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Abstract. The oxidative potential (OP) of particulate matter (PM) measures PM capability to potentially cause anti -oxidant 15 

imbalance. Due to the wide range and complex mixture of species in particulates, little is known on the pollution sources most 

strongly contributing to OP. A one-year sampling of PM10 (particles with an aerodynamic diameter below 10) was performed 

over different sites in a medium-sized city (Grenoble, France). An enhanced fine-scale apportionment of PM10 sources, based 

on the chemical composition, was performed using Positive Matrix Factorization (PMF) method and reported in a companion 

paper (Borlaza et al., 2020). OP was assessed as the ability of PM10 to generate reactive oxygen species (ROS) using three 20 

different acellular assays: Dithiothreitol (DTT), Ascorbic acid (AA), and 2,7-dichlorofluorescein (DCFH) assays. Using 

multiple linear regression (MLR), the OP contribution of the sources identified by PMF were estimated. Conversely, since 

atmospheric processes are usually non-linear in nature, artificial neural network (ANN) techniques, which employs non-linear 

models, could further improve estimates. Hence, the multilayer perceptron analysis (MLP), an ANN-based model, was 

additionally used to model OP based on PMF-resolved sources as well. This study presents the spatiotemporal variabilities of 25 

OP activity with influences by season-specific sources, site typology and specific local features, and assay sensitivity. Overall, 

both MLR and MLP effectively captured the evolution of OP. The primary traffic and biomass burning sources were the 

strongest drivers of OP in the Grenoble basin. There is also a clear redistribution of source-specific impacts when using OP 

instead of mass concentration, underlining the importance of PM redox activity for the identification of potential sources of  

PM toxicity. Finally, the MLP generally offered improvements in OP prediction especially for sites where synergistic and/or 30 

antagonistic effects between sources are prominent, supporting the value of using ANN-based models to account for the non-

linear dynamics behind the atmospheric processes affecting OP of PM10.  
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1 Introduction 

One of the most critical pollutants in the atmosphere is particulate matter (PM), especially in urban areas that are heavily 

impacted by anthropogenic emissions (David et al., 2019; Qiao et al., 2018; Schwela, 2000). Recent studies showed increasing 35 

interest in PM at a city-level allowing assessment of fine-scale pollution variability (Boppana et al., 2019; Dionisio et al., 2010; 

Etyemezian et al., 2005; Krasnov et al., 2016; Padhi and Padhy, 2008). The intricate topography and seasonality of particulate 

air pollution in the city of Grenoble (France) makes it an ideal location to explore variabilities of PM pollution, while also 

accounting for different site typologies within a single medium-sized city (Calas et al., 2019a; Favez et al., 2010; Srivastava 

et al., 2018; Tomaz et al., 2016, 2017; Weber et al., 2019). Such small-scale variabilities for mass and chemical composition 40 

have been recently addressed in a companion paper (Borlaza et al., 2020).  

Many research studies have focused on the links between PM mass exposure and various adverse health effects (Dabass et al., 

2018; Delfino et al., 2005; Du et al., 2016; Hime et al., 2018; Lao et al., 2019; Matus C. and Oyarzún G., 2019; Pope et al.,  

2009; Pope III, 2002; Winterbottom et al., 2018). However, it is also of high concern to improve the understanding of the PM 

sources in relation with such health impacts. Indeed, oxidative stress is now well recognized as one of the main biological 45 

mechanisms considered to be contributing to these detrimental impacts from air pollution exposure through the capability of 

PM to generate reactive oxygen species (ROS) within the lung, which leads to pro-inflammatory responses that can ultimately 

result in apoptosis (Ayres et al., 2008; Baulig et al., 2003; Dhalla et al., 2000; Donaldson et al., 2001; Jin et al., 2018; Kelly, 

2003; Leni et al., 2020; Mudway et al., 2020; Nel, 2005; Piao et al., 2018). The oxidative potential (OP) of PM, defined as the 

capability of PM to generate ROS/deplete anti-oxidants, makes an interesting complementary to regulated metrics of ambient 50 

PM exposure (Bates et al., 2019; Daellenbach et al., 2020; Guo et al., 2020; Gurgueira et al., 2002; Park et al., 2018; Shiraiwa 

et al., 2017; Valavanidis et al., 2008).  

Most studies often correlate OP from PM with chemical species in ambient aerosols (Bell and HEI Health Review Committee, 

2012; Boogaard et al., 2012; Borlaza et al., 2018; Cassee et al., 2013; Janssen et al., 2014; Perrone et al., 2016; Pietrogrande 

et al., 2018; Rohr and Wyzga, 2012; Yang et al., 2015). However, due to the wide range and complex mixture of PM and the 55 

dynamic atmospheric processes to consider, the main drivers of OP can be difficult to highlight (Calas et al., 2019a). Several 

methods have been used to assign the sources of OP, including the application of receptor modelling techniques such as 

Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) (Ayres et al., 2008; Bates et al., 2015; Cesari et al., 

2019; Fang et al., 2016; Paraskevopoulou et al., 2019; Verma et al., 2014; Weber et al ., 2018, 2021; Yu et al., 2019; Zhou et 

al., 2019), Principal Component Analysis (PCA) (Borlaza et al., 2018; Conte et al., 2017), and Robotic Chemical Mass Balance 60 

(RCMB) coupled with Multiple Linear Regression (MLR) analysis (Argyropoulos et al., 2016). With these current techniques, 

the OP of PM has been linked to specific emission sources and their estimated contributions. However, a non-linear relationship 

of redox active components of PM is generally observed (Arangio et al., 2016; Calas et al., 2017; Charrier and Anastasio, 

2015; Li et al., 2012; Xiong et al., 2017; Yu et al., 2018), hence traditional deterministic models could be, in some way, limited.  
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Approaches using artificial neural network (ANN) analysis have demonstrated enhanced results compared to classical models 65 

when predicting PM from different variables such as meteorological data (Abderrahim et al., 2016; Chaloulakou et al., 2003; 

Díaz-Robles et al., 2008; Hooyberghs et al., 2005; Huang and Kuo, 2018; McKendry, 2002; Papanastasiou et al., 2007; Perez 

and Reyes, 2006), satellite‐derived aerosol products (Gupta and Christopher, 2009), and other traffic-related variables 

(Cabaneros et al., 2020, 2017; Gietl and Klemm, 2009; He et al., 2015). The ANN-based models, such as multilayer perceptron 

(MLP), support pattern recognition and could extract trends from non-linear data, making it an interesting and competitive 70 

innovative method of analysis in many scientific disciplines, including air quality studies (Cabaneros et al., 2019; 

Chattopadhyay and Bandyopadhyay, 2007; Dorling et al., 2003; García Nieto et al., 2018; Gupta and Chris topher, 2009; Jiang 

et al., 2004; Ordieres et al., 2005; Perez and Reyes, 2006). Since atmospheric processes are generally non-linear in nature, 

exploring the features of MLP could provide meaningful results closer to realistic estimates than most linear models 

(Elangasinghe et al., 2014; Eldakhly et al., 2017; Gerken et al., 2006; Kukkonen, 2003; Nathan et al., 2017; Rahimi, 2017). 75 

This study takes advantage of the enhanced source apportionment obtained in the companion paper (Borlaza et al., 2020), 

revealing the fine-scale spatiotemporal characteristics of PM sources within a medium-size city area (Grenoble basin), 

specifically in three different urban environments (background, hyper-center, and peri-urban typologies). Here, the main 

drivers of OP are first attributed to PM sources (resolved by PMF) using a classical MLR analysis. Second, the possible 

advantages of MLP analysis are also evaluated to compare MLP prediction of OP activity with MLR prediction. In summary, 80 

by taking the opportunity of this unique database on PM chemistry and OP, we aim to investigate mainly on two innovative 

questions:  

1. Is there variability in the OP activity within a medium-sized urban area, and can this be related to the variability of the 

contributions of the emissions sources?  

