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Disparities in particulate matter (PM10) origins and oxidative potential at a city-scale 1 

(Grenoble, France) - Part II: Sources of PM10 oxidative potential using multiple linear 2 

regression analysis and the predictive applicability of multilayer perceptron neural 3 

network analysis 4 
 5 

Authors’ response 6 

 7 

We would like to thank the referees for their time to evaluate our manuscript and for their 8 

positive and constructive feedbacks, which helped improving the quality of the paper. Our 9 

point-by-point response to the comments are presented below with the referee comments in 10 

black, our answers in red, and changes in the revised version of the manuscript are printed in 11 

blue.  12 

 13 

Anonymous Referee #1:  14 

 15 

The manuscript reports the second part of the results of the chemical analyses of a yearly set of 16 

PM10 samples collected at three urban sites in Grenoble (FR). The assessment of the main 17 

source contributions performed by positive matrix factorization (PMF) is discussed in the first 18 

paper (Borlaza et al., 2020) while here the focus is on oxidative potential (OP) and its relation 19 

to the PMF factors identified in the first study. This is carried out using simple multiple linear 20 

regression (MLR) analysis as well as by an artificial neural network (ANN) approach: the 21 

multilayer perceptron analysis (MLP). This is probably among the first applications of machine 22 

learning techniques to the investigation of the chemical characteristics of PM determining its 23 

OP. The MLP analysis can account for possible non-linear behaviours of OP due to synergic or 24 

antagonistic effects between reactive PM chemical compounds, hence providing a more 25 

realistic representation of the way OP is determined by aerosol compounds present in mixtures. 26 

I list my major comments below: 27 

 28 

The MLR method has a clear advantage on MLP: it enables to assess OP source contributions 29 

explicitly (Fig. 5). Therefore, it is mainly by means of MLR that this study addresses the main 30 

policy-relevant questions on the sources of aerosol toxicity in this environment. Ideally, the 31 

individual sources would carry constant specific intrinsic OP and the different OPv levels 32 

between sites would be explained entirely by the spatio-temporal variability of the sources. This 33 

is only partly achieved, because undefined “site-specific features” (line 358) remain. Most 34 

notably, the specific intrinsic OP of the industrial factor is inconsistent between the PU site and 35 

the UB+UH sites for two out of three OP assays. It is therefore unclear on what basis, OP source 36 

contributions can be generalized and averaged between the three sites (Fig. 6) to provide a 37 

ranking of them. The impression is that the PMF analysis was unable to capture the full sources 38 

of OP variability in this environment. 39 

 40 

Reply: Thank you very much for this comment. We agree with the reviewer that the MLR 41 

method has an advantage by being able to apportion the sources of aerosol toxicity (OP). In this 42 

regard, the MLR method does have an advantage on MLP. However, even a rudimentary design 43 

of the MLP architecture offered improvements on OP prediction. The successful application of 44 

MLP in this study paves the way of using MLP (or other artificial neural network (ANN) 45 

techniques) in OP studies. In fact, the use/comparison of different ANN-based methodologies 46 

on OP of PM is an on-going study in our group.  47 

This two-part paper elucidates the disparities found in PM sources and OP at a city scale. The 48 

city-scale variabilities found were attributed to influences by season-specific sources, site 49 



2 

 

typology, and occurrence of specific local features, as well as assay sensitivity.  50 

In fact, the companion paper (https://doi.org/10.5194/acp-21-5415-2021) dealt with the 51 

homogeneity of sources across the city using an advanced method of comparison of the factor 52 

chemical profile. The industrial factor was identified as a heterogeneous source. However, it is 53 

important to note that the impact of trace metals is inherently variable at this spatial scale. It is 54 

also known that emissions from industrial activities are very variable in real life, even from day 55 

to day by a single source. The authors have decided to label/identify this factor as “industrial” 56 

despite this variability. This is supported by the plots (including Figure 6) which indicates that 57 

the standard deviation produced by averaging is acceptable and the sources can still be ranked. 58 

For clarity, this is now further highlighted in the paper as follows:   59 

 60 

Action: This source has been previously identified as a heterogeneous source in the companion 61 

paper. It is important to note that the impact of trace metals, used to identify this source (i.e., 62 

As, Cd, Cr, Mn, Mo, Ni, Pb, Zn), is inherently variable at this spatial scale. 63 

