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Abstract.  The COVID-19 lockdown had a large impact on anthropogenic emissions of air pollutants and particularly on 

nitrogen dioxide (NO2). While the overall NO2 decline over some large cities is well-established, understanding the details 

remains a challenge since multiple source categories contribute. In this study, a new method of isolation of three components: 

background NO2, NO2 from urban sources, and from industrial point sources is applied to estimate the impact of the COVID-15 

19 lockdown on each of them. The approach is based on fitting satellite data by a statistical model with empirical plume 

dispersion functions driven by a meteorological reanalysis. Population density and surface elevation data as well as coordinates 

of industrial sources were used in the analysis. The tropospheric NO2 vertical column density (VCD) values measured by the 

Tropospheric Monitoring Instrument (TROPOMI) on board Sentinel‐5 Precursor over 261 (3° by 4°) urban areas for the period 

from March 16 to June 15, 2020, were compared with the average VCD values for the same period in 2018 and 2019. While 20 

background NO2 component remained almost unchanged, the urban NO2 component declined by -18% to -28% over most 

regions. India, South America, and a part of Europe (particularly, Italy, France, and Spain) demonstrated a -40% to -50% urban 

emissions decline. In contrast, the decline over urban areas in China, where the lockdown was over during the analyzed period, 

was, on average, only -4.4%±8%. Emissions from large industrial sources in the analyzed urban areas varied largely from 

region to region from -4.8%±6% for China to -40%±10% for India. Estimated changes in urban emissions are correlated with 25 

changes in Google mobility data (the correlation coefficient is 0.62) confirming that changes in traffic was one of the key 

elements in decline of urban NO2 emissions. No correlation was found between changes in background NO2 and Google 

mobility data. On the global scale, the background and urban component were remarkably stable in 2018, 2019, and 2021, 

with averages of all analysed areas being all within ±2.5% and suggesting that there were no substantial drifts or shifts in 

TROPOMI data. The 2020 data are clearly an outlier: in 2020, the mean background component for all analysed areas (without 30 

China) was -6.0%±1.2% and the mean urban component was -26.7%±2.6% or 20-σ below the baseline level from the other 

years.  
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1 Introduction 

Nitrogen oxides (NOx =NO2 + NO) are air pollutants that originate from various anthropogenic (fuel combustion) and natural 

(e.g., biomass burning, lightning) sources and whose emissions are regulated in many countries. Satellite measurements of one 

component of NOx, NO2 have a long history. In the stratosphere, the SAGE (Stratospheric Aerosol and Gas Experiment) 

instrument provided NO2 profile information through the stratosphere beginning in the mid-1980s (Cunnold et al., 1991).  5 

Satellite observations of tropospheric NO2 columns are more recent and began with the nadir-viewing GOME (Global Ozone 

Monitoring Experiment) in 1996 (Martin et al., 2002) with several successors, chief among these OMI (Ozone Monitoring 

Instrument) (Duncan et al., 2015; Krotkov et al., 2016; Lamsal et al., 2015, 2021; Levelt et al., 2018) and, most recently, 

TROPOMI (Tropospheric Monitoring Instrument) (van Geffen et al., 2020; Veefkind et al., 2012). Collectively these 

instruments have been used to better understand NO2 sources, sinks, distributions, and trends (Beirle et al., 2011, 2019; Liu et 10 

al., 2016; Lorente et al., 2019; Lu et al., 2015; Martin et al., 2002; McLinden et al., 2012; Stavrakou et al., 2020; Vîrghileanu 

et al., 2020) .  

 One primary NO2 characteristic provided by satellites is tropospheric vertical column density (VCD), a geophysical 

quantity representing the total number of molecules or total mass per unit of area in the troposphere. The main features of the 

tropospheric NO2 VCD distribution are well established. Due to its relatively short lifetime, a few hours within a plume during 15 

the day, NO2 is elevated near sources such as  urban areas (Beirle et al., 2019; Lorente et al., 2019; Lu et al., 2015) and 

industrial locations such as power plants and oil refineries (Liu et al., 2016; McLinden et al., 2012). Over high mountains, NO2 

VCDs are relatively small as the troposphere there is “thinner” with fewer emissions sources. Ship tracks and major highways 

also create elevated NO2 values on satellite maps (Beirle et al., 2004; Georgoulias et al., 2020; Liu et al., 2020a; Richter et al., 

2004).  20 

 The COVID-19 lockdown had an impact on tropospheric  NO2 levels, first in China and then worldwide (Bao and 

Zhang, 2020; Bauwens et al., 2020; Ding et al., 2020; Gkatzelis et al., 2021; Kanniah et al., 2020; Keller et al., 2021; Koukouli 

et al., 2021; Liu et al., 2020a; Vadrevu et al., 2020; Vîrghileanu et al., 2020; Zhang et al., 2021). It was demonstrated that NO2 

surface concentrations and VCDs have significantly declined in the U.S. and Canada after mid-March 2020 (Bauwens et al., 

2020; Goldberg et al., 2020; Griffin et al., 2020). A decline of about -20% to -25% was observed in the U.S. megacities, as 25 

well as over some rural areas. A decline was also reported over Europe (e.g., Bar et al., 2021; Barré et al., 2021), India (Mirsa 

et al., 2021; Hassan et al., 2021), Pakistan (Ghaffar et al., 2021; Mehmood et al., 2021), Brazil (Dantas et al., 2020; Siciliano 

et al., 2020), and other parts of the world (Ass et al., 2020; Aydin et al., 2020; Fu et al., 2020) as also discussed in overview 

papers (Gkatzelis et al., 2021; Levelt et al., 2021).  

 The impact of the lockdown on tropospheric NO2 VCD from satellite data was often estimated by comparing mean 30 

or median values over a certain area for the periods before and after the lockdown (e.g., Qu, et al., 2021; Barré et al., 2021; 

Mehmood et al., 2021; Hassan et al., 2021; see also online tool https://so2.gsfc.nasa.gov/no2/no2_index.html accessed Dec. 

