraction (see equation 8 in Gkikas et al., 2021). 154 

In order to estimate the uncertainties of the spatiotemporal averages we first assume that each of 155 

the daily grid cell uncertainties are composed of (1) a fraction that is completely random in time and 156 

space, (2) a fraction that is systematic (correlated) in time and random in space and (3) a fraction that 157 

is systematic (correlated) in space and random in time. Our framework also assumes that the fraction 158 

of the daily grid cell uncertainty that is correlated both in space and time, for instance an instrument 159 

bias, is very small and therefore neglected. Under this framework, the propagation of uncertainty 160 

fraction (1) is negligible across the spatiotemporal scales considered, the propagation of uncertainty 161 

fraction (2) depends upon the size of the domain considered but is negligible at global scale and across 162 

most of the regional domains considered in this study, and propagation of fraction (3) accounts for 163 

most of the total average uncertainty. Since we cannot know fractions (1), (2) and (3) and (1) and (2) 164 

are negligible or small, we assume that (3) represents 100 % of the uncertainty, i.e the grid cell 165 

uncertainty is systematic (correlated) in space and random in time, to provide an upper limit on the 166 

uncertainty. In addition, we also take into account the sampling uncertainty when temporally 167 

averaging over each grid cell using the standard error, i.e., we take the standard deviation divided by 168 

the square root of the number of measurements.  169 

In practice, when averaging the daily values for every grid cell 𝑖 over months, seasons, or years, 170 

the uncertainty 𝜎′𝑖 is obtained by adding in quadrature the daily uncertainties 𝜎𝑁𝑖

2 and dividing by the 171 

number of available daily measurements 𝑁𝑖: 172 

𝜎′𝑖 =
√𝜎𝑖,1

2 +𝜎𝑖,2
2 +⋯+𝜎𝑁𝑖

2

𝑁𝑖
 (Eq. 1) 173 

 174 
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 In addition, we add in quadrature 𝜎′𝑖 and the standard error 𝑆𝐸𝑖 to obtain the total uncertainty of 175 

the temporal average 𝜎𝑖 for every grid cell: 176 

 177 

𝜎𝑖 = √𝜎′𝑖
2 + 𝑆𝐸𝑖

2 (Eq. 2) 178 

𝑆𝐸𝑖 =
𝑆𝐷𝑖

√𝑁𝑖
 (Eq. 3) 179 

 180 

where 𝑆𝐷𝑖 is the standard deviation of the daily values in grid cell 𝑖. The standard error measures how 181 

far the sample could be from the true population mean. 182 

Finally, when spatially averaging globally or regionally, under the assumption that the errors are 183 

correlated across space, the overall uncertainty is calculated by averaging 𝜎𝑖 across the 𝑁𝑗 grid cells 184 

in spatial domain 𝑗 weighted by the grid cell area fraction with respect to the total area (i.e., grid cell 185 

/ total area = wi) with available retrievals: 186 

 187 

𝜎𝑗 = ∑ 𝑤𝑖 ∗ 𝜎𝑖
𝑁𝑗

𝑖=1
(Eq.4)  188 

 189 

4. Results  190 

 191 

Our analysis is divided in two main parts. In the first one (Section 4.1) we assess the annual and 192 

seasonal climatological DOD maps for nine distinct regions. In the second one (Section 4.2), 193 

emphasis is given on the quantification of DOD averages along with their monthly and interannual 194 

variability of the fractional contribution to the AOD, from a global to hemispherical level as well as 195 

for specific regional domains.   196 

 197 

4.1 Annual and seasonal geographical distributions of DOD  198 

 199 

4.1.1 North Africa, Tropical Atlantic Ocean and Mediterranean  200 

 201 

According to the long-term average map (Fig. 1), the maximum DODs (up to 1.2) are recorded in 202 

the Bodélé depression, which is considered the most active individual dust source of the planet 203 

(Washington et al., 2003; Koren et al., 2006; Ginoux et al., 2012). Over the area, the prevailing strong 204 

winds are intensified further between the Tibesti mountains and the Ennedi ridge (Washington et al., 205 

2009) forming a low-level jet (Washington and Todd, 2005). This dominant wind pattern, affected 206 

by the local topography (Washington et al., 2009), acts as the driving force mobilizing mineral 207 

particles from arid and erodible soils of the region (Tegen et al., 2006). Under these favorable 208 
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conditions, dust aerosols are easily uplifted and accumulated in the atmosphere thus causing the very 209 

high DODs (> 0.5) observed in the broader area (Chad, Niger). Throughout the year, the high DOD 210 

levels are quite persistent exhibiting, however, a seasonal variation with more intense loads recorded 211 

during DJF (Fig. S1-i) and MAM (Fig. S1-ii) following the annual cycle of source activation 212 

(Washington et al., 2009). The second hotspot in N. Africa is situated between the northern parts of 213 

Nigeria and the southern parts of Niger with annual DODs reaching up to 0.7 (Fig. 1) while on 214 

seasonal basis vary from 0.4 (SON; Fig. S1-iv) to 0.8 (JJA; Fig. S1-iii). MIDAS DODs match well 215 

with those presented by Rajot et al. (2008), who relied on ground-based sunphotometric 216 

measurements of AOD obtained at the Banizoumbou AERONET site. Very high DODs are also 217 

evident along the coasts of the Gulf of Guinea, which may be unrealistic considering that dust aerosols 218 

are mainly transported there and are mixed with anthropogenic and biomass burning (Knippertz et 219 

al., 2015).  Along this area of high DODs, MERRA-2 also overestimates the dust fraction compared 220 

to LIVAS (Gkikas et al., 2021) thus resulting in higher intensities according to the applied 221 

methodology (Section 2). Moreover, the temporal availability of DODs in the region is very limited 222 

(<10%; Fig. 8-c in Gkikas et al., 2021), the DOD uncertainty is large and AOD outliers, either realistic 223 

or cloud contaminated, can yield exceptional high DODs in this complex environment where aerosol 224 

and clouds are spatially correlated (Andrew Sayer, personal communication). This abrupt reduction 225 

of DOD levels, from inland to the nearby maritime environment, reveals an artifact of the MIDAS 226 

dataset mainly introduced by the raw MODIS AOD retrievals, which are obtained by retrieval 227 

algorithms built on different assumptions/considerations depending on the underlying surface type.          228 

Across the Sahara Desert, there is a distinct longitudinal contrast with more intense dust loads in 229 

western North Africa than in eastern North Africa (Fig. 1). In the former sector, the DODs range 230 

mainly from 0.3 to 0.6 while over the eastern parts of the Sahara the corresponding limits are bounded 231 

between 0.1 and 0.3 without revealing significant intra-annual variation. During MAM (Fig. S1-ii), 232 

along the southern Sahel, the activation of dust sources results in DODs which locally can exceed 233 

0.8, while during boreal summer (Fig. S1-iii) a vast area of the western Sahara is under the impact of 234 

heavy dust loadings (DOD > 0.5). According to Ginoux et al. (2012), in the former region, dust is 235 

mainly produced by agricultural activities (cultivation, overgrazing) disturbing soils in which alluvial 236 

sediments have been accumulated. Northwards, dust has natural origin and the accumulation of 237 

mineral particles is favored by the development of the Saharan Heat Low (SHL) affecting also the 238 

prevailing airflow (harmattan winds) as well as the West African Monsoon (WAM) (Schepanski et 239 

al., 2017). Under these meteorological conditions, several dynamic processes, from microscale to 240 

mesoscale, are taking place triggering dust emission (Knippertz and Todd, 2012) from highly active 241 

sources (Schepanski et al., 2007).  242 
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Under the impact of the trade winds, Saharan dust can travel across the tropical Atlantic Ocean 243 

reaching the Caribbean Sea, the southern United States and northeastern South America (Prospero, 244 