 64 

Finally, the disparities in sources of OP from different urban site types is one of the key points 65 

discussed (see section 3.2). The results suggest that OP source contributions could potentially 66 

be generalized on sources that are homogeneous in the city. Otherwise, we cannot generalize 67 

OP characteristics of sources with heterogeneous chemical profiles (e.g., industrial, mineral 68 

dust factor).     69 

The authors would also like to point out that the PMF methodology, indeed, has its limitations 70 

in apportioning PM mass to its sources. However, based on the mass closure in all sites, the 71 

reconstructed PM10 contributions from all sources and measured PM10 concentration indicated 72 

very good model results (see Line 319 to 321 in the companion paper) (UB: r=0.99, n=125, 73 

p<0.05; UH: r=0.99, n=126, p<0.05; and PU: r=0.99, n=126, p<0.05).  74 

 75 

The MLP analysis represents the most innovative aspect of the methodology. However, the 76 

results show that the performance of MLP is not really superior to that of MLR in reproducing 77 

the observed OP, except for the AA assay at the UH site. The true highlight about MLP stands 78 

in its ability to detect non-linear behaviours between chemical compounds. However, such 79 

behaviours are not characterized explicitly by the ANN analysis, they remain “hidden” and can 80 

only be diagnosed (Fig. 8). The way this is carried in this study (Section 2.4.3.3) is not 81 

completely convincing. According to this method, the OP for a given source is estimated as the 82 

difference between the modelled OP and the modelled OP obtained on a dummy dataset where 83 

the PMF factor for that same source is omitted. However, the PMF factors are not orthogonal, 84 

they often exhibit a certain degree of covariance. Even if we remove the nitrate-rich factor, for 85 

instance, some features of its time series are still present in the trend of the biomass burning 86 

factor. The variability of a given source cannot fully be omitted in the dummy dataset. As a 87 

consequence, the source-contribution of OP calculated as a residual (equation 3) risks to be 88 

underestimated. 89 

 90 

Reply: We thank the reviewer for an in-depth comment on the methodology. Indeed, the PMF 91 

factors does exhibit a certain degree of covariance. However, based on the Bootstrap runs 92 

(Table S4 in the companion paper supplementary information, 93 

https://acp.copernicus.org/articles/21/5415/2021/acp-21-5415-2021-supplement.pdf), most 94 

sources were correctly mapped to factors. Only the Sulfate-rich factor had unmapped runs (0.7 95 

mean unmapped runs) with a range of 88 to 99% correct BS runs.  96 

With this information, we assume that the variability of a given source is predominantly 97 

captured by the proposed methodology (Equation 3). However, we are aware that there are risks 98 

in this estimation just like any other model. To our knowledge, this is the first attempt to 99 

https://doi.org/10.5194/acp-21-5415-2021
https://acp.copernicus.org/articles/21/5415/2021/acp-21-5415-2021-supplement.pdf
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computationally demonstrate the non-linear behaviour of OP sources. The authors believe that, 100 

as such, it merits publication in order to open this road to more work, some of it being currently 101 

performed in our group.   102 

 103 

Specific comments: 104 

 105 

Line 29 (Abstract): “underlining the importance of PM redox activity over mass concentration”. 106 

This statement is unclear: is this a claim for PM redox activity being a superior metric respect 107 

to PM mass concentrations? I do not think the Authors would dare to say that. I suggest to 108 

rephrase into something like: “underlining the importance of PM redox activity for the 109 

identification of potential sources of PM toxicity”. 110 

 111 

Reply: Thank you for this suggestion. This has been revised in the manuscript accordingly.  112 

 113 

Action: There is also a clear redistribution of source-specific impacts when using OP instead of 114 

mass concentration, underlining the importance of PM redox activity for the identification of 115 

potential sources of PM toxicity. 116 

 117 

Lines 38-39: “explore both the small- and large-scale variabilities of PM pollution accounting 118 

for local variations in different urban environments”. Please, rephrase more clearly. What are 119 

the actual spatial scales at issue? What are the “different urban environments”? cities with 120 

different characteristics or different economic districts within a single city? 121 

 122 

Reply: The term different “urban environments” referred to here is the “urban typologies”. For 123 

clarity, this has been revised in the manuscript as:  124 

 125 

Action: The intricate topography and seasonality of particulate air pollution in the city of 126 