18, 2021) or as the values weighted according to the population density (Sannigrahi et al., 2021). This makes the results 

https://so2.gsfc.nasa.gov/no2/no2_index.html
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dependent on the area analyzed and sensitive to the wind speed (Goldberg et al., 2021). There is also free tropospheric NO2  

that could mask the lockdown-related changes in anthropogenic emissions (Silvern et al., 2019). Moreover, meteorological 

variability was also a contributing factor to the differences (e.g., Barré et al., 2021; Griffin et al., 2020) although some studies 

found that its impact may not be very large (Bar et al., 2021).  

 An alternative appoach is based on estimation of NO2 emissions using satellite data and then comparing the emissions 5 

estimates before and after the lockdown started (Lange et al., 2021). There are several methods to estimate the emissions 

(Streets et al., 2013). Methods such as inverse modelling (Konovalov et al., 2006; Mijling and van Der A, 2012) and, more 

recently, flux divergence (Beirle et al., 2019; 2021) are used for such purpose. One common technique is based on a rotation 

of satellite NO2 pixels around the source so the NO2 data would appear if the wind is from one common direction, allowing 

many overpasses to be combined.  These rotated data are then integrated in the cross-wind direction  and then fitting the results 10 

with an exponentially modified Gaussian (EMG) function (Lange et al., 2021; Pommier et al., 2013). The two unknown 

parameters, the emission strength and lifetime are estimated directly from the fit in one-dimensional space. The method works 

well for isolated stationary point sources and with steady winds (Beirle et al., 2021) but may not work in the areas where 

emissions from closly located multiple sources are mixed with urban emissions. Another approach employs a two-dimensional 

EMG plume function of the wind speed (Dammers et al., 2019; Fioletov et al., 2015, McLinden et al., 2020). The plume 15 

function depends on three parameters: the plume width, lifetime, and emission strengths. While all three parameters can be 

estimated from the fit, the algorithm works better if the plume width and lifetime are estimated in advance and then prescribed 

in the fit to estimate the emission strength. This algorithm was further improved to account for multiple sources or area 

(Fioletov et al., 2017).  

 A different approach was used in this study. A statistical model was used to describe the TROPOMI NO2 data over 20 

3° by 4° areas (roughly, 330 km by 330 km at 42°N) around major cities and isolate three components related to (1) plumes 

from urban sources, (2) plumes from industrial point sources, and (3) background NO2. The parameters of the statistical model 

link the satellite NO2 values to proxies related to elevation and population density as well as to locations of large industrial 

point sources. Then the three components in 2020 were compared to their values in  2018-2019 to study the COVID-19 

lockdown impact. The paramaters have simple physical interpretation such as point source or area emission rates and the 25 

background NO2 distribution. As the model has only a few paramaters and their estimates are based on several hundreds of 

TROPOMI pixels in each area, statistical uncertainties of the parameter estimates are very small. The variability of urban, 

industrial, and background NO2 components due to meteorological or observational conditions was studied by comparing the 

estimates of the three components for 2018, 2019, and 2021 that were not affected by lockdowns.   

 This algorithm is based on a multisource plume dispersion function fitting approach developed for sulfur dioxide 30 

(SO2) point and area sources (Fioletov et al., 2017; McLinden et al., 2020). It assumes that each source produces a plume that 

depends on unknown emission strength and these emission strengths are derived from the best fit to the satellite data. The 

algorithm was adapted for NO2 where emissions from urban areas, which tend to be dominated by residential and mobile 

emission sources, were often a major source sector.  Since the approach is based on statistical methods it was necessary to 



4 

 

have a sufficiently long data set to reduce the impact of natural factors such as meteorology that can cause NO2 VCD 

differences of ~15% over monthly timescales (Goldberg et al., 2020; Levelt et al., 2021). We use three-month periods, with  

the averages for  the period from March 16 to June 15, 2020, are compared to those in 2018 and 2019 for the 3° by 4° areas 

around 261 major cities worldwide. As the study is focused on relative NO2 changes due to the lockdown, possible systematic 

errors related to the TROPOMI retrievals (Verhoelst et al., 2021) and the algorithm fitting parameters (Fioletov et al., 2016) 5 

play a much smaller role than in the case of absolute emission estimates. 

  This paper is organized as follows: Section 2 describes various data sets used in the study; the analysis algorithm is 

discussed in Section 3. In Section 4, the COVID-19 lockdown impact is studied. USA and Canada are analyzed in detail to 

illustrate the method, then statistics for Europe are provided and finally results for the entire world are presented.  Discussion 

and conclusions are given in Section 5. The algorithm is described in Appendix. Additional technical information and statistics 10 

are given in the Supplement. 

2 Data Sets 

2.1 TROPOMI NO2 VCD data 

TROPOMI, onboard of the European Space Agency (ESA) and EU Copernicus Sentinel 5 Precursor (S5p) satellite, was 

launched on 13 October 2017 (van Geffen et al., 2020; Veefkind et al., 2012). The satellite follows a Sun‐synchronous, low‐15 

Earth (825 km) orbit with a daily equator crossing time of approximately 13:30 local solar time (van Geffen et al., 2019). At 

nadir, TROPOMI pixel sizes were 3.5 × 7 km2 at the beginning of operation and were reduced to 3.5 × 5.6 km2 on 6 August 

2019 and the swath width is 2,600 km. TROPOMI NO2 VCD values represent the total number of molecules or total mass per 

unit area below tropopause and are often given in molecules or moles (one mole is equal to 6.022×1023 molecules) per square 

metre or centimetre as well as in Dobson Units (DU, 1 DU = 2.69×1016 moleccm-2).  In this study, level 2 TROPOMI data 20 

available from the Copernicus open data access hub (https://s5phub.copernicus.eu) were used. The reprocessed (RPRO) data 

version V1.2.2 was used for 2018 and offline mode (OFFL) data of version V1.2.2 to version V1.3.2 were used for 2019-2020. 

The difference between these two versions is relatively minor, and therefore the combination is suitable to analyse NO2 changes 

during the period studied in this paper. The 2021 data (V1.4.0) were used only to estimate the interannual variability. The 

standard TROPOMI product, tropospheric vertical columns, based on air mass factors (AMFs) calculated using the vertical 25 

profile of NO2 from the TM5-MP model at 1°×1° resolution (Williams et al., 2017) was used. In the analysis, we use only data 

for which the quality assurance value is higher than 0.75 (van Geffen et al., 2018). Also, satellite pixels with snow on the 

ground, a solar zenith angle greater than 75 degrees and with cloud radiance fraction above 0.3 were excluded from the analysis. 

