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Abstract 17 

Increasing the resolution of chemical transport model (CTM) predictions in urban areas is 18 

important to capture sharp spatial gradients in atmospheric pollutant concentrations and 19 

better inform air quality and emissions controls policies that protect public health. The 20 

chemical transport model PMCAMx was used to assess the impact of increasing model 21 

resolution on the ability to predict the source-resolved variability and population exposure 22 

to PM2.5 at 36 x 36, 12 x 12, 4 x 4, and 1 x 1 km resolutions over the city of Pittsburgh 23 

during typical winter and summer periods (February and July 2017). At the coarse 24 

resolution, county-level differences can be observed, while increasing the resolution to 12 25 

x 12 km resolves the urban-rural gradient. Increasing resolution to 4 x 4 km resolves large 26 

stationary sources such as power plants and the 1 x 1 km resolution reveals intra-urban 27 

variations and individual roadways within the simulation domain. Regional pollutants that 28 

exhibit low spatial variability such as PM2.5 nitrate show modest changes when increasing 29 

the resolution beyond 12 x 12 km. Predominantly local pollutants such as elemental carbon 30 
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and primary organic aerosol have gradients that can only be resolved at the 1 x 1 km scale. 31 

Contributions from some local sources are enhanced by weighting the average contribution 32 

from each source by the population in each grid cell. The average population weighted 33 

PM2.5 concentration does not change significantly with resolution, suggesting that 34 

extremely high resolution PM2.5 predictions may not be necessary for effective urban 35 

epidemiological analysis. 36 

 37 

1. Introduction 38 

Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) contributes 39 

to poor air quality throughout large parts of the United States. These particles directly affect 40 

visibility (Seinfeld and Pandis, 2006) and have been associated with long and short-term 41 

health effects such as premature death due to cardiovascular disease, increased chance of 42 

heart attacks and strokes, and reduced lung development and function in children and 43 

people with lung diseases such as asthma and increases in hospital admissions due to heart 44 

and lung disease (Dockery and Pope, 1994). 45 

At high resolutions, emissions from local sources such as commercial cooking, on-46 

road traffic, residential wood combustion, and industrial activities can have sharp gradients 47 

that influence the geographical distribution of PM2.5 concentrations. High-resolution 48 

measurements of PM1 have found gradients of up to ~2 µg m-3 between urban background 49 

sites and those with high local emissions (Gu et al., 2018; Robinson et al., 2018). 50 

A key limiting factor on the modeling of particulate matter at high resolutions is 51 

the geographical distribution of emissions. Previous studies have found that coarse grid 52 

emissions interpolated to higher resolutions lead to small to modest improvements in model 53 

predictive ability for ozone (Arunachalam et al., 2006; Kumar and Russell, 1996), 54 

secondary organic aerosol (Fountoukis et al., 2013; Stroud et al., 2011) and nitrate 55 

(Zakoura and Pandis, 2019, 2018). Pan et al., (2017) used the default approach from the 56 

U.S. Environmental Protection Agency (EPA) National Emissions Inventory (NEI) to 57 

allocate county-based emissions to model grid cells at 4 x 4 and 1 x 1 km and found only 58 

small changes to model performance for NOx and O3, while the 1 x 1 km case showed more 59 

detailed features of emissions and concentrations in heavily polluted areas. 60 
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Improvements in the resolution of emission inventories have been focused on traffic 61 

as this source exhibits significant variability at high resolutions. Recent approaches to 62 

building high-resolution traffic inventories include origin-destination by vehicle class (Ma 63 

et al., 2020), synthetic population mobility (Elessa Etuman and Coll, 2018) and fuel sales 64 

combined with traffic counts (McDonald and McBride, 2014). Other sectors such as 65 

biomass burning for residential heating and commercial cooking have been identified as 66 

very uncertain in current inventories (Day et al., 2019). Recent versions of the NEI have 67 

made progress addressing the total emissions and temporal distributions of biomass 68 

burning and commercial cooking (Eyth and Vukovich, 2016), but there is still significant 69 

uncertainty on their geographical location at a sub-county scale. Robinson et al. (2018) 70 

found greatly elevated organic aerosol concentrations (10s of µg m-3) in the vicinity of 71 

numerous individual restaurants and commercial districts containing groups of restaurants 72 

indicating that commercial cooking is a source of large gradients on the urban scale. 73 

Population density and socio-economic indicators of that population, such as 74 

income or access to healthcare, show large gradients in the urban scale. It is important to 75 

assess the exposure of different sub-populations to air pollutants and the resulting health 76 

effects, a concept known as Environmental Justice (Anand, 2002). 77 

We use the Particulate Matter Comprehensive Air quality Model with Extensions 78 

(PMCAMx) to study the impact of increasing model resolution on the model’s ability to 79 

predict the variability, sources and population exposure of PM2.5 concentrations on the 80 

urban scale in Pittsburgh. We compare predicted variability at 36 x 36, 12 x 12, 4 x 4 and 81 

1 x 1 km resolutions over the city of Pittsburgh during one typical summer and one typical 82 

winter month of 2017. Additional sensitivity simulations were performed to determine 83 

contributions from selected sources to concentrations. The results of the simulations are 84 

used to estimate exposure to PM2.5 at all resolutions and from the selected sources. A 85 

detailed evaluation of the PMCAMx predictions against measurements will be the topic of 86 

a future publication. Overall the model performance was similar to those in previous model 87 

applications in the Eastern US (Fountoukis et al., 2013). 88 

 89 
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2. PMCAMx Description 90 

The Particulate Matter Comprehensive Air quality Model with Extensions 91 

(PMCAMx)  (Karydis et al., 2010; Murphy and Pandis, 200190; Tsimpidi et al., 201009), 92 

uses the framework of the CAMx model (Environ, 2006) to describe horizontal and vertical 93 

advection and diffusion, emissions, wet and dry deposition, gas, aqueous and aerosol-phase 94 

chemistry. A 10-size section aerosol sectional approach is used to dynamically track the 95 

evolution of the aerosol mass distribution. The aerosol species modeled include sulfate, 96 

nitrate, ammonium, sodium, chloride, elemental carbon, water, primary and secondary 97 

organics, and other non-volatile aerosol components. The SAPRC (Statewide Air Pollution 98 

Research Center) photochemical mechanism (Carter, 1999) is used for the simulation of 99 

gas-phase chemistry. The version of SAPRC used here includes 237 reactions and 91 100 

individual and surrogate species. For inorganic growth, a bulk equilibrium approach was 101 

used, assuming equilibrium between the bulk inorganic aerosol and gas phases (Pandis et 102 

al., 1993). Aqueous-phase chemistry is simulated using the Variable Size Resolution 103 