Grenoble (France) makes it an ideal location to explore variabilities of PM pollution, while also 127 

accounting for different site typologies within a single medium-sized city (Calas et al., 2019; 128 

Favez et al., 2010; Srivastava et al., 2018; Tomaz et al., 2016, 2017; Weber et al., 2019). 129 

 130 

Lines 49 – 50: The definition of oxidative potential (OP) introduced by the Authors suggests 131 

that OP can really traces the ability of aerosol particles to induce oxidative stress in biological 132 

systems. However, the actual link between the OP determined by acellular assays and the ROS 133 

assays employing in vitro system is still currently matter of debate between scientists (e.g., J 134 

Øvrevik, International journal of molecular sciences 20 (19), 4772). The Authors are 135 

encouraged to provide a concise treatment of this fundamental issue. 136 

 137 

Reply: We appreciate this comment. Our group has recently published companion papers that 138 

addressed this specific issue and our OP results have been clearly associated with oxidative 139 

stress on lung cells for the same samples (Leni et al., 2020; Daellenbach et al., 2020). However, 140 

for clarity, this sentence has been revised and now reads as: 141 

 142 

Action: The oxidative potential (OP) of PM, defined as the capability of PM to generate ROS, 143 

makes an interesting complementary to regulated metrics of ambient PM exposure (Bates et al., 144 

2019; Daellenbach et al., 2020; Guo et al., 2020; Gurgueira et al., 2002; Park et al., 2018; 145 

Shiraiwa et al., 2017; Valavanidis et al., 2008).  146 
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 147 

Lines 63 – 64 (“because numerous factors could affect OP”): make such factors explicit. 148 

 149 

Reply: Thank you for this comment. This sentence now reads as: 150 

 151 

Action: However, a non-linear relationship between redox active components of PM is 152 

generally observed (Arangio et al., 2016; Calas et al., 2017; Charrier and Anastasio, 2015; Li 153 

et al., 2012; Xiong et al., 2017; Yu et al., 2018), hence traditional deterministic models could 154 

be, in some way, limited. 155 

 156 

Line 79 (“fine-scale spatiotemporal characteristics”): again, what are the scales of importance 157 

for the present study? If the city scale is the target, 24h-integrated samples collected at three 158 

sampling points is not properly “fine scale”. Clearly, there should be more emphasis on the 159 

chemical resolution. Please, explain. 160 

 161 

Reply: Thank you for this comment. We agree that the terminology “fine-scale” can be 162 

subjective, but the authors deem this is appropriate based on the configuration (of the Grenoble 163 

basin) and land-use over the metropolitan area. The sampling sites are all within 15 km from 164 

the city-center of Grenoble and each site represents a different urban typology. In fact, UH and 165 

UB are within 4 km of each other. In an ambient PM sampling procedure in a medium-sized 166 

city, we are lucky to be able to sample PM from 3 different types of typologies.   167 

 168 

Line 88 (“catch the non-linear pattern of OP”): why non-linear behaviours of OP in this specific 169 

environment are taken for granted? 170 

 171 

Reply: Acellular OP assay responses could be dependent on species composition and emissions 172 

source, and may also vary due to multicomponent interactions (e.g., between metals and 173 

organics and/or emission sources) (Arangio et al., 2016; Calas et al., 2017; Charrier and 174 

Anastasio, 2015; Li et al., 2012; Xiong et al., 2017; Yu et al., 2018). The presence of bacteria 175 

has also been reported to influence OP measurements (a reduction up to half of the OP signal) 176 

(Samake et al., 2017). This non-linear behaviour can be taken for granted, especially on studies 177 

focusing only on measured components/species in PM.  178 

 179 

Line 133. The term “exposure” can be misleading in this context. Actually, the volume-180 

normalized OP activity can be related to exposure only upon an assessment of outdoor exposure 181 

itself, which certainly is season-dependent. I would more safely define OPv as the OP carried 182 

by the aerosol expressed in OP units per cubic meter of air. 183 

 184 

Reply: We thank the reviewer for this suggestion. This has been revised in the manuscript and 185 

now reads:  186 

 187 

Action: The 𝑂𝑃𝑚 is the intrinsic OP property of one µg of PM, while 𝑂𝑃𝑣 represents the PM-188 

derived OP per m-3 of air. 189 

 190 

Figure 7: are source-contributions to OPv calculated using the MLR method? Please specify in 191 

the caption. 192 
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 193 

Reply: Thank you very much for this clarification. We have updated the figure caption to:  194 