 The specified random uncertainty of a single TROPOMI tropospheric NO2 VCD measurement is 7×1014 molec cm-2 

(or 0.026 DU) (ESA EOP-GMQ, 2017). Tack et al., (2021) estimated this uncertainty and found it to be 30 

5.6 ± 0.4 × 1014 molec cm−2. There is some evidence that TROPOMI NO2 is biased low by 14%-40% over polluted areas due 

to a limited spatial resolution of the model used to calculate the AMFs (Judd et al., 2020; Verhoelst et al., 2021; Zhao et al., 

https://s5phub.copernicus.eu/
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2020). This bias can be reduced by recalculation of AMFs with higher spatial resolution (Griffin et al., 2020; Ialongo et al., 

2020; Zhao et al., 2020; Tack et al., 2021).  In addition, the cloud pressures derived from the TROPOMI data have a positive 

bias in versions 1.2.x and 1.3.x which has an impact on the NO2 tropospheric column retrieved (van Geffen et al., 2021). Both 

effects (biases) are expected to scale roughly linearly with the column amount (van Geffen et al., 2021), consistent with the 

validation results (Verhoelst et al., 2021). Therefore, the relative differences between 2018-2019 and 2020 data studied here, 5 

should not be affected by these effects. 

 The TROPOMI NO2 distribution over the US and southern Canada is shown in Fig.1. The data are stratified by the 

wind speed to highlight some of the features of the NO2 VCD distribution. NO2 values are elevated over highly populated 

areas, as is particularly evident from the maps for low wind speed where the NO2 remains close to the source before chemical 

or physical removal. Fig.1 also illustrates the fact that TROPOMI NO2 values over megacities are higher under calm winds 10 

and lower under high winds (e.g., Goldberg et al., 2020). Elevated NO2 values are also observed over power plants and mining 

operations (Goldberg et al., 2021). The NO2 VCD distribution also depends on local topography (Kim et al., 2021). For 

example, smaller values over elevated areas such as the Rocky Mountains and Appalachians and higher values over valleys 

such the California Central Valley are evident from the map. There is also some background NO2 that can be seen even over 

remote areas with no major anthropogenic sources: NO2 VCDs are not negligible (about 5·1014 cm-2) over vast remote areas 15 

such as National Forests in Montana or Algonquin Provincial Park in Ontario as well as over the oceans. 

 As TROPOMI has only one daily overpass at most locations, diurnal NO2 variations may affect emissions estimates. 

Measurements from the ground demonstrate, that unlike surface concentrations, the diurnal variations of NO2 VCDs are 

relatively small, particularly in spring (Herman et al., 2009; Chong et al., 2018). However, since nigh time NO2 information is 

not available from satellite, we should say that all the results presented here are limited to daytime emissions only.  20 

2.2 Wind data 

As in several previous studies (Fioletov et al., 2015; McLinden et al., 2020; Zoogman et al., 2016) the plume dispersion 

function (discussed below in Sect. 3) is based on the wind speed and direction obtained from the meteorological reanalysis. 

For each satellite pixel, wind speed and direction were calculated based on European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA5 reanalysis data (C3S, 2017; Dee et al., 2011), which were merged with TROPOMI measurements. 25 

The wind profile data have one hour temporal resolution and are available on a 0.25° horizontal grid. U- and V- (west-east and 

south-north, respectively) wind-speed components were then linearly interpolated to the location of the centre of each 

TROPOMI pixel and to overpass time.  The ERA5 wind components at 1000, 950, and 900 hPa were averaged to obtain the 

used wind value (that approximately corresponds to the mean winds between 0 and 1 km). This interval was comparable to the 

wind data used in other similar studies: Beirle1et al. (2019) used data at 450 m, while Lange et al., (2021), used data from 100 30 

m. The results are not very sensitive to the wind profile within this range as was previously investigated by Beirle et al., (2011) 

because the boundary layer wind is relatively constant, except close to the surface. Note that in ERA5 reanalysis in pressure 
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co-ordinates, when the surface pressure is smaller than that at a given level  (e.g., 1000 hPa) the values will simply duplicate 

the winds at the lowest pressure available. 

2.3 Population density data 

The Gridded Population of the World (GPW) dataset (SEDAC, 2017) was used as a proxy for the urban component. GPW 

data are on 0.042 degree (2.5 arc-minute) grid and consists of estimates of human population density (number of persons per 5 

square kilometre) based on counts consistent with national censuses and population registers. When lower resolution data were 

required, they were obtained by averaging the original data within the new grid cells. Information about large city location and 

population, that was used to select cities for the analysis, was obtained from the World Cities Database available from 

https://simplemaps.com/data/world-cities (accessed on May 10, 2021).  

 10 

2.4 Industrial point source locations  

The algorithm of this study requires coordinates of industrial point sources as an input. In addition, emissions data from the 

U.S. and Canada are used to verify the emissions estimated from TROPOMI data.  For the U.S., 2018-2020 point source NOx 

emissions from the U.S. Environmental Protection Agency (EPA) National Emissions Inventory (NEI) (EPA, 2020) based on 

a continuous emissions monitoring system (CEMS) are used. Note that the CEMS database is based on real emission 15 

measurements reported with 1-hour resolution that were then averaged over the analysed period. This database includes most 

of the sources including all large power plants.  For sources that are not available from CEMS (e.g., oil refineries), emissions 

from eGRID database (https://www.epa.gov/egrid/download-data, accessed on August 5, 2021) for 2018 and 2019 were used. 

They are reported as annual emission estimates and we assume that the emission rates are the same throughout the year. This 

database includes emissions from oil refineries and cement factories that are often not available from CEMS. Finally, U.S. 20 

airport emissions are obtained from the 2017 NEI version released in January 2021 (https://www.epa.gov/air-emissions-

inventories/2017-national-emissions-inventory-nei-data). For Canada, annual emissions from the Canadian National Pollutant 

Release Inventory (NPRI, 2020) are used.  Only Canadian and U.S. sources with annual emissions greater than 0.5 kt of NOx 

per year were selected and used in this study.  