1999; Prospero et al., 2014). The signal of this long-range transport is evident on the annual 245 

climatological pattern (Fig. 1) with DODs up to 0.6 (off the western Saharan coasts) fading down to 246 

0.1 at the maximum distance. Within the course of the year, the Saharan dust plume varies in terms 247 

of intensity, range and latitudinal position, as it is depicted in Figure S1. During boreal summer (Fig. 248 

S1-iii), the corridor of the transatlantic dust transport is bounded between 10° N and 20° N latitudes 249 

whereas both the intensity (DODs up to 0.6) and the range are maximized. During boreal winter (Fig. 250 

S1-i), the dust zone migrates southwards (between Equator and 10° N) while maximum (up to 0.6) 251 

and considerable (0.1-0.2) DODs are observed over the Gulf of Guinea and mid-Atlantic (45° W), 252 

respectively. Between the transition seasons (Fig. S1-ii, S1-iv), dust loads are stronger in MAM 253 

(~0.45), mainly residing within 5° N and 20° N latitudes, in contrast to SON (~0.3) when are shifted 254 

northwards (10° N and 25° N). According to the existing literature, several factors modulate the 255 

westwards propagation of dust plumes, originating in the western Sahara and the Bodélé Depression, 256 

over the tropical Atlantic. For instance, the south-north displacement of the Saharan plumes is driven 257 

by the location of the Intertropical Convergence Zone (ITCZ) and the disturbances of the African 258 

easterly jet (Knippertz and Todd, 2012; Doherty et al., 2012). Teleconnection patterns, such as the El 259 

Niño–Southern Oscillation (ENSO; Prospero and Lamb, 2003), the North Atlantic Oscillation (NAO; 260 

Ginoux et al., 2004) and the North African Dipole Index (NAFDI; Rodríguez et al., 2015) have been 261 

also studied in order to interpret the decadal variations of dust concentrations over the Atlantic. 262 

Likewise, the vegetation coverage across the Sahel as well as the wind speeds, determined by the 263 

prevailing atmospheric circulation, over the Sahara play a key role on the amount of the emitted dust 264 

particles.  265 

Due to the vicinity of the largest deserts of the planet, the Mediterranean is affected by dust 266 

outbreaks throughout the year (Gkikas et al., 2013; 2016; Marinou et al., 2017). Mineral particles 267 

originating primarily from north African and secondarily from Middle Eastern deserts are transported 268 

towards the Mediterranean mainly under the prevalence of cyclonic systems (Gkikas et al., 2015). 269 

The intensity of dust loads decreases for increasing latitudes, forming a distinct south-north gradient 270 

with DODs up to 0.20 between the gulfs of Gabes (Tunisia) and Sidra (Libya), according to the annual 271 

pattern (Fig. 1). Among seasons (Fig. S1), DODs vary on the locations where the maximum levels 272 

are recorded as well as on their magnitude, attributed to the position of the prevailing synoptic systems 273 

(Gkikas et al., 2015). The central and eastern Mediterranean sectors are affected by dust loads mainly 274 

in spring (DODs up to 0.3; Fig. S1-ii) and winter (DODs up to 0.12; Fig. S1-i). In summer (Fig. S1-275 

iii), dust activity is more pronounced in the western parts with optical depths up to 0.18 (Alboran 276 

Sea), while thanks to the fine resolution product, “hotspots” of similar DODs can be identified in the 277 
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southern parts (Andalucia) of Spain. In SON (Fig. S1-iv), dust loads are found in the central 278 

Mediterranean with DODs lower than 0.12 off the Tunisian and Libyan coasts.  279 

 280 

4.1.2 Middle East 281 

 282 

In the Middle East, there is a zone of moderate-to-high DODs (locally up to 0.8) extending from 283 

Mesopotamia to the southern parts of the Saudi Arabia, where one of the largest sand deserts of the 284 

world (Rub’ al Khali) (Hamidi et al., 2013) is situated (Fig. 2). Based on Ginoux et al. (2012), the 285 

origin of mineral particles between Tigris and Euphrates as well as across the Rub’ al Khali Desert is 286 

mainly natural while in the intermediate part (Ad-Dahna Desert) dust accumulation is attributed to 287 

the mixing of anthropogenic and hydrological sources. Slightly higher maximum DODs (up to 0.7; 288 

Fig. 2) are recorded in Oman and particularly between Dhofar and Al Wusta, in contrast to previous 289 

studies (Pease et al., 1998) which have identified the Wahiba Sands area as a major dust source or the 290 

coastal areas of Yemen (Ginoux et al., 2012). On a seasonal basis, the intensity of mineral loads 291 

exhibits a strong variability with minimum DODs (up to 0.4) during DJF (Fig. S2-i) and SON (Fig. 292 

S2-iv) and maximum (up to 1) during the dry period of the year (Figs S2-ii, S2-iii), being in agreement 293 

with the results presented in Yu et al. (2013). More specifically, across the Arabian Peninsula, the 294 

increase in DOD levels is getting evident in boreal spring and it is further intensified during summer 295 

months. Dust storms emanating in Iraq and the eastern parts of Saudi Arabia favor dust transport 296 

towards the Persian Gulf (Gianakopoulou and Toumi, 2012) account for the considerable high DOD 297 

levels (>0.6) found there. Due to convergence of the northern-northernwesterly Shamal winds (Yu et 298 

al., 2016) and the airflow from the subtropical anticyclone, in JJA, mineral particles are travelling at 299 

even longer distances towards the northern Arabian Sea (Ramaswamy et al., 2017), as indicated by 300 

the intense dust loads (DODs up to 0.5; Fig. S2-iii) contributing about half of the AOD (Jin et al., 301 

2018). Likewise, during boreal summer, short-range dust transport takes place off the coasts of Oman 302 

and Yemen (Gulf of Aden). Among seas in the vicinity of the Arabian Peninsula, the most intense 303 

dust loads are observed in the Red Sea, forming a clear latitudinal gradient on annual (Fig. 2) and 304 

summer (Fig. S2-iii) geographical DOD patterns, as it has been noted also in Brindley et al. (2015) 305 

and Banks et al. (2017). Due to its location, the southern sector of the Red Sea receives dust aerosols 306 

either originating from the Republic of Sudan or from the Arabian Peninsula, depending on the zonal 307 

airflow (Banks et al., 2017). Dusty air masses travelling westwards are uplifted when they are 308 

crossing the mountain range in the southwestern Arabian Peninsula and for this reason dust loads 309 

over the southern basin are suspended above 2 km (Banks et al., 2017). On the contrary, low-elevated 310 

dust layers are recorded when winds blow from west, triggering dust emission from the Tokar Gap 311 

(Sudanese coasts) and subsequently dust outflows into the southern Red Sea (Banks et al., 2017).  312 
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 313 

4.1.3 Central and southwest Asia 314 

 315 

Northwards and eastwards of the Caspian Sea, various deserts are situated in the central segments 316 

of the Asian continent. Most part of Turkmenistan is occupied by the Karakum Desert while the 317 

Kyzylkum Desert is located in Uzbekistan. Other arid regions stretch between the Caspian and Aral 318 

Seas (Ustyurt plateau), in the eastern and southern flanks of the Aral Sea (Solonok Desert) and in the 319 

lowlands of western Kazakhstan and southeastern Russia (Ryn Desert) (Elguindi et al., 2016). Based 320 

on our seasonal spatial patterns (Fig. S3), the major dust activity is recorded in the Ustyurt Plateau 321 

