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Abstract: Urban conurbations of East Africa are affected by harmful levels of air pollution. The paucity of local 12 

air quality networks and the absence of capacity to forecast air quality make difficult to quantify the real level of 13 

air pollution in this area. The chemistry-transport model CHIMERE has been used along with the meteorological 14 

model WRF to run simulations at high spatial resolution (2×2 km) of hourly concentrations of Particulate Matter 15 

PM2.5 for three East African urban conurbations: Addis Ababa in Ethiopia, Nairobi in Kenya, and Kampala in 16 

Uganda. Two existing emission inventories were combined to test the performance of CHIMERE as an air quality 17 

model for a target monthly period of 2017 and the results compared against observed data from urban, roadside, 18 

and rural sites. The results show that the model is able to reproduce hourly and daily temporal variability of 19 

aerosol concentrations close to observations in urban, roadside and in rural environments. CHIMERE’s 20 

performance as a tool for managing air quality was also assessed. The analysis demonstrated that despite the 21 

absence of high-resolution data and up-to-date biogenic and anthropogenic emissions, the model was able to 22 

reproduce 66 – 99% of the daily PM2.5 exceedances above the WHO 24-hour mean PM2.5 guideline (25 µg m-3) in 23 

the three cities. An analysis of the 24-hour average levels of PM2.5 was also carried out for 17 constituencies in 24 

the vicinity of Nairobi. This showed that 47% of the constituencies in the area exhibited poor air quality index for 25 

PM2.5 in the unhealthy category for human health exposing between 10,000 to 30,000 people/km2 to harmful levels 26 

of air contamination. 27 

 28 
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 31 

1 Introduction 32 

 33 

The world’s population has grown rapidly by 1 billion people in the last 12 years, reaching 7.9 billion in 2021. 34 

The World Population Prospects (WPP) made by the United Nations (U.N.) suggest a continuing annual increase 35 

of 1.8 %, meaning the global population will reach 8.5 billion by 2030, 9.7 by 2050, and 11.2 by 2100 (UN-WPP, 36 

2019). The African continent is predicted to have the fastest growing population rate in the world, and it is 37 

projected to double between 2010 and 2050, surpassing two billion (UN-WPP, 2019). In addition to this a 60 % 38 

increase in population has been predicted by 2050, specifically in urban areas (UN-WPP, 2019). 39 

  40 
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Population in Sub-Saharan East African (SSEA) countries have increased drastically from 1991 to 2019. In that 41 

period of time and according to data from the World Bank database (WB, 2022), the Kenyan population grew 42 

from 24 to 52 million, the Ugandan population from 17 to 44 million and the Ethiopian population from 50 to 112 43 

million. These increases in population were accompanied by a similar rate of increase in road transport, industrial 44 

activities and in the use of solid fuels (e.g., woods, charcoal, and agricultural residues) for cooking purposes in 45 

urban areas (Bockarie et al., 2020;Marais et al., 2019).  46 

 47 

As a result of these population increases, air quality of the urban areas of these countries, historically influenced 48 

by the large presence of seasonal burning biomass emissions (Haywood et al., 2008;Lacaux, 1995;Liousse et al., 49 

2010;Thompson A. M., 2001), is progressively degrading (Marais and Wiedinmyer, 2016). This, in combination 50 

with the expanding urban population, has greatly increased the exposure of citizens to harmful Particulate Matter 51 

(PM) pollution with an aerodynamic diameter smaller than 10 and 2.5 µm (PM10 and PM2.5, respectively) (Gatari 52 

et al., 2019;Kinney et al., 2011;Li et al., 2017;UN-Habitat, 2017).  53 

 54 

Several diseases have been attributed to PM exposure in SSEA, including cardiovascular and cardiopulmonary 55 

diseases, cancers, and respiratory deep infections (Dalal et al., 2011;Mbewu, 2006;Parkin et al., 2008). In 2012, 56 

the World Health Organization (WHO) estimated 176,000 deaths in SSEA were directly connected to air pollution 57 

(WHO, 2012). Modelling studies have also found that exposure to outdoor air pollution has led to 626,000 58 

disability-adjusted life per year (DALYs) in SSEA alone (Amegah and Agyei-Mensah, 2017), highlighting that 59 

these numbers could be much higher considering the limited amount of air quality data emanating from the region 60 

that are available for research purposes. 61 

 62 

Considering the likely severe impacts of air pollution on human health in SSEA, the research interest in 63 

understanding air pollution trends in East Africa has increased in recent years. Many researchers have analysed 64 

the levels of contamination by short-term measurement campaigns (Amegah and Agyei-Mensah, 2017;deSouza 65 

P., 2017;Egondi et al., 2013;Gaita et al., 2014;Gatari et al., 2019;Kume, 2010;Ngo et al., 2015;Pope et al., 66 

2018;Schwander et al., 2014;Vliet, 2007;Singh et al., 2021). Other studies observed annual average PM2.5 67 

concentrations in the order of 100 µg m-3 quantified in a small number of urban areas of SSEA (Brauer et al., 68 

2012).  These levels are about four times higher than the 24-hour average and ten times higher than the annual 69 

average WHO guidelines for PM2.5 (Avis W. and Khaemba W., 2018;WHO, 2016) and underline that air pollution 70 

is a serious problem in this area of the world. A recent study by Singh et al. (2020), using visibility as a proxy for 71 

PM, showed that air quality in Addis Ababa, Kampala and Nairobi has degraded alarmingly over the last 4 72 

decades.   73 

 74 

The lack of long-term air quality monitoring networks in many African countries have made it difficult to have 75 

reliable long-term air quality data (Petkova, 2013;Pope et al., 2018;Singh et al., 2020) and still little is known 76 

about the levels of air contamination in large urban conurbations (Burroughs Peña and Rollins, 2017). The paucity 77 

and sometimes complete absence of reliable data on air pollution levels makes it difficult to quantify the magnitude 78 

of the problem. Consequently, it is difficult for local and national authorities to plan possible improvement 79 

measures for the mitigation of anthropogenic emissions. Even if important steps forward have been made to 80 



3 
 

improve the knowledge relative to anthropogenic emissions and emission inventories for Africa used for 81 

numerical simulations and forecasts of air quality (Assamoi and Liousse, 2010;Liousse, 2014;Marais and 82 

Wiedinmyer, 2016) the lack of surface observations to validate the emission magnitude and the simulated 83 

concentrations make these inventories susceptible of large error.  84 

 85 

In this work we test a meteorological and a chemistry-transport model (CTM) to simulate the hourly urban and 86 

rural levels of PM2.5 in three SSEA urban conurbations during a monthly period of 2017. We present the results 87 

of the validation of both models for the capital cities of Kenya, (Nairobi), Ethiopia (Addis Ababa) and Uganda 88 

(Kampala) against observation data. For Nairobi, we compare model outputs with observations from rural and 89 

roadside sites observations collected during the “A Systems approach to Air Pollution in East Africa” research 90 

project (ASAP-East Africa - www.asap-eastafrica.com, hereafter called ASAP) (Pope et al., 2018). For Addis 91 

Ababa and Kampala, the model was validated using hourly observations of PM2.5 collected by the respective U.S. 92 

Embassies. 93 

 94 

Moreover, we assess the suitability of the CTM as a decision support tool for policy makers to plan possible 95 

mitigation policies oriented to quantify the real level of air pollution in urban areas and quantify the human 96 

exposure to PM2.5. Specifically, in terms of the accuracy of the model we estimate the daily WHO threshold limit 97 

exceedances of PM2.5 in the three urban conurbations.  Finally, for the particular case of Nairobi, we evaluate the 98 

average air quality indices by local constituency for the whole analysed period giving a new insight of the real 99 

level of air contamination in Nairobi to the general public and the relative population exposed to harmful level of 100 

air contamination.  101 

 102 

2 Material and Methods 103 

 104 

The meteorological and chemistry-transport models used in this work have been configured to simulate hourly 105 

weather parameters and concentrations of PM2.5 using available input data for the simulations and observations 106 

from the real world for the validation. The availability of the observations for the validation of both models comes 107 

from different providers, have different frequency in time and, in the case of PM2.5 observations, come from 108 

different environments (rural, urban, roadside sites). No vertical observations were available for the validation of 109 

both models. 110 

 111 

2.1 Meteorological model WRF  112 

 113 

The Weather Research and Forecasting (WRF) model is a numerical model for weather predictions and 114 

atmospheric simulations and is used commercially and for research purposes, including by the US National 115 

Oceanic and Atmospheric Administration (Powers, 2017;Skamarock, 2008).  116 

 117 

WRF was used to drive the meteorology for CHIMERE using three geographical domains at different resolutions 118 

(from 18×18 km to 2×2 km) vertically divided into 30 levels, nine of which are below 1500 m. The first external 119 

domain has a spatial resolution of 18×18 km (Figure 1), with three nested domains at a resolution of 6×6 km 120 

http://www.asap-eastafrica.com/


4 
 

centred on the three countries of interest (Figure 1, white squares).  Three further nested domains with a resolution 121 

of 2×2 km centred on Addis Ababa, Kampala, and Nairobi (Figure 1, white dashed squares, and Figure 2) are the 122 

focus of the analysis. 123 

 124 

Figure 1: Spatial distribution of the PM2.5 emissions from DICE-EDGAR merged emission inventory for East Africa for the 125 
WRF domain at 18×18 km of resolution. The continuous white lines show the location of the first nested domain at 6×6 km of 126 
resolution used in WRF-CHIMERE. The dashed white squares give the locations of the second nested domains at 2×2 km 127 
centred on Addis Ababa (Ethiopia, white triangle), Kampala (Uganda, white square) and Nairobi (Kenya, white circle) used 128 
for WRF-CHIMERE. 129 
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 130 