 Coordinates of the European industrial point sources were obtained from European Pollutant Release and Transfer 25 

Register (https://prtr.eea.europa.eu/) for 2007-2017 (accessed on March 2, 2021) and those that emitted more than 0.5 kt yr-1 

of NOx are included in the analysis. The world powerplant database (https://globalenergymonitor.org/projects/global-coal-

plant-tracker/) was used to find locations of power plants for the global analysis. Missing sources were added based on the 

analysis of the NO2 residuals maps (see Section 3) and then confirmed using satellite imaginary as was previously done in 

other studies (e.g., McLinden et al., 2016; Fioletov et al., 2016, Dammers et al., 2019; Beirle et al., 2021). Satellite images 30 

from Google (https://www.google.com/maps ), Microsoft Bing (https://www.bing.com/maps ), and Sentinel 2 

(https://apps.sentinel-hub.com/eo-browser/ ) maps were used for this purpose. Multiple image sources were used since some 

of the images from Google maps are not always up to date and may not show recently-build factories. 

https://simplemaps.com/data/world-cities
https://www.epa.gov/egrid/download-data
https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
https://prtr.eea.europa.eu/
https://www.google.com/maps
https://www.bing.com/maps
https://apps.sentinel-hub.com/eo-browser/
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2.5 Elevation data 

Elevation data were one of the proxies used in the statistical model. Elevation data used in this study are from 2-

Minute Gridded Global Relief Data  (ETOPO2v2) database (NOAA, 2006). When lower resolution data were required, they 

were obtained by averaging the original data within the new grid cells.  

2.6 Google mobility data and analyzed period 5 

 The lockdown periods due to the COVID restrictions varied from country to country, but in most countries, they 

started in the second half of March 2020. In the analysed Canadian cities, the lockdown started between March 12 and 17. In 

the U.S., it started between March 18-19 (Atlanta, Los Angeles) and April 2 (Houston). In Europe, the lockdown started as 

early as on March 8 (Milan), but for most of the cities the lockdown was introduced after March 14. The second half of March 

is also the time when the lockdown measures started in many other cities around the world including Auckland, Baghdad, 10 

Buenos Aires, Johannesburg, Lagos, Manila, New Delhi, Sydney, and many others (Levelt et al., 2021, their Appendix B).  

 It is more difficult to determine the time of return to normal activities because the restrictions were often lifted in 

phases. For example, in the U.S., a “stay at home” order was lifted between April 30 (Texas) and June 11 (New Hampshire). 

Moreover, there was no formal lockdown in some countries (Belarus, Japan, South Korea, Sweden, Taiwan), but a decline in 

public activities can be seen even in these countries as well. For example, there was up to 40% decline in road transport 15 

emissions in Sweden even in absence of any formal lockdowns (Guevara et al., 2021). For this reason, we use mobility data 

as a proxy instead on the lockdown dates to select the analysed period. 

 The Google Community Mobility Report data (available from https://www.google.com/covid19/mobility/, accessed 

on March 1, 2021) were used to determine a common time period for our analysis. These data represent the changes in the 

number of people at locations of various types compared to a baseline level. A baseline day represents a normal value for that 20 

day of the week. The baseline day is the median value from the 5-week period Jan 3 – Feb 6, 2020. These mobility data can 

be used as a proxy for the urban traffic (e.g., Guevara, 2021) and are known to be correlated with urban NOx emissions (Venter 

et al., 2020; Bar et al., 2021; Misra et al., 2021). In this study, they were compared to urban and background NO2 levels in 

different countries. The mobility data are available for several categories. Results for mobility for “retail and recreation” are 

presented as this category demonstrated the highest correlation with estimated urban emissions. The “retail and recreation” 25 

category covers visits to restaurants, cafes, shopping centres, theme parks, museums, libraries, movie theatres, and similar 

locations. We will refer to this category as to the “Google mobility data” for brevity. 

 Fig. 2 shows changes in Google mobility data (available as deviations relative to the baseline period) for the regions 

analysed in this study (see Section 4). During the three month-long period from March 16 to June 15, 2020, the mobility data 

were below the baseline level in all analysed regions. Note that for China, Google mobility data are not available, and the 30 

lockdown there occurred earlier (in February) except for Wuhan, where the lockdown was lifted on April 8. Note that there 

https://www.google.com/covid19/mobility/
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was no formal lockdown in the Japan, South Korea, and Taiwan region, although we still see some decline in mobility data 

there. 

3 The fitting algorithms 

The technique used here is a further development of a point source emission estimation algorithm (Fioletov et al., 2015, 2016; 

McLinden et al., 2016; Dammeres et al., 2019) that was later expanded to estimate multi-source and area-source emissions 5 

(Fioletov et al., 2017, McLinden et al., 2020). This section provides only a general description of the method. The calculation 

formulas are given in the Appendix. The approach used in this study is based on a linear regression model. All satellite 

measurements over a certain area during a certain period are linked to locations of industrial point sources as well as to 

population density and elevation-related proxies by a few parameters that characterise these links. Thus, information from 

thousands of satellite measurements is compressed into a handful of parameters and therefore their estimates can have very 10 

low statistical uncertainties. Then, satellite measurements can be reconstructed using the regression model and contribution of 

three terms of the model (industrial, urban and background) can be studied. Such a model may not be very accurate in 

“predicting” values of individual satellite pixels, but we will show that it performs well when it is used to describe a three-

month mean NO2 VCD distribution over the analysed areas.  