Model (VSRM) (Fahey and Pandis, 2001).The partitioning of the various semivolatile 104 

inorganic aerosol components and aerosol water is determined using the ISORROPIA-I 105 

aerosol thermodynamics model (Nenes et al., 1998). The primary and secondary organic 106 

aerosol components are described using the volatility basis set approach (Donahue et al., 107 

2006). For primary organic aerosol (POA) ten volatility bins, with effective saturation 108 

concentrations ranging from 10-3 to 106 µg        m-3 at 298 K are used. The volatility 109 

distribution for POA from Tsimpidi et al. (2010) was used for all sources, while size 110 

distributions are specific to each emission sector. Anthropogenic (aSOA) and biogenic 111 

(baSOA) are modeled with 4 volatility bins (1, 10, 102, 103 µg m-3) (Murphy and Pandis, 112 

2009) using NOx dependent yields (Lane et al., 2008). Both fine and coarse  mode PM areis 113 

modeledsimulated by in this formulation of PMCAMx, although the following analysies 114 

in this work are is focused on fine PM2.5 mass. More detailed descriptions of PMCAMx 115 

can be found in Fountoukis et al. (2011) and Zakoura and Pandis (2018). 116 

 117 

3. Model Application 118 

PMCAMx was used to simulate air quality over the metropolitan area of Pittsburgh 119 

during February and July 2017. For the base-case simulation we used a one-way nested 120 
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structure with a 36 x 36 km master grid covering the continental United States, with nested 121 

grids of 12 x 12 km, 4 x 4 km in South Western Pennsylvania and a 1 x 1 km grid covering 122 

the city of Pittsburgh, most of Allegheny County and the upper Ohio River valley (Figure 123 

1a). The 1 x 1 km grid covers a 72 x 72 km area (Figure 1b). Two days in each simulation 124 

were used for model spin-up and discarded for all analyses.  Simulations required 125 

approximately 6 CPU daysays, 5 CPU hoursurs, 10 CPU hours, and 12 CPU days to 126 

complete in a single Intel Xeon CPU E5-4640 at 2.4 GHz for the 36 km, 12 km, 4 km, and 127 

1 km domains, respectively. 128 

The surface concentrations at the boundaries of the 36 x 36 km grid are shown in 129 

Error! Reference source not found. in the Supplementary Information. These values 130 

were applied to all upper air layers assuming a constant mixing ratio. Results from lower 131 

resolution simulations were used as boundary conditions for the corresponding next higher 132 

resolution simulation. Horizontal wind components, vertical diffusivity, temperature, 133 

pressure, water vapor, clouds, and rainfall were generated using the Weather Research and 134 

Forecasting (WRF v3.6.1) model over the whole modeling domain with horizontal 135 

resolution of 12 km. The data was interpolated to higher resolutions when needed.  The 136 

interpolation of meteorological fields from 12 x 12 km to higher resolutions is a potential 137 

limitation of this work and will be the focus of future improvements to the modeling 138 

methods., although it is likely that the use of 1 x 1 km resolution meteorological fields 139 

would present difficulties in the modeling of plume dispersion in the narrow valleys present 140 

in the inner domain.  Initial and boundary meteorological conditions for the WRF 141 

simulations were generated from the ERA-Interim global climate re-analysis database, 142 

together with the terrestrial data sets for terrain height, land-use, soil categories, etc. from 143 

the United States Geological Survey (USGS) database. The WRF modeling system was 144 

prepared and configured in a similar way as described by Gilliam and Pleim (2010). This 145 

configuration is recommended for air quality simulations (Hogrefe et al., 2015; Rogers et 146 

al., 2013). 28 vertical layers were used in the WRF simulationsmodeling to produce 14 147 

layers of meteorological input for the PMCAMx simulations. Each of the 14 PMCAMx 148 

layers corresponds to a WRF layer. 149 

Emissions were calculated using the EPA’s Emission Modeling Platform (v6.3) for 150 

the National Emissions Inventory for 2011 (NEI11) (Eyth and Vukovich, 2016) using the 151 

mailto:E5-4640@2.40GHz
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default 2017 projected values. Base emissions were calculated first at a 12 km resolution 152 

for the full modeling domain using the Sparse Matrix Operator Kernel Emissions 153 

(SMOKE) model and our WRF meteorological data. The data sources used to produce 12 154 

km resolution surrogates with Platform v6.3 were used to develop surrogates at 4 x 4 km 155 

and 1 x 1 km resolution For the higher resolution grids, the spatial surrogates provided with 156 

Platform v6.3  were used for all sectors except commercial cooking and on-road traffic for 157 

which custom surrogates were developed. These custom surrogates also use projected 158 

values for 2017. Bicubic interpolation was used to produce biogenic emissions at 4 x 4 km 159 

and 1 x 1 km resolution, wherein areas in which sufficient data was unavailable.  The 160 

emissions by all sources together with the chemical composition are summarized in Tables 161 

1 (for the winter period) and 2 (for the summer period).. 162 

 In this work, we used normalized restaurant count to distribute the commercial 163 

cooking emissions in space in the 1x1 km and 4x4 km resolutioninner domains. 164 

Geographical information was collected for all locations labeled as “restaurant” from the 165 

freely accessible Google Places Application Programming Interface (API) for the western 166 

Pennsylvania area, eastern Ohio and northern West Virginia. Using this new spatial 167 

surrogate, PM2.5 emissions from commercial cooking are enhanced primarily in the 168 

Pittsburgh urban core with a maximum increase of 1200 kg dg-1 km-2 (Figure 2a). 169 

 To accurately capture spatial patterns of on-road traffic, we use the output of a link-170 

level, origin-destination by vehicle class traffic model of Pittsburgh (Ma et al., 2020). This 171 

traffic model simulates traffic counts and speed by hour-of-day using observations from 172 

Pennsylvania Department of Transportation sites throughout Pittsburgh. As expected, 173 

emissions in areas with major highways are high (Figure 2b).  174 

 The novel surrogates used for onroad traffic and cooking result in small increases 175 

in predicted PM2.5 concentrationsemissions in some areas and, particularly in downtownthe 176 

urban area of Pittsburgh and decreases in others. Total emissions inside the inner 1 x 1 km 177 

domain are the same using both the new and old surrogates. For commercial cooking, 178 

emissions calculated using the new surrogates are more concentrated in areas with high 179 

restaurant densities such as downtown Pittsburgh and the Oakland neighborhood (Figures 180 

S1 and S2). For onroad traffic, the emissions become higher at the locations of major 181 

highways and in the urban area of Pittsburgh when using the new surrogates (Figures S3 182 
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and S4). Using the new spatial distribution of emissionsThe predicted average PM2.5  183 

increase by  largest difference seen was an increase in 1-2 µg m-3 on average at certain 184 

areas. the locations of low-cost sensors (RAMPs) in the urban area of Pittsburgh.A detailed 185 

evaluation of these predictions will be the topic of another publication. A summary of 186 

prediction performance using the new surrogates is provided in Table S2 of the 187 

supplementary material and a more detailed evaluation will be included in a following 188 

publication. 189 

 190 

4. PM2.5 concentrations and sources during winter 191 

4.1 Effect of grid resolution 192 

The results of the simulations with the four resolutions for the winter period are 193 

shown in Figures Error! Reference source not found. and Error! Reference source not 194 

found.. For the area of interest, the simulations at 36 x 36 km resolves concentration fields 195 

at the county scale. The urban-rural gradient is resolved in the 12 x 12 km simulations. 196 