Figure 2: Second-nested domains at a spatial resolution of 2×2 km centred on the cities of Addis Ababa (ETH2K - a), Kampala 131 
(UGA2K – b), Nanyuki and Nairobi (KEN2K - c) created using the WRF model outputs. The red dots represent locations of 132 
PM2.5 measurements. The blue, yellow, and green dots refer to the location of the ground weather stations used for the 133 
meteorological validation in Ethiopia, Uganda, and Kenya, respectively. The numbers relate to the stations detailed in Table 134 
2. Contour lines are relative to the height meters from the ground levels from WRF outputs while the colour scale applied to 135 
the maps a, b and c represents the 21 classes of classification of the land use adopted in WRF simulations. The description of 136 
each land use category is provided the legend.  137 

 138 

The configuration adopted for the WRF simulations has been chosen according to previous works made on East 139 

Africa (Kerandi et al., 2016;Kerandi et al., 2017;Pohl et al., 2011) and is summarized in Table 1. The Yonsei 140 

University Scheme (YSU - (Hong S., 2006)) was chosen to represent the Planetary Boundary Layer while the 141 

Community Atmosphere Model (CAM - (Collins, 2004)) was used for the long and short-wave radiation scheme. 142 

Initial and boundary conditions for the external coarse domain at 18×18 km were obtained from the NCEP FNL 143 

(Final) Operational Global Analysis data (Wu, 2002). Boundary condition for the first (6×6 km) and second (2×2 144 

km) nest domains were taken from the respective parent domains using the two-way-nesting approach. The 145 

process enables the lateral conditions for the internal domains to be calculated from the outputs of the respective 146 

parent domains at lower resolution at every time step of the simulation.  147 

 148 
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The land use option chosen for the simulations was NOAH (Tewari, 2004) while the WRF Single–moment 3–149 

class Scheme (WSM3) for clouds and ice proposed by Hong S. (2004) was chosen for the reproduction of the 150 

microphysical processes in WRF. 151 

 152 

2.2 The Chemistry Transport model CHIMERE 153 

 154 

CHIMERE, version 2017r4 (Mailler et al., 2017), is a Eulerian numerical model for reproducing three-155 

dimensional gas-phase chemistry and aerosols processes of formation, dispersion, wet and dry deposition over a 156 

defined domain with flexible spatial resolutions. CHIMERE has been used for a number of comparative research 157 

studies of Ozone and particulate matter PM10 from the continental scale, (Bessagnet et al., 2016;Zyryanov et al., 158 

2012) to the urban scale (van Loon et al., 2007;Vautard et al., 2007;Mazzeo et al., 2018). Furthermore, the model 159 

has been used for event analysis, scenario studies (Markakis et al., 2015;Trewhela et al., 2019), forecasts, and 160 

impact studies of the effects of air pollution on health (Valari and Menut, 2010) and vegetation (Anav et al., 2011). 161 

The authors highlight that the version of CHIMERE adopted is the 2017r4, the most recent available at the time 162 

when the present work was realized.  163 

 164 

CHIMERE model has been used to simulate the first nested domains at 6×6 km and the second nested domains at 165 

2×2 km of spatial resolution. The configuration adopted in this work uses initial and boundary conditions from 166 

the global three-dimensional chemistry-transport model (LMDz-INCA, Hauglustaine et al. (2004)), both for 167 

gaseous pollutants and for aerosols for the most external domain at 6×6 km of resolution while for the most 168 

internal domains at 2×2 km of resolution, the boundary conditions are calculated from model outputs of the parent 169 

domains. The complete chemical mechanism used for all the simulations was SAPRC-07-A (Carter, 2010) which 170 

can describe more than 275 reactions of 85 species. SAPRC-07-A is the most recent chemical mechanism 171 

available for CHIMERE version 2017r4.  172 

 173 

Horizontal and vertical diffusion is calculated using the approach suggested by Van Leer (1979) and the 174 

thermodynamic equilibrium ISORROPIA model (Nenes, 1998) is used for the particle/gases partitioning of semi-175 

volatile inorganic gases. The model permits calculation of the thermodynamical equilibrium between sulphates, 176 

nitrates, ammonium, sodium, chloride and water dependent upon temperature and relative humidity data.  177 

 178 

Dry and wet deposition is calculated in CHIMERE. The particle dry deposition velocities are calculated as a 179 

function of particle size and density as well as relevant meteorological variables, including deposition processes, 180 

such as, turbulent transfer, Brownian diffusion, impaction, interception, gravitational settling and particle rebound 181 

(Zhang et al., 2001). Wet deposition is described modelled using a first-order decay equation as described in 182 

Loosmore and Cederwall (2004). 183 

 184 

Radiative transfer processes are accounted in CHIMERE using the Fast-JX model (Wild, 2000;Bian, 2002). Fast-185 

JX is applied also in other models (Voulgarakis, 2009;Real and Sartelet, 2011;Telford et al., 2013). The photolysis 186 

rates calculated by Fast-JX model are validated both inside the limits of the boundary layer (Barnard, 2004) and 187 

in the free troposphere (Voulgarakis, 2009). 188 
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 189 

Secondary organic aerosols (SOAs), including biogenic and anthropogenic precursors, are modelled in CHIMERE 190 

as described by (Pun, 2006). SOAs formation is represented as a single-step oxidation of the precursors, 191 

differentiating hydrophilic by hydrophobic SOAs in the partitioning formulation. Finally, biogenic emissions were 192 

taken in account within CHIMERE using MEGAN model outputs as described by (Guenther, 2006). 193 

 194 

Table 1: Main configuration parameters adopted for the modelling system WRF-CHIMERE for all simulations. 195 

WRFv3.9.1 Configuration 

Initial and Boundary conditions GFS FNL- Reanalysis Wu (2002) 

PBL Parametrization YSU Hong S. (2006) 

SW/LW Radiation Scheme CAM Collins (2004) 

Land Use  NOAH Tewari (2004) 

Micro Physics Scheme WSM3 Hong S. (2006) 

Vertical Levels  30 

CHIMERE2017r4 Configuration 

Initial and boundary conditions LMDz-INCA Hauglustaine et al. (2004) 

Anthropogenic Emissions EDGARv3.4.1 + DICE-Africa 
Crippa M. (2018);Marais and 

Wiedinmyer (2016) 

Biogenic Emissions  MEGAN  Guenther (2006) 

Gas/Aerosol Partitions ISORROPIA Nenes (1998) 

Secondary Organic Aerosols 1 Pun (2006) 

Radiative Transfer  Fast-JX Wild (2000);Bian (2002) 

Chemistry Mechanism  SAPRC-07-A Carter (2010) 

Horiz. / Vert. Transport scheme VanLeer Van Leer (1979) 

Vertical Levels  30 

 196 

2.3 Emission Inventories 197 

 198 

To correctly describe the impact of anthropogenic emissions on urban air quality of Nairobi, Kampala and Addis 199 

Ababa, industrial and on-grid power generation emissions from the Emissions Database for Global Atmospheric 200 

Research inventory (hereafter EDGAR, version 3.4.1) (Crippa M., 2018) were combined with non-industrial, 201 

prominent combustion sources from the Diffusive and Inefficient Emission inventory for Africa (hereafter DICE) 202 

(Marais and Wiedinmyer, 2016).  203 

 204 

EDGAR is a global inventory developed for year 2012 and DICE is a regional inventory for 2013. DICE includes 205 

important sources in Africa (e.g., motorcycles, kerosene use, open waste burning, and ad hoc oil refining, among 206 

others) that are absent or misrepresented in global inventories.  Both inventories represent the most up-to-date 207 

anthropogenic emissions available for East Africa at the time of the air quality model was used for this work. Both 208 

inventories have spatial resolution of 0.1×0.1° and provide annual total of anthropogenic emissions for relevant 209 

gases and aerosols.  210 

 211 

On one hand, EDGAR provides emissions data for CO, NO, NO2, SO2, NH3, NMVOCs, BC, OC, PM10 and PM2.5 212 

as annual totals divided by the sector according to the IPCC-1996 classification. All human activities with 213 

exception of large-scale biomass burning are included in EDGAR (Crippa M., 2018). On the other hand, DICE 214 

provides emissions from particular diffuse and inefficient combustion emission sources (e.g., road transport, 215 
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residential biofuel use, energy production and charcoal production and use) for gaseous pollutants (CO, NO, NO2, 216 

SO2, NH3, NMVOCs) and aerosols (BC, OC). Seasonal biomass burning that is considered a large pollution source 217 

in Africa is included in DICE as comparable emissions of black carbon (BC) and higher emissions of nonmethane 218 

volatile organic compounds (NMVOCs). Emissions from DICE were used to provide annual total emissions for 219 

particular emission sources considered to be misrepresented or missing in a global inventory such as EDGAR.  220 

 221 

The preparation of the final emission inventory was carried out in two steps. First, DICE and EDGAR inventories 222 

were merged, by pollutant and by sector, following the approach suggested by Marais and Wiedinmyer (2016). 223 

PM2.5 emissions are included in DICE as individual components of organic carbon (OC) and black carbon (BC), 224 

but they need to be expressed as lumped PM2.5 in CHIMERE. Therefore PM2.5 was calculated as the sum of 225 

Organic Carbon (OC - originally present in DICE) multiplied with a conversion factor (c = 1.4) following Pai et 226 

al. (2020) to represent Organic Aerosols emissions  and summed with Black Carbon (BC – originally present in 227 

DICE) as follows: 228 

 229 

    𝑃𝑀2.5 = (𝑂𝐶 × 𝑐) + 𝐵𝐶          Eq. (1) 230 

 231 

Secondly, the emisurf2016 pre-processor of CHIMERE was used to scale the emissions from the original 232 

resolution of 0.1×0.1° (~10 km) to the final resolution of each domain simulated (6×6 and 2×2 km) using 233 

population density data provided from the Socioeconomic Data and Application Centre (SEDAC) 234 