 The method is adapted from the previously designed algorithm for multi-sources SO2 emission estimates (Fioletov et 15 

al., 2017) where the emissions are determined from the best fit of satellite observation by a set of plume functions (one per 

source) scaled by parameters of estimation representing the emission strength. Unlike SO2, where emissions are mostly 

generated by point sources, NO2 emissions also originate from area sources such as large cities. As shown in Fig.1, landscape 

also has a major impact on the NO2 distribution. To accommodate these features, the statistical model was modified to: 

   TROPOMI NO2 = α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0) + αp Ωp + Σ αiΩi + ε                                             (1) 20 

where α0, αe, αp, αi, β0, β1, and β2 are the unknown regression parameters representing population density-related proxies and 

emissions from individual point sources and a background with contribution from the elevation; Ωp is the source plume function 

for the population density-related distributed source (or area source); Ωi are the source plume functions for industrial point 

sources; H is the elevation above sea level and the empirical scaling factor H0=1.0 km was introduced to make the exponential 

argument dimensionless and to account for altitudinal dependence better; and ε is the residual noise.  25 

 Eq.1 is a linear regression statistical model with unknown coefficient sets α and β. There are three main components 

in the model: the background term, α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0), related to background and elevation (four 

fitted coefficients), the urban component term, αp Ωp, related to the population density (one coefficient), and the industrial 

term, Σ αiΩi, that represents the contribution from industrial point sources (variable number of coefficients from zero to few 

dozens). We will refer to them as to background, urban and industrial components.   30 
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 The fitting was done for all satellite pixels centered within 3° by 4° areas around large cities and collected during a 

three-month period by minimization of the squares of the residuals (ε). The size of the area is based on the following 

considerations: The larger the area the less accurate assumptions about a linear gradient of background NO2 and constant 

emissions per capita are. The algorithm is based on fitting plumes. For typical plume characteristics (discussed below), the 

size of fitting area should be long, in order of 100 km, to have enough data for the fit. Finally, the area should be large enough 5 

to avoid correlation between the elevation and population density proxies. 

 As in Fioletov et al., (2017), the plume from an industrial point source i is described by a plume function Ω (θ, φ, ω, 

s, θi, φi) where θ and φ are the satellite pixel coordinates; ω and s are the wind direction and speed for that pixel; and θi and φi 

are the source coordinates. An unknown parameter (αi) represents the total NO2 mass emitted from the source i. The emission 

rate for source i can be expressed as Ei =αi/τ, where τ is a prescribed NO2 lifetime (or, more accurately, decay time, but we use 10 

the term “lifetime” because it is more common). Note that τ is different from the chemical lifetime (de Foy et al., 2015). Once 

the emission rate is established, it can be used to reconstruct how distribution of NO2 emitted by that source would be seen by 

a satellite, i.e., estimate the industrial component in satellite data. We expressed emissions rates in kt y-1 in this study to make 

it easier to compare with the rates available from emissions inventories. However, all emissions calculations here are done for 

a 3-month period (from March 16 to June 15).  15 

 The plume functions Ω are EMG functions that are commonly used to approximate plumes of VCDs of trace gases 

such as NO2, SO2, and ammonia (Beirle et al., 2011, 2014; Dammers et al., 2019; Fioletov et al., 2017, 2015; de Foy et al., 

2015; Liu et al., 2016; McLinden et al., 2020).  Similar in concept to a Gaussian plume function, they also take into account 

the finite physical size of the source and the spatial resolution of the satellite instrument being utilized.  The lifetime  reflects 

the rate at which NO2 is removed from the plume due to chemical conversion or physical removal such as deposition; it depends 20 

on several factors such as season and NO2 concentration. It is about 2-6 hours in summer and longer in winter (de Foy et al., 

2014; Liu et al., 2016). Moreover, for some sources, the lifetime may be changing over time (Laughner and Cohen, 2019) as 

NO2 concentration declines, although other studies suggest that such changes are minor (Stavrakou et al., 2020). Recent 

TROPOMI-based estimates show that a typical lifetime in urban areas is between 2 and 5 hours in spring and autumn with 

shorter lifetimes at low latitudes (Lange et al., 2021). While the lifetime has a large impact on the emission estimates, relative 25 

changes are less sensitive to it. In addition to , the shape of the EMG function depends on the prescribed plume width (w), 

that depends on the size of the source and the size of satellite pixel. The value of w=8 km for plume width was used in this 

study for TROPOMI along with a constant value of τ =3.3 hours. These values are based on a sensitivity study where 

TROPOMI data over the Canada and U.S. were fitted by plume functions with various combinations of w and τ.  The switch 

from 7 to 5.6 km along-track resolution in 2019 might have some impact on the optimal plume width, but the sensitivity 30 

analysis shows that small changes in w have only a minor impact on the results. We estimated that, for the urban component, 

on average, a 1-hour deviation from the used τ value (3.33 hour) or a 2 km variation in w changes the differences between 

2020 and 2018-2019 values only by about 1%. 
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 Unlike many previous studies (Beirle et al., 2011; Fioletov et al., 2016; Lange et al., 2021) where the background 

offset was presumed to be constant and estimated from, for example, upwind NO2 data, we included a special term that is 

responsible for it. In equation (1), the α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0) term is assumed to be declining 

exponentially with elevation, i.e., within the analyzed 3° by 4° area, the higher is the elevation the lower the background 

tropospheric NO2 VCD is. It was also assumed that this contribution from elevation depends on geographical coordinates only 5 

and not on the winds. Even in absence of any sources, there could be some gradient in tropospheric NO2 over the analyzed 

area, as for example, over some regions in northern Canada or along the east coast of the U.S. (Fig. 1). To account for such 

gradients, the linear term β1(θ–θ0)+β2(φ-φ0), where θ0 and φ0 are the coordinates of the centre of the analyzed area, was added. 