Increasing the resolution to 4 x 4 km, large stationary sources such as power plants and 197 

large industrial installations are resolved. Finally, the resolution increase to 1 x 1 km 198 

resolves the intra-urban variations in Pittsburgh and medium-sized industrial installations.  199 

Variable concentration limits are used in the species maps to remove background 200 

and highlight the effects of local sources (Figures 3 and 4).  201 

In the winter period, the predicted maximum PM2.5 concentration in the inner 202 

domain increases from 10.4 µg m-3 at 36x36 km, to 11.8 µg m-3 at 12x12, to 12.9 µg m-3 at 203 

4x4, and finally to 16.4 µg m-3 at 1x1 km (Figure 3), a 58% increase. On the other end, the 204 

predicted minimum PM2.5 concentration changes from 8.2 µg m-3 at 36 x 36 km to 7 µg    205 

m-3 at 12 x 12 and remains practically the same at even higher resolutions. This corresponds 206 

to the “background” concentration level for the area during the simulation period, so further 207 

resolution enhancements do not change this value. The standard deviation of the predicted 208 

concentration can be used as a measure of the concentration variability in the area. This 209 

standard deviation changes from 0.9 µg m-3 at 36x36, to 1.24 µg m-3 at 12x12, to 1.45 µg 210 

m-3 at 4x4 and to 1.35 µg m-3 at 1x1 km. These results indicate an increase of the PM2.5 211 

variability by 50% when one moves from the coarse to the finest resolution. However, most 212 
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of this change in variability (38% out of the 50%) appears when one moves from 36x36 to 213 

12x12 km. 214 

Elemental carbon is a primary aerosol component with sources that are quite 215 

variable in space. In winter, the predicted maximum PM2.5 EC increased by a factor of 2.9, 216 

from 0.6 µg m-3 at the 36 x 36 km resolution to 1.6 µg m-3 at 1 x 1 km (Figure 3). The 217 

predicted maximum EC is, as expected in the Pittsburgh downtown area. On the other hand, 218 

the predicted minimum of EC is reduced by only 0.1 µg m-3, from 0.34 µg m-3 at 36x36 219 

km to 0.24 µg m-3 at resolutions lower or equal than 4x4 km. The standard deviation of the 220 

predicted EC almost doubles from 0.1 µg m-3 at 36 x 36 km to 0.18 µg m-3 at 1 x 1 km. 221 

Approximately 50% of this increase in variability appears in the transition from the coarse 222 

to the intermediate resolution of 12 x 12 km. The fine and the finest resolutions are needed 223 

to resolve the other half of the predicted variability. 224 

During this winter period a significant fraction (79%) of the OA in the Pittsburgh 225 

area is primary and therefore the higher resolution results in increases of the predicted 226 

maximum concentrations in space from 2.8 µg m-3 at the coarse resolution to 3.7 µg m-3 at 227 

the intermediate to 4.8 µg m-3 at the finest resolution (Figure 3). This corresponds to an 228 

increase by a factor of 1.7, more than the change for total PM2.5, but much less than that 229 

for EC. The predicted maximum is located in downtown Pittsburgh, with additional 230 

hotspots in neighboring counties that are resolved at the fine and finest resolution. The 231 

predicted minimum changes from 2.1 µg m-3 at 36x36 to 1.7 µg m-3 at 12x12 with small 232 

reductions at higher resolutions. The variability (standard deviation) of the OA 233 

concentration field of the predicted concentration increases by a factor of approximately 234 

1.6 from 0.35 µg m-3 at 36 x 36, to 0.51 µg m-3 at 12 x 12 km. The increase is small at even 235 

higher resolutions with the standard deviation of OA reaching 0.53 µg m-3 at 1 x 1 km (an 236 

increase by a factor of 1.7). 237 

Average predicted PM2.5 sulfate in the inner domain changes little between the 238 

coarsest resolution (average level 1.37 µg  m-3)  and finest resolution (1.29 µg  m-3). The 239 

minimum concentration decreased slightly with resolution from 1.33 to 1.2 µg  m-3, with 240 

much of the decrease captured by increasing the resolution to 12 x 12 km (1.33 µg  m-3 at 241 

36 x 36 km and 1.20 µg  m-3 at 12 x 12 km). The maximum sulfate concentration increased 242 

by a larger value but this change was not observed until moving to the highest resolution 243 
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where the maximum was 2.08 µg  m-3, compared to 1.40 µg  m-3 at 36 x 36 km resolution. 244 

The standard deviation increased only marginally from 0.03 µg m-3 at 36 x 36 km to 0.06 245 

µg m-3 at 1 x 1 km. The low variability in the predicted ground sulfate levels during the 246 

winter is partially due Much of the increase in local variability of sulfate seen in the summer 247 

is not seen here due to the lower mixing heights during this cold period  in winter paired 248 

with the emissions from the tall emissions stacks of local power generation sources often 249 

introduced above the boundary layer.  which contribute a majority of the local sulfate 250 

emissions (Table 1). 251 

The predicted fine nitrate levels are relatively high ranging from 1.78 to 2.24 µg  252 

m-3 in the coarse-resolution simulation. This is expected in this wintertime period due to 253 

the partitioning of nitric acid and ammonium in the particulate phase. This predicted 254 

concentration range increases to 1.5-2.24 µg m-3 in the finest scale simulation with higher 255 

levels in the northeast of the domain. The standard deviation of the predicted concentration 256 

does not show any significant trend changing from 0.19 µg m-3 at 36 x 36 to 0.15 µg m-3 257 

at 1 x 1 km. 258 

For PM2.5 ammonium, changes with increasing resolution are modest with the 259 

predicted minimum being reduced from 1.07 µg m-3 at 36x36 to approximately 0.95 µg   260 

m-3 at all other higher resolutions. The predicted maximum stays relatively constant 261 

between 1.25 µg m-3 and 1.27 µg m-3 at all resolutions. As with nitrate, the standard 262 

deviation does not show any significant trend changing from 0.08 µg m-3 at 36 x 36, to 0.09 263 

µg m-3 at 12 x 12, to 0.07 µg m-3 at 4 x 4 and 1 x 1 km resolutions. 264 

 265 

4.2 Source Apportionment 266 

We performed zero-out simulations in the 1x1 km Pittsburgh grid to determine the 267 

local contributions of eight source categories to the total PM2.5. The local sources 268 

quantified included: commercial cooking, industrial, biomass burning, on-road traffic, 269 

power generation, and miscellaneous area sources. A summary of total local (within the 270 

inner 1 x 1 km resolution domain) dry PM2.5 emissions from each source category  during 271 