(http://sedac.ciesin.columbia.edu/) as proxy for the spatial distribution. SEDAC provides population density maps 235 

at high resolution (1×1 km) for the years 2010, 2015 and 2020. The SEDAC population density data calculated 236 

for most internal domains at 2×2 km (Figure 2) suggest for 2010 a total population of 7 million for Nairobi, 4.8 237 

million for Kampala and 4.5 million for Addis Ababa. These totals grow respectively to 8.1, 5.9 and 5.0 million 238 

for 2015 and to 9.4, 7.3 and 5.7 million for 2020. The original SEDAC data were used for a linear extrapolation 239 

of the population density data to the target year 2017 and were used by emisurf2016 for the spatial allocation of 240 

the emissions. Additionally, emisurf2016 permitted to temporally distribute the original total annual emissions 241 

rates according to seasonal, weekly, and daily variation profiles. The resulting merged inventory (hereafter, DICE-242 

EDGAR) totals by pollutant and sectors for the most external domain at 18×18 km of resolution are shown in 243 

Figure 3. 244 

 245 

Biogenic emissions and mineral dust considered in this work have been calculated in-line by CHIMERE. The 246 

former are calculated by MEGAN model outputs as described by Guenther (2006) while the latter are calculated 247 

using the USGS land use database provided by CHIMERE. The soil is represented by relative percentages of sand, 248 

silt, and clay for each model cell. The USGS database, called STATSGO-FAO accounts of 19 different soil types 249 

recorded in the global database with native resolution of 0.0083×0.0083°. To have homogeneous datasets, the 250 

STATSGO-FAO data are re-gridded into the CHIMERE simulation grids. For mineral dust emission calculations, 251 

the land use is typically used to provide a desert mask specifying what surface is potentially erodible. 252 

 253 
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The emissions used in this work might not reflect the true values due to missing emission sources and the mismatch 254 

of the simulated time period and the date of the emission inventories. The lack of up-to-date national emission 255 

inventories collected at a sufficient resolution, in addition to the lack of research sources providing projections of 256 

emissions for 2017, meant that it was not possible to generate more detailed information about the anthropogenic 257 

sources of emissions for East Africa.  258 

 259 

Figure 3: Annual Totals for the merged emission inventory DICE-EDGAR for year 2017 calculated on the spatial domain at 260 
18×18 km shown in Figure 1. 261 

 262 

It is noted that the time stamp of the anthropogenic emissions and the validation period are different. The emissions 263 

are relative to year 2013 while the observation used for the validation for 2017. In the absence of additional data 264 

and in the lack of national or local mitigation policies in the three countries we assume that the differences in time 265 

stamp do not make large difference to the emission estimates. More detailed analysis of the emission sources and 266 

the implementation of possible mitigation policies at national and local levels could in future change this situation.  267 

 268 

Finally, we recall that one of the main objectives of the present work is to evaluate the performance of WRF and 269 

CHIMERE models in reproduce meteorology and air pollution levels in urban conurbations using the most-up-to-270 

date available data and giving in this way a new insight on the state of the art of the numerical modelling for air 271 

quality in this area of the world highlighting possible improvements for future works. 272 

 273 

2.4 Weather and Chemistry Observations 274 

 275 

WRF and CHIMERE models have been validated for a limited monthly period between the 14 th of February and 276 

14th of March 2017. The choice of this period is because of the availability of continuous measurements for the 277 

validation of both models. While for the case of WRF observations with frequency variable from 3 to 6 hours are 278 

available from the UK Met Office MIDAS database (MetOffice, 2012) for different locations, rarer are PM2.5 279 
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observations that last over one month with a measurement frequency of one hour, and from different environments 280 

(e.g., rural, urban, or roadside sites).  281 

 282 

The period chosen for the simulations of meteorology has to be representative of the average weather conditions 283 

of the analysed area and avoid unusual weather conditions (e.g., extreme events) that could impact the physical 284 

and chemical processes described in the CTM and affect the final concentrations of secondary pollutants 285 

simulated. The February to March time period in East Africa does not have extreme temperatures (mean 286 

temperatures approximately 10 - 25°C according to the country) and little rainfall that could affect the observations 287 

of weather conditions and PM2.5 concentrations (USAID, 2022). These conditions and the absence of alternative 288 

data covering a large time frame for the validation of CHIMERE have constrained the period of simulation to the 289 

present period.  290 

 291 

Table 2: UK Met Office ground weather stations used for the validation of the 2×2km domains. Station n. corresponds to the 292 
position of each station in Figure 2a, b and c and PM2.5 observation points for the urban domains of Addis Ababa, Kampala 293 
and Nairobi used for the validation of CHIMERE model. 294 

Station 

n. 
Domain Name Latitude  Longitude  Elevation 

1 

ETH2K 

Addis – Bole  0.03° N 38.75° E 1900 m 

2 Harar Meda 8.73° N      38.95° E 2355 m 

3 Metehara 8.87° N 39.90° E 930 m 

 U.S. Embassy (PM2.5 – urban background) 9.05° N 38.76° E 1900 m 

4 

UGA2K 

Entebbe (Airport) 0.05° N 32.45° E 1155 m 

5 Kampala 0.32° N 32.62° E 1144 m 

6 Jinja 0.45° N 33.18° E 1175 m 

 U.S. Embassy (PM2.5 – urban background) 0.30° N 32.59° E 1150 m 

7 

 

KEN2K 

Nairobi (Airport) 1.32° S 36.92° E 1624 m 

8 Embu 0.50° S 37.45° E 1493 m 

9 Nakuru 0.27° S 36.10° E 1901 m 

10 Nyeri 0.50° S 36.97° E 1759 m 

11 Narok 1.13° S 35.83° E 2104 m 

 Tom Mboya Street (PM2.5 – roadside) 1.28° S 36.82° E 1795 m 

 Nanyuki (PM2.5 – rural background) 0.01° N 37.07° E 1947 m 

 295 

Observations of temperature, wind speed and directions used for the validation of WRF were taken from the UK 296 

Met Office MIDAS database. Data from 11 weather stations, three for the domain of Ethiopia (hereafter ETH2K, 297 

Figure 2a) and Uganda (hereafter UGA2K, Figure 2b) and five for the domain of Kenya (hereafter KEN2K, 298 

Figure, 2c) were used to validate the simulations at a resolution of 2×2 km (Table 2). 299 

   300 

The ground stations are at different altitudes above sea level to a maximum of 2355 m (e.g., the Harar Meda 301 

station in Ethiopia, n2 in Figure 2a). The validation was performed by comparing model outputs with observations 302 

for the variables, namely surface temperature, wind speed and direction and relative humidity. The latter, not 303 

originally available in the MIDAS dataset, was calculated using the coefficients proposed by Alduchov O. (1996) 304 

based on hourly surface and dew point temperatures observed values and then compared with modelled data 305 

obtained by WRF. 306 

 307 
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Hourly concentrations of PM2.5 were used for the validation of CHIMERE for the three internal domains at 2×2 308 

km (Figure 2). For the city of Nairobi, data from roadside background site located at Tom Mboya Street was used 309 

(1.28° S, 36.82° E), while data from the rural background were provided by a site located in Nanyuki, Kenya 310 

(0.01° N, 37.07° E). Both the field sites data were obtained from the field sampling campaign performed by Pope 311 

et al., (2018). For the urban background locations of Addis Ababa and Kampala, hourly concentration of PM2.5 312 

were obtained from the air quality monitoring stations of the two U.S. Embassies in Ethiopia (9.05° N, 38.76° E) 313 

and Uganda (0.30°N, 32.59° E) using optical counters. Data from Uganda and Ethiopia were used to compare the 314 

configuration applied to CHIMERE for Kenya with the two other countries (Table 2).  315 

 316 

2.5 Statistical Parameters 317 

 318 

In this work we use different statistical operators to evaluate the performance of WRF and CHIMERE models in 319 

reproducing the main surface weather parameters and hourly and daily concentrations of PM2.5 in different urban 320 

and rural environments. The statistical analysis both for WRF and for CHIMERE has been done calculating the 321 

statistics for each station individually and the averaging all station together. The calculation has been done on the 322 

original hourly values from observations and model outputs and consider hourly values from the model only if 323 

the corresponding hourly observation is present. The statistical parameters of Pearson’s Coefficient (R, Eq. 2), 324 

index of agreement (IOA, Eq. 3), mean fractional bias (MFB, Eq. 4) and mean fractional error (MFE, Eq. 5) have 325 

been used for the calculations:  326 

 327 

𝑅 =  
𝑛(∑ 𝑀𝑖𝑂𝑖)−(∑ 𝑀𝑖

𝑛
𝑖=1 )(∑ 𝑂𝑖

𝑛
𝑖=1 )𝑛

𝑖=1

√[𝑛 ∑ 𝑀𝑖
2−(∑ 𝑀𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 ][𝑛 ∑ 𝑂𝑖
2−(∑ 𝑂𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 ]

       Eq. (2) 328 

 329 

𝐼𝑂𝐴 =  1 − [
∑ (𝑂𝑖−𝑀𝑖)2𝑛

𝑖=1
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𝑖=1

]        Eq. (3) 330 

 331 

𝑀𝐹𝐵 =
1

𝑛
 ∑ (𝑀𝑖 − 𝑂𝑖) ((𝑂𝑖 + 𝑀𝑖)/2)⁄𝑛

𝑖=1                                                 Eq. (4) 332 

 333 

 𝑀𝐹𝐸 =
1

𝑛
 ∑ |𝑀𝑖 − 𝑂𝑖| ((𝑂𝑖 + 𝑀𝑖)/2)⁄𝑛

𝑖=1                                                   Eq. (5) 334 

 335 

MFB and MFE in particular, are metrics specifically used for the evaluation of numerical system for atmospheric 336 

chemistry and meteorology. They normalise the bias and the error for each model-observed pair by the average 337 

of the model and observation before taking the final average. The advantage of these metrics is that the maximum 338 

bias and errors are bounded, and that impact of outlier data points are minimised. Moreover, the metrics are 339 

symmetric giving equal weight, to concentrations simulated higher than observations and to those that are 340 

simulated lower than observations.  341 

 342 

MFB and MFE have been expressed in terms of model performance “goals” and model performance “criteria” 343 

values according to the methodology proposed by Boylan and Russell (2006). The performance “goal” for the 344 
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modelling system is attested for MFE ≤ 50% and MFB ≤ ± 30%. In this range of the performance of the model in 345 

reproducing the correct magnitude of the concentrations can be considered good. A second larger range of values, 346 

called “criteria”, is attributed for MFE ≤ 75% and MFB ≤ ± 60%. Values inside this are corresponds to an average 347 

model performance.  Finally, values with MFE > 75% and -60% > MFB > +60% correspond to a poor 348 

representation by the model.  349 

 350 

2.6 Model Resolution and Simulations design 351 

 352 

WRF and CHIMERE models run at spatial resolutions of 18×18, 6×6 and 2×2 km for meteorology and at 6×6 and 353 