2. Can MLP be used to accurately model the spatiotemporal evolution of OP by taking the PM source contributions as input 85 

variables and if so, does it catch the non-linear pattern of OP? 

2 Materials and methods 

2.1 Site description and PM10 sampling collection 

The sampling sites and samples used in this study are described in detail in the companion paper (Borlaza et al., 2020). Briefly, 

the sampling sites are located in the city of Grenoble in the southeast of France, as illustrated in Figure 1. The mountainous 90 

environment in the area restricts atmospheric movements and promotes the development of atmospheric thermal inversions, 

resulting in an increase of pollutant concentrations, especially during the winter season (Bessagnet et al., 2020; Tomaz et al., 

2017). The three measurement sites are located in an urban background (UB, Les Frênes), urban hyper-center (UH, Caserne 

de Bonne), and peri-urban (PU, Vif), all within 15 km from the city center of Grenoble. The UB site is an established urban 

background reference site for the regional air quality monitoring network (Atmo Auvergne Rhône-Alpes) in the south of the 95 

city and largely investigated previously (Srivastava et al., 2018; Tomaz et al., 2016). The PU site is in a suburban area having 
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rural residential areas adjacent to an urbanization (low-density area), where biogenic emissions are prominently expected as 

the site is on the foot of the Vercors and Belledone mountain ranges. Lastly, the UH site is in the hyper-center of Grenoble 

and, despite being in a pedestrian area, is the most highly exposed to surrounding commercial and traffic emissions amongst 

the three sites.   100 

The daily (24-h) filter-based PM10 (particles ≤10 µm in diameter) sampling was performed with a 3-day interval for about one 

year (February 28, 2017 to March 10, 2018, sampling starts at 00:00 CEST) obtaining a total of about 130 samples per site. 

PM10 was collected using a high volume sampler (Digitel DA-80, 30 m3 h-1) onto 150 mm-diameter quartz fiber filters (Tissu-

quartz PALL QAT-UP 2500 diameter 150 mm) following the recommendations of EN 12341:2014 procedures (CEN, 2014). 

All filters underwent a preheating treatment at 500°C for 12 hours to avoid any organic contamination. Additionally, field 105 

blank filters (n=20) were collected to determine the detection limits of the applied chemical analysis and to secure quality of 

samples during transport, setup, and recovery. The total PM10 mass concentration was also simultaneously measured using 

tapered element oscillating microbalance equipped with filter dynamics measurement systems (TEOM-FDMS) (CEN, 2017; 

Grover, 2005).   

 110 

 

Figure 1: Study area in Grenoble (France) on a European map (left) and location of the three urban sites (right), namely Les Frênes 

or UB (urban reference background site), Caserne de Bonne or UH (urban hyper-center site), and Vif or PU (peri-urban site). 
©OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA License 
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2.2 Chemical characterization 115 

All samples were subjected to several chemical analyses to quantify major and minor constituents of PM10 including organic 

carbon (OC), elemental carbon (EC), ions (sodium (Na+), ammonium (NH4
+), potassium (K+), magnesium (Mg2+), calcium 

(Ca2+), chloride (Cl-), nitrate (NO3
-), sulfate (SO4

2-)), methane sulfonic acid (MSA), organic acids (3-MBTCA, pinic acid, 

phthalic acid), anhydro-sugars (levoglucosan and mannosan) and primary saccharides (arabitol and mannitol, hereafter 

summed up and referred as polyols), cellulose, and elements (Al, As, Ba, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Ti, 120 

V, Zn). Detailed descriptions of the chemical analyses are available in the companion paper (Borlaza et al., 2020) and a 

summary of PM10 characteristics is available in Table S1 the supplementary information (S1).  

2.3 OP analysis 

For OP analysis, the filters were subjected to PM10 extraction using a simulated lung fluid (SLF) solution composed of a 

Gamble + DPPC (dipalmitoylphosphatidylcholine) mixture (Calas et al., 2018). In order to maintain a constant amount of 125 

extracted PM10, filter punches were adjusted by area to obtain iso-mass at 25 µg ml-1. No filtration was done in order to include 

both water soluble and insoluble particles. Such extraction method has been adopted to facilitate the extraction of PM10 in 

conditions closer to lung physiology (Calas et al., 2017). To avoid the interferences in the wells by insoluble particles, we 

subtracted the intrinsic absorbance of all PM extractions before adding the reactants. This procedure has been tested on both 

soluble and insoluble compounds that are likely within the range of atmospheric concentrations. The results have confirmed 130 

good dispersion of particles, leading to homogeneous results.  A more detailed report is available in Calas et al. (2018).  

For positive control tests, the 1,4-naphthoquinone (1,4-NQ) was used for both DTT and AA assays. Particularly, a 40 μl of 

24.7 μM stock solution was used for DTT assay and an 80 μl of 24.7 μM 1,4-NQ solution for AA assay (Calas et al., 2017, 

2018). A 100 nM H2O2 was used for DCFH assay. The measurement quality was estimated by calculating the coefficient of 

variation (CV) of the positive controls, all CVs were <3% for the 3 assays. Additionally, an ambient filter collected from the 135 

lab roof, with a known and constant expected OP value, was analysed to ensure precision of OP measurements.  

The OP activity can be represented using two different measures: 1) the mass-normalized OP activity (𝑂𝑃𝑚), where OP is 

normalized by the mass of PM10 (µg), and 2) the volume-normalized OP activity (𝑂𝑃𝑣), where OP is normalized by the sampled 

air volume (m3). The 𝑂𝑃𝑚 is the intrinsic OP property of one µg of PM, while 𝑂𝑃𝑣 represents the PM-derived OP per m-3 of 

air. Three a-cellular complementary assays were used to perform OP measurements and are briefly described in the following 140 

sections. All samples were subjected to triplicate analysis and each sample results in the mean of such triplicate. The common 

coefficient variation (%CV)CV is between 0 and 10% for each assay. 

2.3.1 Dithiothreitol (DTT) assay 

DTT is considered as a chemical surrogate to cellular reducing agents, nicotinamide adenine dinucleotide (NADH) and 

nicotinamide adenine dinucleotide phosphate-oxidase (NADPH), to mimic in vivo interactions of PM and biological oxidants. 145 
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The consumption of DTT in the assay is inferred as a measure of the ability of the PM to transfer electrons from DTT to oxygen 

thereby producing reactive oxygen species (ROS). Our procedure is based on a modified protocol by Cho et al. (2005), as 

described in Calas et al. (2018). The PM10 extracts were reacted with DTT resulting to the consumption of DTT in the solution. 

The remaining DTT is then titrated with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) to produce a yellow chromophore (5-

mercapto-2-nitrobenzoic acid or TNB), which is in direct proportion to the amount of reduced DTT remaining in solution after 150 

the reaction with the PM10 extract. These mixtures were injected in a 96-well plate (CELLSTAR, Greiner-Bio) and the 

consumption of DTT (nmol min-1) was determined by following the TNB absorbance at 412 nm wavelength using a microplate-

reader (TECAN spectrophotometer Infinite M200 Pro) at 10-minute intervals for a total of 30 minutes of analysis time.  