February 2017 is shown in Table 1. The species category labeled “other” for the power 272 

generation sector is predominately composed of ash (including metals emitted from power 273 

generation) and is simulated in PMCAMx as inert particle mass.  Biomass burning 274 
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emissions here correspond only to residential wood combustion, as there were no 275 

significant wildfiers in the 1 x 1 km resolution domain during the simulation periods. The 276 

PM2.5 emissions used in this study contain both the condensable and filterable fractions of 277 

PM2.5 (U.S. EPA, 2015). The miscellaneous area sources sector includes a large variety of 278 

emission sources that are not classified in any of the sources in Table 2Table 1. These 279 

include chemical manufacturing, solvent utilization for surface coatings, degreasing and 280 

dry cleaning, storage and transport of petroleum products, waste disposal and incineration, 281 

and cremation. The emissions from agricultural dust, river barges, off-road equipment, oil-282 

gas activities, and rail were grouped on the “others” source. All emissions (particulate and 283 

gas-phase) from each source were set to zero, and the results of the zero-out simulation 284 

were subtracted from those of the baseline simulation to estimate the corresponding source 285 

contribution. The contribution of long-range transport from outside the inner domain was 286 

also estimated by setting all local sources to zero. 287 

Biomass burning is used during the winter for residential heating and recreation. 288 

This source contributes a maximum of 3.31 µg m-3 in Cranberry, a northern suburb of 289 

Pittsburgh located in the neighboring Butler county. In the downtown Pittsburgh area, the 290 

contribution from biomass burning accounts for 7% of the PM2.5. This source shows the 291 

highest variability with a standard deviation of 0.5 µg m-3. 292 

The maximum contribution of 8.05 µg m-3 from industry is predicted near a cluster 293 

of industrial facilities in the town of ButlerBeaver, 37 km northwest of Pittsburgh. The 294 

maximum PM2.5 concentration of the modeling domain is located here. In this location 295 

long-range transport contributes 37% of the PM2.5 followed by industrial sources with 49% 296 

and biomass burning with 7%. On average, the contribution from industrial sources is low 297 

with 3.7%. In downtown Pittsburgh, the contribution is lower still with 2%. 298 

On-road traffic emissions are most important in major highway intersections and 299 

river crossings surrounding downtown Pittsburgh with a maximum contribution of 3.9 µg 300 

m-3 accounting for 24% of the PM2.5 in this area. On average, on-road traffic contributes 301 

2.5% of the PM2.5 mass. The contribution from on-road traffic shows higher variability 302 

(standard deviation: 0.36 µg m-3) since this sector contributes significantly to areas adjacent 303 

to the network of highways that radiates from the Pittsburgh downtown. 304 
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On average, commercial cooking emissions contribute 0.7% of the PM2.5 in the 305 

modeling domain with a maximum contribution of 2.44 µg m-3 in downtown Pittsburgh, 306 

with smaller contributions in the surrounding urban area. Cooking is predicted to account 307 

for 16% of the PM2.5 mass in downtown Pittsburgh. The contribution from commercial 308 

cooking is localized around downtown Pittsburgh and therefore shows little variability 309 

throughout the domain with a standard deviation of 0.1 µg m-3.  310 

The miscellaneous area source sector contributes 6% of the PM2.5 on average. Since 311 

this sector encompasses a variety of sources and activities, its contribution shows 312 

significant variability with a standard deviation of 0.34 µg m-3.The maximum contribution 313 

is located in the Pittsburgh urban core with 1.64 µg m-3, accounting for 11% of the PM2.5. 314 

The power generation sector contributes a maximum of 0.63 µg m-3 in the plume 315 

of the Bruce Mansfield power plant northwest of Pittsburgh (this plant is no longer 316 

operating as of 2019). The contribution of thisis sector shows the smallest variability with 317 

at 0.09 µg m-3. The contribution to ground PM2.5 mass from power generation in the winter 318 

are notablyis relatively low very small when compared with that in the summer period. 319 

This is largely due to the height of the emissions stacks associated with this sector. A 320 

significant fraction of the emissions from power generation is trapped above the shallow 321 

mixing height in the winter, and much of the PM2.5 mass is predicted to remain in the upper 322 

air layers. A map of Tthe predicted relative high upper air PM2.5 concentration from power 323 

generation are shown in Figure S5.  can be found in the supplementary material (Figure 324 

S1). 325 

Long-range transport from outside the inner modeling domain is the major source 326 

of PM2.5 during this period contributing an average of 74%. This contribution varies from 327 

7.1 µg m-3 in the southeast corner of the domain decreasing in the direction of the Pittsburgh 328 

urban core where the contribution is reduced to 5.9 µg m-3. In areas where there are 329 

significant local emissions such as the Pittsburgh downtown, the contribution from long-330 

range transport decreases to 38%. 331 

 Contributions for all remaining sources are largest in the Pittsburgh downtown with 332 

0.74 µg m-3, accounting for 5% of the PM2.5. This sector also significantly contributes on 333 

the Ohio and Monongahela river valleys, where there is important rail and river traffic. On 334 
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average, these sources contribute 3% of the PM2.5 and show a moderate variability with a 335 

standard deviation of 0.1 µg m-3. 336 

For all local sources, the minimum contribution is close to zero (less than 0.1 µg  337 

m-3) and is located at the southwestern corner of the domain, near the Ohio – West Virginia 338 

border. 339 

 340 

5. PM2.5 concentrations and sources during summer 341 

5.1 Effect of grid resolution 342 

The predicted PM2.5 concentrations in the simulated summer period are lower than 343 

during the winter period and more uniform, however, the qualitative behavior of the model 344 

at the different scales remains the same (Figure 6). Variable concentration limits are again 345 

used in these maps to remove background and highlight the effects of local sources.  The 346 

standard deviation of the PM2.5 increases from 0.28 µg m-3 at 36 x 36, to 0.57 µg m-3 at 12 347 

x 12, to 0.72 µg m-3 at 4 x 4 and to 0.82 µg m-3 at 1 x 1 km. At the finest scale, the predicted 348 

variability in the summer is 61% of that in the winter. Similar to the winter period, the 349 

predicted maximum PM2.5 concentration changes significantly with increasing resolution. 350 

The predicted maximum PM2.5 increases from 6.4 µg m-3 at the coarse to 15.3 µg m-3 at the 351 

fine resolution. The finest scale better resolves the concentration field in the cluster of 352 

industrial installations 37 km northwest of Pittsburgh. The minimum PM2.5 drops from 6.5 353 