 195 

Action: Figure 1: The monthly mean 𝑂𝑃𝑣 contributions of each PM10 source in the three urban 196 

sites in Grenoble, France for 𝑂𝑃𝑣
𝐷𝑇𝑇, 𝑂𝑃𝑣

𝐴𝐴, and 𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 based on MLR analysis. 197 

 198 

 199 

Anonymous Referee #2:  200 

 201 

Bolraza et al. is an interesting manuscript that tested the use of neural network analysis to 202 

apportion OP sources in PM10. The manuscript is well written but highly dependent on the 203 

companion paper. In reviewer’s opinion, there should be one paper by merging this one with 204 

the companion paper. In any case, there are many important points in this paper those need to 205 

be clarified and addressed before merging it to companion paper or accepting it as an individual 206 

publication, depending upon the Editor’s decision. 207 

 208 

Reply: We appreciate the reviewer’s feedback. We agree that this manuscript tends to refer on 209 

the companion paper, especially when discussing the sources of PM. The authors deem that it 210 

was impractical to merge the two papers, leading to the decision to write a two-part series that 211 

are published back-to-back. This way allows for deeper exploration and interpretation of both 212 

PM and OP apportionment. 213 

Part 1, which revolved around the source apportionment of PM using fit-for-purpose tracers, 214 

already had a lot of interesting results—all of which were worthy of a detailed discussion 215 

(https://doi.org/10.5194/acp-21-5415-2021). It is one of the very few attempts to apportion 216 

secondary organic aerosol (SOA) sources using more practical and innovative organic tracers. 217 

Part 2, which dealt with the sources OP, also contains a great deal of new information, not to 218 

mention the first ever to introduce machine learning approach (i.e., Multilayer Perceptron 219 

analysis) to improve the prediction of OP from PM sources. This paper (Part 2) could be a 220 

standalone publication when one accepts that the PMF results are of grounded result.  221 

 222 

Major Comments: 223 

 224 

Objectives (Lines 85-88): The objectives of this MS are not satisfactory because this paper can't 225 

stand alone. Without companion paper, one can’t understand this paper. This is a major draw 226 

back. There can be part 1, part 2, etc. of the paper complementing different aspects of a given 227 

topic, but each part should also be able stand alone. 228 

 229 

Reply: We disagree with the reviewer. This paper mainly revolved around the OP levels of the 230 

sources to which one doesn’t need the companion paper to understand.  231 

In addition, we have provided sufficient information about the sampling sites and all chemistry 232 

analysis done on the previous paper. And finally, we made a synthesis of the methodology used 233 

for PM10 source apportionment in order to provide a clear view of it to the reader of this single 234 

paper.  235 

 236 

Section 2.3 237 

 238 

Lines 127-129 : Insoluble particles can be a large source of uncertainty, as they are not 239 

uniformly mixed in the solution. They can interfere with spectrometric analysis via physical 240 

https://doi.org/10.5194/acp-21-5415-2021
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absorbance. 241 

 242 

Reply: The extraction procedure in this study is based on Calas et al. (2018), also published by 243 

our group. This procedure has been tested on both soluble and insoluble compounds that are (as 244 

much as possible) within the range of atmospheric concentrations. To avoid the interferences 245 

in the wells by insoluble particles, we subtracted the intrinsic absorbance of all PM extractions 246 

before adding reactants. Also, the particles are extracted in the Gamble solution (an artificial 247 

lining fluid) where we add a surfactant: this was shown to maintain a good dispersion of 248 

particles, leading to homogeneous results (see Calas et al., 2018). This is summarized in Table 249 

S5 of Calas et al. (2018). All analysis was performed in triplicate, with a coefficient of variation 250 

(CV) ≤ 5%.  251 

 252 

Lines 134-135: This suggests the precision of the measurements. How do you ascertain the 253 

accuracy of the measurements for each assay? 254 

 255 

Reply: In every experiment, a positive control 1,4 naphtoquinone and an ambient filter (PM 256 

sampled from the lab roof) were analysed to ensure accuracy of measurements. All analysis 257 

was also performed in triplicate, with a coefficient of variation (CV) ≤ 5%.  258 