(Li and Sokolik, 2018) and in the large lagoon embayment of Garabogazkol (Shen et al., 2016), a gulf 322 

of Turkmenistan dried into a salt-covered playa (Gills, 1996), with minimum (in DJF and SON) and 323 

maximum (in MAM and JJA) DODs equal to ~0.2 and ~0.4, respectively. In the rest of areas, the 324 

corresponding upper limits can reach up to 0.8-0.9, during boreal summer, in localized spots 325 

(Chimboy Lake, Sarygamysh Lake) across the Karakum and Kyzylkum Deserts. In the same season, 326 

moderate dust loadings (DOD up to 0.25) are encountered in the southern Caspian Sea (Elguindi et 327 

al., 2016) as the result of transported mineral particles mainly coming from the sandy deserts of 328 

Turkmenistan (Xi and Sokolik, 2015), under the impact of eastern/southeastern winds (Shen et al., 329 

2016). Since the 1960s, the anthropogenic intervention (agricultural activities, over-irrigation) caused 330 

the retreat of the Aral Sea and the formation of the Aralkum Desert (Saiko and Zonn, 2000; Micklin, 331 

2007) from which large amounts of aeolian dust are emitted and travel distances of hundreds of 332 

kilometers (Indoitu et al., 2015). According to the annual climatological map (Fig. 3), extremely high 333 

DODs (> 1) are found in the southeastern parts of the Aralkum Desert (Fig. 3) which are also 334 

persistent among the seasons (Fig. S3). Nevertheless, these are not trustworthy as it has been 335 

thoroughly discussed in Gkikas et al. (2021) (see Section 4.3.1). 336 

In the Sistan basin, extending between Iran-Pakistan-Afghanistan, the long-term average JJA 337 

DODs can reach up to 1.1 (Figure S3-iii) in the Margo Desert (Afghanistan), due to the frequent 338 

occurrence of dust storms (Middleton, 1996), triggered by the northerly Levar winds, blowing from 339 

June to September (Alizadeh Choobari et al., 2014). These maximum DOD levels are substantially 340 

higher than the annual mean (0.8; Figure 3) as well as against the corresponding averages for the 341 

other seasons. Thanks to the high-resolution MIDAS DOD, we identify the borders of other active 342 

arid regions, surrounded by mountain ranges, such as the Rigestan (Afghanistan), the Balochistan 343 

(Pakistan), the Dasht-e-Kavir (Iran), the Dasht-e-Lut (Iran) and the Jazmurian drainage basin (Iran). 344 

In the aforementioned topographic lows, the magnitude of the dust loads is significantly lower than 345 

those observed in the Margo Desert and can be as large as 0.6 (Balochistan) during hot-dry months 346 

(Figure S3-iii). The presence of absorbing mineral particles, over the area and in the northernmost 347 
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part of the Arabian Sea, is also confirmed by the high AI values, especially in June-July, discussed 348 

by Rashki et al. (2015), who relied on long-term records obtained by the OMI and TOMS spaceborne 349 

sensors. 350 

 351 

4.1.4 Indian subcontinent  352 

  353 

In the Indian subcontinent, the maximum annual DODs (~0.5; Fig. 4) are observed along the Indus 354 

river basin, in the western side of the Thar Desert whereas a branch of gradually decreasing DODs, 355 

along the Indo-Gangetic plain towards eastwards directions, is also evident. Ginoux et al. (2012) 356 

stated that much of dust activity in the Indus river basin is attributed to the suspension of soil particles 357 

originating primarily from agricultural land use and to a lesser extent from the desiccation of 358 

ephemeral water bodies. The strong presence of absorbing coarse particles over the area is further 359 

supported by the coexistence of considerably high Aerosol Index (AI) values (Alam et al., 2011). As 360 

indicated by the seasonal patterns (Fig. S4), the processes regulating the suspended dust loads are 361 

highly variable during the year causing a remarkable temporal variability of DOD, which is low (<0.3) 362 

in DJF and SON, moderate in MAM (<0.5) and maximum in JJA (<0.8). Similar seasonal variability 363 

is evident in the Thar Desert, in agreement with the findings of Proestakis et al. (2018) and Dey and 364 

Di Girolamo (2010), who used vertically-resolved (CALIOP) and multi-angle (MISR) satellite 365 

retrievals, respectively. Nevertheless, our climatological DODs are higher with respect to the 366 

CALIOP corresponding values and the MISR non-spherical AODs, particularly when dust activity 367 

over the area is pronounced. During the pre-monsoon season, westerly to northwesterly winds are 368 

blowing over the Thar Desert mobilizing dust particles which subsequently are advected towards the 369 

Indo-Gangetic basin (Dey et al., 2004; Srivastava et al., 2011). According to our results, between the 370 

Haryana state and the eastern parts of the plain, DODs fade down from ~0.6-0.7 to ~0.1-0.2, forming 371 

a NW-SE gradient (Figs. S4-ii, S4-iii). Such high DODs are attributed to the eastwards propagation 372 

of intense dust storms having a strong signature on the optical, microphysical and radiative properties 373 

derived by AERONET stations operating in the region (Prasad et al., 2007a; Prasad et al., 2007b; Eck 374 

et al., 2010).  375 

 376 

4.1.5 East Asia and North Pacific Ocean  377 

 378 

Northwards of the Tibetan Plateau is located the Tarim Basin (northwest China) in which one of 379 

the largest natural dust source resides, the Taklamakan Desert. This elevated desert area (average 380 

elevation 1.1 km) is surrounded by the Pamir Plateau (average elevation 5.5 km) in its west side, by 381 

the Kunlun Shan range (average elevation 5.5 km) in its southern flanks and by the Tian Shan range 382 
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(average elevation 4.8 km) along its northern boundaries while only in its eastern margin the ground 383 

elevation is low (Ge et al., 2014). DODs are maximized in spring (Fig. S5-ii) yielding values up to 1 384 

along the foothills of the Tian Shan and Kunlun Shan ranges, attributed to the role of the topography 385 

on winds strengthening (Ge et al., 2014). Similar values are recorded in JJA (Fig. S5-iii) but the 386 

geographical distribution reveals that the highest DODs are less widespread in contrast to spring. 387 

Throughout the year, the weaker dust loads are recorded during winter and autumn. Our results are 388 

consistent with relevant studies that rely on active and passive satellite retrievals either of pure dust 389 

load (Proestakis et al., 2018) or AOD (de Leeuw et al., 2018; Sogacheva et al., 2018).  390 

A common feature in the seasonal DOD patterns is the reduction of dust loads’ intensity towards 391 

the interior parts of the Taklamakan Desert, as it has been also documented by Ge et al. (2014), who 392 

utilized MISR retrievals. The high-resolution of the MIDAS DOD dataset provides in detail the 393 

spatial information of these geographical patterns. During spring, similar high DODs to those found 394 

over the Taklamakan Desert are recorded in the Qaidam Basin (northeast side of the Tibetan Plateau), 395 

surrounded by the Atlun, Kunlun, Qilian mountain ranges, attributed to strong downslope winds 396 

causing the erosion of soil particles (Rohrmann et al., 2013) and their entrainment into the 397 

atmosphere. The intensity of dust loads over the Gobi Desert (north China – south Mongolia) hardly 398 

exceeds 0.3 on an annual basis (Fig. 5) while it can reach up to 0.4 during spring (Fig. S5-iii). The 399 

remarkable deviations in dust abundance between Taklamakan and Gobi during springtime are 400 

interpreted by variations in soil characteristics. More specifically, Taklamakan is composed mainly 401 

by fine sand particles in contrast to the rocky soils of the Gobi Desert (Sun et al., 2013). Due to these 402 

differences in soil textures, dust particles from the former desert region can be emitted even with low 403 

wind speeds while they are uplifted at higher elevations in the troposphere, as it has been shown with 404 