µg m-3 at 36 x 36 to 5.3 µg m-3 at 12 x 12, and then to 4.7 µg m-3 at 1 x 1 km. As in the 354 

winter period, the moderate resolution appears to capture the majority of the concentration 355 

change from increasing resolution (67%). 356 

The average EC is lower during the summer with 0.28 µg m-3 versus 0.43 µg m-3 357 

in the winter. The standard deviation of the predicted average EC increases from 0.06 µg 358 

m-3 at 36 x 36, to 0.09 µg m-3 at 12 x 12, to 0.11 µg m-3 at 4 x 4 km, and to 0.13 µg m-3 at 359 

1 x 1 km. The peak average EC is located in downtown Pittsburgh and increases by a factor 360 

of 3.6 (from 0.35 to 1.27 µg m-3) moving from the coarse to the finest resolution. It is 361 

noteworthy that the peak is 38% less than that of the winter when the coarse resolution is 362 

used, but only 21% when the finest resolution is used. The concentration range (difference 363 

between the maximum and the minimum) increases from 0.13 µg m-3 to 1.12 µg m-3 364 

moving from the coarse to the finest resolution. This increase by a factor of 8.6 shows the 365 
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importance of the local variations of a primary species like EC in an urban area in both 366 

summer and winter. 367 

The OA concentration field is quite uniform at the coarse-scale varying by only 368 

0.17 µg m-3 (from 1.72 to 1.89 µg m-3) with a standard deviation of 0.07 µg m-3 (Figure 6). 369 

Variablility increases significantly when one moves to the finest scale, with the range 370 

increasing to 2.24 µg m-3 (from 1.55 to 3.79 µg m-3) and the standard deviation of the OA 371 

field increases to 0.2 µg m-3. The use of the finest scale appears to be needed for the 372 

resolution of the OA high concentration areas in the summer more than in the winter. 373 

The PM2.5 sulfate levels during the summer period are on average 12% higher 374 

during the summertime period. At the coarse and intermediate scales, the predicted average 375 

concentration fields have relatively little structure (Figure 7). The corresponding 376 

concentration ranges are relatively narrow (0.05 µg m-3 at 36 x 36 km and 0.42 µg m-3 at 377 

12x12 km). However, a different picture emerges at the fine and especially the finest scales. 378 

The plumes from the major power plants can be clearly seen at these higher resolutions. 379 

The maximum increased by 0.5 µg m-3 from the coarse scale to the finest scale while the 380 

minimum is reduced from 1.78 µg m-3 at 36 x 36 to 1.05 µg m-3 at 12 x 12, to 0.95 µg m-3 381 

at 4 x 4 and 1 x 1 km.  The standard deviation of the predicted sulfate concentration field 382 

at the coarse resolution is low and similar to that in winter, 0.02 µg m-3. However, the 383 

variability at the finest scale in the summer (0.13 µg m-3 at 1x1 km) is twice the predicted 384 

variability in the winter. 385 

The predicted summertime nitrate concentrations are quite low in the area (average 386 

0.5 µg m-3 in the coarse and 0.46 µg m-3 in the finest resolution). The predicted minimum 387 

decreases from 0.42 µg m-3 at 36 x 36 to 0.39 µg m-3 at 12 x 12, to 0.34 µg m-3 at 4 x 4, and 388 

to 0.3 µg m-3 at 1 x 1 km. The predicted maximum concentration increases from 0.56 µg 389 

m-3 at the coarse scale to 0.71 µg m-3 at the intermediate scale and stays relatively constant 390 

at higher resolutions. The concentration field is quite uniform with a standard deviation 391 

ranging from 0.06 to 0.09 µg m-3 for all scales. However, due to the reduction in the 392 

predicted minimum the concentration range increases from 0.14 µg m-3 at the coarse 393 

resolution to 0.37 µg m-3 at the finest resolution. 394 
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The PM2.5 ammonium concentration field is quite uniform at all resolutions (Figure 395 

7). The concentration range increases from 0.04 to 0.22 µg m-3 moving from the coarse to 396 

the finest resolution and the standard deviation increases from 0.02 to 0.04 µg m-3. 397 

 398 

5.2 Source Apportionment 399 

The lLocal emissions for each source category induring July 2017 are shown in 400 

Table 2. During summer, residential biomass burning is minimal. This source contributes 401 

a maximum of 0.04 µg m-3 and an average of 0.007 µg m-3,accounting for 0.6% of the 402 

average total PM2.5.  403 

Power generation sources have the highest average contribution to total PM2.5  of 404 

all the local sources of 10%. Industrial sources account for 6% of the average PM2.5 but are 405 

the most important contributor in the point of the modeling domain with the maximum 406 

predicted PM2.5  conentration. At this location in Butler Beaver County, industrial sources 407 

account for 58% of total PM2.5 408 

As in the winter period, on-road traffic emissions have the largest contribution to 409 

the PM2.5 in the downtown Pittsburgh area where four large highways intersect. In this 410 

location on-road traffic contributes 26% of the PM2.5. On average, local on-road traffic 411 

contributes around 3% of the PM2.5 mass. During the summer period, the variability of the 412 

on-road traffic contribution is slightly lower  with 0.33 µg m-3
 compared with 0.36 µg m-3 413 

during winter. 414 

Commercial cooking emissions contribute a maximum of 2.08 µg m-3 to the 415 

average total PM2.5 in downtown Pittsburgh. This source accounts for 17% of the PM2.5 in 416 

the city but only 1% for the entire modeling domain. The large predicted contribution from 417 

cooking PM2.5 is consistent with the mobile AMS measurements performed by Ye et al. 418 

(2018), where it was determinedthat indicated that cooking organic aerosol contributes up 419 

to 60% of the non-refractory PM1 mass. Mobile AMS results from Gu et al. (2018) showed 420 

that cooking OA contributes 5-20% of PM1 mass over multiple areas in the city of 421 

Pittsburgh. Other measurements in Pittsburgh also showed that cooking OA concentrations 422 

were clearly elevated in the vicinity of restaurants when compared with residential areas 423 

(Robinson et al., 2018). Though the average cooking PM2.5 mass predictions offrom our 424 

studyPMCAMx cannot be directly compared to these numbersmeasurements, they all is 425 
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body of previous work highlights the local importance of cooking as a fine PM pollution 426 

source. Other measurements in Pittsburgh showed that cooking OA concentrations were 427 

clearly elevated in the vicinity of restaurants when compared with residential areas 428 

(Robinson et al., 2018). 429 

On average, the miscellaneous area sources sector contributes 0.26 µg m-3 430 

accounting for 4.3% of the PM2.5. In downtown Pittsburgh, where the contribution is 431 

highest, this source contributes 7% of the PM2.5. 432 

Unlike in the winter period,  the plumes from major powerplants in the Ohio river 433 

valley are clearly resolved in the summer. The power generation sector contributes a 434 

maximum of 2.4 µg m-3 in the plume of the Bruce Mansfield power plant northwest of 435 