 259 

 260 

Lines 144-146: How do you ensure the uniformity of insoluble particles in each well? This 261 

needs to be clarified. 262 

 263 

Reply: This has been deeply investigated in Calas et al. (2018). To ensure the uniformity of 264 

insoluble particles, we add a natural lung surfactant (DPPC) in the PM extraction lining fluid 265 

to mimic more closely the contact of PM with lungs and maintaining a homogeneous dispersion 266 

of the particles as shown by the better accuracy of the measurements with DPPC than without 267 

(Calas et al., 2018). Section 2.3 discusses briefly this procedure, but we suggest the readers to 268 

refer to Calas et al. (2018) for more information regarding the extraction procedure.  269 

 270 

Lines 155-160: DCFH output is often reported in the form of equivalent H2O2. Here is is 271 

reported as nmol/min/m3. Authors shall provide the details, and also show the linearity in H2O2 272 

formation as a function of time before using this unit. 273 

 274 

Reply: Thank you for this comment. In Line 159, we have stated in the methodology that “The 275 

ROS concentration in the sample is calculated in terms of H2O2 equivalent based on a H2O2 276 

calibration (100, 200, 300, 400, 500, 1000, and 2000 nmol).”. Please take note that the unit for 277 

𝑂𝑃𝑣
𝐷𝐶𝐹𝐻 is in terms of H2O2 equivalent. The calibration curve in this range is linear in every 278 

experiment with r2 > 0.96.  279 

 280 

Lines 205-206: In the algorithm, what was criterion of determining the number of neurons in 281 

the hidden layer? 282 

 283 

Reply: In Line 206, we mentioned that the number of neurons in the hidden layer was 284 

determined automatically by the estimation algorithm. By implementing MLP in SPPS, there 285 

is an option for an automatic architecture selection. The operator specifies the minimum (n=1) 286 

and maximum (n=50) number of units allowed in the hidden layer, and the automatic 287 
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architecture selection computes the "best" number of units in the hidden layer. Take note that 288 

“best” refers to the output (i.e., OP prediction) closest to the observed OP activity. In most tests 289 

performed for this study, the number of neurons in the hidden layer are often around 6.  290 

 291 

Line 217: What is the rationale behind choosing 80% and 20% only? 292 

 293 

Reply: Thank you for this question. This is a common ratio of partition. Some use 75% and 294 

25% for their training and testing sets, respectively. However, general practice will be around 295 

these values. There is no standard way of performing MLP analysis yet. Generally, one should 296 

choose based on a priori knowledge and the size of the dataset. A higher percentage for the 297 

testing set could be more suitable to bigger datasets. For this study, we have opted for a general 298 

ratio of partition.  299 

 300 

Lines 229-232: Was the output unique for given input parameters? Or, different input 301 

parameters can give same/similar output? 302 

For example: If MLP gives OPv value 'x' for a% of BB, b% of Primary traffic, c% of Mineral 303 

dust, d% of Industries, and so on, then, can i% of BB, j% of Primary traffic, k% of Mineral 304 

dust, l% of Industries, and so on, also give the same output value (x) of OPv? How do you 305 

check whether the ouput is unique or not? 306 

 307 

Reply: Every output of the MLP analysis produces a unique result (i.e., predicted OP activity). 308 

They do not have exactly the same values each run, but they are relatively in the same order of 309 

magnitude. We only solely tested on using the PMF-resolved sources in the input layer.  310 

 311 

Lines 272-274: What could be the reason for the observed correlations between different assays 312 

when they are known to respond to different species? Can you make an inference that one can 313 

use only a particular assay rather than all the three assays? 314 

 315 

Reply: The observed correlations, for example, between DTT and AA assay could be due to 316 

their similar sensitivity to some species. Please see table below for a summary of a few 317 

publications on OP assays and their correlations to chemical species. This table has also been 318 

added in the supplementary information (S9) as Table S4 and mentioned in the main text as: 319 

 320 

Action: Table S4 in the supplementary information (S9) summarizes several publications on 321 

OP assays and their correlations to chemical species. 322 

 323 

Table S4. Summary of publications relating OP assays to chemical species. 324 

OP assay Species driving responses in OP assay Source 

DTT 

soluble nonspecific metals (Shinyashiki et al., 2009) 

soluble copper 

(Charrier and Anastasio, 2012, 2015; Charrier 

et al., 2016; Borlaza et al., 2018; Park et al., 

2018; Joo et al., 2018) 

soluble manganese 

(Charrier and Anastasio, 2012, 2015; Charrier 

et al., 2016; Borlaza et al., 2018; Park et al., 

2018; Joo et al., 2018) 