2×2 km for chemistry for the three domains of East Africa. The statistical analysis shown in the following sections 354 

though, describes the validation results for the three internal domains at a resolution of 2×2 km as these are the 355 

focus of the present work.  356 

 357 

Ground weather stations from the MIDAS database, included in the 2×2 km domains of all countries, were 358 

analysed individually, and shown as average of all stations. The time series and wind roses are relative to the 359 

closest stations from MIDAS database to each urban city centre of the three capital cities, namely Addis- Bole 360 

(n1 in Table 2), Kampala (n5 in Table 2) and Nairobi Airport (n7 in Table 2).  361 

 362 

Initially, the performance of CHIMERE was analysed for the domain of Kenya for which hourly concentrations 363 

of PM2.5 were taken from two different sites (roadside and rural) from the field sampling campaign described by 364 

Pope et al., (2018). Secondly, the same configuration adopted for Kenya was used for Ethiopia and Uganda to test 365 

both the homogeneity of the emission rates on other urban conditions, and the configuration chosen for CHIMERE 366 

in different urban and environmental conditions. At this stage of the validation, a threshold limit of 25 µg m-3 for 367 

PM2.5 per day provided by WHO (WHO, 2005) was used to quantify the number of exceedances observed and 368 

modelled by CHIMERE for the three cities. 369 

 370 

The validation process was hindered by the highly variable quantity and quality of available meteorological data. 371 

The majority of the weather observations are provided on a 3-hourly basis, with varying amounts of missing data. 372 

Despite this, the statistical evaluation of WRF has been performed comparing model and observations only when 373 

the latter were available. We recall that the objective of this work aims to test the performances of a modelling 374 

system for the simulation of air quality at high resolution for East Africa, updating and/or using the available input 375 

data available and assessing the possible adoption of these tools for air quality policy making at this extent of the 376 

data. 377 

 378 

3 Results and Discussion 379 

 380 

3.1 Validation of the WRF simulations 381 

 382 
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In order to assess the performance of WRF in simulating surface temperature, relative humidity wind speed and 383 

direction, the model simulation outputs were compared with all the available ground weather station data available 384 

for the period of analysis, 14th of February to 14th of March 2017.  385 

 386 

3.1.1 Statistical evaluation of WRF performances 387 

 388 

A statistical analysis, in terms of the mean fractional bias (MFB), mean fractional error (MFE), index of agreement 389 

(IOA) and Pearson’s coefficient (R), was carried out to compare modelled and observed values for the domain at 390 

2×2 km resolution averaging the observed and modelled values on all the stations present on each domain (Table 391 

3). We recall that the number and location of the stations is variable between the three domains (3 stations for 392 

ETH2K and UGA2K and 5 stations for KEN2K).  393 

 394 

The results of the statistical analysis show that WRF is capable of reproducing the mean levels of surface 395 

temperature better for the domain of Ethiopia (ETH2K) and Uganda (UGA2K) with a mean underestimation over 396 

the three domains of 1.4 and 1.5 °C, respectively, then for Kenya (KEN2K) where it shows an underestimation of 397 

4.1 °C. The higher bias in surface temperature found on the average of all five stations of Kenya is though highly 398 

driven by a particular poor representation of this variable at the observation point of Narok (n11 in Figure 2c) 399 

where the bias between model and observations is 10.9 °C. A reason for this bias can be related by the location of 400 

the station that is the one at highest altitude of all the Kenyan weather stations (2104 m a.g.l.). Narok is located 401 

around 140 km west from Nairobi and the high bias in temperature should not have any effect on the levels of 402 

temperature modelled in the capital of Kenya were the bias for the individual station of Nairobi (n7 in Figure 2c) 403 

found was 1.3 °C.  404 

 405 

Relative humidity is overestimated by WRF in KEN2K of 0.2 % and underestimated in ETH2K of 6.4 % and in 406 

UGA2K of 7.5 % (Table 3). Wind Speed and directions for the three domains show respectively, the presence of 407 

northern winds in UGA2K correctly captured by the model with a difference of around 4° in comparison with the 408 

observations, an average eastern wind component in KEN2K partially reproduced by the model that allocates the 409 

average wind directions on a more south-eastern component of wind with a difference of around 40.2° while in 410 

ETH2K the average wind direction modelled and observed are closer with a difference of 4.2° on a south-eastern 411 

component of prevailing wind. The observed and modelled wind speeds in UGA2K, KEN2K and ETH2K suggest 412 

an overestimation by the model of 0.9, 0.8 and 0.2 m s-1, respectively (Table 3).      413 

 414 

The mean fractional error calculated in the three domains is inside the limit of the goal range both for surface 415 

temperature and for relative humidity with values between 30 and 35 for the former and 11 and 27 for the latter 416 

variable.  On the other hand, the values of MFE for wind speed and directions are more variable according to the 417 

domain. While MFE values for wind directions were found inside the criteria range for all domains, for wind 418 

speed only KEN2K and ETH2K are in this range, while the wind speed in UGA2K was found outside the 419 

acceptability range of model performance (Table 3).  420 

 421 
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The same analysis done taking in account the mean fractional bias shows values in the goal range for surface 422 

temperature for the three domains, overestimated by the model for UGA2K (0.17) and underestimated for ETH 423 

2K (-5.38) and KEN2K (-24.25). Same behaviour was found also for the relative humidity that seems 424 

underestimated in the three domains but with MFB values inside the goal criteria. Finally, wind speed and 425 

directions are found in the goal range of MFB only for ETH2K while KEN2K shows values of both variables in 426 

the criteria range and UGA2K shows wind direction in the criteria range but wind speed outside the acceptability 427 

range of model performance (Table 3).  428 

 429 

Table 3: Statistical analysis of relative humidity, surface temperature, wind speed and directions averaged on all the available 430 
weather stations for the second nested domains UGA2K, KEN2K and ETH2K at 2×2 km of resolution. Mean observed and 431 
modelled values, Pearson’s Coefficient (R), index of agreement (IOA), mean fractional bias (MFB) and error (MFE) have 432 
been calculated.  433 

  Relative Humidity (%) Temperature (ºC) 

UGA2K KEN2K ETH2K UGA2K KEN2K ETH2K 

Observations Mean 68.2 63.1 51.3 24.5 23.2 22.7 

Model Mean 60.7 63.3 44.9 23.0 19.1 21.3 

MFB -21.52 -21.36 -33.02 0.17 -24.25 -5.38 

MFE 30.08 32.25 35.56 12.50 27.94 11.34 

IOA 0.44 0.44 0.47 0.43 0.31 0.53 

R 0.3 0.4 0.7 0.3 0.5 0.6 

  Wind Direction (degrees) Wind Speed (m s-1) 

UGA2K KEN2K ETH2K UGA2K KEN2K ETH2K 

Observations Mean 6.8 91.5 104.0 2.5 2.7 3.5 

Model Mean 2.8 131.7  99.8 3.4 3.5 3.7 

MFB 32.02 -30.57 -9.94 91.25 36.83 18.89 

MFE 62.01 70.55 60.18 94.59 54.35 50.63 

IOA 0.39 0.40 0.46 0.26 0.41 0.31 

R 0.3 0.2 0.2 0.1 0.5 0.4 

 434 

The calculated Pearson’s coefficient (R) shows the capability of the model in reproducing the minimum and 435 

maximum peaks of different variable values.  The R values were found varying between 0.1 and 0.7 for the three 436 

domains. The reproduction of the maximum and minimum values of relative humidity is better in ETH2K where 437 

R value was found approximately 0.7 while the lowest R values occurred in UGA2K (0.3).  A similar trend was 438 

found also in the description of the surface temperature with maximum and minimum better reproduced in ETH2K 439 

(0.6), followed by KEN2K (0.5) and UGA2K (0.3). For wind speed, the highest R coefficient value was for 440 

KEN2K (0.5) and the lowest for UGA2K (0.1) while for wind directions, the highest R value found was for 441 

UGA2K (0.3) with values of approximately 0.2 for the other two domains (Table 3).  442 

 443 

Finally, the evaluation of the index of agreement (IOA) shows values for surface temperature between 0.31 444 

(KEN2K) and 0.53 (ETH2K) and values between 0.44 and 0.47 for relative humidity in the three domains. For 445 

wind speed and directions, the IOA varies between 0.39 (UGA2K) and 0.46 (ETH2K) for the former and between 446 

0.26 (UGA2K) and 0.41 (KEN2K) for the latter. The comparison of the Index of Agreement between the three 447 

domains suggests that the model performance is higher in reproducing drier areas corresponding to ETH2K and 448 

KEN2K in comparison with the UGA2K where the influence of the Lake Victoria seems to impact the overall 449 
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statistical analysis. More variable is the performance of WRF in reproducing the general conditions of wind speed 450 

and directions between the three domains.  451 

 452 

3.1.2 Hourly variation of Temperature and Relative humidity 453 

 454 

The three Met Office stations providing weather observations closest to the urban areas of the Addis Ababa, 455 