Pittsburgh. On average, the 9.4% contribution from this sector to the PM2.5 is much larger 436 

than in the winter where it only contributed 2.3%. The plume from the Mitchell power 437 

plant in the southwest corner of the modeling domain is clearly resolved and reaches all 438 

the way to the city. This increases the contribution from power generation to the PM2.5 in 439 

the downtown core from 0.22 µg m-3 in the winter to 0.61 µg m-3 in the summer. The 440 

maximum contribution of 8.98 µg m-3 from industrial sources is a cluster of industrial 441 

facilities in the town of ButlerBeaver, northwest of Pittsburgh.  442 

Long-range transport from sources outside the region contributes a maximum of 443 

5.2 µg m-3 in the southeast corner of the domain decreasing in the direction of the Pittsburgh 444 

northern suburbs where the contribution is minimal with 4.1 µg m-3. On average, long-445 

range transport accounts for 72% of the PM2.5 mass. In downtown Pittsburgh, long-range 446 

transport contributes 4.24 µg m-3 accounting for 35% of the PM2.5. The high-concentration 447 

spotarea visible on the western edge of the domain is due to a cluster of power generation 448 

and industrial sources located in the Ohio River valley just outside of the inner modeling 449 

domain. 450 

On average, the contribution from all remaining sources is 3.6% and shows a 451 

moderate variability of 0.10 µg m-3. The contribution from these sources is maximal in 452 

downtown Pittsburgh with 0.78 µg m-3 accounting for 6% of the PM2.5. 453 

For all local sources, the minimum contribution is close to zero (less than 0.1 µg   454 

m-3) and is located at the northwestern corner of the domain, near the Ohio – Pennsylvania 455 

border. 456 
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Relative contributions of all local sources to domain average predicted total PM2.5 457 

(including long-range transport PM2.5 mass) are shown in Figure 9. The largest differences 458 

between February and July are the contributions from biomass burning and power 459 

generation. In the winter, biomass burning is the most important local source of PM2.5, 460 

contributing over 8%. In the summer, this source contributes much less than 1% to total 461 

PM2.5. This discrepancy can easily be explained by the lack of residential wood combustion 462 

in the warmer months of the year. Power generation is a significantly more important 463 

source in July than in February. This is likely a result of a lower mixing height in the winter 464 

combined with emissions plumes from power plants in the Ohio river vally originating 465 

from very tall stacks. 466 

The relative contributions of local sources to average predicted total PM2.5 in the 467 

maximum concentration cell in Butler Beaver County and in downtown Pittsburgh are 468 

shown in Figures 10 and 11, respectively. The dominant local source in the Butler Beaver 469 

County location is industrial emissions, due to the proximity of various industrial 470 

installations in this area. Industrial sources here account for around 49% of total PM2.5 in 471 

February and 58% of total PM2.5 in July. A lot of the difference in industrial PM2.5 at the 472 

Butler Beaver County location between months is made up by biomass burning in 473 

February, which accounts for 7% more of the total compared to July. In the downtown area 474 

of Pittsburgh, the majority of PM2.5 from local sources can be attributed to either traffic 475 

(22-27% of total PM2.5) or cooking (16-18% of total PM2.5) in both simulation periods 476 

(Figure 11).. 477 

 478 

6. Exposure to PM2.5 479 

The population data in the inner domain from the 2010 U.S. census was used to 480 

estimate the exposure of the population in the Pittsburgh area to model predictions of PM2.5 481 

during winter of 2017 at the different grid resolutions. We ranked the average PM2.5 482 

concentrations from all the cells in the modeling domain and created bins of 0.2 µg m-3. A 483 

sum of the population from all the grid cells that fall within each concentration bin was 484 

calculated and divided by the total population of the inner grid to construct population 485 

exposure histograms. The population data used here is resolved at the census group level, 486 

which is much smaller than the simulation grid cell size of 1 x 1 km. 487 
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 488 

6.1 Winter PM2.5 Exposure 489 

Figure 12 shows the population exposure histograms for the Pittsburgh area (inner 490 

domain) for each model resolution. At the coarse resolution, there are only four PM2.5 491 

values and 46% of the population is exposed to a concentration of 10.4 µg m-3 with 492 

decreasing exposure with PM2.5 concentration. At a 12 km resolution, the low 493 

concentration side of the distribution is better resolved but gaps can still be observed at 494 

higher levels. At this intermediate resolution, the largest fraction of the population (15%) 495 

is exposed to PM2.5 concentrations of 11.8 µg m-3. 496 

When the resolution is increased to 4 km the biggest improvements on the model 497 

ability to resolve the exposure distribution happen at concentrations higher than 9.4 µg     498 

m-3. At the fine resolution, no gaps appear in the distribution. A maximum of 12% of the 499 

population is exposed to PM2.5 concentrations of 12 µg m-3 while at the highest 500 

concentration of 12.8 µg m-3 3% are exposed. At the 1 km resolution, the distribution is 501 

much smoother due to the ability of this finest grid to capture local gradients. The largest 502 

fraction of the population (6%) is exposed to PM2.5 concentrations of 9.2 µg m-3. At the 503 

highest concentration of 14.4 µg m-3 the exposed population is less than 0.1% as this 504 

maximum point is located near industrial installations 37 km northwest of Pittsburgh where 505 

the population density is very low.  506 

The differences seen between the predicted exposure distributionos at 4 km and 1 507 

km resolutions highlight the need for high resolution modeling studies in order to identify 508 

key areas from an the environmental justice perspective. The upper tail of the exposure 509 

distribution (13-14 µg m-3) is only detectablevisible atwith the 1 km resolution predictions. 510 

These higher exposures could be addressed by appropriate targeted also have the ability to 511 

be alleviated by appropriate regulations, because they are thea direct result of proximity to 512 

either major industrial sources  and and electrical generation sources or dense traffic and 513 

cooking emissions.  stations. 514 

At resolutions of 36 km, 12 km, 4 km, and 1 km the predicted average population 515 

weighted total PM2.5 concentration during February 2017  is 9.74 µg m-3, 9.77 µg m-3, 10.28 516 

µg m-3, and 10.00 µg m-3, respectively. This represents an increase of only 2.6% when 517 

moving from lowest to highest resolution. Relative contributions of local sources to 518 