OC (including WSOC and WIOC) 

(Cho et al., 2005; Fang et al., 2016; Verma et 

al., 2012, 2015b; Jeng, 2010; Hu et al., 2008; 

Verma et al., 2011, 2009; Velali et al., 2016; 
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Vreeland et al., 2017; Liu et al., 2014; Borlaza 

et al., 2018; Park et al., 2018; Joo et al., 2018) 

PAHs and quinones 
(Cho et al., 2005; McWhinney et al., 2013; 

Chung et al., 2006; Totlandsdal et al., 2015) 

HULIS 
(Verma et al., 2012, 2015b, a; Dou et al., 2015; 

Ma et al., 2018) 

AA 

soluble copper 
(DiStefano et al., 2009; Fang et al., 2016; 

Visentin et al., 2016) 

total copper (Janssen et al., 2014; Pant et al., 2015) 

total iron (Janssen et al., 2014; Godri et al., 2010, 2011) 

soluble iron (Koehler et al., 2014) 

total lead (Godri et al., 2010) 

total zinc (Godri et al., 2011) 

soluble manganese (Visentin et al., 2016) 

OC (Calas et al., 2018) 

DCFH 

soluble nonspecific metals (DiStefano et al., 2009) 

soluble copper (Charrier et al., 2014; Wang et al., 2010) 

soluble iron (Wang et al., 2010) 

soluble zinc (Wang et al., 2010) 

Quinones (Xiong et al., 2017) 

 325 

It would be difficult to make an inference on which assay to use without testing the relevance 326 

of these metrics towards health data. Our results show that 𝑂𝑃𝑣
𝐷𝑇𝑇 showed sensitivity to a wider 327 

range of sources, whereas 𝑂𝑃𝑣
𝐴𝐴 address both traffic and biomass burning and 𝑂𝑃𝑣

𝐷𝐶𝐹𝐻 both 328 

showed sensitivity mainly towards biomass burning (section 3.3.3).  329 

There is a need for studies associating OP activity (obtained from various assays) to health data 330 

(i.e., health outcomes) before an inference can be attempted. In fact, this is also an on-going 331 

task in our group.  332 

 333 

Lines 281-283: This is very important point of the paper but not clear at all. Mass-normalised 334 

assays obviously depend upon the PM composition and not the PM mass. Different assays 335 

respond to different species. The statement written in lines 281-283 is confusing. Please 336 

elaborate this sentence in detail. 337 

 338 

Reply: The comparison of the two measures (𝑂𝑃𝑚 and 𝑂𝑃𝑣) allows us to see its dependency on 339 

mass concentration. An r-value of 0.76 between variable A and B represents a direct 340 

proportionality between two variables. Since, 𝑂𝑃𝑣 is calculated by multiplying 𝑂𝑃𝑚 by mass 341 

concentration, then the linear relationship between the two measures is actually the dependence 342 

of both measures to mass concentration—mainly driven by meteorological conditions 343 

especially in the Alpine valleys.  344 

 345 

Fig. 5: BB is not contributing to OP-DTT as much as it contribute to OP-AA and OP-DCFH. 346 

This is unexpected as OP-DTT is most responsive to organics. Please explain. 347 

 348 

Reply: Thank you for this comment. We acknowledge the fact that OP from DTT assay has 349 

been reported to be responsive/sensitive to organics. However, recent studies have reported that 350 

OP from DTT assay is not affected by some metals (specifically iron) like other assays, namely 351 