In other words, it was assumed that there is a linear gradient of background NO2 within the analyzed area and NO2 VCD 

declines exponentially with height over elevated regions. Finally, α0  was added to the model to account for remaining free-10 

tropospheric NO2 at high elevations where exp(-H/H0) is very close to 0. Its presence gives a better agreement of the fitting 

results with the satellite data for areas with a high range of elevations. Since this term is a part of the statistical model, all 

parameters α0, β0, β1, and β2 are estimated from the fitting. Once they are estimated, the term can be calculated for any place 

within the analysed 3⁰×4⁰ area that gives a “background” value for that location that depends on the coordinates and elevation 

only. For simplicity, we will refer to the term discussed in this paragraph as to the “background” component. 15 

 Finally, the ap Ωp term represents the emissions contribution from factors, related to urban activity. Such emissions 

can be estimated by establishing a regular grid and then estimating emissions for each grid point as was previously done for 

SO2 (Fioletov et al., 2017, McLinden et al., 2020). If, for example, we use a 0.2° by 0.2° grid (i.e., 336 (16 x 21) grid cells) 

within the analyzed 3° by 4° area, this would mean that we need to add 336 unknown coefficients to Eq.1. It would make the 

coefficient estimates less robust and prevent us from estimating emissions form individual industrial point sources because 20 

their plume functions would be highly correlated with the plume functions of the neighboring grid cells. Instead, we assumed 

that emissions from each grid cell are proportional to the cell population and the coefficient of proportionality is the same for 

the entire analysed 3° by 4° area. Thus, we just need to estimate one coefficient (αp) that is proportional annual emissions per 

capita. This makes the statistical uncertainty of such coefficient very small. In fact, for most analyzed areas, the uncertainty 

were at least 10 times less that the coefficient itself. The composite plume function Ωp is a sum of plume functions of all 25 

individual cell centres multiplied by the grid cell population. Thus, Ωp depends on geographical coordinates, population density 

and local winds. The original population density data were converted to a 0.2° by 0.2° grid by averaging population density 

data within each grid cell. Smaller grids such as 0.1° by 0.1° were also considered, but it was found that the reduction of the 

grid size does not change the results, while increase the computation time. 

 The downside of this approach is that the estimates would produce mean emissions per capita for a rather large area. 30 

This may not be very representative if there are cities with different economical conditions within the analyzed area as, for 

example, at the border of North and South Korea. Such cases are easily identifiable from the maps of the fitting residuals: such 

cities would appear as areas of large positive and negative anomalies. We did find several such cases and manually adjusted 

the area to include only one highly populated area. 
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 The proxy plume functions used in the model preferably should be uncorrelated, because otherwise the coefficients 

have correlated errors making their interpretation difficult. For a typical urban area, the plume functions related to urban 

activity and to industrial sources are expected to be independent: high population density zones typically occupy a small part 

of the area and industrial sources are typically located away from such highly populated zones. Note that the NO2 lifetime is 

relatively short and the median wind speed in, for example, the eastern U.S. is about 10 km per hour, so sources located 30-40 5 

km apart typically have uncorrelated plume functions.  

 High correlation between the population and landscape-related proxies is possible if a city is in a valley surrounded 

by mountains. The correlation could be reduced by increasing the size of the analysed area, but if the area is too large, the 

assumption that the background level has a linear gradient in the area may not be valid. Therefore, we limited the area to 3° 

by 4°. The correlation coefficients between the site elevation and population density for 3° by 4° areas are typically small.  For 10 

example, in the U.S., correlations are positive over Florida (about 0.2) with the population density is higher in the inland area, 

and negative in the Portland-Seattle-Vancouver area (about -0.35), where it is higher near the ocean and lower in the mountains. 

As the plume functions of individual industrial sources are very local (~50 km footprint), they do not correlate with the 

elevation. With such low correlation coefficients, elevation does not affect estimates of other parameters of the regression 

model. 15 

 When industrial point sources are located in close proximity, their plume functions in the statistical model (Eq.1) are 

highly correlated. In practice, it often appears if, for example, estimated emissions from one source are unrealistically high, 

while emissions from the other near-by source are low or even negative. In such cases, emissions from individual industrial 

sources often cannot be estimated. However, the sources can be grouped into independent clusters and total emissions from 

such clusters can be estimated. Such grouping could be done manually on a case-by-case basis, but it would be subjective and 20 

very time consuming. Instead, we applied an algorithm based on factor analysis. We would like to emphasize, that the factor 

analysis, described in the next two paragraphs, was used to improve emissions estimation for individual sources or clusters of 

sources. It is not required if only total emissions from all point sources in the area are estimated in order to separate them from 

urban emissions or if all industrial sources are isolated remote sources. 

 To group industrial sources into clusters, an orthogonalization process was applied to the plume functions of 25 

individual industrial sources. First, the correlation matrix for the plume functions of individual point sources (Ωi) was 

calculated and eigenvalues and eigenvectors (or “factors”) of the correlation matrix were determined. The correlation matrix 

was calculated just once using March 16 – June 15 data from all three years. An isolated remote source would appear as an 

eigenvector with an eigenvalue of 1. Two (or more) closely located, but isolated from others, sources, would have one 

corresponding eigenvector and an eigenvalue of 2 (or more).  Eigenvalues lower than 1 mean that the corresponding sources 30 

are already partially included in other eigenvectors. To reduce the number of “factors”, only “factors” with eigenvalues > 0.6 

were kept.  

 The approach based on eigenvalues of the correlation matrix creates proxies that are not correlated and reduces the 

number of the fitting coefficients. While they correctly describe the total contribution of all industrial sources in the area in the 
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total NO2 variability (or total emissions), individual eigenvectors, i.e., linear combinations of the original plume functions, 

may not have clear interpretation. For example, they may include the original plume functions with negative coefficients. In 

order to avoid that and obtain proxies that have a meaningful interpretation, the eigenvectors were linearly transformed, so 

they became as close to the original plume functions as possible, while the correlation coefficients between them remained 

low. This was done using the varimax factor analysis method that is implemented in modern statistical software packages such 5 

as R and SAS (Belhekar, 2013). It orthogonally rotates the established “factors” to maximize the sum of squared correlations 

between the original variables and factors.  Then, the algorithm uses a linear combination of the original variables that have 

the highest correlations with the rotated “factors”. I.e., the condition of orthogonality is removed in order to find the simplest 

linear combination of the original variables. In practice, the algorithm produces a set of “clusters”, i.e., linear combinations of 

the original plume functions, that have low correlation coefficients (typically less than 0.2) between them, and each cluster has 10 

high correlation coefficient (typically more than 0.95) with one orthogonal “factor”. To simplify this further, if a linear 

combination has a weight for an original variable under 0.2, its weight was set to 0. As a result, all non-isolated point sources 

were grouped into small clusters and emissions estimates were done for such clusters instead of individual sources, while each 

isolated remote source forms a single-source cluster that corresponds to only that source.  It is possible that a single source 

contributes to more than one cluster that makes interpretation of emissions for such clusters more difficult, but such cases are 15 

rare.   