18 

 

average population weighted PM2.5 concentration is shown in Figure 14. Compared to the 519 

domain average PM2.5 concentrations (Figure 9), many local source contributions are 520 

enhanced in terms of average population exposure. In February, weighting PM2.5 521 

concentrations by population increases the contribution from biomass burning from 8.3% 522 

to 11.7%. Other notable increases include onroad traffic (2.5% to 6.5%), and miscellaneous 523 

area sources (5.9% to 9.2%). Other local source contributions to population weighted PM2.5 524 

were similar to the corresponding non-weighted concentrations. 525 

The source-resolved population exposure distributions during this winter period are 526 

shown in Figures S6 and S7. 527 

 528 

6.2 Summer PM2.5 Exposure 529 

Figure 134 shows the population exposure for each simulation grid during the 530 

summer period. At the coarse resolution, 88% of the population is exposed to a 531 

concentration of 7 to 7.2 µg m-3. At 12 x 12 km resolution, the exposure distribution is 532 

better resolved but a gap is still present at 7.2 µg m-3 and exposure to PM2.5 concentrations 533 

above 7.6 µg m-3 is not resolved at all. At this intermediate resolution, the largest fraction 534 

of the population (19%) is exposed to PM2.5 concentrations of 7.4 µg m-3. Increasing the 535 

resolution to 4 x 4 km both shifts the distribution to slightly lower concentrations and 536 

resolves exposure to higher PM2.5 concentrations than with the 12 x 12 km grid. At this 537 

resolution, 14% of the population is exposed to 6.4 µg m-3 and smaller portions of the 538 

population are exposed to concentrations higher than 8.0 µg m-3. Moving to the highest 539 

resolution grid further resolves the exposure distribution. Most notably, 1 x 1 km resolution 540 

reveals a bimodal distribution of population exposure, with one peak centered around 6.0 541 

µg m-3 and another centered around 7.4 µg m-3. This likely corresponds to one subset of 542 

the population in the urban areas of Pittsburgh who are exposed to higher PM2.5 543 

concentrations and another subset representing the surrounding suburban areas. 544 

In the summer period, an even larger range of high-concentration exposure is 545 

revealed moving from 4 km to 1 km resolution. At this high resolution, the Here, we gain 546 

information about population exposure to concentrations ranging from 8.5 µg m-3 to 12 µg 547 

m-3 becomes clear Most people exposed to these higher fine PM levels according to 548 

PMCAMx . Again, this corresponds to people liveing in the vicinity of the industrial 549 
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complexes and power stations around the city of Beaver. The higher concentration range 550 

of the upper tail of the exposure duringin July compared to February is due to a large extent 551 

to the effective mixing of the emissions from the tall stacks down to the ground level 2017 552 

is likely a consequence of the higher level of power generation PM2.5 in the ground level 553 

simulation layer compared to that seen in February 2017. 554 

At resolutions of 36 km, 12 km, 4 km, and 1 km the predicted average population 555 

weighted total PM2.5 concentration during February 2017  is 7.06 µg m-3, 6.78 µg m-3, 7.00 556 

µg m-3, and 6.99 µg m-3, respectively. This represents just a 1% decrease between the 557 

lowest and highest resolutions. Similar to the effect seen in February, weighting PM2.5 558 

concentrations by population increases the contribution from onroad traffic from 3.3% to 559 

8.9% in July. Contributions from miscellaneous area sources also increased  (4.3% to 7.1%) 560 

when weighting by population. The population weighted contribution from power 561 

generation sources in July decreased from the non-weighted value from 9.4% to 8.3%. All 562 

other local source contributions to population weighted PM2.5 in July were similar to the 563 

non-weighted values. 564 

The source-resolved population exposure distributions during this summer period are 565 

shown in Figures S8 and S9. 566 

 567 

7. Conclusions 568 

We applied the PMCAMx chemical transport model over the city of Pittsburgh for 569 

the simulation periods of February and July 2017 using a series of telescoping grids at 36 570 

x 36 km, 12 x 12 km, 4 x 4 km and 1 x 1 km. Emissions were calculated using 2017 571 

projections from the 2011 NEI. Emissions were distributed geographically using the spatial 572 

surrogates provided with the NEI11 for all grids. For commercial cooking, a new 1 x 1 km 573 

spatial surrogate was developed using restaurant count data from the Google Places API. 574 

Traffic model data was used to develop a 1 x 1 km spatial surrogate for on-road traffic 575 

emissions. 576 

At the coarse resolution, county-level differences can be observed. Increasing the 577 

resolution to 12 x 12 km resolves the urban-rural gradient and further increasing to 4 x 4 578 

resolves large stationary sources such as power plants. Only at the finest resolution intra-579 

urban variations and individual roadways are resolved. Low variability, regional pollutants 580 
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such as nitrate show limited improvement after increasing the resolution to 12 x 12 km 581 

while predominantly local pollutants such as elemental carbon and winter organic aerosol 582 

have gradients that can only be resolved at the finest resolution. 583 

Biomass burning shows the largest variability during the winter period with many 584 

local maxima and significant emissions within the city and in the suburbs. During the 585 

summer contributions from this source are negligible. In contrast with the winter period, 586 

during the summer the plumes from large power plants in the Ohio river valley can be 587 

resolved. These plumes are rich in sulfates and start being resolved at 4 x 4 km with 588 

significant detail added at 1 x 1 km. During both periods the largest contributing source to 589 

the average PM2.5 is particles from outside the modeling domain. 590 

The ability of the model to resolve the exposure distribution increases at different 591 

rates according to the concentration. A significant improvement in resolving exposure to 592 

concentrations below 9.4 µg m-3 in the winter and below 7.0 µg m-3 in the summer is 593 

achieved by increasing the resolution to 12 x 12 km. Only at the finest resolution is the 594 

exposure to concentrations above 9.6 µg m-3 in the winter and above 8.6 µg m-3 in the 595 

summer fully resolved as well as the impact of high concentration spots.  596 

The average exposure in terms of average contribution to population weighted 597 

PM2.5 concentrations of some local sources is enhanced compared to the non-weighted 598 

average PM2.5 concentrations. In February, weighting by population enhanced the 599 

contributions from biomass burning, onroad traffic, and miscellaneous area sources by 3-600 

4%. In July, the contributions from onroad traffic and miscellaneous area sources also  601 

increased by 3-5% from this procedure.  602 

It was determined that increasing simulation grid resolution from 36 x 36 km to 1 603 

x 1 km had minimal effect on the predicted domain average population weighted PM2.5 604 

concentration. Moving from the lowest to highest grid resolution increased the predicted 605 

average population weighted PM2.5 by less than 3%. In July, the average decreased by 1%. 606 

This negligible change in the predicted average exposure to PM2.5 suggests that extremely 607 

high resolution predictions of urban PM2.5 pollution may not be necessary for accurate 608 

epidemiological analysis in the absence of high-resolution health data. ,, Hhowever it is 609 

also clear that the  average population-weighted concentration approach misses the 610 

potentially importantignores the impacts of large sources on smaller communities.   Tthe 611 
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increased neighborhood scale resolution could beis vital for topics related to environmental 612 

justice identifying communities that are disproportionately exposed to large stationary 613 

sources of PM2.5 pollution, which in our study represent the upper tail of the exposure 614 

distributions in both simulation periods. 615 

 616 
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 742 

Table 1. PM2.5 emissions by source for the 1 x 1 km Pittsburgh domain (February 2017). 743 