AA and GSH. Because of this, OP from DTT assay may not fully capture ROS generated 352 
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through Fenton chemistry or even the synergistic effects with regards to •OH generation as 353 

reported by Xiong et al. (2017). Similarly, Yu et al. (2018) has reported that soluble manganese 354 

showed synergistic effects with quinones on OP from DTT assay, while soluble copper appears 355 

to have an antagonistic effect with quinones on the same assay. On the contrary, manganese 356 

showed an antagonistic relationship with quinones on •OH generation. Quinones and soluble 357 

iron or copper react synergistically to form •OH.  358 

Generally, there is an undeniable interplay between species that needs to be considered as well 359 

as the sensitivity of each assay to species. As much as each analysis attempts to fully 360 

characterize the chemistry of PM, there can still be many species that are unmeasured but, in 361 

fact, plays a role in ROS generation. Hence, reported associations could be due to similarity in 362 

variations with PM concentration rather than a significant causal relationship between assays 363 

and PM components.  364 

Due to the sensitivity of DTT assay to wider range of compounds, such as organics and metals, 365 

that are present in various sources, this lead to a more balanced distribution of OP sources (and 366 

so weighting the contribution of biomass burning with regards to other sources) than the other 367 

OP assays, such as AA and DCFH.  368 

 369 

Lines 345-355: Why industrial (or other) sources are responding differently to OP at different 370 

sites? Explain. 371 

 372 

Reply: In the companion paper (section 3.5.1), we have presented the metric PD-SID (Pearson 373 

distance and standardized identity distance) that measures (dis)similarities of chemical profiles 374 

by each source. There are some sources that have been identified as heterogenous sources, 375 

including the industrial source. This means that the tracers used to identify the industrial source 376 

can be different between the 3 sites in this study. It could also imply that there is a varying 377 

origin of this source across the Grenoble basin. Due to this difference, it is expected that the OP 378 

contribution of the industrial source can be different as well, after all it is considered a 379 

heterogenous source. A similar comment by Referee #1 has also been addressed in Line 51.  380 

 381 

Lines 512-514: "Redox characteristics of commonly unresolved sources were obtained" - What 382 

does that mean? Elaborate it further. 383 

 384 

Reply: We refer to MSA-rich, primary biogenic, and secondary biogenic oxidation factors as 385 

the “commonly unresolved sources in the biogenic fraction”. This sentence was revised and 386 

now reads as: 387 

 388 

Action: The redox characteristics of commonly unresolved sources in the biogenic fraction 389 

(MSA-rich, primary biogenic, and secondary biogenic oxidation) were also obtained and such 390 

natural sources also contribute to the overall OP during mild seasons. 391 

 392 

General comment: 393 

 394 

How the OP-DTT, OP-AA, and OP-DCFH of PM10 observed over the study regions compare 395 

with the other parts of the world? This should be included and discussed. 396 

 397 

Reply: The authors deem that this is outside of the scope/goal of this paper. After all, this is not 398 
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a review paper on OP studies. However, our group has a paper (currently under review process 399 

in ACPD) that tackles the synthesis of OP measurements over many sampling sites in France.  400 

 401 

Minor Comments: 402 

 403 

Line 15: This is a strong but invalid statement. OP doesn't quantify anti-oxidant imbalance 404 

because as of now there is no assay available which respond to all the redox-active species 405 

present in PM. 406 

 407 

Reply: Thank you for this comment. This sentence now reads as: 408 

 409 

Action: The oxidative potential (OP) of particulate matter (PM) measures PM capability to 410 

potentially cause anti-oxidant imbalance. 411 

 412 

Lines 49-51: Give a proper definition of OP. 413 

 414 

Reply: Thank you for this comment. This sentence now reads as: 415 

 416 

Action: The oxidative potential (OP) of PM, defined as the capability of PM to generate ROS, 417 

makes an interesting complementary to regulated metrics of ambient PM exposure (Bates et al., 418 

2019; Daellenbach et al., 2020; Guo et al., 2020; Gurgueira et al., 2002; Park et al., 2018; 419 

Shiraiwa et al., 2017; Valavanidis et al., 2008). 420 

 421 

L279: Are these relationships significant? Provide p values of each R. 422 

 423 

Reply: We thank the reviewer for this suggestion. However, the authors deem that it is 424 

unnecessary to provide the p-values in the main text. Instead, the significance of the correlations 425 

(p≤0.01) obtained were mentioned in the figure captions in the supplementary information.  426 

 427 

Action: All correlations are significant at p≤0.01. 428 

 429 

L325-327: What could be the reason that MLR could not capture high OP events? 430 

 431 

Reply: A very simple answer is that linear regression analysis can fail at finding relationships 432 

that are non-linear in nature. If a specific variable increases at a rate of the log of another 433 

variable, then linear regression will not describe the relationship well. We can imagine a similar 434 

scenario in high OP events.  435 

 436 
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