2.3.2 Ascorbic acid (AA) assay 

The AA assay is based on a modified procedure by (Kelly and Mudway, 2003), as described in Calas et al. (2018), using a 155 

respiratory tract lining fluid (RTFL). This assay uses AA, a known antioxidant which prevents the oxidation of lipids and 

proteins in the lung lining fluid (Valko et al., 2005). The consumption of AA (nmol min-1) in the assay is inferred as the OP of 

PM10 quantified by the transfer of electrons from AA to oxygen (O2). Similar to the DTT assay, the PM10 extracts were reacted 

with AA into a 96-well plate UV-transparent (CELLSTAR, Greiner-Bio). The absorbance was measured at 265 nm using a 

plate-reader (TECAN spectrophotometer Infinite M200 Pro) at 4-minute intervals for a total of 30 minutes of analysis time.  160 

2.3.3 Dichloro-dihydro-fluorescein diacetate (DCFH) assay 

The 2,7-dichlorofluorescin (DCFH) assay is commonly used for detecting intracellular H2O2 and oxidative stress using a non-

fluorescent probe through the formation of a fluorescent product (dichlorofluorescein or DCF) in the presence of ROS and 

horseradish peroxidase (HRP). The DCF is measured by fluorescence at the excitation and emission wavelengths of 485 and 

530 nm, respectively, every 2 minutes for a total of 30 minutes of analysis time. The ROS concentration in the sample is 165 

calculated in terms of H2O2 equivalent based on a H2O2 calibration (100, 200, 300, 400, 500, 1000, and 2000 nmol). 

2.4 Data analysis 

2.4.1 Synthesis of the methodology used for PM10 source apportionment  

The source apportionment performed on this dataset has been described into details in the companion paper (Borlaza et al., 

2020). In brief, the PMF methodology used the EPA PMF5.0 software (US EPA, Norris et al. (2014)) and closely follows the 170 

parameterization used in previous works by our group (Favez et al., 2017; Waked et al., 2014; Weber et al., 2019, 2021) with 

a few relevant modifications. 

The input variables used were mass concentration and uncertainty levels of PM10 and its chemical composition (a total of 35 

variables) including OC, EC, ions, elements, and some organic markers (MSA, levoglucosan, mannosan, polyols, pinic acid, 

3-MBTCA, phthalic acid, and cellulose). The associated uncertainties were calculated based on a method proposed by Gianini 175 
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et al. (2012). Specific geochemical constraints, based on expert prior knowledge, were added to the solution using the ME-2 

solver (Paatero, 1999), particularly for the traffic source factor (Charron et al., 2019). The statistical validity of the solution 

and the uncertainties were estimated using the bootstrap and displacement methods following the European recommendation 

for source apportionment studies (Belis et al., 2019; Brown et al., 2015). The specific tracers used to identify the sources are 

presented in Table S2 in the supplementary information (S2). 180 

2.4.2 Multiple linear regression (MLR) analysis 

A multiple linear regression (MLR) analysis was performed to attribute OP from the PMF-resolved sources of PM10, following 

the OP deconvolution methodology proposed by Weber et al. (2018). The 𝑂𝑃𝑣 from the three assays were used individually as 

the dependent variable, while the PMF-resolved source contributions were used as independent variables, as shown in Eq.1: 

𝑂𝑃𝑜𝑏𝑠 = (𝐺𝑛 × 𝛽𝑛) + 𝜀,            (1) 185 

where OPobs is the observed daily 𝑂𝑃𝑣, matrix of size d×1 in nmolreactant min⁻¹ m⁻³, G is the contribution of the sources from the 

PMF in µg m⁻³ of size d×n and β is the regression coefficient representing the intrinsic OP (or the 𝑂𝑃𝑚) of size 1×n in nmol 

min⁻¹ µg⁻¹. Finally, ε is the residual term accounting for the difference between the observed and modeled OP of size d×1 in 

nmolreactant min⁻¹ m⁻³. The OP contribution of each source is calculated by multiplying the source-specific regression coefficient 

by the contribution of the source to PM10 (Gk × βk). 190 

2.4.3 Multilayer perceptron (MLP) neural network analysis 

2.4.3.1 Background of the MLP analysis 

The MLP analysis is designed using a feed forward learning model (Calcagno et al., 2010; García Nieto et al., 2018; Salazar-

Ruiz et al., 2008) that produces a predictive model for one or more output variables (𝑂𝑃𝑣) based on the values of the input 

variables (PM10 source contributions). The three main components of MLP are: 1) the input layer, 2) the hidden layer, and 3) 195 

the output layer. Generally, the MLP consists of interconnected layers of artificial neurons that form a network using a set of 

input data and draws it onto a set of output data, which are then used to further train the neural network through a back-

propagation process (Bishop, 1995; Fontes et al., 2014; Kim and Gilley, 2008). In this study, the neural network architecture 

was limited to a one hidden layer design to demonstrate the applicability of non-linear models, even only with a rudimentary 

architecture, and to compare its predictive capability against that of MLR.  200 

2.4.3.2 Implementation of the MLP 

As an initial step, a rescaling process is applied to both the input and output layers to eliminate potential bias due to the range 

of variance within the dataset (Gardner and Dorling, 1998). Each variable is standardized by subtracting the mean observed 

value and then divided by the standard deviation. The daily contributions of the PM sources obtained from the PMF were fed 

in the input layer to the hidden layer. The MLP analysis was performed for each site using the 𝑂𝑃𝑣 from each assay (𝑂𝑃𝑣
𝐷𝑇𝑇, 205 
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𝑂𝑃𝑣
𝐴𝐴, and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻) as multiple variables in the output layer (see Figure 2Figure 2), making a set of 9 independent studies. At 

each node (or neuron), the information given by the input neurons are condensed into a unique value and propagated to the 

next layer. For instance, the MLP described in Figure 2Figure 2 is formally defined by Eq. 2 for the first layer (hidden layer): 

∀𝑗∈ {1, … , 𝑙},𝑧𝑗 = 𝐻(∑ 𝑤𝑖,𝑗
𝐺𝑑

𝑖=1 × 𝑥𝑖 + 𝑤0,𝑗
𝐺 )         (2) 

with 𝑤𝑖,𝑗
𝐺  the weight of the neuron between the input and hidden layer and 𝑤0,𝑗

𝐺  an activation constant for neuron j. The 210 

activation function H is often non-linear. 

To sum up, the hidden layer develops the input data and deciphers the relationship of the neurons within the MLP network. 

The number of neurons in the hidden layer was determined automatically by the estimation algorithm. With the activation 

function, the hidden layer transfers a response onto the output layer. The activation functions tested in this study were sigmoid 

and hyperbolic tangent (TanH) as these are appropriate for continuous dependent variables (IBM, 2016). A weight initialization 215 

was preset for potential occurrence of vanishing gradients (Bengio et al., 1994; Hochreiter, 1998; Hochreiter and Schmidhuber, 

1997). The scaled conjugate and stochastic gradient descent optimization algorithms were tested to obtain the optimal weights 

in both the input and output layers (Slini et al., 2006; Vakili et al., 2015). The various MLP architectures tested are summarized 

in the supplementary information (S3).  

 220 

 

Figure 2: The MLP neural network architecture used in this study, where n refers to the number of source, G is the normalized 

contribution from the PMF, and 𝑶𝑷𝒗 is the different volume-normalized OP activities (𝑶𝑷𝒗
𝑫𝑻𝑻 , 𝑶𝑷𝒗

𝑨𝑨, 𝒂𝒏𝒅 𝑶𝑷𝒗
𝑫𝑪𝑭𝑯) 

The dataset was partitioned into: 1) the training set accounting for 80%, and 2) the testing set accounting for 20% of the dataset. 