 744 

Source Type Emissions (kg d-1 km-2) 

  PM2.5 OA EC Chl. Na Amm. Nitrate Sulfate Other 

Agricultural dust 68.7 9.7 0.4 0.2 0.1 0.1 0.1 0.7 57.2 

River barges 19.0 4.2 14.7 0.0 0.0 0.0 0.0 0.1 0.1 

Cooking 242 223 8.3 2.2 0.8 0.0 1.1 0.6 6.0 

Misc. area sources 683 445 56.7 30.5 3.0 5.6 1.7 42 97.8 

Off-road 147 56.2 73.1 0.3 0.1 0.0 0.3 1.1 16.1 

Oil-gas (Area) 35.3 1.7 0.0 0.0 0.0 0.0 0.1 8.3 23.2 

On-road traffic 188 84.6 75.2 0.3 0.1 1.8 0.6 8.3 16.4 

Rail 40.7 8.9 31.4 0.0 0.0 0.0 0.0 0.1 0.2 

Biomass burning 1,869 1,696 105 5.6 1.8 2.8 3.6 7.7 46.3 

Power generation 3,517 201 194 2.8 0.0 15.7 2.6 460 2,641 

Industrial 1,106 192 134 79.4 65.3 10.1 21.1 173 428 

Oil-gas (point) 2.8 1.0 1.1 0.0 0.0 0.0 0.1 0.2 0.5 

 745 

Table 2. PM2.5 emissions by source for the 1 x 1 km Pittsburgh domain (July 2017). 746 

 747 

Source Type Emissions (kg d-1 km-2) 

  PM2.5 OA EC Chl. Na Amm. Nitrate Sulfate Other 

Agricultural dust 67.3 8.9 0.4 0.1 0.1 0.1 0.1 0.7 56.9 

River barges 19.0 4.2 14.7 0.0 0.0 0.0 0.0 0.1 0.1 

Cooking 242 223 8.3 2.2 0.8 0.0 1.1 0.6 6 

Misc. area sources 593 392 49.1 28.5 2.5 5.3 1.1 33 81.6 

Off-road 205 83.5 92.9 0.2 0.1 0.0 0.4 1.1 27.3 

Oil-gas (Area) 35.9 1.9 0.0 0.0 0.0 0.0 0.1 8.9 25.0 

On-road traffic 162 67.6 66 0.4 0.1 1.5 0.5 8.6 17.2 

Rail 40.7 8.9 31.4 0.0 0.0 0.0 0.0 0.1 0.2 

Biomass burning 24.3 22 1.4 0.0 0.0 0.0 0.0 0.1 0.6 

Power generation 3,780 216 208 3.1 0.0 16.9 2.8 495 2,840 

Industrial 1,050 188 133 67.3 56.2 9.9 21.0 165 412 

Oil-gas (point) 2.8 1.0 1.1 0.0 0.0 0.0 0.1 0.2 0.5 

 748 

  749 



27 

 

Table S1. Outer (CONUS) boundary condition concentrations of major aerosol species. 750 

 751 

Component 
Concentration (µg m-3) 

West East South North 

Nitrate 0.01 0.01 0.03 0.03 

Ammonium 0.14 0.25 0.24 0.16 

Sulfate 0.64 1.12 0.81 0.68 

Elemental carbon 0.04 0.05 0.09 0.03 

Organic aerosol (Winter) 0.20 0.16 0.58 0.80 

Organic aerosol (Summer) 0.80 0.80 0.80 0.80 
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 754 

 755 

756 

 757 

Figure 1. Modeling domain used for the PMCAMx simulations. (A) 36 x 36 km 758 

continental U.S. grid. (B) 12 x 12 and 4 x 4 km South Western Pennsylvania grids, and 1 759 

x 1 km Pittsburgh nested grids. 760 
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763 

 764 

Figure 2. Percentage of sector PM2.5 emissions in each 1x1 km computational cell for: (A) 765 

commercial cooking and (B) on road traffic in February 2017. The value of the colored 766 

points in each framemap add up to unity1.0, corresponding to 100% of emissions for the 767 

respective sectors. 768 
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 770 

 771 

 772 

Figure 3. Average predicted ground-level concentration of total PM2.5, EC, and OA at 36 773 

x 36, 12 x 12, 4 x 4 and 1 x 1 km resolutions during February 2017. Different color scales 774 

that do not start from zero are used for the various maps. 775 
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 780 

Figure 4. Average predicted ground-level concentration of PM2.5 sulfate, nitrate and 781 

ammonium at a 36 x 36, 12 x 12, 4 x 4 and 1 x 1 km resolution during February 2017. 782 

Different color scales that do not start from zero are used for the various maps. 783 
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 787 

 788 

Figure 5. Contribution of each source to total PM2.5 during February 2017. Different scales 789 

are used for the various maps. 790 
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 793 

Figure 6. Average predicted concentration at the ground level of total PM2.5, EC and OA 794 

at a 36x36, 12x12, 4x4 and 1x1 km during July 2017. Different color scales that do not 795 

start from zero are used for the various maps. 796 
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 800 

Figure 7. Average predicted concentration of PM2.5 sulfate, nitrate, and ammonium at a 801 

36x36, 12x 12, 4x4 and 1x1 km during July 2017. Different color scales that do not start 802 

from zero are used for the various maps. 803 
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 808 

Figure 8. Contribution of each source to total PM2.5 during July 2017. Different scales are 809 

used for the various maps. 810 
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 813 

Figure 9. Relative contributions of local sources to average predicted total PM2.5 814 

concentrations in the Allegheny County simulationinner 1x1 km resolution domain during 815 

February and July 2017. 816 
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 818 

Figure 10. Relative contributions of local sources to average predicted PM2.5 819 

concentrations at the location of highest average concentration (Beaver utler County) 820 

during February and July 2017. 821 
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 823 

Figure 11. Relative contributions of local sources to average predicted total PM2.5 824 

concentrations in downtown Pittsburgh during February and July 2017. 825 
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 827 

 828 

 829 

Figure 12. Population exposure histograms at (A) 36x36, (B) 12x 12, (C) 4x4 and (D) 1x1 830 

km during February 2017. A different scale for population is used for the distribution at 36 831 

x 36 km resolution. The average population weighted PM2.5 concentration for each 832 

resolution is shown in the upper right corner of each window. 833 
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 835 

 836 

Figure 13. Population exposure histograms at (A) 36x36, (B) 12x 12, (C) 4x4 and (D) 1x1 837 

km during July 2017. A different scale for population is used for the distribution at 36 x 36 838 

km resolution. The average population weighted PM2.5 concentration for each resolution is 839 

shown in the upper right corner of each window. 840 
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 843 

 844 

Figure 14. Relative contributions from local sources to population weighted total PM2.5 845 

concentration for February and July 2017.  846 
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