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Abstract 17 

Increasing the resolution of chemical transport model (CTM) predictions in urban areas is 18 

important to capture sharp spatial gradients in atmospheric pollutant concentrations and 19 

better inform air quality and emissions controls policies that protect public health. The 20 

chemical transport model PMCAMx was used to assess the impact of increasing model 21 

resolution on the ability to predict the source-resolved variability and population exposure 22 

to PM2.5 at 36 x 36, 12 x 12, 4 x 4, and 1 x 1 km resolutions over the city of Pittsburgh 23 

during typical winter and summer periods (February and July 2017). At the coarse 24 

resolution, county-level differences can be observed, while increasing the resolution to 12 25 

x 12 km resolves the urban-rural gradient. Increasing resolution to 4 x 4 km resolves large 26 

stationary sources such as power plants and the 1 x 1 km resolution reveals intra-urban 27 

variations and individual roadways within the simulation domain. Regional pollutants that 28 

exhibit low spatial variability such as PM2.5 nitrate show modest changes when increasing 29 

the resolution beyond 12 x 12 km. Predominantly local pollutants such as elemental carbon 30 
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and primary organic aerosol have gradients that can only be resolved at the 1 x 1 km scale. 31 

Contributions from some local sources are enhanced by weighting the average contribution 32 

from each source by the population in each grid cell. The average population weighted 33 

PM2.5 concentration does not change significantly with resolution, suggesting that 34 

extremely high resolution PM2.5 predictions may not be necessary for effective urban 35 

epidemiological analysis. 36 

 37 

1. Introduction 38 

Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) contributes 39 

to poor air quality throughout large parts of the United States. These particles directly affect 40 

visibility (Seinfeld and Pandis, 2006) and have been associated with long and short-term 41 

health effects such as premature death due to cardiovascular disease, increased chance of 42 

heart attacks and strokes, and reduced lung development and function in children and 43 

people with lung diseases such as asthma (Dockery and Pope, 1994). 44 

At high resolutions, emissions from local sources such as commercial cooking, on-45 

road traffic, residential wood combustion, and industrial activities can have sharp gradients 46 

that influence the geographical distribution of PM2.5 concentrations. High-resolution 47 

measurements of PM1 have found gradients of up to ~2 µg m-3 between urban background 48 

sites and those with high local emissions (Gu et al., 2018; Robinson et al., 2018). 49 

A key limiting factor on the modeling of particulate matter at high resolutions is 50 

the geographical distribution of emissions. Previous studies have found that coarse grid 51 

emissions interpolated to higher resolutions lead to small to modest improvements in model 52 

predictive ability for ozone (Arunachalam et al., 2006; Kumar and Russell, 1996), 53 

secondary organic aerosol (Fountoukis et al., 2013; Stroud et al., 2011) and nitrate 54 

(Zakoura and Pandis, 2019, 2018). Pan et al., (2017) used the default approach from the 55 

U.S. Environmental Protection Agency (EPA) National Emissions Inventory (NEI) to 56 

allocate county-based emissions to model grid cells at 4 x 4 and 1 x 1 km and found only 57 

small changes to model performance for NOx and O3, while the 1 x 1 km case showed more 58 

detailed features of emissions and concentrations in heavily polluted areas. 59 

Improvements in the resolution of emission inventories have been focused on traffic 60 

as this source exhibits significant variability at high resolutions. Recent approaches to 61 
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building high-resolution traffic inventories include origin-destination by vehicle class (Ma 62 

et al., 2020), synthetic population mobility (Elessa Etuman and Coll, 2018) and fuel sales 63 

combined with traffic counts (McDonald and McBride, 2014). Other sectors such as 64 

biomass burning for residential heating and commercial cooking have been identified as 65 

very uncertain in current inventories (Day et al., 2019). Recent versions of the NEI have 66 

made progress addressing the total emissions and temporal distributions of biomass 67 

burning and commercial cooking (Eyth and Vukovich, 2016), but there is still significant 68 

uncertainty on their geographical location at a sub-county scale. Robinson et al. (2018) 69 

found greatly elevated organic aerosol concentrations (10s of µg m-3) in the vicinity of 70 

numerous individual restaurants and commercial districts containing groups of restaurants 71 

indicating that commercial cooking is a source of large gradients on the urban scale. 72 

Population density and socio-economic indicators of that population, such as 73 

income or access to healthcare, show large gradients in the urban scale. It is important to 74 

assess the exposure of different sub-populations to air pollutants and the resulting health 75 

effects, a concept known as Environmental Justice (Anand, 2002). 76 

We use the Particulate Matter Comprehensive Air quality Model with Extensions 77 

(PMCAMx) to study the impact of increasing model resolution on the model’s ability to 78 

predict the variability, sources and population exposure of PM2.5 concentrations on the 79 

urban scale in Pittsburgh. We compare predicted variability at 36 x 36, 12 x 12, 4 x 4 and 80 

1 x 1 km resolutions over the city of Pittsburgh during one typical summer and one typical 81 

winter month of 2017. Additional sensitivity simulations were performed to determine 82 

contributions from selected sources to concentrations. The results of the simulations are 83 

used to estimate exposure to PM2.5 at all resolutions and from the selected sources. A 84 

detailed evaluation of the PMCAMx predictions against measurements will be the topic of 85 

a future publication. Overall the model performance was similar to those in previous model 86 

applications in the Eastern US (Fountoukis et al., 2013). 87 

 88 

2. PMCAMx Description 89 

The Particulate Matter Comprehensive Air quality Model with Extensions 90 

(PMCAMx)  (Karydis et al., 2010; Murphy and Pandis, 2009; Tsimpidi et al., 2010), uses 91 

the framework of the CAMx model (Environ, 2006) to describe horizontal and vertical 92 
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advection and diffusion, emissions, wet and dry deposition, gas, aqueous and aerosol-phase 93 

chemistry. A 10-size section aerosol sectional approach is used to dynamically track the 94 

evolution of the aerosol mass distribution. The aerosol species modeled include sulfate, 95 

nitrate, ammonium, sodium, chloride, elemental carbon, water, primary and secondary 96 

organics, and other non-volatile aerosol components. The SAPRC (Statewide Air Pollution 97 

Research Center) photochemical mechanism (Carter, 1999) is used for the simulation of 98 

gas-phase chemistry. The version of SAPRC used here includes 237 reactions and 91 99 

individual and surrogate species. For inorganic growth, a bulk equilibrium approach was 100 

used, assuming equilibrium between the bulk inorganic aerosol and gas phases (Pandis et 101 

al., 1993). Aqueous-phase chemistry is simulated using the Variable Size Resolution 102 