Kampala and Nairobi have been analysed individually in form of hourly time series of surface temperature and 456 

relative humidity and wind roses for wind speed and directions. 457 

 458 

The hourly surface temperature and relative humidity are shown in Figure 4 for the three ground weather stations 459 

closest to the centre of the three cities: Addis-Bole (n1 in Figure 2a), Kampala Station (n5 in Figure 2b) and 460 

Nairobi (n7 in Figure 2c).  461 

 462 

The temperature range observed at the three stations was between 9 and 27° C for the Addis-Bole Station, 16 and 463 

31° C for Kampala and 16 and 33° C for Nairobi. By inspection of Figure 4, it can be seen that the WRF model 464 

is able to reproduce the main diurnal cycle of variation of temperature and relative humidity for the three ground 465 

weather stations. Surface temperature peaks are slightly underestimated by the model for the three stations with a 466 

small mean bias at the three stations between -0.06 and -0.1° C. The highest agreement between the model and 467 

observation is for Kampala while the model tends to underestimate the diurnal peaks of surface temperature almost 468 

systematically for Addis-Bole and Nairobi stations.  469 

 470 

The mean relative humidity observed at the three stations shows different ranges of excursion from the model 471 

predictions depending on the characteristics of the environment. The station of Addis-Bole shows the higher 472 

variation from 15 to 98 %, Nairobi station from 17 to 98 % and Kampala from 19 to 99 %.  From Figure 4, it may 473 

be seen that relative humidity variation over time is correctly captured by WRF for the Nairobi and Addis-Bole 474 

stations. Despite this both the diurnal peaks and night lowest values seems to be not correctly reproduced by the 475 

model that tends to overestimate the formers and underestimate the latter with a bias between -0.1 and 0.004 %.  476 

 477 

However, WRF appears systematically to underestimate the relative humidity for the Kampala station showing a 478 

mean negative bias. Different reasons could affect the underestimation of the relative humidity at this station. The 479 

sensitivity of WRF model to the land use data (Teklay et al., 2019) connected with the proximity of Kampala to 480 

Lake Victoria, which is a massive inland body of water (surface area 68,800 km2) could influence the local 481 

variation of relative humidity in ways which are not well reproduced by the model. The influence of Lake Victoria 482 

and of the Kampala’s complex topography on measurements of relative humidity was previously highlighted by 483 

Singh et al. (2020) in relation to monthly visibility connected with PM levels. It has to be noted that relative 484 

humidity was calculated from surface temperature and dew point values following Alduchov O. (1996) and not 485 

directly sampled. A better agreement in the simulation of relative humidity from WRF can be found in the station 486 

of Entebbe (n4 in Figure 2b) where the mean normalized bias shows a small underestimation of 0.04 %. 487 

 488 
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 489 
Figure 4: Hourly time series of surface temperature (left column) and relative humidity (right column) for the closest ground 490 
weather stations to the urban centres of the cities of Addis Ababa (station 1 in Figure 2a), Kampala (station 5 in Figure 2b) 491 
and Nairobi (station 7 in Figure 2c). Comparison between modelled values (blue lines) obtained from the 2×2km domains 492 
and hourly observations (orange spots) from Met Office MIDAS database. 493 
 494 

Wind speed and directions from the urban stations of Addis Bole (n1 in Figure 2a), Kampala Station (n5 in Figure 495 

2b) and Nairobi (n7 in Figure 2c) are shown in Figure 5 in the form of wind roses. WRF can reproduce the average 496 

wind directions in close agreement with the observed data for the analysed period for Nairobi showing the 497 

predominance presence of North-North-Eastern winds with high speed (> 4.0 m s-1). Wind speed observations 498 

from the ground weather station of Kampala also suggest a strong southern wind component (> 4.0 m s-1) while 499 

the model seems to reproduce a similar magnitude of the wind speed but on a larger range of directions ranging 500 

from the South-South-East direction to South-South-West. For Addis Ababa, WRF seems able to capture and 501 

reproduce the main wind directions observed for the simulated period, e.g., Eastern and North-Eastern winds. 502 

Despite this, slower winds between 0.2 and 2.0 m s-1 with a strong North-Northeast component do not seem to be 503 

replicated by the model for the station located inside the capital of Ethiopia. 504 
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 505 

Figure 5: Averaged wind roses for the whole analysed period (14th of February to 14th of March 2017) from the closest ground 506 
weather stations to the urban centres of Nairobi (n7 in Figure 2c), Kampala (n5 in Figure 2b) and Addis Ababa (n1 in Figure 507 
2a) (MIDAS, top) and from WRF simulation outputs (Model, bottom). 508 

 509 

The lower agreement in the reproduction of the wind speed and direction in Addis Bole and Kampala stations can 510 

be connected to the particular locations of both stations. The difference in the location of the observations can, in 511 

fact, influence rapid changes in directions and speed locally recorded and not reproduced by the model. In the 512 

case of Kampala, the airport “Entebbe” is located near the coast of the Lake Victoria where the local conditions 513 

of wind are more susceptible of variation and can be erroneously reproduced by the model. In the case of Addis 514 

Bole, the only station settled in the urban area, the urban topography and possible canyon effects of the wind can 515 

be not well captured by the model that reproduces a more constant range of wind speed and directions not 516 

accounting for quick variations at low speed observed at the station.  517 

 518 

The results obtained from the validation of the meteorological simulations performed over East African domains 519 

using WRF show that the model is on average able to reproduce all four variables taken in account close to the 520 

observed data in the 2×2 km domains with variable agreement between the three cities. The highest agreement in 521 

the weather analysis has been found for surface temperature with similar biases to Kerandi et al. (2017) and 522 
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relative humidity similar to Pohl et al. (2011), which is sufficiently accurate to be able to use these values for the 523 

physical calculations done by the chemistry transport model.  524 

 525 

Nevertheless, the more detailed analysis of the urban weather stations revealed discrepancies in the reproduction 526 

of relative humidity and wind direction for the station of Kampala (UGA2K) that could affect the deposition, 527 

removal and transport processes simulated by CHIMERE and will be object of future investigation to further 528 

improve the meteorological performance of WRF. Even if the bias found for some variable in the calculation of 529 

the averaged statistics over all stations was high, the individual weather stations close to the urban areas of interest 530 

showed smaller bias and levels of MFB and MFE inside the goal or criteria range of performance and therefore 531 

considered acceptable for simulations.   532 

 533 

3.2 Validation of CHIMERE simulations  534 

 535 

The CHIMERE validation has been focused on the hourly levels of PM2.5 modelled at the two observation sites 536 

for the domain KEN2K, representative of a roadside site and a rural background site. Also, from the urban 537 

background observational sites of the U.S. Embassies of Kampala (UGA2K) and Addis Ababa (ETH2K). The 538 

performance of CHIMERE was analysed also in terms of mean fractional error (MFE), mean fractional bias 539 

(MFB) and Pearson’s coefficient (R) against the different level of average concentrations of PM2.5 in the four 540 

observation points to evaluate the response of the model in reproducing low and high levels of hourly 541 

concentrations in comparison with observed values. 542 

 543 

The validation of CHIMERE was done for the domains at highest resolution (2×2 km) despite the availability of 544 

emissions at a similar spatial resolution. The reason of this choice is motivated by the necessity to validate the 545 

reliability of the model against observation data from particular locations in different backgrounds. In order to 546 

better configure the model to represent the different urban and rural environments it is necessary to take in account 547 

the uncertainties of a model representation against an observation point. One cause of uncertainty when comparing 548 

modelling outputs with observations is the difference between a point measurement and a volumetric grid cell 549 

averaged modelled concentration (Seinfeld, 2016). On one hand, the extent of a measurement point, in fact, 550 

represents only the extent of the nearby points or an average concentration in a specified area. On the other hand, 551 

a surface level modelling grid typically has highest resolution of 1 km with a vertical height of between 20 and 552 

40 m and the concentration represented by the model is the average over the entire grid cell.  553 

 554 

In the particular case of the domains of East Africa, CHIMERE simulates at coarse resolution e.g., the 6×6 km, 555 

values of concentration representative of an average of 36 km2, difficult to be compared with observations taken 556 

in a particular point. Increasing the spatial resolution and bringing it to 2×2 km the average value inside each grid 557 

cell will be representative of a smaller area such as 4 km2 whose average value can be closer compared with an 558 

individual observation point. 559 

 560 

3.2.1 Statistical evaluation of model performances 561 

 562 
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The absolute bias between mean observed and modelled concentrations of PM2.5 shows an overestimation of the 563 

model for the domain KEN2K by between 0.01 and 3.7 µg m-3 for Nanyuki and Nairobi, respectively, and for 564 

Addis Ababa (0.6 µg m-3). On the contrary, the model underestimates PM2.5 for the domain UGA2K (Kampala) 565 

by 7.2 µg m-3 (Table 4).  566 

 567 

The mean fractional bias (MFB) and error (MFE) for the two Kenyan observation points were found in both cases 568 

inside the goal performance criteria with MFE ≤ 50% and MFB ≤ ± 30% both in Nairobi (roadside site) and in 569 

Nanyuki (rural site). The hourly MFB and MFE were 4.88 and 25.39 for Nairobi and 3.36 and 8.33 for Nanyuki 570 

while 0.1 and 1.99 for Nairobi and 1.08 and 4.73 for Nanyuki were the respective values found for the daily 571 

analysis.   572 

 573 

The MFB and MFE analysis for the urban background site in Addis Ababa showed values inside the range of the 574 

goal criteria both for the hourly (2.93 and 29.99 for MFB and MFE) and for daily analysis (8.23 and 2.86). Finally, 575 

in the urban background site of Kampala the MFB were found inside the goal criteria both for daily (-11.28) and 576 

hourly (-7.60) analysis, while for the MFE the hourly analysis showed a value in the range of the criteria range 577 

(32.99) but daily MFE in the goal performance range (22.06) (Table 4). 578 

 579 

The highest Pearson’s coefficients (R) were found in Nanyuki with hourly and daily values of between 0.91 and 580 

