Supplementary Information

Source-Resolved Variability of Fine Particulate Matter and Human Exposure in an Urban Area

Pablo Garcia Rivera¹, Brian T. Dinkelacker¹, Ioannis Kioutsioukis², Peter Adams³,⁴, and Spyros N. Pandis⁵,⁶

¹Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213
²Department of Physics, University of Patras, 26500, Patras, Greece
³Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213
⁴Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, 15213
⁵Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504, Patras, Greece
⁶Department of Chemical Engineering, University of Patras, 26500, Patras, Greece
Figure S1 Population exposure histograms of the contribution to PM$_{2.5}$ concentrations from (A) commercial cooking, (B) industrial, (C) on-road traffic and (D) power generation sources during February 2017. A different scale for population is used for the distribution from power generation.
Figure S2 Population exposure histograms of the contribution to PM$_{2.5}$ concentrations from (A) biomass burning, (B) miscellaneous area sources and (C) all other sources during February 2017. Contributions from long-range transport (D) are shown with a different concentration scale.
Figure S3 Population exposure histograms of the contribution to PM$_{2.5}$ concentrations from (A) commercial cooking, (B) industrial, (C) on-road traffic and (D) power generation sources during July 2017.
Figure S4 Population exposure histograms of the contribution to PM$_{2.5}$ concentrations from (A) biomass burning, (B) miscellaneous area sources and (C) all other sources during July 2017. Contributions from long-range transport (D) are shown with a different concentration scale.
Figure S5 Absolute contributions from local sources to population weighted total PM$_{2.5}$ concentration for February and July 2017