Model (VSRM) (Fahey and Pandis, 2001).The partitioning of the various semivolatile 103 

inorganic aerosol components and aerosol water is determined using the ISORROPIA-I 104 

aerosol thermodynamics model (Nenes et al., 1998). The primary and secondary organic 105 

aerosol components are described using the volatility basis set approach (Donahue et al., 106 

2006). For primary organic aerosol (POA) ten volatility bins, with effective saturation 107 

concentrations ranging from 10-3 to 106 µg m-3 at 298 K are used. The volatility distribution 108 

for POA from Tsimpidi et al. (2010) was used for all sources, while size distributions are 109 

specific to each emission sector. Anthropogenic (aSOA) and biogenic (bSOA) are modeled 110 

with 4 volatility bins (1, 10, 102, 103 µg m-3) (Murphy and Pandis, 2009) using NOx 111 

dependent yields (Lane et al., 2008). Both fine and coarse PM are simulated by PMCAMx, 112 

although the following analysis in this work is focused on fine PM. More detailed 113 

descriptions of PMCAMx can be found in Fountoukis et al. (2011) and Zakoura and Pandis 114 

(2018). 115 

 116 

3. Model Application 117 

PMCAMx was used to simulate air quality over the metropolitan area of Pittsburgh 118 

during February and July 2017. For the base-case simulation we used a one-way nested 119 

structure with a 36 x 36 km master grid covering the continental United States, with nested 120 

grids of 12 x 12 km, 4 x 4 km in South Western Pennsylvania and a 1 x 1 km grid covering 121 

the city of Pittsburgh, most of Allegheny County and the upper Ohio River valley (Figure 122 

1a). The 1 x 1 km grid covers a 72 x 72 km area (Figure 1b). Two days in each simulation 123 
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were used for model spin-up and discarded for all analyses. Simulations required 124 

approximately 6 CPU days, 5 CPU hours, 10 CPU hours, and 12 CPU days to complete in 125 

a single Intel Xeon CPU E5-4640 at 2.4 GHz for the 36 km, 12 km, 4 km, and 1 km 126 

domains, respectively. 127 

The surface concentrations at the boundaries of the 36 x 36 km grid are shown in 128 

Table S1 in the Supplementary Information. These values were applied to all upper air 129 

layers assuming a constant mixing ratio. Results from lower resolution simulations were 130 

used as boundary conditions for the corresponding next higher resolution simulation. 131 

Horizontal wind components, vertical diffusivity, temperature, pressure, water vapor, 132 

clouds, and rainfall were generated using the Weather Research and Forecasting (WRF 133 

v3.6.1) model over the whole modeling domain with horizontal resolution of 12 km. The 134 

data was interpolated to higher resolutions when needed. The interpolation of 135 

meteorological fields from 12 x 12 km to higher resolutions is a potential limitation of this 136 

work and will be the focus of future improvements to the modeling methods. Initial and 137 

boundary meteorological conditions for the WRF simulations were generated from the 138 

ERA-Interim global climate re-analysis database, together with the terrestrial data sets for 139 

terrain height, land-use, soil categories, etc. from the United States Geological Survey 140 

(USGS) database. The WRF modeling system was prepared and configured in a similar 141 

way as described by Gilliam and Pleim (2010). This configuration is recommended for air 142 

quality simulations (Hogrefe et al., 2015; Rogers et al., 2013). 28 vertical layers were used 143 

in the WRF simulations to produce 14 layers of meteorological input for the PMCAMx 144 

simulations. Each of the 14 PMCAMx layers corresponds to a WRF layer. 145 

Emissions were calculated using the EPA’s Emission Modeling Platform (v6.3) for 146 

the National Emissions Inventory for 2011 (NEI11) (Eyth and Vukovich, 2016) using the 147 

default 2017 projected values. Base emissions were calculated first at a 12 km resolution 148 

for the full modeling domain using the Sparse Matrix Operator Kernel Emissions 149 

(SMOKE) model and our WRF meteorological data. The data sources used to produce 12 150 

km resolution surrogates with Platform v6.3 were used to develop surrogates at 4 x 4 km 151 

and 1 x 1 km resolution for all sectors except commercial cooking and on-road traffic for 152 

which custom surrogates were developed. These custom surrogates also use projected 153 

values for 2017. Bicubic interpolation was used to produce biogenic emissions at 4 x 4 km 154 

mailto:E5-4640@2.40GHz
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and 1 x 1 km resolution, in areas in which sufficient data was unavailable. The emissions 155 

by all sources together with the chemical composition are summarized in Tables 1 (for the 156 

winter period) and 2 (for the summer period).. 157 

 In this work, we used normalized restaurant count to distribute the commercial 158 

cooking emissions in space in the 1x1 km and 4x4 km resolution domains. Geographical 159 

information was collected for all locations labeled as “restaurant” from the freely 160 

accessible Google Places Application Programming Interface (API) for the western 161 

Pennsylvania area, eastern Ohio and northern West Virginia. Using this new spatial 162 

surrogate, PM2.5 emissions from commercial cooking are enhanced primarily in the 163 

Pittsburgh urban core with a maximum increase of 1200 kg d-1 km-2 (Figure 2a). 164 

 To accurately capture spatial patterns of on-road traffic, we use the output of a link-165 

level, origin-destination by vehicle class traffic model of Pittsburgh (Ma et al., 2020). This 166 

traffic model simulates traffic counts and speed by hour-of-day using observations from 167 

Pennsylvania Department of Transportation sites throughout Pittsburgh. As expected, 168 

emissions in areas with major highways are high (Figure 2b).  169 

 The novel surrogates used for onroad traffic and cooking result in increases in 170 

emissions in some areas and particularly in downtown Pittsburgh and decreases in others. 171 