0.93. The roadside site of Tom Mboya Street in Nairobi had R values of between 0.35 and 0.38 while the urban 581 

background sites of Addis Ababa and Kampala had a lower agreement an hourly level (R values were between 582 

0.10 and 0.29, respectively) than at a daily level (R values of between 0.42 and 0.30, respectively). 583 

 584 

In general, the statistical analysis demonstrates that the model can reproduce the daily pattern of the hourly 585 

changes in concentrations for the two pollutants both in the three urban/roadside sites and in the rural site 586 

considered. The low R coefficient values obtained for the urban domains at the hourly level suggests that sources 587 

of anthropogenic emissions affecting urban air quality are still missing from the current emission inventory. 588 

Further work will be focused on the improvement of the magnitude of the emissions to better match the observed 589 

levels of concentrations of particulate matter at the urban level. Despite this and considering the daily average 590 

concentrations in the urban sites, the R coefficients were found to be between 30 and 42 % suggesting that 591 

CHIMERE better reproduces the concentrations of PM2.5 using daily than hourly values.  592 

 593 

The performance of CHIMERE varies between the domains of Kenya, Uganda, and Ethiopia. The performance 594 

of the model has been optimised during the validation for the simulation of hourly concentrations of PM2.5 in 595 

Kenya and the same configuration applied to the domain of Uganda and Ethiopia to compare the reliability of the 596 

model. The difference in performance can be connected to different reasons: In first place, the difference in the 597 

sampling methods used for the two sites in Kenya against the measurements taken in the U.S. Embassies of 598 

Kampala and Addis Ababa. Secondly, another element of differentiation can be connected to the location of the 599 

observation sites in the cases of the U.S. Embassies and/or the possible influence of local sources not accounted 600 

in the emission inventories.  601 

 602 
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Table 4: Hourly and daily statistical evaluation of CHIMERE model performance for the cities of Nairobi against ASAP 603 
observed data and against U.S. Embassies data for the cities of Addis Ababa and Kampala. 604 

 605 

Finally, the site of Nanyuki is the location where the agreement between model and observations is highest. This 606 

site was chosen by Pope et al. (2018) as rural spot in a location of minimum local air pollution useful to calculate 607 

the net urban increment subtracting the rural background concentrations of Nanyuki from the urban concentrations 608 

in Nairobi. It is therefore intended by their work that the average concentrations in that site were really low. The 609 

model is able to reproduce this low level of contamination close to the reality and to reproduce also peaks of 610 

contamination in particular days of February probably generated elsewhere (see Section 3.2.2). 611 

 612 

The MFB and MFE analysis have been conducted also at hourly level comparing modelling outputs and 613 

observations from all six sites in relation to the magnitude of hourly concentrations (Figure 6). 614 

 615 

There are some MFB values outside the criteria range for PM2.5 for the urban sites of Addis Ababa and Kampala 616 

and for the roadside site of Tom Mboya Street in Nairobi.  In terms of the upper limit (MFB > 60 %) these values 617 

tend to be concentrated between 60 and 130 µg m-3 for Tom Mboya Street, 40 and 55 µg m-3 for Kampala and 618 

between 13 and 59 µg m-3 for Addis Ababa (Figure 6). A much smaller number of MFB values for the Addis 619 

Ababa and Kampala sites are less than the lower criteria limit and these tend to be for lower concentrations 620 

between 10 and 26 µg m-3. 621 

 622 

MFE values outside the ranges of criteria are between 42-55 and 80-130 µg m-3 for Tom Mboya Street, 43 and 60 623 

µg m-3 for Kampala and 13 and 59 µg m-3 for Addis Ababa (Figure 6). The latter two sites present a more variability 624 

of MFB and MFE in comparison with the two sites of Kenya where is visible a common positive bias of the model 625 

in reproducing the highest concentration levels. The reliability of the model is therefore higher for the domain of 626 

Kenya, both for a rural and for a roadside site than for the two urban background sites in Uganda and Ethiopia.  627 

 628 

ASAP  

Observations 

NAIROBI PM2.5 (µg m-3) roadside NANYUKI PM2.5 (µg m-3) rural 

DAILY HOURLY DAILY HOURLY 

Model Mean 58.3 58.3 3.24 3.24 

Observations Mean 54.6 54.6 3.23 3.23 

MFB 0.1 4.88 1.08 3.36 

MFE 1.99 25.39 4.73 8.33 

R 0.38 0.35 0.93 0.91 

U.S. EMBASSY 

Observations 

A. ABABA – PM2.5 (µg m-3) urban KAMPALA – PM2.5 (µg m-3) urban 

DAILY HOURLY DAILY HOURLY 

Model Mean 18.7 18.7 36.2 36.2 

Observations Mean 18.1 18.1 43.4 43.4 

MFB 8.23 2.93 -11.28 -7.60 

MFE 2.86 29.99 22.06 32.99 

R 0.42 0.10 0.30 0.29 
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 629 

Figure 6: Hourly mean fractional bias (MFB) and mean fractional error (MFE) values calculated for the locations of Tom 630 
Mboya Street and Nanyuki (KEN2K), Kampala U.S. Embassy (UGA2K) and Addis Ababa U.S. Embassy (ETH2K) for the 631 
analysed period against hourly concentrations of PM2.5. The green lines represent the MFB range ±30 % and the MFE limit 632 
of 50 % for which the model performance can considered reliable, the red lines represent the MFB range ±60 % and the MFE 633 
limit of 75 % for which model performance can be increased by diagnostic analysis on the chemical precursors of PM2.5. 634 
 635 

The overall performance of the model against different levels of concentrations is summarised in Table 5. The 636 

PM2.5 reproduced at the two sites in KEN2K shows a higher percentage of values within the MFB and MFE 637 

performance goals for the rural site of Nanyuki, than for Tom Mboya Street. e.g., 97 % compared to 69 % and 99 638 

% compared to 88 % for the MFB and MFE measures respectively. For the criteria measure, the corresponding 639 

percentages are 2 % vs. 22 % and 1 vs. 7 % (Table 5).  640 

 641 

The percentages for the urban sites of Kampala and Addis Ababa show a lower agreement between the model and 642 

observations. For the former 48 % of the values according to the MFB measure are within the goal range, 37 % 643 

are within the criteria range and 15 % are outside.  For the latter, according to the MFB criteria, 57 % of the values 644 

are inside the goal range, 30 % of values are within the criteria range and 13 % are outside. In terms of the MFE 645 

measure, 74 % and 80 % of values for the two cities are within the goal range, 16 % and 11 % within the criteria 646 

range and 10 % and 9 % outside respectively (Table 5).  647 
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 648 

Table 5: Hourly mean fractional bias (MFB) and error (MFE) percentage of points inside the goal limit (GOAL), inside the 649 
diagnostic range (CRITERIA) and outside the reliability criteria (OUT) from model outputs extracted from the four analysed 650 
locations.  651 

 

Location 

MFB MFE 

GOAL  

(%) 

CRITERIA 

 (%) 

OUT  

(%) 

GOAL  

(%) 

CRITERIA 

 (%) 

OUT 

 (%) 

Tom Mboya Street (KEN2K) 69 22 9 88 7 5 

Nanyuki (KEN2K) 97 2 1 99 1 0 

Kampala (UGA2K) 48 37 15 74 16 10 

A. Ababa (ETH2K) 57 30 13 80 11 9 

 652 

According to the methodology proposed by (Boylan and Russel, 2006) the performance of a modelling system is 653 

fairly good for PM2.5 representation if about the 50 % of the points are within the goal range and a large majority 654 

are within the criteria range. From the analysis of the four sampling sites the values of MFB inside both the goal 655 

and range for Tom Mboya Street are 69 %, 97 % for Nanyuki and 57 % for Addis Ababa and only for Kampala 656 

are 48 %. Similarly, for the MFE measure, 99 % for Nanyuki, 88 % for Tom Mboya Street, 80 % for Addis Ababa 657 

and 74 % for Kampala are inside both the goal range. The demonstrates that the performance of the model can be 658 

considered to be satisfactory (Table 5). 659 

 660 

Finally, the reason for the presence in the Addis Ababa and Kampala simulations of values outside the criteria 661 

range both at high and at low concentrations of PM2.5 can be connected to the representation of the original PM 662 

emissions in the combined inventory. It is possible that CHIMERE is not able to correctly reproduce all the 663 

chemical processes involved in the secondary formation of inorganic and organic individual components of PM2.5 664 

with the extent of the present input data. Moreover, the possible misrepresentation of local emission sources not 665 

reproduced in DICE-EDGAR can also affect the performance of the model. Finally, the different location of the 666 

urban background observation sites and the sampling techniques for PM observation can also have a key role in 667 

the correct detection of the concentrations. 668 

 669 

3.2.2 Hourly variation of PM2.5 in urban and rural sites of Kenya 670 

 671 

Hourly modelled variation of PM2.5 levels obtained by CHIMERE compared with observations are shown for the 672 

urban sampling site of Tom Mboya Street in Nairobi and for the rural site of Nanyuki (Figure 2c).  673 

 674 
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 675 

Figure 7: Hourly time series for PM2.5 from the roadside of Tom Mboya Street (top) and from the rural site of Nanyuki (bottom) 676 
from modelled output from CHIMERE model (blue line) and observed values from Pope et al. (2018) (red line) for the analysed 677 
period The simulation started on the 14th of February. For the Tom Mboya Street site only the period of time between the 18th 678 
of February and the 14th of March when observations were available has been shown in the timeseries. 679 
 680 

By inspection of Figure 7 it can be seen that CHIMERE is able, in general, to reproduce the daily variation of 681 

PM2.5 across the simulated period at both sites. The magnitude of the emissions adopted seems to be suitable both 682 

for the roadside area of Tom Mboya Street and for the rural background site of Nanyuki, with higher agreement 683 

shown by the latter. CHIMERE captures only part of the daily peak observed in Tom Mboya Street with 684 

comparable magnitude but misrepresents some peaks. In particular it models higher hourly peaks than those 685 

observed as previously mentioned in the MFB and MFE analysis. 686 

 687 

The misrepresentation of some high peaks in Tom Mboya Street is possibly due to a number of different reasons. 688 