 As in any regression analysis-based study, correlation between the proxies is one of the main obstacles in the result 

interpretation. The “orthogonalization” of plume functions from industrial sources largely reduces cross-correlations between 

the proxies, but high correlations between industrial and population density-related plume functions are still possible if 

industrial sources are located in highly populated areas. In such cases, it may be difficult to separate its signal from the 20 

contribution of the population density-related proxy.  For example, in one case (Edmonton, Canada) this correlation coefficient 

was as high as 0.94 and it was not possible to separate urban and industrial emissions. Without such separation, industrial 

emissions are counted as population density-related that makes Edmonton annual per capita emissions nearly twice as large 

than emissions for other cities. Note that for large cities and small industrial sources, high correlation means that the emissions 

from such industrial sources cannot be reliably estimated, although the impact on estimation of the population density-related 25 

signal is small.  For this reason, industrial point sources located in the 0.2° by 0.2° cells where the population is greater than 

600,000 people were excluded. This is an empirically estimated limit, and, in a few cases of very large cities (New York, 

Moscow), it was manually adjusted.   

 The fitting and parameter estimation was done using all individual TROPOMI level 2 pixels for the period from 

March 16 to June 15 four times: for 2018, 2019, 2020 and 2021.  So, four sets of coefficients (one set per year) were obtained 30 

and then used to estimate the background levels and emissions. Then, the results for 2018 and 2019 were compared with these 

for 2020. We also performed the same analysis for 2021, but these results were only used to analyze interannual variability 

because COVID-19 lockdowns may still have some impact on NO2 in 2021. 
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 As the regression model has three main terms (background, urban and industrial), the NO2 VCD for each TROPOMI 

pixel is represented in Eq. 1 as a sum of three values (components) plus a residual error. Then the values of individual 

components and residuals can be analyzed the same way as the original TROPOMI measurements, e.g., mean values over a 

certain period (in our case, March 16– June 15) can be calculated as a function of latitude and longitude.  

 This is illustrated in Fig. 3, where individual terms of Eq. 1 are shown for an area centered on Montreal. The area 5 

includes two large cities, Montreal (4.2 million) and Ottawa (1.4 million, including the sister city of Gatineau). The terrain 

elevations in the analysed area are in the range from just a few metres above sea level along the Saint Lawrence River to more 

than 500 meters 100 km north of Montreal.  For this plot (as well as for Fig. 1 and other figures), we used a non-linear scale 

that is more sensitive to small quantities in order to make small deviations more pronounced. The top row of Fig. 3 shows the 

mean TROPOMI NO2 data (Fig. 3a), the fitting results (Fig. 3b), and the difference between them or the residuals (Fig. 3c).  10 

The background, urban, and industrial components are shown in Fig 3 panels d, e, and f respectively.  

 The contribution of industrial point sources (Σ αiΩi) is illustrated by Fig. 3 g-i. In the case of Montreal, total emissions 

from industrial sources are relatively small, less than 1.8 kt y-1 from our estimates. Note that unlike the previous algorithm 

(Fioletov et al., 2017), where Ωi represented plume functions from individual sources, this new Ωi represents plume functions 

of clusters of closely located individual sources determined by factor analysis. The estimated parameter αi represents total NO2 15 

mass of the entire cluster, while Ωi is a weighted sum of plume functions of individual sources in the cluster. The weighting 

coefficients are determined by the varimax technique, described above. In the case of Fig. 3, the first cluster is comprised of 

two sources and the second and third clusters are each just single point sources. The estimated parameter αi represents emissions 

from the entire cluster, required that αi≥0.  

 The background and urban component maps have a simple interpretation. Figures 3 j and k shows maps of the 20 

elevation and population density respectively. Not surprisingly, the background component, that is dominated by scaled 

elevation, looks similar to the elevation map itself. The urban component is the population density map convoluted with EMG 

functions and therefore it looks like a smoothed population density map. 

 The suggested algorithm essentially finds the emissions levels that give the best agreement with the TROPOMI data 

NO2 VCD and then uses these estimates to “reconstruct” the spatial NO2 distribution as well as contribution from each source. 25 

As explained by Fioletov et al., (2017), the technique of satellite VCD reconstruction from fitted coefficients αi using Eq.1  to 

isolate different components, can be applied to the reported emissions Ei. by using αi= Ei·τ. This produces a map of VCD that 

would be seen by satellites if these reported emissions are the only sources of NO2. The same approach was employed here 

using U.S. emissions inventories. For such estimates, the ratio between NOx and NO2 is required. Beirle et al., (2021, their Fig. 

2), has recently estimated the NOx to NO2 ratio for different parts of the world and found that the ratio is about 1.4 over the 30 

U.S. and typically between 1.2 and 1.6. elsewhere. The value of 1.4 was used in this study.  

 The quality of a regression model (Eq. 1)  can be described in terms of the correlation coefficient between the original 

and predicted values. In case of Montreal, the correlation coefficient of about 0.55. I.e., a set of about half of million original 

TROPOMI observations over the 3° by 4° area during a three-month period can be described by just 8 parameters (αp, α0, β0, 
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β1, and β2 plus 3 coefficients αi for industrial sources) with that correlation coefficient. The model can be further improved by 

adding parameters responsible for workday- weekend differences, seasonal changes, and meteorological proxies (Goldberg et 

al., 2021; Kim et al., 2021). However, we focused on the mean NO2 changes over a 3-months period, and they can be 

successfully estimated without such additional parameters. Fig. 3 shows that the fitting results are able to reproduce such mean 

data accurately: in the case of Montreal, the coefficient of determination (R2), i.e., the ratio of the variance of the residuals 5 

(Fig. 3 c) to the variance of the averaged TROPOMI data (Fig.3 a) is between 0.9 (in 2019) to 0.93 (in 2020) meaning that 

fitting results “explain” from 90% to 93% of the observed variance. The Pearson correlation coefficient between the mean 

TROPOMI data and the fitting results is about 0.96 (Fig. 3 l).  