Total emissions inside the inner 1 x 1 km domain are the same using both the new and old 172 

surrogates. For commercial cooking, emissions calculated using the new surrogates are 173 

more concentrated in areas with high restaurant densities such as downtown Pittsburgh and 174 

the Oakland neighborhood (Figures S1 and S2). For onroad traffic, the emissions become 175 

higher at the locations of major highways and in the urban area of Pittsburgh when using 176 

the new surrogates (Figures S3 and S4). Using the new spatial distribution of emissions 177 

predicted average PM2.5  increase by 1-2 µg m-3 at certain areas. A detailed evaluation of 178 

these predictions will be the topic of another publication. 179 

 180 

4. PM2.5 concentrations and sources during winter 181 

4.1 Effect of grid resolution 182 

The results of the simulations with the four resolutions for the winter period are 183 

shown in Figures 3 and 4. For the area of interest, the simulations at 36 x 36 km resolves 184 

concentration fields at the county scale. The urban-rural gradient is resolved in the 12 x 12 185 
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km simulations. Increasing the resolution to 4 x 4 km, large stationary sources such as 186 

power plants and large industrial installations are resolved. Finally, the resolution increase 187 

to 1 x 1 km resolves the intra-urban variations in Pittsburgh and medium-sized industrial 188 

installations. Variable concentration limits are used in the species maps to remove 189 

background and highlight the effects of local sources (Figures 3 and 4).  190 

In the winter period, the predicted maximum PM2.5 concentration in the inner 191 

domain increases from 10.4 µg m-3 at 36x36 km, to 11.8 µg m-3 at 12x12, to 12.9 µg m-3 at 192 

4x4, and finally to 16.4 µg m-3 at 1x1 km (Figure 3), a 58% increase. On the other end, the 193 

predicted minimum PM2.5 concentration changes from 8.2 µg m-3 at 36 x 36 km to 7 µg    194 

m-3 at 12 x 12 and remains practically the same at even higher resolutions. This corresponds 195 

to the “background” concentration level for the area during the simulation period, so further 196 

resolution enhancements do not change this value. The standard deviation of the predicted 197 

concentration can be used as a measure of the concentration variability in the area. This 198 

standard deviation changes from 0.9 µg m-3 at 36x36, to 1.24 µg m-3 at 12x12, to 1.45 µg 199 

m-3 at 4x4 and to 1.35 µg m-3 at 1x1 km. These results indicate an increase of the PM2.5 200 

variability by 50% when one moves from the coarse to the finest resolution. However, most 201 

of this change in variability (38% out of the 50%) appears when one moves from 36x36 to 202 

12x12 km. 203 

Elemental carbon is a primary aerosol component with sources that are quite 204 

variable in space. In winter, the predicted maximum PM2.5 EC increased by a factor of 2.9, 205 

from 0.6 µg m-3 at the 36 x 36 km resolution to 1.6 µg m-3 at 1 x 1 km (Figure 3). The 206 

predicted maximum EC is, as expected in the Pittsburgh downtown area. On the other hand, 207 

the predicted minimum of EC is reduced by only 0.1 µg m-3, from 0.34 µg m-3 at 36x36 208 

km to 0.24 µg m-3 at resolutions lower or equal than 4x4 km. The standard deviation of the 209 

predicted EC almost doubles from 0.1 µg m-3 at 36 x 36 km to 0.18 µg m-3 at 1 x 1 km. 210 

Approximately 50% of this increase in variability appears in the transition from the coarse 211 

to the intermediate resolution of 12 x 12 km. The fine and the finest resolutions are needed 212 

to resolve the other half of the predicted variability. 213 

During this winter period a significant fraction (79%) of the OA in the Pittsburgh 214 

area is primary and therefore the higher resolution results in increases of the predicted 215 

maximum concentrations in space from 2.8 µg m-3 at the coarse resolution to 3.7 µg m-3 at 216 
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the intermediate to 4.8 µg m-3 at the finest resolution (Figure 3). This corresponds to an 217 

increase by a factor of 1.7, more than the change for total PM2.5, but much less than that 218 

for EC. The predicted maximum is located in downtown Pittsburgh, with additional 219 

hotspots in neighboring counties that are resolved at the fine and finest resolution. The 220 

predicted minimum changes from 2.1 µg m-3 at 36x36 to 1.7 µg m-3 at 12x12 with small 221 

reductions at higher resolutions. The variability (standard deviation) of the OA 222 

concentration field of the predicted concentration increases by a factor of approximately 223 

1.6 from 0.35 µg m-3 at 36 x 36, to 0.51 µg m-3 at 12 x 12 km. The increase is small at even 224 

higher resolutions with the standard deviation of OA reaching 0.53 µg m-3 at 1 x 1 km (an 225 

increase by a factor of 1.7). 226 

Average predicted PM2.5 sulfate in the inner domain changes little between the 227 

coarsest resolution (average level 1.37 µg  m-3)  and finest resolution (1.29 µg  m-3). The 228 

minimum concentration decreased slightly with resolution from 1.33 to 1.2 µg  m-3, with 229 

much of the decrease captured by increasing the resolution to 12 x 12 km. The maximum 230 

sulfate concentration increased by a larger value but this change was not observed until 231 

moving to the highest resolution where the maximum was 2.08 µg  m-3, compared to 1.4 232 

µg  m-3 at 36 x 36 km resolution. The standard deviation increased only marginally from 233 

0.03 µg m-3 at 36 x 36 km to 0.06 µg m-3 at 1 x 1 km. The low variability in the predicted 234 

ground sulfate levels during the winter is partially due to the low mixing heights during 235 

this cold period with the emissions from the tall stacks of local power generation sources 236 

often introduced above the boundary layer.   237 

The predicted fine nitrate levels are relatively high ranging from 1.78 to 2.24 µg  238 

m-3 in the coarse-resolution simulation. This is expected in this wintertime period due to 239 

the partitioning of nitric acid and ammonium in the particulate phase. This predicted 240 

concentration range increases to 1.5-2.24 µg m-3 in the finest scale simulation with higher 241 

levels in the northeast of the domain. The standard deviation of the predicted concentration 242 

does not show any significant trend changing from 0.19 µg m-3 at 36 x 36 to 0.15 µg m-3 243 

at 1 x 1 km. 244 

For PM2.5 ammonium, changes with increasing resolution are modest with the 245 

predicted minimum being reduced from 1.07 µg m-3 at 36x36 to approximately 0.95 µg   246 

m-3 at all other higher resolutions. The predicted maximum stays relatively constant 247 
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between 1.25 µg m-3 and 1.27 µg m-3 at all resolutions. As with nitrate, the standard 248 

deviation does not show any significant trend changing from 0.08 µg m-3 at 36 x 36, to 0.09 249 

µg m-3 at 12 x 12, to 0.07 µg m-3 at 4 x 4 and 1 x 1 km resolutions. 250 

 251 

4.2 Source Apportionment 252 

We performed zero-out simulations in the 1x1 km Pittsburgh grid to determine the 253 

local contributions of eight source categories to the total PM2.5. The local sources 254 

quantified included: commercial cooking, industrial, biomass burning, on-road traffic, 255 

power generation, and miscellaneous area sources. A summary of total local (within the 256 

inner 1 x 1 km resolution domain) dry PM2.5 emissions from each source category  during 257 