For each of the 9 studies, the training set contains data points that were used to train the MLP, while the testing set is an 225 

independent set of data points used to monitor errors during the training step. During the training step, the MLP is continually 

developed and refined until the weighting values between the nodes accurately predict the outcome (i.e., minimal possible 

errors). To prevent the model from over-fitting, a set of stopping rules are applied to terminate the training of the MLP when 

any of these scenarios occur such as: 1) there is no decrease in prediction error for more than 1 step, 2) the maximum training 
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time is reached (15 minutes), 3) the minimum relative change in training error is reached (0.0001), 4) the minimum relative 230 

change in training error ratio is reached (0.001). A maximum of 1000 data passes (epochs) are stored in memory until this step 

is completed. Using the results obtained in the training step, the results are validated in the testing step to check the performance 

of the network by assessing its forecasting capability on data points outside the training set. The MLP neural network analys is 

was performed using IBM SPSS Statistics for Windows, version 20 (IBM Corp., Armonk, N.Y., USA).  

2.4.3.3 Demonstration of the non-linear behaviour of sources using the MLP models 235 

Since MLP analysis should account for the interactions between PM10 sources, the non-linear atmospheric dynamics causing 

possible synergistic or antagonistic effects on the OP activity can be captured. To visualize such possible non-linear behaviour, 

the MLP models obtained were applied on a set of dummy datasets. Each dummy dataset consists of the  same mass 

contributions (from PMF analysis) of each source (in µg m-3) as in the original dataset but setting one source (𝑛) to zero.  

This modelled OP using a dummy dataset (𝑀𝐿𝑃𝑛) is subtracted to the modelled OP by the original MLP model (𝑀𝐿𝑃) 240 

(containing all source contributions). This difference represents a source-specific OP contribution and their summation 

(𝑀𝐿𝑃𝑠𝑢𝑚) is described in Eq. 3: 

𝑀𝐿𝑃𝑠𝑢𝑚 = ∑ 𝑀𝐿𝑃𝑛           (3) 

For example, if the biomass burning source contributions was set to zero in the dummy dataset (𝑀𝐿𝑃𝑛=𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑏𝑢𝑟𝑛𝑖𝑛𝑔), then 

(𝑀𝐿𝑃 − 𝑀𝐿𝑃𝑛=𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑏𝑢𝑟𝑛𝑖𝑛𝑔) represents the MLP-modelled OP contribution of the biomass burning source. Assuming there 245 

is completely no synergistic or antagonistic effects between PM10 sources, then the original MLP-modelled OP contributions 

should be equal to the sum of all source-specific OP contributions (𝑀𝐿𝑃 = 𝑀𝐿𝑃sum). In cases where 𝑀𝐿𝑃 > 𝑀𝐿𝑃𝑠𝑢𝑚, then 

synergistic effects are highlighted between some PM10 sources resulting in an increased MLP-modelled OP activity. 

Conversely, where 𝑀𝐿𝑃 < 𝑀𝐿𝑃sum highlights antagonistic effects between some PM10 sources resulting in a decreased MLP-

modelled OP activity.   250 

2.4.4 Statistical analysis 

For the comparison of temporal variations of the observed measurements, all the correlations were evaluated using Spearman 

rank correlation coefficients (rs), where p≤0.05 is considered statistically significant. For the comparison of OP measures, the 

correlations were evaluated using Pearson correlation coefficients (r), where p≤0.05 is considered statistically significant. For 

the evaluation and comparison of model performance between the MLR and MLP results, a number of performance indicators 255 

were calculated such as the goodness-of-fit (R2), root mean square error (RMSE), and Pearson correlation coefficient (r). The 

STATA/SE version 15.1 software (College Station, TX, USA) or Python libraries was used for the statistical analyses.  



10 
 

3 Results and discussion 

3.1 Temporal variation of PM10 and OP activity  

The daily distributions of PM10 and OP activity (𝑂𝑃𝑣
𝐷𝑇𝑇, 𝑂𝑃𝑣

𝐴𝐴, and 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻) for each site are provided in the supplementary 260 

information (S4). The range of the OP measurements in Grenoble are well within the range of measurements in France (Calas 

et al., 2018, 2019b; Weber et al., 2021, 2018). Detailed discussion of the temporal variability of PM10 sources is available in 

the companion paper (Borlaza et al., 2020).  

Overall, the average PM10 concentrations on days of measurements were higher during the colder months (October to April) 

at 17±10 µg m-3 and lower during the warmer months (May to September) at 10±4 µg m-3 in the city of Grenoble. With the 265 

alpine environment and the atmospheric dynamics in the study area, the occurrence of atmospheric inversions and the 

restriction of strong winds often results to higher concentration levels of air pollutants especially in the winter season 

(Bessagnet et al., 2020; Tomaz et al., 2017). Such observed seasonality in PM10 mass concentration is also commonly explained 

by higher contributions from the biomass burning source in the colder seasons, especially in an alpine valley as previously 

reported in previous studies (Calas et al., 2019a; Favez et al., 2010; Herich et al., 2014; Srivastava et al., 2018; Tomaz et al., 270 

2016, 2017; Weber et al., 2018, 2019). In the same way, a seasonality is displayed in OP activity in the Grenoble basin as well. 

In fact, the average daily OP activity levels during the winter season can be up to 2, 7, and 5 times higher than in summer 

season for 𝑂𝑃𝑣
𝐷𝑇𝑇, 𝑂𝑃𝑣

𝐴𝐴, and 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻, respectively. Indeed, the observed strong seasonality (higher OP during winter, lower 

OP during summer) at all sites could induce a high spatial homogeneity between sites as well. However, there are a number of 

local features observed at different sites such as spikes in the OP activity during the warmer months at UH and PU sites (see 275 

Figure S1 in the supplementary information (S5)). These spikes are prominently seen in the 𝑂𝑃𝑣
𝐷𝑇𝑇, with also some occurrences 

in the 𝑂𝑃𝑣
𝐴𝐴 and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻, which also emphasizes on the sensitivity of each assay.  

Previous studies have reported that the 𝑂𝑃𝑣
𝐷𝑇𝑇 has shown higher sensitivity with organics, metals, and the synergistic effect of 

the two (Bates et al., 2019; Dou et al., 2015; Fang et al., 2017; Gao et al., 2020b, a; Jiang et al., 2019; Weber et al., 2021; Yu 

et al., 2018), while 𝑂𝑃𝑣
𝐴𝐴 being sensitive mostly to metals concentrations (Bates et al., 2019; Crobeddu et al., 2017; Visentin 280 

et al., 2016; Weber et al., 2021). Table S4 in the supplementary information (S9) summarizes several publications on OP 

assays and their correlations to chemical species. In our study, a good correlation (r=0.68) was found between 𝑂𝑃𝑣
𝐷𝑇𝑇 and 

𝑂𝑃𝑣
𝐴𝐴 when all sites are combined (see Figure S1 in the supplementary information (S5)), possibly affected by the local features 

solely captured by the DTT assay. Due to the sensitivity to various ROS and RNS (reactive nitrogen species) of most molecular 

probes, the sensitivity of DCFH assay to specific components of PM10 can be difficult to isolate (Bates et al., 2019; Jovanovic 285 

et al., 2019). However, 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 showed good correlation (r=0.68) with 𝑂𝑃𝑣

𝐷𝑇𝑇 and an even stronger correlation (r=0.93) with 

𝑂𝑃𝑣
𝐴𝐴 (see Figure S2 in the supplementary information (S5)).  