MISR stereo observations (Yu et al., 2019) and CALIOP lidar profiles (Proestakis et al., 2018). The 405 

injection of Taklamakan dust particles at higher altitudes increase their residence time inducing also 406 

their entrainment into the upper-level westerly airflow, around at 4 a.m.s.l., both contributing to the 407 

higher potential for long-range transport (Yu et al., 2019), in contrast to Gobi dust, towards the 408 

continental E. Asia and the northern Pacific Ocean. Under the impact of cold fronts, propagating 409 

eastwards (Eguchi et al., 2009) in spring, air masses carrying mineral particles, during the first two 410 

days of dust transport, affect a wide area of China (Yu et al., 2019), from near sources to its eastern 411 

parts, through the Hexi Corridor and the Loess Plateau (DODs ranging from 0.2 to 0.4; Fig. S5-iii). 412 

Subsequently, the Asian dust plumes are suspended over the Yellow Sea, the Korean Peninsula and 413 

further eastwards, in a latitudinal band bounded between the parallels 30°N and 45°, reaching the 414 

west coasts of the United States (Yu et al., 2008). Across this “belt”, where the Trans-pacific dust 415 

transport is taking place, the springtime DODs decrease smoothly from 0.15 to 0.05 (Fig. S5-ii). In 416 

summer (Fig. S5-iii), DODs up to 0.05 are observed between 40° N and 60° N indicating a northwards 417 
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displacement of the Asian dust layers (mainly originating from the Gobi Desert) due to the weakening 418 

and northwards shift of the polar jet streams (Yu et al., 2019). 419 

 420 

4.1.6 North America  421 

 422 

Across N. America, the major dust activity is detected in southwest United States and in northwest 423 

Mexico with annual and seasonal DODs hardly exceeding 0.15, as illustrated in Figures 6 and S6, 424 

respectively. These weak dust load intensities are mainly recorded in the Sonoran and the Mojave 425 

Deserts while lower values are found in the Chihuahuan Desert in which isolated spots (e.g. White 426 

Sands Desert) become visible thanks to the high-resolution of the MIDAS DOD dataset. Low-to-427 

moderate DODs are evident in the Great Plains with local maxima (exceeding 0.2 in spring; Fig. S6-428 

ii) in the Great Salt Lake Desert and in the surrounding area as well as in the Baja Californian Desert 429 

(Mexico; DODs up to 0.14), residing in the western side of the Gulf of California. Our annual spatial 430 

distribution of DOD (Fig. 6) is highly consistent with those of frequency of observation (FoO) of 431 

DOD (Ginoux et al., 2012; Baddock et al., 2016) and AI given by Prospero et al. (2002). Moreover, 432 

the increase of dust loads’ concentration in MAM (Fig. S6-ii), has been also documented by Hand et 433 

al. (2016) and Tong et al. (2017), both relying on aerosol observations acquired at numerous stations 434 

of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. During 435 

springtime, dust emission over the broader area is associated with the transmit of Pacific cold fronts 436 

inducing dust-entraining winds as the result of pressure gradient enhancement (Rivera Rivera et al., 437 

2009). The geomorphological soil characteristics are determinant for dust emission with the most 438 

prominent natural sources being ephemeral and dry lakes (Baddock et al., 2016) while anthropogenic 439 

dust aerosols are mainly emitted in the Great Plains and in the eastern side of the Gulf of California 440 

(Ginoux et al., 2012).   441 

 442 

4.1.7 Australia  443 

  444 

Earlier studies based on unconstrained numerical simulations (Tanaka and Chiba, 2006; Wagener 445 

et al., 2008) have shown that among the desert areas of the S. Hemisphere, the largest contribution of 446 

dust particles arises from Australia. However, a more recent assessment (Kok et al., 2021b) in which 447 

dust models have been constrained by observations revealed that the emitted dust amounts from S. 448 

America are slightly higher than those of Australia. Due to the fairly bright landmasses and the 449 

predominance of weak aerosol loadings, there is minimal contrast between surface and atmosphere 450 

leading to systematic algorithm uncertainties, which can explain the slightly lower land DODs than 451 

those recorded in the surrounding oceanic regions (Fig. 7 and S7). Nevertheless, in the sources as 452 
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well as in areas affected by dust plumes the atmospheric signal becomes evident. In particular, the 453 

highest dust emissions are encountered in the Lake Eyre Basin (LEB; Prospero et al., 2002) composed 454 

by ephemeral lakes, alluvial channels, gibber (stone-covered plains), aeolian sand deposits and 455 

bedrocks (Bullard et al., 2008). Based on the annual climatological pattern (Fig. 7), DODs can locally 456 

exceed 0.2 (in the southern parts) but in general vary between 0.06 and 0.12. From a seasonal 457 

perspective (Fig. S7), the highest DODs (mainly up to 0.18 in the Warburton River estuary, few 458 

exceedances above 0.4 are found in local spots) are recorded during austral summer (DJF; Fig. S7-i) 459 

and spring (SON; Fig. S7-iv). Similar seasonal variation in ground-based sunphotometric 460 

observations at nearby sites (Birdsville, Tinga Tingana), with slightly lower AODs, has been reported 461 

by Mitchell et al. (2017). Southwards of the LEB, three spots of notable DODs (up to 0.2 in SON; 462 

Fig. S7-iv) are identified in the Lakes Gairdner, Torrens and Frome while northeastwards (Lake 463 

Yamma Yamma) and northwards (Simpson Desert) from the basin the suspended dust loads exhibit 464 

optical depths as large as 0.12 during the driest months of the year. Similar maximum DODs are 465 

recorded in the Northern Territory and in the western side of the Great Dividing Range (Queensland) 466 

and in contrast to Ginoux et al. (2012) these levels appear in DJF instead of SON. In the southwestern 467 

coastal parts of the Australian landmass as well as in Riverina (southeast), during austral spring (Fig. 468 

S7-iv) very low DODs are evident associated with anthropogenic dust originating from agricultural 469 

activities (Ginoux et al., 2012). Finally, during the same season, weak signals (DODs up to 0.05) of 470 

dust transport are revealed over the Tasman and Timor Seas attributed to the eastward movement of 471 

cyclonic frontal systems causing the entrainment of mineral particles in air masses that can travel at 472 

long distances (Knight et al., 1995; Choobari et al., 2012). 473 

 474 

4.1.8 South Africa  475 

 476 

Dust activity in S. Africa is mainly related with short-range and short-lived plumes (Vickery et 477 

al., 2013) that are suspended at low tropospheric altitudes (below 600 hPa) due to the predominance 478 

of anticyclonic circulations inhibiting the vertical extension of dust layers (Piketh et al., 1999). 479 

Mineral aerosol loadings are mainly originating from the ephemeral lake basins of the Etosha Pans 480 

(Namibia) and Makgadikgadi Pans (Botswana) and the Namib Desert (Bryant et al., 2007; Vickery 481 

et al., 2013). In the aforementioned source areas, the maximum annual (Figure 8) and seasonal (Figure 482 

S8) DODs are equal to 0.1 and 0.16, respectively. Throughout the year, the increase of DODs in 483 

Etosha and Makgadikgadi Pans is evident primarily in DJF (Figure S8-i) and secondarily in SON 484 