February 2017 is shown in Table 1. The species category labeled “other” for the power 258 

generation sector is predominately composed of ash (including metals emitted from power 259 

generation) and is simulated in PMCAMx as inert particle mass. Biomass burning 260 

emissions here correspond only to residential wood combustion, as there were no 261 

significant wildfiers in the 1 x 1 km resolution domain during the simulation periods. The 262 

PM2.5 emissions used in this study contain both the condensable and filterable fractions of 263 

PM2.5 (U.S. EPA, 2015). The miscellaneous area sources sector includes a large variety of 264 

emission sources that are not classified in any of the sources in Table 1. These include 265 

chemical manufacturing, solvent utilization for surface coatings, degreasing and dry 266 

cleaning, storage and transport of petroleum products, waste disposal and incineration, and 267 

cremation. The emissions from agricultural dust, river barges, off-road equipment, oil-gas 268 

activities, and rail were grouped on the “others” source. All emissions (particulate and gas-269 

phase) from each source were set to zero, and the results of the zero-out simulation were 270 

subtracted from those of the baseline simulation to estimate the corresponding source 271 

contribution. The contribution of long-range transport from outside the inner domain was 272 

also estimated by setting all local sources to zero. 273 

Biomass burning is used during the winter for residential heating and recreation. 274 

This source contributes a maximum of 3.31 µg m-3 in Cranberry, a northern suburb of 275 

Pittsburgh located in the neighboring Butler county. In the downtown Pittsburgh area, the 276 

contribution from biomass burning accounts for 7% of the PM2.5. This source shows the 277 

highest variability with a standard deviation of 0.5 µg m-3. 278 
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The maximum contribution of 8.05 µg m-3 from industry is predicted near a cluster 279 

of industrial facilities in the town of Beaver, 37 km northwest of Pittsburgh. The maximum 280 

PM2.5 concentration of the modeling domain is located here. In this location long-range 281 

transport contributes 37% of the PM2.5 followed by industrial sources with 49% and 282 

biomass burning with 7%. On average, the contribution from industrial sources is low with 283 

3.7%. In downtown Pittsburgh, the contribution is lower still with 2%. 284 

On-road traffic emissions are most important in major highway intersections and 285 

river crossings surrounding downtown Pittsburgh with a maximum contribution of 3.9 µg 286 

m-3 accounting for 24% of the PM2.5 in this area. On average, on-road traffic contributes 287 

2.5% of the PM2.5 mass. The contribution from on-road traffic shows higher variability 288 

(standard deviation: 0.36 µg m-3) since this sector contributes significantly to areas adjacent 289 

to the network of highways that radiates from the Pittsburgh downtown. 290 

On average, commercial cooking emissions contribute 0.7% of the PM2.5 in the 291 

modeling domain with a maximum contribution of 2.44 µg m-3 in downtown Pittsburgh, 292 

with smaller contributions in the surrounding urban area. Cooking is predicted to account 293 

for 16% of the PM2.5 mass in downtown Pittsburgh. The contribution from commercial 294 

cooking is localized around downtown Pittsburgh and therefore shows little variability 295 

throughout the domain with a standard deviation of 0.1 µg m-3.  296 

The miscellaneous area source sector contributes 6% of the PM2.5 on average. Since 297 

this sector encompasses a variety of sources and activities, its contribution shows 298 

significant variability with a standard deviation of 0.34 µg m-3.The maximum contribution 299 

is located in the Pittsburgh urban core with 1.64 µg m-3, accounting for 11% of the PM2.5. 300 

The power generation sector contributes a maximum of 0.63 µg m-3 in the plume 301 

of the Bruce Mansfield power plant northwest of Pittsburgh (this plant is no longer 302 

operating as of 2019). The contribution of this sector shows the smallest variability at 0.09 303 

µg m-3. The contribution to ground PM2.5 from power generation in the winter is relatively 304 

low. This is largely due to the height of the emissions stacks associated with this sector. A 305 

significant fraction of the emissions from power generation is trapped above the shallow 306 

mixing height in the winte and much of the PM2.5 mass is predicted to remain in the upper 307 

air layers. The predicted relative high upper air PM2.5 concentration from power generation 308 

are shown in Figure S5.   309 
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Long-range transport from outside the inner modeling domain is the major source 310 

of PM2.5 during this period contributing an average of 74%. This contribution varies from 311 

7.1 µg m-3 in the southeast corner of the domain decreasing in the direction of the Pittsburgh 312 

urban core where the contribution is reduced to 5.9 µg m-3. In areas where there are 313 

significant local emissions such as the Pittsburgh downtown, the contribution from long-314 

range transport decreases to 38%. 315 

 Contributions for all remaining sources are largest in the Pittsburgh downtown with 316 

0.74 µg m-3, accounting for 5% of the PM2.5. This sector also significantly contributes on 317 

the Ohio and Monongahela river valleys, where there is important rail and river traffic. On 318 

average, these sources contribute 3% of the PM2.5 and show a moderate variability with a 319 

standard deviation of 0.1 µg m-3. 320 

For all local sources, the minimum contribution is close to zero (less than 0.1 µg  321 

m-3) and is located at the southwestern corner of the domain, near the Ohio – West Virginia 322 

border. 323 

 324 

5. PM2.5 concentrations and sources during summer 325 

5.1 Effect of grid resolution 326 

The predicted PM2.5 concentrations in the simulated summer period are lower than 327 

during the winter period and more uniform, however, the qualitative behavior of the model 328 

at the different scales remains the same (Figure 6). Variable concentration limits are again 329 

used in these maps to remove background and highlight the effects of local sources.  The 330 

standard deviation of the PM2.5 increases from 0.28 µg m-3 at 36 x 36, to 0.57 µg m-3 at 12 331 

x 12, to 0.72 µg m-3 at 4 x 4 and to 0.82 µg m-3 at 1 x 1 km. At the finest scale, the predicted 332 

variability in the summer is 61% of that in the winter. Similar to the winter period, the 333 

predicted maximum PM2.5 concentration changes significantly with increasing resolution. 334 

The predicted maximum PM2.5 increases from 6.4 µg m-3 at the coarse to 15.3 µg m-3 at the 335 

fine resolution. The finest scale better resolves the concentration field in the cluster of 336 

industrial installations 37 km northwest of Pittsburgh. The minimum PM2.5 drops from 6.5 337 