The comparison of the two OP measures,  𝑂𝑃𝑣 and 𝑂𝑃𝑚, of each OP assay can provide information regarding the dependency 

of OP activity to PM10 mass concentration. As shown in Figure S3 in the supplementary information (S5), there is only a 

moderate correlation (r=0.51) between 𝑂𝑃𝑣
𝐷𝑇𝑇 and 𝑂𝑃𝑚

𝐷𝑇𝑇 suggesting the dependency of DTT assay to chemical composition 290 
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rather than PM10 mass concentration. On the other hand, both 𝑂𝑃𝐴𝐴 (r=0.76) and 𝑂𝑃𝐷𝐶𝐹𝐻 (r=0.70) showed good correlations 

between their measures per volume or per mass pointing out their dependency to PM10 concentrations and, indeed, a potential 

stronger influence by meteorological conditions, a key driver for concentrations in Alpine valleys.  

3.2 Spatial variation of OP activity 

The seasonal mean ratios (MR) of OP activities between sites are presented in Figure 3, calculated by averaging the daily ratios 295 

of volume-normalized OP activities (𝑂𝑃𝑣
𝐷𝑇𝑇, 𝑂𝑃𝑣

𝐴𝐴, and 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻) between the sites (Hyper-center/Background (UH/UB), 

Hyper-center/Peri-urban (UH/PU), and Background/Peri-urban (UB/PU)) by season, where winter is from December to 

February, spring is from March to May, summer is June to August, and autumn is September to November. 

Generally, there is spatial homogeneity (MR closer to 1) in OP between the UB and UH sites in line with the findings from 

the companion paper (Borlaza et al., 2020). Their similarities in terms of PM10 sources has been previously attributed to 300 

similarities in source contribution not only from common sources (e.g., biomass burning and nitrate-rich) but also in terms of 

specific local sources in these sites such as primary traffic, mineral dust, and, to a lower extent, the industrial factor. This could 

be attributed not only to their proximity in terms of geographical location, but also by their resemblance in typology resulting 

to similarities of both PM10 and OP variabilities. 

 305 
 

 
Figure 3: Seasonal mean ratios (MR) between the sites  ((A) Hyper-center/Background (UH/UB), (B) Hyper-center/Peri-urban 

(UH/PU), and (C) Background/Peri-urban (UB/PU)) using volume-normalized OP activities (𝑶𝑷𝒗
𝑫𝑻𝑻 , 𝑶𝑷𝒗

𝑨𝑨, and 𝑶𝑷𝒗
𝑫𝑪𝑭𝑯). Dashed 

grey line denotes MR equal to 1 suggesting total spatial homogeneity. Boxplot mean marked by white circle and median marked by 310 
black line. 

Conversely, there is an observed variability in the MR in UH/PU and UB/PU suggesting weaker homogeneity (MR farther to 

1) in the PU site compared to sites closer to the city-center (UH and UB sites). For example, the PU site can be strongly 

influenced by some event days with extremely low 𝑂𝑃𝑣
𝐷𝑇𝑇 especially in the winter season (𝑂𝑃𝑣

𝐷𝑇𝑇<0.1 nmol min-1 m-3, n=3) 

resulting to an increase in the MRs against other sites. In fact, the MR for 𝑂𝑃𝑣
𝐷𝑇𝑇 can be as high as 9.6 and 7.2 during winter 315 

for the UH/PU and UB/PU ratio. This can also be seen in the other seasons but more prominent between UH and PU sites. 

Aside from seasonal influences, there are also some differences between assays as observed in the UH/PU and UB/PU ratio 
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during winter. For instance, the MRs in 𝑂𝑃𝑣
𝐷𝑇𝑇 is notably much higher than the in 𝑂𝑃𝑣

𝐴𝐴 and 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 further highlighting 

assay sensitivity.  

Although spatial homogeneity was generally observed between the sites, there are local features that must be taken into 320 

consideration, as well as seasonal influence and OP assay sensitivity. Overall, there is an observed similarity in the 

spatiotemporal variabilities of PM10 and measured OP activity making it even more interesting to determine which of the PM10 

sources are driving OP.    

 

 325 

Figure 4: Comparison of the observed and modelled 𝑶𝑷𝒗 (𝑶𝑷𝒗
𝑫𝑻𝑻 , 𝑶𝑷𝒗

𝑨𝑨, and 𝑶𝑷𝒗
𝑫𝑪𝑭𝑯) at different urban sites using MLR and MLP 

models. The equation of the line and goodness-of-fit (R2) between observed and modelled OP are included. 
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3.3 Determination of the sources driving OP using multiple linear regression (MLR) analysis 

To determine the main drivers of the OP of PM10, an OP deconvolution method was performed with a classical MLR analysis 

following the proposed method by Weber et al. (2018) using the source contributions obtained in the PMF studies presented 330 

in the companion paper (Borlaza et al., 2020) and the measured OP at each site. 

3.3.1 Performance of the MLR models 

Thanks to the OP deconvolution method, the measured OP has been attributed to the PM10 sources allowing the quantification 

of contribution of each source to OP. Generally, the MLR-modelled OPs are well within range of the observed OP activity, 

even taking into account the low uncertainties of the measurements as presented in Figure 4. However, there are a few local 335 

features (i.e., high OP events) in the observed 𝑂𝑃𝑣
𝐷𝑇𝑇 during warmer months in the UH and PU sites that were not captured by 

the MLR models. There are also some over-estimations during the colder months (specifically around January to February 

2018) at the same sites. Yet, these lead to an acceptable goodness-of-fit (R2) for the MLR-modelled 𝑂𝑃𝑣
𝐷𝑇𝑇 in the UB 

(R2=0.80), UH (R2=0.62), and PU (R2=0.50) sites, compared to the MLR-modelled 𝑂𝑃𝑣
𝐴𝐴 (UB: R2=0.73, UH: R2=0.63, and 

PU: R2=0.94) and 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 (UB: R2=0.96, UH: R2=0.89, and PU: R2=0.93). These associations were also confirmed using 340 

Pearson correlations (r) as presented in Figure S6 in the supplementary information (S7).   

However, there are instances where models, even those with good R2-values, could have a considerable bias and should be 

interpreted with caution. For example, the relationship between the observed and MLR-modelled 𝑂𝑃𝑣
𝐴𝐴 in the UB site has a 

slope of 0.9 but an intercept of 0.7, showing significant deviation between model and measured. Additional details on the 

correlation between the observed and MLR-modelled OP activity are summarized in the supplementary information (S6).  345 
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Figure 5: Site-specific intrinsic OP (𝑶𝑷𝒎) per source analysis from each assay (𝑶𝑷𝒎
𝑫𝑻𝑻 , 𝑶𝑷𝒎

𝑨𝑨, and 𝑶𝑷𝒎
𝑫𝑪𝑭𝑯) represented by mean 

(bar) and standard deviation (error bar) based on the MLR (Urban background, UB: blue, Urban hyper-center, UH: orange, Peri-
urban, PU: green). Note: Asterisks represent statistically significant 𝑶𝑷𝒎 within 95% confidence interval (p-value≤0.05). 350 

3.3.2 Intrinsic OP (𝑶𝑷𝒎) of each PM10 source 

The ability of each PM source to induce oxidative stress is represented by the intrinsic OP (𝑂𝑃𝑚) given by the regression 

coefficient (β) of the MLR model, as shown in Figure 5. With higher 𝑂𝑃𝑚, the source is more redox-active and highly likely 

to contribute to the overall OP.  