(Figure S8-iv). Our results are consistent with those provided by Ginoux et al. (2012) and Bryant et 485 

al. (2007) for the former region (including also the Kalahari Desert in which very weak dust loads are 486 

recorded), contradictory for the latter one and opposite with the findings of Vickery et al. (2013) for 487 
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both sources. In these arid areas dust emission is linked with lakes’ inundation, characterized by 488 

strong intra-annual variability, playing an important role when different time periods are considered. 489 

However, it must be also taken into account the moderate performance of the MERRA-2 dust portion 490 

with respect to LIVAS in S. Africa as well as in most desert areas of the S. Hemisphere (Gkikas et 491 

al., 2021). Along the Namibian coastline, the deviations of DOD between the high- and low-dust 492 

seasons are small indicating that dust activity remains relatively constant within the course of the year 493 

(Ginoux et al., 2012). Soil particles from salt pans and dry river beds of the Namib Desert are emitted 494 

from aeolian processes related to bergwinds (katabatic winds) blowing in the escarpment, from the 495 

Central Plateau down to the coasts (Eckardt and Kuring, 2005). Dust outflow towards the Southern 496 

Atlantic Ocean, with a SE-NW orientation, it is shown between 18° S and 9° S during austral winter 497 

(DODs up to 0.08; Fig. S8-iii), becoming more evident in SON (Fig. S8-iv), being in agreement with 498 

the geographical distributions provided by Voss and Evan (2020). Such transport is favored by the 499 

propagation of barotropic low-level easterly waves formed between continental high pressure systems 500 

and the semi-permanent South Atlantic anticyclone (Tyson et al., 1996). Finally, weak signals of 501 

DODs are recorded in the croplands north of Cape Town, with annual and DJF DODs not exceeding 502 

0.1.  503 

 504 

4.1.9 South America  505 

 506 

In South America, the most intense dust loads are encountered in the Patagonia Desert where the 507 

most active dust sources are situated in the river basins of the Rio Negro and Chubut provinces and 508 

in its southern end. Among these areas, higher DODs (up to 0.16 in DJF; Figure S9-i) are found along 509 

the Rio Negro attributed to anthropogenic dust originating from overgrazing, irrigation and oil 510 

prospecting (McConnell, et al., 2007; Mazzonia and Vazquez, 2009). In southern latitudes, mineral 511 

particles originate from glacier washout plains (Hernández et al., 2008). Under favorable 512 

meteorological conditions, aeolian dust from Patagonia travels either towards the southern Atlantic 513 

Ocean, contributing to iron concentrations and marine biological productivity in the surface waters 514 

(Johnson et al., 2011), or towards the Antarctica peninsula (Gassó et al., 2010), as it has been found 515 

in ice core samples (Basile et al., 1997). Both transport pathways are not visible in our climatological 516 

patterns (Figures 9 and S9) since dust outbreaks are not so strong (Foth et al., 2019) while the 517 

extended cloud coverage over the region results in large observational gaps of the spaceborne 518 

retrievals (Gassó and Torres, 2019). Along the western side of Andes, dust emission arises from 519 

natural sources located in the Sechura (Peru), Nazca (Peru) and Atacama (Chile) Deserts (Ginoux et 520 

al., 2012). In the aforementioned regions, the annual DODs (Figure 9) can reach up to 0.1, 0.08 and 521 

0.06, respectively, while the intra-annual variability is characterized weak (Figure S9). During MAM 522 
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(Figure S9-ii), DODs up to 0.16 appear in Guyana, Suriname and French Guiana as well as over their 523 

offshore areas while similar intensities are evident in the northern parts of the Amazon rainforest 524 

(around the Equator and bounded between 65°W and 60°W). The presence of coarse mineral particles 525 

(Moran-Zuloaga, et al., 2018) over these distant areas from deserts, is attributed to the long-range 526 

dust transport from North Africa across the Atlantic Ocean (Yu et al., 2015), under the impact of the 527 

trade winds, taking place northwards of the convective precipitation zone formed around the ITCZ. 528 

Finally, the latitudinal zone of weak DODs in the western parts of Brazil, fading down abruptly 529 

eastwards of ~58° W, indicates an artifact of the MIDAS product that becomes more evident in SON 530 

(Fig. S9-iv). This peculiar pattern is induced by the MERRA-2 dust fraction (results not shown here) 531 

which is used for the derivation of MIDAS DOD from the MODIS AOD. An additional deficiency is 532 

the relatively large DODs over an area where biomass burning particles, emitted at enormous amounts 533 

by extended wildfires, clearly dominate over other aerosol species. Under these conditions, the non-534 

dust AODs are very high as well as their relevant uncertainties (Eqs. 5-7 in Gkikas et al. (2021)) while 535 

the reliability of the MERRA-2 dust fraction downgrades there (see Fig. 2 in Gkikas et al. (2021)).      536 

 537 

4.2 DOD averages and variability at global, hemispherical and regional scales 538 

 539 

In this section, we discuss the average AOD and DOD along with their monthly and interannual 540 

variability at global, hemispherical and regional scales. The left column of Figure 10 shows the 541 

interannual timeseries of AOD (black curve) and DOD (red curve) averaged over the whole globe 542 

(upper panel; GLB), the Northern Hemisphere (middle panel; NHE) and the Southern Hemisphere 543 

(bottom panel; SHE). The right column of Figure 10 depicts the monthly seasonal cycle of AOD and 544 

DOD along with the DOD-to-AOD ratio (blue curve) while the shaded areas correspond to the total 545 

uncertainty (see Section 3.2 in Gkikas et al. (2021) and Section 3 in the current study).  546 

The significant role of dust particles in the global aerosol budget becomes evident by visually 547 

inspecting the AOD and DOD interannual timeseries (Fig. 10 i-a). The monthly contribution of 548 

suspended dust to the total AOD varies from 14% to 39%, with minimum values mainly in DJF and 549 

maximum values in MAM or JJA, depending on the year. Monthly DODs range from 0.016 ± 0.013 550 

(Dec 2005) to 0.063 ± 0.028 (Mar 2012), whereas the long-term global annual average is equal to 551 

0.032 ± 0.003 (Table 1). The global DOD mean, computed here from the fine resolution data, is 552 

almost identical with those obtained by the coarse spatial resolution MERRA-2 and MIDAS DODs 553 

and slightly higher than those calculated based on LIVAS-CALIOP (0.029) (see Table 1 in Gkikas et 554 

al. (2021); it is noted the three datasets had been collocated based on the spatial resolution and the 555 

temporal availability of the LIVAS dataset). Likewise, our global average and uncertainty computed 556 

over the period 2004-2008 (0.033 ± 0.004) is close to the one obtained in Ridley et al. (2016) (0.030 557 
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± 0.005), despite the different methods applied for the derivation of DOD and its uncertainty. Our 558 

global DOD long-term average is very close to the CALIOP derived value (0.029) and about half of 559 

the MODIS derived one (0.067) reported by Song et al. (2021). 560 

Our continental (0.070 ± 0.005) and oceanic (0.019 ± 0.002) mean DODs (see Table 1) are 561 

substantially lower than those obtained in Voss and Evan (2020) (land: 0.1; ocean: 0.03). This 562 

difference may be attributed to the different averaging approaches, which can have an important 563 

impact on the calculations as it has been shown in Levy et al. (2009) (see their Figure 5). Based on 564 

our method, we are giving the same “weight” at each grid cell (regardless of the amount of available 565 

data in that grid cell throughout the study period) when we are calculating the domain (from regional 566 

to global) average. Therefore, we are avoiding an overestimation of the spatial average since MIDAS 567 

data availability is larger over/nearby deserts (see Figure 8-c in Gkikas et al. (2021)) where the higher 568 