µg m-3 at 36 x 36 to 5.3 µg m-3 at 12 x 12, and then to 4.7 µg m-3 at 1 x 1 km. As in the 338 

winter period, the moderate resolution appears to capture the majority of the concentration 339 

change from increasing resolution (67%). 340 
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The average EC is lower during the summer with 0.28 µg m-3 versus 0.43 µg m-3 341 

in the winter. The standard deviation of the predicted average EC increases from 0.06 µg 342 

m-3 at 36 x 36, to 0.09 µg m-3 at 12 x 12, to 0.11 µg m-3 at 4 x 4 km, and to 0.13 µg m-3 at 343 

1 x 1 km. The peak average EC is located in downtown Pittsburgh and increases by a factor 344 

of 3.6 (from 0.35 to 1.27 µg m-3) moving from the coarse to the finest resolution. It is 345 

noteworthy that the peak is 38% less than that of the winter when the coarse resolution is 346 

used, but only 21% when the finest resolution is used. The concentration range (difference 347 

between the maximum and the minimum) increases from 0.13 µg m-3 to 1.12 µg m-3 348 

moving from the coarse to the finest resolution. This increase by a factor of 8.6 shows the 349 

importance of the local variations of a primary species like EC in an urban area in both 350 

summer and winter. 351 

The OA concentration field is quite uniform at the coarse-scale varying by only 352 

0.17 µg m-3 (from 1.72 to 1.89 µg m-3) with a standard deviation of 0.07 µg m-3 (Figure 6). 353 

Variablility increases significantly when one moves to the finest scale, with the range 354 

increasing to 2.24 µg m-3 (from 1.55 to 3.79 µg m-3) and the standard deviation of the OA 355 

field increases to 0.2 µg m-3. The use of the finest scale appears to be needed for the 356 

resolution of the OA high concentration areas in the summer more than in the winter. 357 

The PM2.5 sulfate levels during the summer period are on average 12% higher 358 

during the summertime period. At the coarse and intermediate scales, the predicted average 359 

concentration fields have relatively little structure (Figure 7). The corresponding 360 

concentration ranges are relatively narrow (0.05 µg m-3 at 36 x 36 km and 0.42 µg m-3 at 361 

12x12 km). However, a different picture emerges at the fine and especially the finest scales. 362 

The plumes from the major power plants can be clearly seen at these higher resolutions. 363 

The maximum increased by 0.5 µg m-3 from the coarse scale to the finest scale while the 364 

minimum is reduced from 1.78 µg m-3 at 36 x 36 to 1.05 µg m-3 at 12 x 12, to 0.95 µg m-3 365 

at 4 x 4 and 1 x 1 km.  The standard deviation of the predicted sulfate concentration field 366 

at the coarse resolution is low and similar to that in winter, 0.02 µg m-3. However, the 367 

variability at the finest scale in the summer (0.13 µg m-3 at 1x1 km) is twice the predicted 368 

variability in the winter. 369 

The predicted summertime nitrate concentrations are quite low in the area (average 370 

0.5 µg m-3 in the coarse and 0.46 µg m-3 in the finest resolution). The predicted minimum 371 



13 

 

decreases from 0.42 µg m-3 at 36 x 36 to 0.39 µg m-3 at 12 x 12, to 0.34 µg m-3 at 4 x 4, and 372 

to 0.3 µg m-3 at 1 x 1 km. The predicted maximum concentration increases from 0.56 µg 373 

m-3 at the coarse scale to 0.71 µg m-3 at the intermediate scale and stays relatively constant 374 

at higher resolutions. The concentration field is quite uniform with a standard deviation 375 

ranging from 0.06 to 0.09 µg m-3 for all scales. However, due to the reduction in the 376 

predicted minimum the concentration range increases from 0.14 µg m-3 at the coarse 377 

resolution to 0.37 µg m-3 at the finest resolution. 378 

The PM2.5 ammonium concentration field is quite uniform at all resolutions (Figure 379 

7). The concentration range increases from 0.04 to 0.22 µg m-3 moving from the coarse to 380 

the finest resolution and the standard deviation increases from 0.02 to 0.04 µg m-3. 381 

 382 

5.2 Source Apportionment 383 

The local emissions for each source category during July 2017 are shown in Table 384 

2. During summer, residential biomass burning is minimal. This source contributes a 385 

maximum of 0.04 µg m-3 and an average of 0.007 µg m-3,accounting for 0.6% of the 386 

average total PM2.5.  387 

Power generation sources have the highest average contribution to total PM2.5  of 388 

all the local sources of 10%. Industrial sources account for 6% of the average PM2.5 but are 389 

the most important contributor in the point of the modeling domain with the maximum 390 

predicted PM2.5  conentration. At this location in Beaver County, industrial sources account 391 

for 58% of total PM2.5 392 

As in the winter period, on-road traffic emissions have the largest contribution to 393 

the PM2.5 in the downtown Pittsburgh area where four large highways intersect. In this 394 

location on-road traffic contributes 26% of the PM2.5. On average, local on-road traffic 395 

contributes around 3% of the PM2.5 mass. During the summer period, the variability of the 396 

on-road traffic contribution is slightly lower  with 0.33 µg m-3
 compared with 0.36 µg m-3 397 

during winter. 398 

Commercial cooking emissions contribute a maximum of 2.08 µg m-3 to the 399 

average total PM2.5 in downtown Pittsburgh. This source accounts for 17% of the PM2.5 in 400 

the city but only 1% for the entire modeling domain. The large predicted contribution from 401 

cooking PM2.5 is consistent with the mobile AMS measurements performed by Ye et al. 402 
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(2018), that indicated that cooking organic aerosol contributes up to 60% of the non-403 

refractory PM1 mass. Mobile AMS results from Gu et al. (2018) showed that cooking OA 404 

contributes 5-20% of PM1 mass over multiple areas in the city of Pittsburgh. Other 405 

measurements in Pittsburgh also showed that cooking OA concentrations were clearly 406 

elevated in the vicinity of restaurants when compared with residential areas (Robinson et 407 

al., 2018). Though the cooking PM2.5 mass predictions of our study cannot be directly 408 

compared to these measurements, they all highlight the local importance of cooking as a 409 

fine PM pollution source.  410 

On average, the miscellaneous area sources sector contributes 0.26 µg m-3 411 

accounting for 4.3% of the PM2.5. In downtown Pittsburgh, where the contribution is 412 

highest, this source contributes 7% of the PM2.5. 413 

Unlike in the winter period,  the plumes from major powerplants in the Ohio river 414 

valley are clearly resolved in the summer. The power generation sector contributes a 415 

maximum of 2.4 µg m-3 in the plume of the Bruce Mansfield power plant northwest of 416 