Generally, the statistically dominant sources (based on the MLR models, p-value≤0.05) in every site are the industrial, biomass 355 

burning, and primary traffic (except for 𝑂𝑃𝑚
𝐷𝐶𝐹𝐻in the UH site) sources, suggesting stronger impact of anthropogenic sources. 

Both the biomass burning and primary traffic sources have mostly showed significant positive 𝑂𝑃𝑚 across all sites. However, 

amongst the sources with dominant intrinsic OP, it is important to note the variability of the 𝑂𝑃𝑚 of the industrial source. This 

source has been previously identified as a heterogeneous source in the companion paper. It is important to note that the impact 

of trace metals, used to identify this source (i.e., As, Cd, Cr, Mn, Mo, Ni, Pb, Zn), is inherently variable at this spatial scale. 360 

Particularly, the industrial source has the highest 𝑂𝑃𝑚 for both UB (𝑂𝑃𝑚
𝐷𝑇𝑇=0.82±0.24, p≤0.01; 𝑂𝑃𝑚

𝐴𝐴=0.99±0.20, p≤0.01; 

𝑂𝑃𝑚
𝐷𝐶𝐹𝐻=1.05±0.13, p≤0.01) and UH (𝑂𝑃𝑚

𝐷𝑇𝑇=0.52±0.18, p≤0.01; 𝑂𝑃𝑚
𝐴𝐴 =0.69±0.16, p≤0.01; 𝑂𝑃𝑚

𝐷𝐶𝐹𝐻=0.62±0.10, p≤0.01) 

sites. However, for the PU site, the industrial source has a low to negative 𝑂𝑃𝑚 for DTT and DCFH assays suggesting that this 
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source has less impact on this specific urban typology. In fact, in the PU site, the highest 𝑂𝑃𝑚 was found in different sources, 

such as the primary biogenic ( 𝑂𝑃𝑚
𝐷𝑇𝑇 =0.29±0.1, p≤0.01), industrial=0.44±0.17, p≤0.01), and biomass burning 365 

(𝑂𝑃𝑚
𝐷𝐶𝐹𝐻=0.21±0.01, p≤0.01) sources for DTT, AA, and DCFH assays, respectively.  

Although it is clear that anthropogenic sources have higher 𝑂𝑃𝑚, there are also impacts from biogenic sources (both primary 

and secondary biogenic oxidation) that need be considered especially in sites that have an abundance of this type of source. 

The secondary biogenic oxidation source has only shown statistically significant 𝑂𝑃𝑚 in the PU site for all OP assays (also 

UB site on 𝑂𝑃𝑚
𝐷𝑇𝑇 only) underlining the influence of site-specific features on 𝑂𝑃𝑚.  370 

Aside from biogenic sources, thanks to the enhanced PMF solution used in this study, we were able to determine the redox 

characteristics of commonly unresolved sources. The contributions of specific organic tracers (particularly phthalic acid) in 

some anthropogenic-derived sources, such as sulfate- and nitrate-rich sources, can also point to contributions from 

anthropogenic secondary organic aerosols (SOA) as discussed in the companion paper (Borlaza et al., 2020). This is 

particularly important especially that such sources could play a key role in the dynamics of OP of PM10 (Daellenbach et al., 375 

2020). 

It is also interesting that biomass burning appears to be contributing less to 𝑂𝑃𝑚 in the DTT assay compared to both the AA 

and DCFH assays. We acknowledge the fact that OP from DTT assay has been reported to be responsive/sensitive to organics  

making this quite intriguing. However, recent studies have reported that OP from DTT assay could be unreactive to some metal 

species (specifically iron) unlike other assays, namely AA and glutathione (GSH). Hence, OP measured using DTT assay may 380 

not completely capture ROS from Fenton chemistry or even the synergistic effects with regards to hydroxyl radical (•OH) 

generation as reported by Xiong et al. (2017). Similarly, Yu et al. (2018) has reported that soluble manganese showed 

synergistic effects with quinones, while an antagonistic effect between soluble copper and quinones. Generally, there is an 

undeniable interplay between species that needs to be considered as well as the sensitivity of each assay to species. As much 

as each analysis attempts to fully characterize the chemistry of PM, there can still be species that are unmeasured but, in fact, 385 

play a role in ROS generation. Hence, reported associations could be due to similarity in variations with PM concentration 

rather than a significant causal relationship between assays and PM components. Nevertheless, the sensitivity of DTT assay to 

a wider range of compounds that are present in various sources, lead to a more balanced distribution of OP sources (and so 

weighting the contribution of biomass burning with regards to other sources) than the other OP assays, such as AA and DCFH.  

Finally, Weber et al. (2021) discussed the variability of OP at the national scale and the values here are in the ballpark of the 390 

national results. A key feature is that the uncertainties of each 𝑂𝑃𝑚 can provide information on its statistical significance, 

therefore offers caution when using these values for modelling purposes.  

3.3.3 All-sites average OP contribution (𝑶𝑷𝒗) by each PM10 source  

In terms of overall daily mean contribution, as presented in Figure 6 (see supplementary information (S7) for site-specific 

figures), the main contributors of PM10 mass are the biomass burning, and the nitrate- and sulfate-rich sources in the Grenoble 395 

basin, when taking into account the results from the 3 sites. However, in terms of 𝑂𝑃𝑣
𝐷𝑇𝑇, the primary traffic source showed 
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the highest contribution (0.33 nmol min⁻¹ m⁻3) closely followed by the biomass burning source (0.31 nmol min⁻¹ m⁻3). For 

both 𝑂𝑃𝑣
𝐴𝐴  and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻, the biomass burning source is notably the strongest contributor (0.72 nmol min⁻¹ m⁻3 and 0.56 

nmol min⁻¹ m⁻3, respectively).  

 400 

 

Figure 6: Overall daily mean 𝑶𝑷𝒗 contribution of the sources to PM10, 𝑶𝑷𝒗
𝑫𝑻𝑻 , 𝑶𝑷𝒗

𝑨𝑨, and 𝑶𝑷𝒗
𝑫𝑪𝑭𝑯 using MLR analysis in the form 

of mean and 95% confident interval of the mean (error bar) (n=378 samples).  

The mass contributions of the biomass burning source can be twice as much as that of the primary traffic source, but OP 

contributions in terms of 𝑂𝑃𝑣
𝐷𝑇𝑇 are almost similar. The industrial source also has very minimal contribution in terms of PM10 405 

mass, but has relevant contribution to 𝑂𝑃𝑣. Moreover, there are sources that contribute to a large extent to the total PM10 mass 

but barely contribute to the OP, such as the nitrate-rich (all OP assays) and sulfate-rich source (only for 𝑂𝑃𝑣
𝐴𝐴 and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻). 

This observed redistribution of source impacts based on 𝑂𝑃𝑣 highlights the importance of considering PM redox activity 

instead of solely mass concentration (Daellenbach et al., 2020).  

Although secondary inorganic sources are commonly associated with low impact on PM toxicity (Cassee et al., 2013; 410 

Daellenbach et al., 2020), the sulfate- and nitrate-rich sources showed contributions to 𝑂𝑃𝑣
𝐷𝑇𝑇 and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻 , respectively. Even 

with minimal 𝑂𝑃𝑚 (see Figure 5), the relevant mass contribution of these sources resulted to relevant contribution to 𝑂𝑃𝑣. It 

should also be considered that both sulfate- and nitrate-rich sources have been previously associated to anthropogenic SOA 

due to phthalic acid contribution in this factor (Borlaza et al., 2020).    