DODs are observed. To be more specific, when we are calculating the global long-term DOD average 569 

based on the second branch (i.e., “Straight”, the standard approach for the calculation of the average 570 

value by considering all the available values in space and time) in Levy et al. (2009), we obtain a 571 

climatological value equal to 0.047. Such different approaches for the calculation of the long-term 572 

DOD averages might interpret and the deviations found between this study and Song et al. (2021). 573 

Finally, the computed global mean MIDAS DOD is somewhat higher than those simulated by most 574 

AeroCom Phase I models (Huneeus et al., 2011), being about 40% higher than the median (0.023); 575 

nevertheless, it must be taken into account that most models consider the diurnal variation of DOD 576 

in contrast to the single-measurements taken during MODIS overpass. 577 

As expected, the interannual GLB DOD timeseries is driven by the variability in the NHE DOD 578 

(Figure 10 ii-a) since the most widespread and intense dust sources are located in the Northern 579 

Hemisphere. This is justified by their high temporal co-variation while a positive NHE-GLB offset is 580 

constantly observed, being lower during boreal winter and autumn (up to 0.035) and maximum during 581 

the high dust seasons (0.058). The fraction of monthly NHE AOD attributed to dust particles ranges 582 

from 20% to 48% and the R2 value between monthly AOD and DOD is equal to 0.94, both indicating 583 

a dominant dust contribution. Over the study period (2003-2017), the NHE DOD yields a 584 

climatological mean equal to 0.056 ± 0.004 (Table 1) ranging from 0.024 ± 0.015 (Dec 2005) to 0.121 585 

± 0.050 (Mar 2012). In contrast, marine and biomass burning aerosols, rather than dust, regulate AOD 586 

in the Southern Hemisphere (Figure 10 iii-a). SHE DODs are estimated to be low (0.008 ± 0.001), 587 

with the maximum value (0.016 ± 0.016) recorded in February 2016. The contribution of dust aerosols 588 

to the total aerosol load does not exceed 17% throughout the study period (Fig. 10 iii-a) and on 589 

average it is equal to 8.2% ± 1.1%, which is in very good agreement with the findings by Kok et al. 590 

(2021b).  591 
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A better view of the seasonal cycles of AOD, DOD and the DOD-to-AOD ratio can be obtained 592 

by investigating their climatological patterns, representative for the period of interest (2003-2017). 593 

On a global scale (Fig. 10 i-b), DODs peak between March and June (~0.045), and then decline until 594 

November (0.018) before rising during boreal winter. Despite the monthly shifts between maximum 595 

AOD and DOD averages, the seasonal cycles of the total aerosol and dust burdens are similar to a 596 

large extent, whereas the contribution of mineral particles to the total extinction ranges from 16% 597 

(November) to 33% (March-June). The MIDAS global DOD-to-AOD ratio (~23%) is close to the 598 

values reported by Gelaro et al. (2017) and Kinne et al. (2006), ~22% and ~26%, respectively, but 599 

higher than most of the model-derived estimations (12% - 28%) from the AeroCom Phase III (Gliss 600 

et al., 2021). These discrepancies, excluding the aerosol parametrizations, may be partly due to the 601 

different sampling between single-overpass satellite observations and reanalyses (Gelaro et al., 2017) 602 

or models (Kinne et al., 2006) where the diurnal aerosol variability (Schepanski et al., 2009; Yu et 603 

al., 2021) is included. In the NHE (Fig. 10 ii-b), the mean seasonal trend of DODs remains relatively 604 

unchanged when compared with GLB; however, the hemispheric means (0.030-0.088) and the dust 605 

fraction (24-41%) are higher. On the contrary, the weak signal of aeolian dust in SHE (Fig. 10 iii-b) 606 

interprets the very low DODs (0.005 – 0.011) and their minor impact (6-12%) upon AOD magnitude.  607 

The analysis presented above has also been conducted for each one of the 17 sub-regions 608 

illustrated in Figure 7 in Gkikas et al. (2021), and the main findings are summarized in this paragraph. 609 

Among the regional domains, a persistency of high DODs (>0.3), both at interannual and seasonal 610 

scales, it is found only in BOD, which yields a long-term average value equal to 0.533 ± 0.009, being 611 

almost double than WSA (0.302 ± 0.006) and TAK (0.246 ± 0.020) as illustrated in Table 1. However, 612 

when focus is given to individual months, the maximum DODs over the study period (Fig. 11 vi-a) 613 

and on their climatological levels are recorded in the Taklamakan Desert and can be as high as 0.868 614 

(April 2007) and 0.600 (April), respectively. Comparable or even higher DODs than those computed 615 

in BOD, are also evident for specific months in THA (Fig. 11 vii-a), GOG (Fig. 11 xii-a) and SSA 616 

(Fig. 11 xv-a) as well as on the monthly timeseries (THA; Fig. 11 vii-b). Mineral particles’ 617 

contribution to the total AOD (i.e., blue curves in the seasonal cycle plots) is at least 50% over dust 618 

sources or dust-abundant areas in N. Africa, Middle East and Asia and it is constantly higher than 619 

70%, reaching up to 95%, in BOD (Fig. 11 i-b), WSA (Fig. 11 viii-b) and TAK (Fig. 11 vi-b). Over 620 

downwind regions, such as EAS (Fig. 11 ix-b), GOG (Fig. 11 xii-b), MED (Fig. 11 xiii-b) and SSA 621 

(Fig. 11 xv-b), the dust contribution can prevail over the non-dust portion (GOG, MED, SSA) while 622 

in EAS does not exceed 30%, due to the predominance of anthropogenic aerosols. In the oceanic 623 

areas of Tropical Atlantic and North Pacific, where large-scale dust transport is taking place, AOD 624 

and DOD co-vary, indicating that the dust activity regulates the temporal variations of aerosols’ load, 625 

except during summer months in WNP (Fig. 11 xvi-a, xvi-b). Regarding the seasonal cycle of DOD, 626 
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the maximum values are recorded either during boreal spring (GOB, CAS, NME, SUS, TAK, EAS, 627 

ENP, GOG, MED, WNP and SSA) or during boreal summer (THA, WSA, ETA, SME and WTA) or 628 

are similar between the two high-dust seasons (BOD).  629 

A final intercomparison of the MIDAS DODs against those derived by Ridley et al. (2016) and 630 

Adebiyi et al. (2020), on a seasonal basis over the period 2004 - 2008, has been performed for 15 631 

regions defined in Kok et al. (2021a) (see their Figure 2-b and Table 2). The obtained results are 632 

illustrated in Figure 12. For the southern hemisphere regions (Figs. 12 –xiii, xiv, xv) as well as for 633 

North America (Fig. 12-xii), MIDAS DODs are compared versus those from Adebiyi et al. (2020) 634 

while for the remaining 11 domains (Figs. 12-i – xi) the results from Ridley et al. (2016) have been 635 

utilized. As an overview, it is noted that the seasonal cycle among the three databases is commonly 636 

reproduced, with a few exceptions (Mali-Niger, Kyzyl Kum, Southern Africa), whereas the DOD 637 

uncertainties (represented by the error bars) are comparable. Regarding the magnitudes, MIDAS 638 

DODs are mainly somewhat lower than those of Ridley et al. (2016) across the dust belt in contrast 639 

to the outflow region of the Mid-Atlantic (Fig. 12-i). The obtained differences are mainly attributed 640 

to the consideration of different models for accounting for the non-dust portion, the different 641 

treatment of AODs (bias correction vs. quality filtering), the different versions of MODIS retrievals 642 

(C006 vs C061), the consideration of multi-satellite observations instead of relying only on MODIS-643 