Pittsburgh. On average, the 9.4% contribution from this sector to the PM2.5 is much larger 417 

than in the winter where it only contributed 2.3%. The plume from the Mitchell power 418 

plant in the southwest corner of the modeling domain is clearly resolved and reaches all 419 

the way to the city. This increases the contribution from power generation to the PM2.5 in 420 

the downtown core from 0.22 µg m-3 in the winter to 0.61 µg m-3 in the summer. The 421 

maximum contribution of 8.98 µg m-3 from industrial sources is a cluster of industrial 422 

facilities in the town of Beaver, northwest of Pittsburgh.  423 

Long-range transport from sources outside the region contributes a maximum of 424 

5.2 µg m-3 in the southeast corner of the domain decreasing in the direction of the Pittsburgh 425 

northern suburbs where the contribution is minimal with 4.1 µg m-3. On average, long-426 

range transport accounts for 72% of the PM2.5 mass. In downtown Pittsburgh, long-range 427 

transport contributes 4.24 µg m-3 accounting for 35% of the PM2.5. The high-concentration 428 

area visible on the western edge of the domain is due to a cluster of power generation and 429 

industrial sources located in the Ohio River valley just outside of the inner modeling 430 

domain. 431 
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On average, the contribution from all remaining sources is 3.6% and shows a 432 

moderate variability of 0.1 µg m-3. The contribution from these sources is maximal in 433 

downtown Pittsburgh with 0.78 µg m-3 accounting for 6% of the PM2.5. 434 

For all local sources, the minimum contribution is close to zero (less than 0.1 µg   435 

m-3) and is located at the northwestern corner of the domain, near the Ohio – Pennsylvania 436 

border. 437 

Relative contributions of all local sources to domain average predicted total PM2.5 438 

(including long-range transport PM2.5 mass) are shown in Figure 9. The largest differences 439 

between February and July are the contributions from biomass burning and power 440 

generation. In the winter, biomass burning is the most important local source of PM2.5, 441 

contributing over 8%. In the summer, this source contributes much less than 1% to total 442 

PM2.5. This discrepancy can easily be explained by the lack of residential wood combustion 443 

in the warmer months of the year. Power generation is a significantly more important 444 

source in July than in February. This is likely a result of a lower mixing height in the winter 445 

combined with emissions plumes from power plants in the Ohio river vally originating 446 

from very tall stacks. 447 

The relative contributions of local sources to average predicted total PM2.5 in the 448 

maximum concentration cell in Beaver County and in downtown Pittsburgh are shown in 449 

Figures 10 and 11, respectively. The dominant local source in the Beaver County location 450 

is industrial emissions, due to the proximity of various industrial installations in this area. 451 

Industrial sources here account for around 49% of total PM2.5 in February and 58% of total 452 

PM2.5 in July. A lot of the difference in industrial PM2.5 at the Beaver County location 453 

between months is made up by biomass burning in February, which accounts for 7% more 454 

of the total compared to July. In the downtown area of Pittsburgh, the majority of PM2.5 455 

from local sources can be attributed to either traffic (22-27% of total PM2.5) or cooking 456 

(16-18% of total PM2.5) in both simulation periods (Figure 11). 457 

 458 

6. Exposure to PM2.5 459 

The population data in the inner domain from the 2010 U.S. census was used to 460 

estimate the exposure of the population in the Pittsburgh area to model predictions of PM2.5 461 

during winter of 2017 at the different grid resolutions. We ranked the average PM2.5 462 
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concentrations from all the cells in the modeling domain and created bins of 0.2 µg m-3. A 463 

sum of the population from all the grid cells that fall within each concentration bin was 464 

calculated and divided by the total population of the inner grid to construct population 465 

exposure histograms. The population data used here is resolved at the census group level, 466 

which is much smaller than the simulation grid cell size of 1 x 1 km. 467 

 468 

6.1 Winter PM2.5 Exposure 469 

Figure 12 shows the population exposure histograms for the Pittsburgh area (inner 470 

domain) for each model resolution. At the coarse resolution, there are only four PM2.5 471 

values and 46% of the population is exposed to a concentration of 10.4 µg m-3 with 472 

decreasing exposure with PM2.5 concentration. At a 12 km resolution, the low 473 

concentration side of the distribution is better resolved but gaps can still be observed at 474 

higher levels. At this intermediate resolution, the largest fraction of the population (15%) 475 

is exposed to PM2.5 concentrations of 11.8 µg m-3. 476 

When the resolution is increased to 4 km the biggest improvements on the model 477 

ability to resolve the exposure distribution happen at concentrations higher than 9.4 µg     478 

m-3. At the fine resolution, no gaps appear in the distribution. A maximum of 12% of the 479 

population is exposed to PM2.5 concentrations of 12 µg m-3 while at the highest 480 

concentration of 12.8 µg m-3 3% are exposed. At the 1 km resolution, the distribution is 481 

much smoother due to the ability of this finest grid to capture local gradients. The largest 482 

fraction of the population (6%) is exposed to PM2.5 concentrations of 9.2 µg m-3. At the 483 

highest concentration of 14.4 µg m-3 the exposed population is less than 0.1% as this 484 

maximum point is located near industrial installations 37 km northwest of Pittsburgh where 485 

the population density is very low.  486 

The differences between the predicted exposure distributions at 4 km and 1 km 487 

resolutions highlight the need for high resolution modeling studies in order to identify key 488 

areas from the environmental justice perspective. The upper tail of the exposure 489 

distribution (13-14 µg m-3) is only detectable at the 1 km resolution. These higher 490 

exposures could be addressed by appropriate targeted regulations, because they are the 491 

direct result of proximity to either major industrial and electrical generation sources or 492 

dense traffic and cooking emissions.  493 
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At resolutions of 36 km, 12 km, 4 km, and 1 km the predicted average population 494 

weighted total PM2.5 concentration during February 2017  is 9.74 µg m-3, 9.77 µg m-3, 10.28 495 