Firstly, is important to recall that the point measurements and relative observed concentrations are representative 689 

of a smaller portion of space in comparison with grid-cell concentrations modelled. In this particular case the 690 

comparison is between a roadside site subjected to possible additional local sources of PM2.5 not accounted for in 691 
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the emissions and not correctly reproduced by CHIMERE. On the other hand, a few of the modelled peaks were 692 

overestimated. This can be addressed by improved temporal description of the emissions and in their magnitude 693 

in comparison to the reality. As mentioned previously, the anthropogenic emissions used in this work were the 694 

most up-to-date available at the time and that there is inevitably some difference between the measured data due 695 

to the difference in time between the inventories and the measurements. Despite this, there is reasonable agreement 696 

between model outputs and observed concentrations for the majority of the analysed period highlighting the 697 

reliability of CHIMERE in describing the hourly concentrations trends for a roadside site with expected high 698 

levels of PM2.5 contamination. 699 

 700 

Similarly, in the rural site of Nanyuki, the model seems to correctly reproduce the hourly variation of the 701 

concentrations during the whole period, underestimating the maximum peaks at the beginning of February and in 702 

the last four days of simulation in March. (Figure 7). The site shows different magnitude in the concentrations of 703 

PM2.5 when comparing the February and March periods. While between the 4th and the 10th of March hourly 704 

concentrations are around 3-4 µg m-3, previously and subsequently to this period of time, the concentrations of 705 

PM2.5 are more than two times higher. This behaviour is visible both in the observations from the site (red line in 706 

Figure 7, bottom) and from the model outputs obtained using CHIMERE (blue line in Figure 7, bottom).  707 

 708 

The site of Nanyuki was chosen by Pope et al. (2018) as rural spot in a location of minimum local air pollution 709 

influence. Data from Nanyuki was used for the calculation of the net urban increment subtracting the rural 710 

background concentrations of Nanyuki from the urban concentrations in Nairobi. The average concentrations 711 

around 3-4 µg m-3 in the period between the 4th and the 10th are, on one hand, levels of the rural background in 712 

absence of any external influence from meteorological parameters and in absence of local sources.  713 

 714 

On the other hand, the presence of higher hourly peaks in before and after the 4th to 10th can be linked to different 715 

reasons: the presence of local emission sources contributing to the peaks or the dispersion of polluted air masses 716 

from elsewhere towards the site of Nanyuki. It is important to observe that model and observations seems to agree 717 

particularly well in the description of the difference in magnitude between the different time periods excluding 718 

the possibility that the observed values can be influenced by local emission sources not accounted in the emission 719 

inventory. It seems more likely that those concentration levels are transported to Nanyuki from neighbouring areas 720 

with higher levels of PM2.5 contamination. To investigate this possible role of PM2.5 dispersion towards Nanyuki, 721 

we consider the closest MIDAS weather station to the sampling area of Nanyuki, in the town of Nyeri (0.43°S, 722 

36.95°E altitude 1916 m a.g.l.) (n10 in Figure 2). Nyeri is only 60 km from the Nanyuki site and is situated 723 

between Mount Kenya (0.10°S, 37.30°E, altitude 4341 m a.g.l.) to the west and the Aberdare Range (0.46°S, 724 

36.69°E, altitude 3441 m a.g.l.).  725 

 726 

The daily average concentrations observed in the sampling site of Nanyuki have been compared with the daily 727 

mean values of wind speed and directions observed at the MIDAS station of Nyeri and with the daily mean values 728 

of wind speed and directions modelled by WRF in Nanyuki (Figure 8). The period between the 4th and the 10th of 729 

March, when the daily average concentrations of PM2.5 observed in Nanyuki were around 2.2 µg m-3 corresponds 730 

to higher wind speed conditions (between 4 and 5 m s-1) mainly coming from North-Est (around 60 degrees). In 731 
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the same period, at Nyeri the modelled wind speed was low (between 1 and 2.5 m s-1) and mainly with a westerly 732 

component (between 220 and 300 degrees).  733 

 734 

In the periods of higher average daily concentrations of PM2.5 between the 15th and the 19th and between 22nd and 735 

the 28th of February 2017, both in Nyeri (using observations) and in Nanyuki (using model outputs) the component 736 

of wind directions seems to be consistent in reproducing southern winds (between 120 and 190 degrees) with wind 737 

speeds between 1.5 and 2.5 m s-1 in the first period and between 2 and 3 m s-1 in the second period.  738 

 739 

The correspondence between the wind speed and directions in particular time periods and the vicinity of the towns 740 

could suggest the potential dispersion of pollutants from the southern area where the hotspot of Nyeri is located 741 

upwind in the northern area of Nanyuki (downwind) in accordance with the wind fluxes from south to north from 742 

Nyeri from the observations and also from WRF outputs extracted from the Nanyuki location. The flux could also 743 

be driven by the location of Nyeri sited at the entrance of a basin between two mountain ranges. On the other 744 

hand, in the period of low concentrations between the 4th and the 10th of March north-eastern winds (around 60 745 

degrees) blow with high speed on Nanyuki (around 4 m s-1) while lower speed winds (between 1 and 2 m s-1) from 746 

a more variable directions (between 170 and 300 degrees) are blow in Nyeri preventing the possible dispersion of 747 

pollutants.  748 

 749 

Figure 8: Comparison between daily observed values of wind speed (grey spots) directions (grey lines) from the MIDAS site 750 
of Nyeri (n10 in Figure 2c), modelled daily wind speed (blue dots) and directions (blue lines) from the site of Nanyuki with 751 
daily average observations of PM2.5 (expressed in µg m-3, green columns) obtained from the sampling site of Nanyuki (red dot 752 
in Figure 2c). 753 

 754 

The present analysis was done on the relationships between weather conditions and the relative correspondence 755 

in hourly and daily levels of PM2.5. Further analyses are necessary to clarify the possible presence of additional or 756 

alternative factors influencing the changes in concentrations observed and modelled by CHIMERE. The presence 757 

of possible precipitations during the low concentration period could represent an alternative possibility the change 758 
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in concentrations. Despite this no precipitation were recorded during that period according to Pope et al. (2018) 759 

and no precipitation was modelled by WRF in that time period. Nevertheless, the lack of additional weather 760 

observations in the sampling site of Nanyuki and middle way between the two towns prevent from any additional 761 

hypothesis in relation to the presence of possible pollutant transport phenomena that will be object of future 762 

investigations. Further efforts will be oriented in a more detailed trajectory analysis of the winds and in a more 763 

detailed representation of the emissive sources present in the area to investigate possible transport effects in this 764 

area.  765 

 766 

The average concentrations of PM2.5 for the entire period of simulation between the 14th of February and 14th of 767 

March 2017 are shown for the domain centred over Kenya with spatial resolution of 2×2 km (KEN2K, Figure 9). 768 

Highest average concentrations during the monthly period are modelled in the urban area of Nairobi (defined by 769 

the red dashed square in Figure 9) with highest average values inside the city around 80 µg m-3. The concentrations 770 

are spread on average in the southwest area of the city and on the northeast side in direction of the conurbation of 771 

Thika and Makuyu. These towns became part of the Metropolitan Area of Nairobi in 2008 due to the rapid increase 772 

in population and urbanization of the area (UNEP, 2009) and represent a large hotspot of emissions of PM2.5  with 773 

concentrations modelled between 20 and 30 µg m-3 as average of the entire period. Other hotspots of concentration 774 

of PM2.5 found in the domain are the city of Nakuru with average concentrations between 20 and 40 µg m-3 and 775 

the area between Nyeri, Embu, Meru and Siakago with average concentrations around 20 and 30 µg m-3 (Figure 776 

9). The average of the modelled concentrations in the area of Nanyuki is generally smaller, with concentration not 777 

exceeding 10 µg m-3 in the whole area. 778 

 779 
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 780 

Figure 9: Average concentration of PM2.5 for the whole simulated period for the domain KEN2K at spatial resolution of 2×2 781 
km. The map shows the location of the hotspots with higher average concentrations modelled by CHIMERE for the entire 782 
period. The red dashed square shows the urban domain of Nairobi analysed for the Air Quality Indexes analysis in section 783 
3.3. 784 

 785 

3.3 CHIMERE as an Air Quality Management Tool 786 

 787 

The usefulness of CHIMERE as a decision support tool to facilitate air quality management of large urban 788 

conurbations of SSEA was investigated for the three domains at a resolution of 2×2 km, namely: KEN2K, UGA2K 789 

and ETH2K. Daily observations of PM2.5 for the three domains were compared with modelled concentrations in 790 

terms of number of exceedances from the WHO limit of 25 µg m-3 observed and captured by the model (Figure 791 

10). For the limited case of Nairobi, hourly average concentrations for the whole monitored period were compared 792 

with Air Quality Indexes data and the spatial distribution of daily average concentrations on the constituencies 793 

was analysed, highlighting how many areas of the city showed poor air quality indexes during the analysed period 794 

(Figure 11).  795 

 796 

Daily concentrations of PM2.5 modelled by CHIMERE were compared with the number of exceedances of the 797 

WHO limit of 25 µg m-3 observed during the simulated period. Figure 10 shows the daily average concentrations 798 
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for the three cities in the sampling sites used for the validation of the model. It can be seen that Nairobi and 799 

Kampala have the highest number of exceedances from the WHO limits (24) followed by Addis Ababa with only 800 

6 observed exceedances. From Table 6 it can be seen that CHIMERE provides sufficient accuracy to detect the 801 

exceedances of PM2.5 from the WHO limits. In particular, it was able to detect 67 % of the exceedance for Addis 802 