Clearly, the 𝑂𝑃𝑣 contribution of the biomass burning source is captured by all assays. In fact, in the AA and DCFH assays, the 415 

𝑂𝑃𝑣 contributions are both heavily dominated by the biomass burning source, while the DTT assay showed sensitivity to a 

wider range of sources. However, it is important to take into consideration the mechanism at work behind the se assays. Both 

DTT and AA assays mimic in vivo interactions of redox active components in PM10 and biological oxidants representing PM-

induced oxidative stress, while DCFH measures generated particle-bound ROS. Although, these source-specific 𝑂𝑃𝑣 
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contributions provide critical knowledge on the main drivers of 𝑂𝑃𝑣, it is difficult to rely on just one measurement (i.e., one 420 

type of assay) without testing its relevance to health outcomes.  

3.3.4 Seasonal and site-specific differences in OP contribution (𝑶𝑷𝒗) by each PM10 source  

Clearly, the previous yearly averages mask strong seasonal variabilities as presented in the monthly 𝑂𝑃𝑣 contributions of each 

source (see Figure 7). During colder months, the 𝑂𝑃𝑣 of the biomass burning source is present in all assays and especially 

prominent in the AA and DCFH assays. During warmer months, the source 𝑂𝑃𝑣 contributions varies across different assays. 425 

However, the 𝑂𝑃𝑣 contributions from the primary traffic source is present throughout the year. Aside from seasonal influences, 

there are also differences between the sites, that varies according to the assay.  

For 𝑂𝑃𝑣
𝐷𝑇𝑇, there are similarities in the contributions of some sources in the UB and PU sites such as the consistent monthly 

contribution from the sulfate-rich source and the contributions from the secondary biogenic source during warmer months 

highlighting the influence of secondary aerosols in these sites. The UB and UH sites also have similarities in terms of 𝑂𝑃𝑣
𝐷𝑇𝑇 430 

contributions from the mineral dust source during warmer months and from the nitrate-rich source during the colder months, 

both of which are sources that can be influenced by road emissions and anthropogenic SOA. This can be explained by the 

proximity of the UB and UH sites to road ways, where PM10 in these sites are more inclined to interact with metals from road 

dust resuspension and other non-exhaust vehicular emissions than the PU site (discussed in detail in the companion paper 

(Borlaza et al., 2020)). Surprisingly, there is also a similarity seen in the UH and PU sites in terms of  𝑂𝑃𝑣
𝐷𝑇𝑇 contributions 435 

from the primary biogenic source during warmer months.  

For 𝑂𝑃𝑣
𝐴𝐴, the contribution from the mineral dust source during warmer months in the UB and UH sites and the contribution 

from secondary biogenic oxidation source in the PU site were similarly captured. During colder months, biomass burning is 

dominating in the UB and PU sites, however the UH site exhibited contributions from a variety of sources. There is also a 

consistent 𝑂𝑃𝑣
𝐴𝐴 contribution of aged sea salt in the UB site and the contribution of nitrate-rich and sea/road salt during the 440 

colder months in the PU site.  

For 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻, the contributions from the primary traffic source (especially in the UB and PU sites) is much less than the two 

other assays suggesting weaker sensitivity of DCFH assay to this source. Instead, the contributions from the nitrate-rich source, 

a source also commonly associated with secondary anthropogenic emissions (Aksoyoglu et al., 2017; Boyd et al., 2017; Faxon 

et al., 2018; Pennino et al., 2016; Priestley et al., 2018), is more prominent during the colder months in all sites.  445 

These further highlights not only the importance of PM redox activity over mass concentration, but also the importance of 

considering the seasonal influence to PM sources that drive the OP of PM. These findings are also consistent with current 

research underlining that the main sources of OP are those including species mainly originating from anthropogenic emissions 

(Janssen et al., 2014; Shi et al., 2006; Yang et al., 2015) such as road transport and biomass burning (Boogaard et al., 2012; 

Borlaza et al., 2018; Calas et al., 2019a; Daellenbach et al., 2020; Daher et al., 2014; Pant et al., 2015; Park et al., 2018; Seo 450 
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et al., 2020; Simonetti et al., 2018; Weber et al., 2021) and also site typologies that favour the accumulation of pollutants and 

photo-active aging (Daellenbach et al., 2020; Janssen et al., 2014; Pietrogrande et al., 2019). 

 

 

Figure 7: The monthly mean 𝑶𝑷𝒗 contributions of each PM10 source in the three urban sites in Grenoble, France for 𝑶𝑷𝒗
𝑫𝑻𝑻 , 𝑶𝑷𝒗

𝑨𝑨, 455 
and 𝑶𝑷𝒗

𝑫𝑪𝑭𝑯 based on MLR analysis . 

3.4 Predicting OP activity from PM10 sources using MLP analysis  

The residuals between the observed and the MLR-modelled OP could be accounted to atmospheric processes that were not 

captured as most linear models assume no interaction between independent variables (i.e., multicomponent or multisource 

interactions). With this in mind, we are inclined to explore another method of predicting OP from PM10 sources that hopefully 460 
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addresses this limitation. The application of ANN techniques using non-linear functions, such as MLP analysis, is an interesting 

new approach that accounts for correlation and/or non-linear interactions between independent variables. 

3.4.1 Optimization of the MLP neural network architecture 

A number of MLP architectures (8 architectures in each site (total of 24 MLP models)) were explored to find the optimal 

neural network in each site by exploring two different activation functions (Hyperbolic tangent (TanH) and Sigmoid), 465 

optimization algorithm (Scaled conjugate and Gradient descent), and different learning rates (from 0.2 to 0.6). In the 

supplementary information (S3), Table S3 shows the performance comparison of all of the MLP models tested. The optimal 

model was selected based on the lowest RMSE (ideally nearly 0) and highest Pearson correlation coefficient (r) (ideally nearly 

1). Other model performance measures such as mean absolute error (MAE), mean absolute percentage error (MAPE), and 

Spearman rank correlation coefficient (rs) were also explored and lead to relatively similar results.  470 

It is important to note that, although there are other more complex architectures, we limited our tests to a rudimentary MLP 

architecture that is deemed sufficient and appropriate based on the type of input and output dataset of this study. Clearly, there 

is room for further exploration in the direction of using MLP for predicting OP from PM sources. To our knowledge, this is 

the first attempt to use MLP on apportioning OP from PM sources and may serve as a baseline for future applications of MLP 

in PM toxicity.  475 

3.4.2 Comparison of predictive accuracy between MLP and MLR models 

To conduct insightful evaluation of the predictive accuracy of the MLP and MLR models, the model performance measures  

were calculated as shown in Table 1. The predicted 𝑂𝑃𝑣
𝐷𝑇𝑇 by the MLP model generally showed lower prediction error (RMSE) 

than the MLR model for all the sites. Conversely, the model performance measures in 𝑂𝑃𝑣
𝐴𝐴  and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻
 were less 

straightforward. The predicted 𝑂𝑃𝑣
𝐴𝐴 showed lower prediction errors for the UB and UH site using MLP models, while lower 480 

prediction errors for the PU site using MLR models.   

 

Table 1: The comparison of predictive accuracy of the observed OP activity between the MLR and MLP models based on root mean 
square error (RMSE) and Pearson correlation (r). Note: RMSE is ideally ~0 (lower RMSE in bold), r is ideally ~1 (higher r in bold).  