µg m-3, and 10.00 µg m-3, respectively. This represents an increase of only 2.6% when 496 

moving from lowest to highest resolution. Relative contributions of local sources to 497 

average population weighted PM2.5 concentration is shown in Figure 14. Compared to the 498 

domain average PM2.5 concentrations (Figure 9), many local source contributions are 499 

enhanced in terms of average population exposure. In February, weighting PM2.5 500 

concentrations by population increases the contribution from biomass burning from 8.3% 501 

to 11.7%. Other notable increases include onroad traffic (2.5% to 6.5%), and miscellaneous 502 

area sources (5.9% to 9.2%). Other local source contributions to population weighted PM2.5 503 

were similar to the corresponding non-weighted concentrations. 504 

The source-resolved population exposure distributions during this winter period are 505 

shown in Figures S6 and S7. 506 

 507 

6.2 Summer PM2.5 Exposure 508 

Figure 13 shows the population exposure for each simulation grid during the 509 

summer period. At the coarse resolution, 88% of the population is exposed to a 510 

concentration of 7 to 7.2 µg m-3. At 12 x 12 km resolution, the exposure distribution is 511 

better resolved but a gap is still present at 7.2 µg m-3 and exposure to PM2.5 concentrations 512 

above 7.6 µg m-3 is not resolved at all. At this intermediate resolution, the largest fraction 513 

of the population (19%) is exposed to PM2.5 concentrations of 7.4 µg m-3. Increasing the 514 

resolution to 4 x 4 km both shifts the distribution to slightly lower concentrations and 515 

resolves exposure to higher PM2.5 concentrations than with the 12 x 12 km grid. At this 516 

resolution, 14% of the population is exposed to 6.4 µg m-3 and smaller portions of the 517 

population are exposed to concentrations higher than 8.0 µg m-3. Moving to the highest 518 

resolution grid further resolves the exposure distribution. Most notably, 1 x 1 km resolution 519 

reveals a bimodal distribution of population exposure, with one peak centered around 6.0 520 

µg m-3 and another centered around 7.4 µg m-3. This likely corresponds to one subset of 521 

the population in the urban areas of Pittsburgh who are exposed to higher PM2.5 522 

concentrations and another subset representing the surrounding suburban areas. 523 
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In the summer period, an even larger range of high-concentration exposure is 524 

revealed moving from 4 km to 1 km resolution. At this high resolution, the population 525 

exposure to concentrations ranging from 8.5 µg m-3 to 12 µg m-3 becomes clear Most people 526 

exposed to these higher fine PM levels according to PMCAMx live in the vicinity of the 527 

industrial complexes and power stations around the city of Beaver. The higher 528 

concentration range of the upper tail of the exposure during July compared to February is 529 

due to a large extent to the effective mixing of the emissions from the tall stacks down to 530 

the ground level. 531 

At resolutions of 36 km, 12 km, 4 km, and 1 km the predicted average population 532 

weighted total PM2.5 concentration during February 2017  is 7.06 µg m-3, 6.78 µg m-3, 7.0 533 

µg m-3, and 6.99 µg m-3, respectively. This represents just a 1% decrease between the 534 

lowest and highest resolutions. Similar to the effect seen in February, weighting PM2.5 535 

concentrations by population increases the contribution from onroad traffic from 3.3% to 536 

8.9% in July. Contributions from miscellaneous area sources also increased  (4.3% to 7.1%) 537 

when weighting by population. The population weighted contribution from power 538 

generation sources in July decreased from the non-weighted value from 9.4% to 8.3%. All 539 

other local source contributions to population weighted PM2.5 in July were similar to the 540 

non-weighted values. 541 

The source-resolved population exposure distributions during this summer period are 542 

shown in Figures S8 and S9. 543 

 544 

7. Conclusions 545 

We applied the PMCAMx chemical transport model over the city of Pittsburgh for 546 

the simulation periods of February and July 2017 using a series of telescoping grids at 36 547 

x 36 km, 12 x 12 km, 4 x 4 km and 1 x 1 km. Emissions were calculated using 2017 548 

projections from the 2011 NEI. Emissions were distributed geographically using the spatial 549 

surrogates provided with the NEI11 for all grids. For commercial cooking, a new 1 x 1 km 550 

spatial surrogate was developed using restaurant count data from the Google Places API. 551 

Traffic model data was used to develop a 1 x 1 km spatial surrogate for on-road traffic 552 

emissions. 553 
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At the coarse resolution, county-level differences can be observed. Increasing the 554 

resolution to 12 x 12 km resolves the urban-rural gradient and further increasing to 4 x 4 555 

resolves large stationary sources such as power plants. Only at the finest resolution intra-556 

urban variations and individual roadways are resolved. Low variability, regional pollutants 557 

such as nitrate show limited improvement after increasing the resolution to 12 x 12 km 558 

while predominantly local pollutants such as elemental carbon and winter organic aerosol 559 

have gradients that can only be resolved at the finest resolution. 560 

Biomass burning shows the largest variability during the winter period with many 561 

local maxima and significant emissions within the city and in the suburbs. During the 562 

summer contributions from this source are negligible. In contrast with the winter period, 563 

during the summer the plumes from large power plants in the Ohio river valley can be 564 

resolved. These plumes are rich in sulfates and start being resolved at 4 x 4 km with 565 

significant detail added at 1 x 1 km. During both periods the largest contributing source to 566 

the average PM2.5 is particles from outside the modeling domain. 567 

The ability of the model to resolve the exposure distribution increases at different 568 

rates according to the concentration. A significant improvement in resolving exposure to 569 

concentrations below 9.4 µg m-3 in the winter and below 7.0 µg m-3 in the summer is 570 

achieved by increasing the resolution to 12 x 12 km. Only at the finest resolution is the 571 

exposure to concentrations above 9.6 µg m-3 in the winter and above 8.6 µg m-3 in the 572 

summer fully resolved as well as the impact of high concentration spots.  573 

The average exposure in terms of average contribution to population weighted 574 

PM2.5 concentrations of some local sources is enhanced compared to the non-weighted 575 

average PM2.5 concentrations. In February, weighting by population enhanced the 576 

contributions from biomass burning, onroad traffic, and miscellaneous area sources by 3-577 

4%. In July, the contributions from onroad traffic and miscellaneous area sources also  578 

increased by 3-5% from this procedure.  579 

It was determined that increasing simulation grid resolution from 36 x 36 km to 1 580 

x 1 km had minimal effect on the predicted domain average population weighted PM2.5 581 

concentration. Moving from the lowest to highest grid resolution increased the predicted 582 

average population weighted PM2.5 by less than 3%. In July, the average decreased by 1%. 583 

This negligible change in the predicted average exposure to PM2.5 suggests that extremely 584 
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high resolution predictions of urban PM2.5 pollution may not be necessary for accurate 585 

epidemiological analysis in the absence of high-resolution health data. However it is also 586 

clear that the average population-weighted concentration approach misses the potentially 587 

important impacts of large sources on small communities.  The increased neighborhood 588 

scale resolution is vital for identifying communities that are disproportionately exposed to 589 

large sources of PM2.5 pollution, which in our study represent the upper tail of the exposure 590 

distributions in both simulation periods. 591 
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 717 