Aqua retrievals as well as to the different spatial scales (coarse vs. fine). In relative terms, the largest 644 

deviations are found in the desert areas of the southern hemisphere where models struggle to represent 645 

adequately the dust sources and the emitted amounts of mineral particles, thus affecting the dust 646 

fraction ratio provided by MERRA-2.                      647 

 648 

5. Summary and conclusions  649 

 650 

The current study presents a scientific exploitation of the MIDAS dataset (Gkikas et al., 2021), 651 

which provides columnar mid-visible (550 nm) dust optical depth (DOD) at fine spatial resolution 652 

(0.1° x 0.1°) and over a 15-year period (2003 – 2017). Taking advantage of the global coverage of 653 

the MIDAS DOD product, we analyzed the contribution of dust aerosols to AOD at various spatial 654 

and temporal scales. More specifically, we focused on 9 regions that account for the majority of the 655 

global dust budget, encompassing sources and downwind areas with the main dust transport 656 

pathways. Such regions comprise the deserts extending across the “dust belt”, North America, 657 

Australia, South Africa and South America as well as maritime areas (Tropical Atlantic Ocean, 658 

Mediterranean, North Pacific Ocean) receiving constantly large amounts of mineral particles from 659 

the nearby deserts. At a further step, the interannual and intra-annual timeseries of DODs along with 660 
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their contribution to the total aerosol load (AOD), were investigated at global, hemispherical and 661 

regional level.  662 

According to our findings, the global long-term DOD average over the study period (2003-2017) 663 

is equal to 0.032 ± 0.003, yielding a strong contrast between the contributions from the northern 664 

(0.056 ± 0.004) and southern (0.008 ± 0.001) hemispheres. Our global estimations are almost identical 665 

with those given by Ridley et al. (2016) and the CALIOP-derived estimate of Song et al. (2021), in 666 

contrast to the MODIS-based average reported in the latter study. Nevertheless, when the global 667 

averages are calculated separately over land (0.070 ± 0.005) and ocean (0.019 ± 0.002), our results 668 

differ substantially than those found in Voss and Evan (2020), who reported continental and maritime 669 

DODs equal to 0.100 and 0.030, respectively. Such large deviations are attributed to the different 670 

applied methodologies and averaging procedures followed. Moreover, we find very good agreement, 671 

in terms of DOD magnitude and uncertainty, of the MIDAS seasonal DODs versus those of Ridley 672 

et al. (2016) and Adebiyi et al. (2020) for 15 regions defined in Kok et al. (2021a). Considering that 673 

the long-term DOD averages can be utilized for constraining global dust in climate models, or can be 674 

used in several other applications, a detailed analysis is required for enlightening the factors resulting 675 

in disagreements among studies. Likewise, our computed global DOD average resides around the 676 

middle of the AeroCom (Huneeus et al., 2011) limits, being higher than the median (0.023) and mean 677 

(0.028). However, in the model-based calculations the diurnal variability is taken into account in 678 

contrast to the satellite-based estimations relying on single overpass measurements per day.  679 

Regarding the dust contribution to the total aerosol optical depth, the DOD-to-AOD ratio from 680 

32% at N. Hemisphere drops down to 8% in S. Hemisphere while at global scale is about one quarter 681 

(23%). The contradiction found between the two hemispheres, both for DOD and dust fraction, is 682 

interpreted by the most pronounced dust activity recorded in the Bodélé Depression of the northern 683 

Lake Chad Basin (DODs up to ~1.2), across the Sahel (DODs up to 0.8), in western parts of the 684 

Sahara Desert (DODs up to 0.6), in the eastern parts of the Arabian Peninsula (DODs up to ~1), along 685 

the Indus river basin (DODs up to 0.8) and in the Taklamakan Desert (DODs up to ~1). On the 686 

contrary, the weaker emission mechanisms triggering dust mobilization over the spatially limited 687 

sources of Patagonia, South Africa and interior arid areas of Australia do not favor the accumulation 688 

of mineral particles at large amounts (DODs up to 0.4 at local hotspots), even during high-dust 689 

seasons. Except for the Bodélé Depression, where the seasonal variability of the intense dust loads is 690 

relatively weak, in the other dust sources of the N. Hemisphere, DODs exhibit a strong seasonal cycle 691 

with maximum levels either during boreal spring or summer and minimum in boreal winter.  692 

Over oceans, the main pathways of long-range dust transport are observed along the tropical 693 

Atlantic and the northern Pacific, revealing a remarkable variation, within the course of the year, in 694 

terms of intensity, latitudinal position and range. Saharan dust plumes, reaching the Caribbean Sea in 695 
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summer under the impact of the trade winds, are more abundant with respect to Asian dust, arriving 696 

at the western coasts of the United States in spring under the impact of midlatitude cyclones. Due to 697 

the convergence of the Shamal winds, blowing over the Arabian Peninsula, and the wind flow from 698 

the subtropical anticyclone, dust aerosols originating in the Middle East can reach the western Indian 699 

coasts in summer, crossing the Arabian Sea. Dust loads in the southern parts of the Red Sea are 700 

maximized during boreal summer when Saharan or Middle East dust is transported, depending on the 701 

zonal airflow. The intensity of dust burden in the Mediterranean forms a south-north gradient, 702 

whereas a seasonal longitudinal shift of the maximum DODs, off the northern African coasts, is 703 

evident attributed to the prevailing synoptic circulation. 704 

Despite the strong capabilities of the MIDAS dataset, we have also identify some limitations, 705 

thoroughly discussed here and in Gkikas et al. (2021), attributed either to inherent weaknesses of the 706 

raw MODIS AOD retrievals or to deficiencies of MDF, resulting in not too realistic patterns in 707 

specific regions (e.g., South America, Gulf of Guinea, Aral Sea) of the planet. Thanks to this detailed 708 

analysis, potential users are aware of any issue that may rise when utilizing the MIDAS DOD product. 709 

Concerning the DOD uncertainties presented here, in the MIDAS dataset, MODIS AOD 710 

retrievals, obtained based on different assumptions in the respective algorithms, and MERRA-2 711 

products are mixed. Therefore, the AOD and MDF errors, combined in the DOD uncertainty and 712 

carried through spatial and temporal averaging, are more likely heterogeneous and quite difficult to 713 

be quantified. Actually, the evaluation of spaceborne retrievals and numerical outputs can be much 714 

more complex and definitely further work is needed towards optimizing the confidence margins of 715 

total (speciated) optical depth levels. Quantifying accurately satellite based aerosol uncertainties is 716 

still an open issue and it is among our priorities to minimize the impacts of the aforementioned 717 

drawbacks and misrepresentations in the future versions of the MIDAS dataset. 718 

As already mentioned, a variety of research studies can rely on the MIDAS dataset. MIDAS has 719 

been already used for the investigation of DOD trends (Logothetis et al., 2021) whereas in a follow-720 

up study the mechanisms contributing to the temporal variations of dust burden will be investigated. 721 

Likewise, the MIDAS DOD product has been utilized in radiative transfer studies (Fountoulakis et 722 

al, 2021; Masoom et al., 2021) focusing on the impacts on solar energy production. Moreover, taking 723 

advantage of the fine spatial resolution of the MIDAS dataset and of its extended temporal 724 

availability, the dataset can be used for the identification of dust sources worldwide, similarly to the 725 

analysis done in Ginoux et al. (2012). Finally, we have provided a simple, yet flexible method 726 

(independent from other datasets) to calculate consistent uncertainties across spatiotemporal scales, 727 

which will ease the use of the MIDAS dataset in data assimilation applications.  728 