Site Model 
Root mean square error (RMSE) Pearson Correlation coefficient (r) 

𝑂𝑃𝑣
𝐷𝑇𝑇 𝑂𝑃𝑣

𝐴𝐴 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 𝑂𝑃𝑣

𝐷𝑇𝑇 𝑂𝑃𝑣
𝐴𝐴 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻 

Urban background (UB) 
MLP 0.35 0.32 0.19 0.94 0.97 0.98 

MLR 0.38 0.32 0.21 0.93 0.97 0.98 

Urban hyper-center (UH) 
MLP 0.54 0.50 0.30 0.88 0.94 0.95 

MLR 0.69 0.90 0.31 0.79 0.80 0.94 

Peri-urban (PU) 
MLP 0.58 0.44 0.32 0.75 0.97 0.96 

MLR 0.62 0.42 0.31 0.71 0.97 0.96 

 485 
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The temporal distribution of the observed and modelled OP activities for both MLR and MLP models were previously 

presented in Figure 4. It is interesting to note that even MLP was not able to fully capture some peaks (especially in the warmer 

months) of the observed 𝑂𝑃𝑣
𝐷𝑇𝑇. However, the RMSE values using MLP were much lower than MLR, particularly in the UH 

site where the RMSE was reduced from 0.69 to 0.54, and in the PU site from 0.62 to 0.58. In the UB site, the MLP did not 

exceed the performance of MLR by a weighty extent. Nonetheless, the MLP model generally performed better making it a 490 

competitive new technique in predicting OP activity even with a rudimentary MLP architecture.  

3.4.3 The non-linearity of OP contributions of PM10 sources based on MLP analysis 

With some interactions between PM10 sources resulting to synergistic or antagonistic effects on the OP activity, it is deemed 

essential to look closer into this potential non-linear aspect to understand better the oxidizing capacity of PM10 sources. To 

demonstrate this non-linearity, the MLP models were applied to dummy datasets leading to source-specific 𝑂𝑃𝑣. The total 495 

source-specific 𝑂𝑃𝑣 (𝑀𝐿𝑃𝑠𝑢𝑚, see section 2.4.3.2) was compared to the original MLP-modelled 𝑂𝑃𝑣 as presented in Figure 8 

for the 𝑂𝑃𝑣
𝐷𝑇𝑇 in the UH site (see supplementary information (S7) for similar figures for the UB and PU sites). The data points 

below the 1:1 line shows an overall synergistic effect between PM10 sources on 𝑂𝑃𝑣, while data points above the 1:1 line shows 

an overall antagonistic effect between PM10 sources on 𝑂𝑃𝑣.  

 500 

 

Figure 8: The comparison of the original modelled 𝑶𝑷𝒗
𝑫𝑻𝑻  (𝑴𝑳𝑷) and the sum of source-specific modelled 𝑶𝑷𝒗

𝑫𝑻𝑻  activity. Note: 

Dashed grey line corresponds to the 1:1 line. Data points below the 1:1 line shows an overall synergistic effect between PM 10 sources 
on OP activity, above the 1:1 line is otherwise.  

Overall, there is a synergistic effect of PM10 sources on 𝑂𝑃𝑣
𝐷𝑇𝑇 in most days in the UH site. This is also seen in the 𝑂𝑃𝑣

𝐴𝐴 and 505 

𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 (see Figure S9 in the supplementary information (S8)). Several studies have reported synergistic effects in OP due to 

the interaction between metal and organic species (Arangio et al., 2016; Charrier and Anastasio, 2015; Dou et al., 2015; Fang 
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et al., 2017; Li et al., 2012; Lin and Yu, 2020; Xiong et al., 2017; Yu et al., 2018) . The UH site has pertinent contributions 

coming from the mineral dust source (high in metal species, possibly combined with anthropogenic organics, from road dust 

resuspension) and primary biogenic source (high in organic species) which could be initiating the synergistic effects (see 510 

Figure S7 in the supplementary information (S8)). While there are relevant contributions from biogenic sources in the other 

two sites, their mineral dust source is not as high as in the UH site (or vice versa). These findings further support the importance 

of accounting the contribution of biogenic sources as previously reported in other similar studies (Samake et al., 2017; Tuet et 

al., 2017) as well as the importance of source interactions and dynamics as it could have considerable influence on the OP of 

PM10. 515 

In section 3.4.2, it was presented that MLP offered improvements compared to MLR, based on its much lower prediction errors 

in the UH site (see Table 1). Indeed, it is possible that MLR had difficulties to generate an accurate OP model for a site that 

has a highly non-linear behaviour based on the potential synergistic effects between PM10 sources. In fact, the lowest prediction 

error by MLR (𝑂𝑃𝑣
𝐷𝑇𝑇 model in the PU site with RMSE=0.21, see Table 1) also showed data points closer to the 1:1 line 

between the 𝑀𝐿𝑃 𝑣𝑠 𝑀𝐿𝑃𝑠𝑢𝑚 (see Figure S9 in the supplementary information (S8)) suggesting weaker influence of the 520 

synergistic/antagonistic effects between PM10 sources. However, the MLP still performed better (𝑂𝑃𝑣
𝐷𝑇𝑇 model in the PU site 

with RMSE=0.19, see Table 1) supporting the flexibility of MLP in both linear and non-linear behaviour of PM10 sources 

compared to MLR.  

4 Conclusion 

This study, together with the findings of its companion paper (Borlaza et al., 2020), have presented an extensive analysis of a 525 

city-scale OP and its association to various sources of PM10 based on a one-year PM10 sampling over different sites in Grenoble 

(France), with approaches using both linear and non-linear modelling techniques. The main findings of this study are as 

follows: 

 There is a strong seasonality in the observed OP found in all assays used (AA, DTT, and DCFH), with higher OP 

during colder months and lower OP during warmer months.  530 

 There is a notable spatial difference in OP in a suburban typology against sites closer to the city-center. 

 There is an overall agreement (spatiotemporal homogeneity) between the 3 sites in the Grenoble basin, however, there 

are some influences from local features and site-specific events due to specific sources’ contribution. 

 The OP of PM10 has been successfully attributed to PMF-resolved sources using Multiple Linear Regression analysis 

with mostly good model fit.  535 

 The sources of OP with highest redox characteristics (i.e., intrinsic OP or  𝑂𝑃𝑚) are mainly anthropogenic sources 

such as industrial, primary traffic, and biomass burning sources. The redox characteristics of commonly unresolved 

sources in the biogenic fraction (MSA-rich, primary biogenic, and secondary biogenic oxidation) were also obtained 

and such natural sources also contribute to the overall OP during mild seasons.  
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 There is a redistribution of the impacts in terms of source 𝑂𝑃𝑣 contributions compared to mass contributions, 540 

highlighting the importance of considering redox activity over mass concentration in Air Quality policies.  

 There are seasonal influences on sources contributing to OP. During the colder months, the biomass burning source 

is typically the strongest contributor to all OP. During the warmer months, there are different sources (mineral dust, 

primary biogenic, secondary biogenic oxidation) contributing to OP in each site. However, there is a consistent 

contribution from the primary traffic source during the overall year. 545 

 Even with a rudimentary design, the Multilayer Perceptron approach successfully modelled OP based on PMF-

resolved sources, with some improvements on model performance (lower prediction errors, higher association to 

observed OP) compared to MLR.  

 The MLP also offered improvements especially in sites where there are prominent synergistic and/or antagonistic 

effects between PM10 sources supporting the capabilities of MLP in capturing non-linearities in OP. 550 

Finally, in this paper, we tested for the very first time the use of neural network analysis to apportion OP sources from PM10. 

We showed that such methodology is at least as robust as the linear classical inversion one and permits an improvement in the 

OP prediction when local features or non-linear effects occur. This study also demonstrated that enhanced-PMF solution allows 

to show differences in the spatiotemporal distribution of OP activity, targeting the responsible sources, at a city-scale. These 

findings pave the way of establishing exposure in homogenous OP areas. 555 
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