Ababa with only two false positives, 91 % for Kampala and all of the exceedances for Nairobi without any false 803 

positives. 804 

 805 

Figure 10: Daily concentrations of PM2.5 between the 14th of February and 14th of March obtained from CHIMERE outputs 806 
from domains at 2×2 km compared with U.S. Embassy daily totals for the cities of Addis Ababa (top) and Kampala (middles) 807 
and with ASAP observations for the city of Nairobi (bottom). All three simulations have been compared also with the WHO 808 
threshold limit for PM2.5 concentrations (red line). For the case of Nairobi, only observations from the 18th of February were 809 
available.  810 
 811 
The Air Quality Index (AQI) represents the conversion of concentrations for fine particles such as PM2.5 to a 812 

number on a scale from 0 to 500 (Table 6). The higher the AQI value, the greater the level of air pollution and the 813 

greater the health concern. AQI values at or below 100 are generally thought of as satisfactory. When AQI values 814 

are above 100, air quality is unhealthy: at first for certain sensitive groups of people (101 – 150), then for everyone 815 

as AQI values get higher (> 151) (EPA, 2012). 816 

 817 

Table 6: Summary of the number of WHO exceeding limits for PM2.5 during the simulated period from the 14th of February to 818 
the 14th of March 2017 observed and modelled. 819 

Cities 
Exceedances of WHO limits 

(observed) 

Exceedances of WHO limits  

(modelled) 

Nairobi 24 24 

Addis Ababa 6 4 

Kampala 24 22 
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 820 

The daily average concentrations of PM2.5 during the analysed period between the 14th of February and 14th of 821 

March 2017 have been averaged for the urban area of Nairobi (red square in Figure 9 and Figure 11) and compared 822 

with the city constituencies spatial extension according to data from the Open Africa dataset (Open-Africa, 2018). 823 

According to the division, 17 are the constituencies inside the Nairobi city boundaries (Figure 11). Averaged daily 824 

concentrations of PM2.5 show that 8 of 17 constituencies had AQI values between 55.5-150.4 µg m-3 during the 825 

whole period. These areas are the most central and urbanized of Nairobi. Starehe constituency (n13 in Figure 11) 826 

contains the Tom Mboya Street sampling site (black spot in Figure 11) previously discussed where the WHO 827 

limits for PM2.5 have been systematically exceeded during the analysed period. According to the SEDAC 828 

population density data this area has population density between 15,000 and 30,000 people/km2 exposed to AQI 829 

between 151-200 corresponding to unhealthy category for human health. Finally, the Langata constituency 830 

(magenta spot in Figure 11) has a population of 176,000 people and shows average levels of PM2.5 of 45 µg m-3, 831 

unhealthy for sensitive groups of people. 832 

 833 

Figure 11: Map showing the urban area of the city of Nairobi shown as dashed square in Figure 9. The constituency division 834 
of Nairobi (left) from Open Africa dataset (Open Africa, 2018) is compared with the average hourly concentrations of PM2.5 835 
over the analysed period (right). 836 
 837 

Moreover, Nairobi has a number of natural areas on the outskirts of city. Some particular locations such as the 838 

Karura Forest (yellow spot in Figure 11) and the Ngong Forest Sanctuary (blue spot in Figure 11) show averaged 839 

daily levels of PM2.5 around 50 and 55 µg m-3 corresponding to an AQI of between 101 and 150 (e.g., unhealthy 840 

for certain sensitive groups of people). According to SEDAC data, the population density is between 10,000 and 841 

15,000 people/km2 in this area. Similarly, in the south side, near the entrance to the Nairobi National Park (1.36° 842 

S, 36.82° E, green spot in Figure 11) the average daily levels of PM2.5 are approximately 40 µg m-3 with AQI 843 

values between 101 and 150 with a population density around 10,000 people/km2. This area (surface area 117 844 

km2) has been impacted by a rapid urbanization since 1973 with a consequent increase of human activities 845 

including settlement, pastoralism and agriculture (Ogega O.M., 2019). These activities have already made it 846 

difficult for wildlife to migrate to and from the Nairobi National Park also are resulting in a deterioration of air 847 

quality. The rapid increase of population density in the south side of Nairobi seriously risk increasing the level or 848 

AQI exposing more people to harmful level of PM2.5.  849 
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 850 

4 Conclusions  851 

 852 

The WRF and CHIMERE models were configured and validated to simulate the air quality levels of PM in Eastern 853 

Sub-Saharan African urban conurbations.  854 

 855 

In order to obtain updated anthropogenic emissions for 2017, the global EDGAR inventory and the DICE 856 

inventory for Africa were merged and spatially distributed using population density data for the year 2017 857 

obtained by linear extrapolation.  858 

 859 

WRF showed a variable capability in reproducing the main surface weather variables according to the different 860 

conditions of the three domains. A lower agreement between observations and the model was observed in Kampala 861 

for relative humidity and wind speed. The analysis was carried out on all surface meteorological stations available 862 

from the MIDAS network on a three-hourly basis. A further meteorological analysis extended to vertical profiles 863 

could reveal possible limitations of the model. However, the absence of vertical meteorological data limited the 864 

analysis and validation to ground level only.  865 

 866 

CHIMERE was able to reproduce the daily levels of PM2.5 for the urban site of Nairobi as well as for the rural site 867 

of Nanyuki.  The 69 % of the MFB values and 88 % of the MFE value were inside the highest confidence area for 868 

Nairobi and the 97 % and 99 % for Nanyuki attesting that the agreement between the observed and modelled data 869 

was sufficient to allow for quantitative analyses of daily average concentrations. Similar findings were also found 870 

for the other two urban background domains of Addis Ababa (57 % for MFB and 80 % for MFE) and Kampala 871 

(48% for MFB and 74 % for MFE) despite different characteristics and sources of observation being used for the 872 

validation. The discrepancies observed in the hourly trends of PM2.5 modelled by CHIMERE compared to 873 

observed values in the urban sites suggest that further studies are needed in the three urban areas. These studies 874 

are required to improve the understanding of the typology and quantity of local emission sources, which are 875 

sometimes misrepresented or absent in global emission inventories. This will enable the chemical processes acting 876 

in the urban troposphere to be adequately characterised and thereby actual air quality levels to be determined.  877 

 878 

Nevertheless, using existing data sets, CHIMERE has shown reliability in reproducing both hourly and daily levels 879 

of PM2.5 with hourly values largely inside the range of reliability connected with mean fractional bias and error.  880 

The merged emission inventory DICE-EDGAR, despite the low resolution was able to return a correct magnitude 881 

for the emissions in representation of urban and rural context. Despite this, few urban peaks observed in Nairobi 882 

have been missed by CHIMERE or in other cases misrepresented highlighting the necessity of further efforts in 883 

the creation of newer emission inventories for SSEA. In the light of this, the possibility to develop local emission 884 

inventories, ideally at high spatial resolution it would represent a significant step ahead in the air quality research 885 

in this area of the world. Despite this and at the extent of the present data, CHIMERE showed enough robustness 886 

and reliability to be adopted as a decision support tool for the management of air quality, correctly reproducing 887 

most of the exceedances of the limits set by the WHO for PM2.5 for all three cities considered.  888 

 889 
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The analysis focused on the average concentrations of PM2.5 for the domain of Kenya revealed that the 890 

metropolitan area of Nairobi represents a big hotspot of air pollution but that also small cities located in the 891 

outskirts of the capital of Kenya showed worrying levels of atmospheric contamination. These levels of air 892 

pollution have the potential capability to affect also rural areas where the local emissions are rare or not present. 893 

The possibility of transport phenomena of PM2.5 towards these areas, however, is still to be verified. The work 894 

has also shown for urban area of Nairobi the presence of low and unhealthy air quality indexes in 8 of 17 its 895 

constituencies and the relative population density exposed to harmful level of air contamination. Moreover, a 896 

number of natural areas in the outskirts of Nairobi have similarly low levels of AQI and increasing population 897 

highlighting how the problem of poor urban air quality due to rapid urbanisation, anthropogenic activities and 898 

lack of regulation can also detrimentally affect and deteriorate natural habitats.  899 

 900 

The present work represents a first step in the use of numerical models for atmospheric chemistry simulations in 901 

East Africa with particular focus on urban conurbation. The aim of the present work was to assess the possibility 902 

to perform simulations with results close to observations in order to open the road for more detailed works. The 903 

natural next step of the present research aims to refine the quantity and quality of the input data used for the 904 

validation of both modelling system in order to improve the reliability of the predictions. Moreover, a more 905 

detailed analysis of the secondary inorganic and organic components of PM2.5 will be conducted for the three 906 

domains. Finally, the performance of CHIMERE will be tested in the reproduction of gaseous species too in order 907 

to give a wider vision of the capabilities and opportunities of numerical modelling in this area of the world with 908 

present data. Additional future efforts to improve the calibration and validation of the modelling system, especially 909 

relating to meteorology, will focus on assessing the dispersion dynamics of contaminants through urban centres 910 

and possible pollution transport events from urban to rural areas. To aid this, further work is required by local 911 

East African authorities and research bodies to improve the quantity and the quality of data for weather and air 912 

quality simulations. However, in this work, we have shown that currently available data is sufficient to carry out 913 

simulations of air quality that can be used for quantitative evaluation of anthropogenic emissions impact and to 914 

support mitigation policies at the local level. 915 
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Data Availability: the combined DICE-EDGAR anthropogenic emission inventory is downloadable from: 929 

https://doi.org/10.25500/edata.bham.00000695. CHIMERE model is downloadable from: 930 

https://www.lmd.polytechnique.fr/chimere/ while WRF model is downloadable from: 931 

https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html, Weather observations used for the validation 932 

of WRF have been downloaded from the Met Office: 933 

http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0. Data relative to observations of PM2.5 934 

for Nairobi (Kenya) are available upon request to the authors of  Pope et al. (2018) while observations of PM2.5 935 

for Addis Ababa (Ethiopia) and Kampala (Uganda) are available upon request to the respective U.S. Embassies. 936 
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