 729 

 730 
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Table 1: Annual and seasonal DOD averages, representative for the period 2003-2017, along with the associated 1385 

uncertainty. The first three rows refer to the whole globe (GLB), the global land (GLB-land) and global ocean (GLB-1386 

ocean). In the fourth and fifth line are given the results for N. Hemisphere (NHE) and S. Hemisphere (SHE) DODs 1387 

whereas in the rest 17 entries the corresponding results for selected subregions (denoted with colored rectangles in Fig. 7 1388 

in Gkikas et al. (2021)) are given.       1389 

REGION ANNUAL DJF MAM JJA SON 

GLB 0.032 ± 0.003   0.025 ± 0.004 0.043 ± 0.005 0.040 ± 0.005  0.022 ± 0.004 

GLB-land 0.070 ± 0.005  0.063 ± 0.008  0.104 ± 0.011  0.083 ± 0.010  0.049 ± 0.007  

GLA-ocean 0.019 ± 0.002   0.015 ± 0.003  0.026 ± 0.003  0.023 ± 0.003  0.012 ± 0.003 

NHE 0.056 ± 0.004 0.043 ± 0.005 0.085 ± 0.009 0.071 ± 0.008 0.036 ± 0.005 

SHE 0.008 ± 0.001  0.010 ± 0.003 0.008 ± 0.002 0.006 ± 0.002 0.008 ± 0.003 

BOD 0.533 ± 0.009 0.483 ± 0.018 0.614 ± 0.020 0.603 ± 0.017 0.451 ± 0.013 

GOB 0.092 ± 0.007  0.074 ± 0.010 0.189 ± 0.023 0.078 ± 0.010 0.056 ± 0.005 

CAS 0.126 ± 0.007 0.084 ± 0.012 0.158 ± 0.016 0.144 ± 0.011 0.100 ± 0.007 

NME 0.227 ± 0.006 0.120 ± 0.009 0.319 ± 0.016 0.271 ± 0.011 0.186 ± 0.009 

SUS 0.018 ± 0.001 0.009 ± 0.002 0.033 ± 0.005 0.021 ± 0.003 0.010 ± 0.001 

TAK 0.246 ± 0.020 0.114 ± 0.015 0.504 ± 0.047 0.259 ± 0.030 0.130 ± 0.018 

THA 0.198 ± 0.007  0.086 ± 0.006 0.291 ± 0.013 0.424 ± 0.033  0.109 ± 0.006 

WSA 0.302 ± 0.006 0.199 ± 0.008 0.362 ± 0.015 0.418 ± 0.016  0.237 ± 0.009  

EAS 0.077 ± 0.005 0.072 ± 0.014 0.130 ± 0.012 0.056 ± 0.010 0.048 ± 0.006 

ENP 0.020 ± 0.002 0.011 ± 0.002 0.047 ± 0.005 0.017 ± 0.004 0.013 ± 0.002 

ETA 0.146 ± 0.007 0.109 ± 0.011 0.169 ± 0.015 0.202 ± 0.015 0.093 ± 0.009 

GOG 0.309 ± 0.021 0.417 ± 0.032 0.416 ± 0.066 0.064 ± 0.021 0.100 ± 0.022 

MED 0.081 ± 0.003 0.052 ± 0.008 0.106 ± 0.009 0.096 ± 0.006 0.066 ± 0.005 

SME 0.250 ± 0.008  0.154 ± 0.009 0.318 ± 0.016 0.394 ± 0.020 0.166 ± 0.008 

SSA 0.326 ± 0.013 0.309 ± 0.015 0.494 ± 0.041 0.241 ± 0.054 0.199 ± 0.020 

WNP 0.028 ± 0.002 0.017 ± 0.003  0.064 ± 0.008  0.023 ± 0.006 0.018 ± 0.002  

WTA 0.035 ± 0.003 0.006 ± 0.002 0.035 ± 0.005 0.090 ± 0.009 0.017 ± 0.004 
 1390 
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 1397 

Figure 1: Geographical distribution of the MIDAS annual DOD at 550nm, representative for the period 1 January 2003 1398 

– 31 December 2017, over North Africa, the Tropical Atlantic Ocean and the broader Mediterranean basin. 1399 

 1400 

 1401 
Figure 2: As in Figure 1 but for the broader area of the Middle East.  1402 
 1403 
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 1404 
Figure 3: As in Figure 1 but for central and southwestern Asia.  1405 
 1406 

 1407 
Figure 4: As in Figure 1 but for the Indian subcontinent. 1408 
 1409 
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 1410 
Figure 5: As in Figure 1 but for East Asia and the North Pacific Ocean. 1411 
 1412 

 1413 
Figure 6: As in Figure 1 but for North America. 1414 
 1415 

 1416 
Figure 7: As in Figure 1 but for Australia.  1417 
 1418 
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 1419 

 1420 
Figure 8: As in Figure 1 but for Southern Africa. 1421 
 1422 

 1423 
Figure 9: As in Figure 1 but for South America.  1424 
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 1431 
 1432 
 1433 
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(i-a) 

 

(i-b) 

 

(ii-a) 

 

(ii-b) 

 

(iii-a) 

 

(iii-b) 

Figure 10: Inter-annual (-a) and intra-annual (-b) variability, representative for the period 2007 – 2016, of monthly 1434 

MODIS AOD550nm (black curve) and DOD550nm (red curve) regionally averaged for: (i) the whole globe (GLB), (ii) the 1435 

Northern Hemisphere (NHE) and (iii) the Southern Hemisphere (SHE). The blue curves in the intra-annual plots depict 1436 

the dust-to-total AOD550nm ratio (expressed in percentage; right y-axis). The shaded areas correspond to the total 1437 

uncertainty. 1438 
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(xvii-a) 

 

(xvii-b) 

Figure 11: Inter-annual (-a) and intra-annual (-b) variability, representative for the period 2003 – 2017, of monthly 1447 

MODIS AOD550nm (black curve) and DOD550nm (red curve) regionally averaged for: (i) Bodélé Depression (BOD), (ii) 1448 

Gobi Desert (GOB), (iii) Central Asia (CAS), (iv) North Middle East (NME), (v) southwest United States (SUS), (vi) 1449 

Taklamakan Desert (TAK), (vii) Thar Desert (THA), (viii) West Sahara (WSA), (ix) East Asia (EAS), (x) East North 1450 

Pacific (ENP), (xi) East Tropical Atlantic (ETA), (xii) Gulf of Guinea (GOG), (xiii) Mediterranean (MED), (xiv) South 1451 

Middle East (SME), (xv) Sub-Sahel (SSA), (xvi) West North Pacific (WNP) and (xvii) West Tropical Atlantic (WTA). 1452 

The shaded areas in the inter and intra-annual plots correspond to the total uncertainty. The blue curves in the intra-annual 1453 

plots represent the percentage contribution of dust optical depth (DOD) to the aerosol optical depth (AOD).  1454 
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(i) 

 
(ii) (iii) (iv) (v) 

 
(vi) (vii) (vii) (viii) (ix) 

(xi) (xii) (xiii) (xiv) (xv) 

Figure 12: Seasonal DODs, representative for the period 2004 – 2008, based on the MIDAS dataset (orange bars), Ridley et al. (2016) (blue bars) and Adebiyi et al. (2020) (blue bars), for 15 regions (their 1479 

names are given at the top of each plot) defined in Kok et al. (2021a) (see Table 2). The error bars represent the estimated uncertainties. From i to xi, the blue bars correspond to the Ridley et al. (2016) 1480 

results whereas for the remaining regions MIDAS DODs are compared against the corresponding levels obtained by Adebiyi et al. (2020). 1481 
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