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Positive matrix factorization (PMF) is a receptor model and multivariate factor
analysis tool (Paatero and Tapper, 1994; Paatero, 1997). Recently, the PMF model was
used to provide better separation of different organic components through high-

resolution (HR) mass spectra data (Liu et al., 2014). This model was expressed as below:
Xij = ZpQipfpj + eij

where i and j refer to values of j species in i samples, respectively, p is the number of

factors, and used a least-squares fitting process, minimizing a quality of fit parameter.

In our study, CU AMS PMF Execute Tool v 3.04A, which was developed by
Ulbrich et al. (Ulbrich et al., 2009), was used for the PMF analysis. High-resolution ion
fragments at m/z from 12-160 were used. We generated the organic data matrices and
the corresponding error matrices from PIKA v 1.15D. lons were classified and down-
weighted according to the signal-to-noise ratios (SNR). 0.2<SNR<2 was classified as
the weak ions and down-weighted by a factor of 2, SNR<0.2 was bad ions and removed
from the analysis. ince O*, HO*, HO" and CO™ are related proportionally only to CO,*
in the fragmentation table, the error values for each of these m/z were multiplied to
avoid excessive weighting of CO.". The data were analyzed using the PMF2 algorithm

(Paatero et al., 2002) with fpeak varying between -1 and 1.

A summary of the PMF results is presented in Fig. S1-S3. After an extensive
evaluation of the mass spectral profiles and time series of different number of factors
and the rotational forcing parameter, fPeak, the 2-factor solution with fPeak = 0 was
chosen for toluene SOA. The OA components of the 2-factor solution solved under

different fPeak values show very similar mass spectral patterns.

The direct comparisons of the mass spectra and time series of 3-factor solution are
shown in Fig. S4. The 3-factor solution splits the High-nitrogen OA (Hi-NOA) into two
components for which we cannot offer a physically meaningful interpretation. While
the results of 2-factor solution are also used in the familiar chamber study(Chen et al.,

2021; Chen et al., 2019). We therefore choose the 2-factor solution.
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Fig. S1 The 2-factor solution for the toluene OH-oxidation in the presence
of NHs.



(b)

—e— Qfor fPeak 0 0.0 T e P e e
- 184 Current Solution ° M variance_Fpeak_Residual
2 45 — min Qforp g 02 m variance_Fpeak_Factor1
g T .8 m variance_Fpeak_Factor2
a ! . ©04
5 14+ : [
<) ' ]
S 12+ ‘ g 0.6
o \ E 0.8
T T T T i 1.0
1 5 3 4 5 -1 -0.8-06-04-02' 0 '02'04'06'08' 1
Number of Factors fPeak of Seed
_doAfle) | — B e A S
T : : : :
3 | | | |
=l
w
@
4
k=]
@
G .
js]
%]

20 40 60 80 100 120 140 160
m/z (amu)

s-(e
Cx » 6
CH E
CHO1 = 44
CHOgt1 5
CHN Measured Spec tseries
CHOIN | 0 - —— Reconst _
CHOgt1N P —— Residual 10
cs 0.4 —if) ] Scaled Residual
HO o
1 Aj 2 02+ 58
ir © =8
0.08 — 3 e
T 0.0 0
7} Py
& 02 B
. -5 2
-0.4 — 10
T T T T T T
20 40 60 80 100 120 140 160 10:00 11:00 12:00
miz (amu) 2021117 Date & Time

Fig. S2 The 2-factor solution for the toluene OH-oxidation in the presence
of NOx.
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Fig. S3  The 2-factor solution for the toluene OH-oxidation in the presence
of both NOx and NHj.
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Fig. S4 (a), (c), and (e): High resolution mass spectra 3-factor solution for
the Exp.2, 3, and 4, respectively. (b), (d), and (f): Time series of mass
concentration of OA in each factor.
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