Table 1. PM2.5 emissions by source for the 1 x 1 km Pittsburgh domain (February 2017). 718 

 719 

Source Type Emissions (kg d-1 km-2) 

  PM2.5 OA EC Chl. Na Amm. Nitrate Sulfate Other 

Agricultural dust 68.7 9.7 0.4 0.2 0.1 0.1 0.1 0.7 57.2 

River barges 19.0 4.2 14.7 0.0 0.0 0.0 0.0 0.1 0.1 

Cooking 242 223 8.3 2.2 0.8 0.0 1.1 0.6 6.0 

Misc. area sources 683 445 56.7 30.5 3.0 5.6 1.7 42 97.8 

Off-road 147 56.2 73.1 0.3 0.1 0.0 0.3 1.1 16.1 

Oil-gas (Area) 35.3 1.7 0.0 0.0 0.0 0.0 0.1 8.3 23.2 

On-road traffic 188 84.6 75.2 0.3 0.1 1.8 0.6 8.3 16.4 

Rail 40.7 8.9 31.4 0.0 0.0 0.0 0.0 0.1 0.2 

Biomass burning 1,869 1,696 105 5.6 1.8 2.8 3.6 7.7 46.3 

Power generation 3,517 201 194 2.8 0.0 15.7 2.6 460 2,641 

Industrial 1,106 192 134 79.4 65.3 10.1 21.1 173 428 

Oil-gas (point) 2.8 1.0 1.1 0.0 0.0 0.0 0.1 0.2 0.5 

 720 

Table 2. PM2.5 emissions by source for the 1 x 1 km Pittsburgh domain (July 2017). 721 

 722 

Source Type Emissions (kg d-1 km-2) 

  PM2.5 OA EC Chl. Na Amm. Nitrate Sulfate Other 

Agricultural dust 67.3 8.9 0.4 0.1 0.1 0.1 0.1 0.7 56.9 

River barges 19.0 4.2 14.7 0.0 0.0 0.0 0.0 0.1 0.1 

Cooking 242 223 8.3 2.2 0.8 0.0 1.1 0.6 6 

Misc. area sources 593 392 49.1 28.5 2.5 5.3 1.1 33 81.6 

Off-road 205 83.5 92.9 0.2 0.1 0.0 0.4 1.1 27.3 

Oil-gas (Area) 35.9 1.9 0.0 0.0 0.0 0.0 0.1 8.9 25.0 

On-road traffic 162 67.6 66 0.4 0.1 1.5 0.5 8.6 17.2 

Rail 40.7 8.9 31.4 0.0 0.0 0.0 0.0 0.1 0.2 

Biomass burning 24.3 22 1.4 0.0 0.0 0.0 0.0 0.1 0.6 

Power generation 3,780 216 208 3.1 0.0 16.9 2.8 495 2,840 

Industrial 1,050 188 133 67.3 56.2 9.9 21.0 165 412 

Oil-gas (point) 2.8 1.0 1.1 0.0 0.0 0.0 0.1 0.2 0.5 

 723 
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 725 

 726 

Figure 1. Modeling domain used for the PMCAMx simulations. (A) 36 x 36 km 727 

continental U.S. grid. (B) 12 x 12 and 4 x 4 km South Western Pennsylvania grids, and 1 728 

x 1 km Pittsburgh nested grids. 729 

 730 

 731 

 732 

Figure 2. Percentage of sector PM2.5 emissions in each 1x1 km computational cell for: (A) 733 

commercial cooking and (B) on road traffic in February 2017. The value of the colored 734 

points in each map add up to unity, corresponding to 100% of emissions for the respective 735 

sector. 736 
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 738 

 739 

 740 

Figure 3. Average predicted ground-level concentration of total PM2.5, EC, and OA at 36 741 

x 36, 12 x 12, 4 x 4 and 1 x 1 km resolutions during February 2017. Different color scales 742 

that do not start from zero are used for the various maps. 743 
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 745 

 746 

 747 

Figure 4. Average predicted ground-level concentration of PM2.5 sulfate, nitrate and 748 

ammonium at a 36 x 36, 12 x 12, 4 x 4 and 1 x 1 km resolution during February 2017. 749 

Different color scales that do not start from zero are used for the various maps. 750 
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 755 

Figure 5. Contribution of each source to total PM2.5 during February 2017. Different scales 756 

are used for the various maps. 757 
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 760 

Figure 6. Average predicted concentration at the ground level of total PM2.5, EC and OA 761 

at a 36x36, 12x12, 4x4 and 1x1 km during July 2017. Different color scales that do not 762 

start from zero are used for the various maps. 763 
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 767 

Figure 7. Average predicted concentration of PM2.5 sulfate, nitrate, and ammonium at a 768 

36x36, 12x 12, 4x4 and 1x1 km during July 2017. Different color scales that do not start 769 

from zero are used for the various maps. 770 
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 774 

Figure 8. Contribution of each source to total PM2.5 during July 2017. Different scales are 775 

used for the various maps. 776 
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 779 

Figure 9. Relative contributions of local sources to average predicted total PM2.5 780 

concentrations in the inner 1x1 km resolution domain during February and July 2017. 781 
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 783 

Figure 10. Relative contributions of local sources to average predicted PM2.5 784 

concentrations at the location of highest average concentration (Beaver County) during 785 

February and July 2017. 786 
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 788 

Figure 11. Relative contributions of local sources to average predicted total PM2.5 789 

concentrations in downtown Pittsburgh during February and July 2017. 790 
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 793 

 794 

Figure 12. Population exposure histograms at (A) 36x36, (B) 12x 12, (C) 4x4 and (D) 1x1 795 

km during February 2017. A different scale for population is used for the distribution at 36 796 

x 36 km resolution. The average population weighted PM2.5 concentration for each 797 

resolution is shown in the upper right corner of each window. 798 
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 800 

 801 

Figure 13. Population exposure histograms at (A) 36x36, (B) 12x 12, (C) 4x4 and (D) 1x1 802 

km during July 2017. A different scale for population is used for the distribution at 36 x 36 803 

km resolution. The average population weighted PM2.5 concentration for each resolution is 804 

shown in the upper right corner of each window. 805 
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 809 

Figure 14. Relative contributions from local sources to population weighted total PM2.5 810 

concentration for February and July 2017.  811 
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