 The necessity of both linear gradient- and elevation-related components in the background term in Eq.1 is illustrated 

by Fig. 4. If the surface is nearly flat in the analysed area (as, for example, in the case of Minneapolis, Fig. 4 g), the background 10 

component is dominated by the linear gradient. However, the elevation affects the NO2 distribution near mountain areas as, 

for example, in case of Seattle, where mountains as high as 2000 m are located east of the city (Fig. 4 i). It is interesting to 

note that the background components are practically identical for both periods that gives a high confidence in the obtained 

results. The influence of the landscape on the NO2 distribution also explains why the distribution near Seattle does not look 

like a “hotspot” NO2 distribution near a typical large urban area. As Fig. 4 shows, the statistical model can successfully 15 

reproduce the NO2 VCD distribution in both areas. The Pearson correlation coefficient between the 3-month mean TROPOMI 

data and the fitting results for Minneapolis and Seattle are 0.96 and 0.94 respectively. 

  Since the fitting results are based on just a handful parameters, the approach of this study is to investigate changes 

in these parameters or the three regression terms themselves between 2020 and 2018-2019.   

4 NO2 VCD  estimation results for urban areas  20 

To test the method, the described technique was applied to the 22 largest urban areas in the U.S. and 5 in Canada (Fig. 5). Four 

examples with detailed analysis of the components of the NO2 distribution are discussed below with results shown in Fig. 6. 

Eight types of maps are shown. They include mean values for the analysed period for the actual TROPOMI data (column a), 

the fitting results (b), the residuals (c), i.e., (a) minus (b), as well as individual components of the fitting: the background (d) 

and urban (e) components, and the industrial source clusters (f). The Fig. 6 is divided in 4 sections with the area name shown 25 

on the top of each cluster of plots. 

 As mentioned in Section 3, reported emissions can be used to “reconstruct” VCD distribution for NO2 emitted from 

these sources using Eq.1.  The maps of NO2 VCDs from the reported bottom-up emissions is shown in Fig. 6 (column g). We 

would like to emphasise that such reconstruction is based on industrial emissions data only, without any satellite NO2 

observations (although τ and w in the plume functions were the same as in the satellite-based estimates). Finally, the maps of 30 

the difference between TROPOMI industrial sources-related component (Fig. 6, column f) and NO2 VCD from reported 

“bottom-up” emission-based reconstruction (Fig. 6, column g)  is also shown in Fig. 6 (column h).  
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4.1 Case studies 

Four examples that represent different cases of NO2 distributions around large urban areas are discussed below. In the case of 

Boston, there is a single urban source with no large industrial sources nearby and with relatively small impact from the terrain. 

The Atlanta area represents the case where the urban component is well-separated from industrial sources and the area also 

contains the world largest airport. In the Pittsburgh area, industrial and urban sources have comparable contributions, and the 5 

TROPOMI-based industrial emissions estimates can be validated by EPA NEI CEMS measured emissions. Multiple industrial 

sources in the Houston area are missing from the used EPA NEI CEMS emissions database and in this example emissions 

from the EPA eGRID database can be compared with TROPOMI-based estimates.  

 Boston is a major urban area with a population of more than 8 million (for the Combined statistical area of Greater 

Boston). On the TROPOMI NO2 map (Fig. 6, column a), it appears as a large “hotspot” that can be successfully reproduced 10 

by the statistical model (Eq.1) using the population density as a proxy.  From our estimates, there is a -24%±2% decline (the 

error bars correspond to 2-σ for random uncertainty, see Section 4.3) in the urban emissions in 2020 compared to the 2018-

2019 average. Our estimates of urban emissions changes in 2020 are similar to the -22.8% drop in TROPOMI NO2 values 

estimated by Goldberg et al., (2020) for the period from March 15 to April 30; and -18.3% drop estimated by Bar et al., (2021) 

for the period from March 22 to May 30. Boston also shows one of the largest in the U.S. declines in the background component 15 

(about 20%±0.5%). Although the background component is not linked to particular plumes, it is likely that very high emissions 

from the largest in the U.S. NO2 hotspot over the New York-Philadelphia contributed to the background NO2 over Boston and 

decline in emissions there caused changes in the background NO2 over Boston.   

 Our estimate of the urban emissions decline for Atlanta is about -35%±2%.  This is higher than the -20% decline 

estimated by Goldberg et al., (2020). However, changes in the background component where about -13%±0.4%, while the 20 

background (Fig. 6, column d) component over Atlanta is comparable to the urban (Fig. 6, column e) component (both are 

about 0.04 DU), so decline of the sum of the two components over Atlanta should be about -23%. The urban component 

estimates are based on fitting of the plume from the city itself where NO2 is dominated by on-road vehicle emissions. 

Kondragunta et al., (2021) estimated that the decline in on-road emissions is about -28%, that is closer to our estimate.  The 

Atlanta area also hosts the Hartsfield–Jackson Atlanta International Airport (labelled as “1” in Fig 6, column h), the world’s 25 

busiest airport with more than 100 million passengers per year in 2018-2019 (https://aci.aero/data-centre/annual-traffic-

data/passengers/2017-passenger-summary-annual-traffic-data/). The Atlanta airport NO2 signal can be easily isolated since the 

airport is located far away from industrial sources (the correlation coefficients between the plume functions are less than 0.2) 

and at a distance from Atlanta city’s most populated area (the correlation coefficient is 0.54). VCDs estimated for the industrial 

source clusters (column f in Fig. 6) are in line with those based on reported emissions (column g in Fig. 6). Our estimated 30 

annual emissions for the airport are 5.1±0.2, 6.4±0.2, 2.9±0.2 kt y-1 in 2018, 2019, and 2020 respectively, while the EPA 

emissions inventory value is 3.7 kt y-1 for 2017 (the last available year). Thus, our estimates show a 55% decline in airport 

emissions between 2019 and 2020. The decline in aircraft operations for the analysed period was about 75% for passenger 

https://aci.aero/data-centre/annual-traffic-data/passengers/2017-passenger-summary-annual-traffic-data/
https://aci.aero/data-centre/annual-traffic-data/passengers/2017-passenger-summary-annual-traffic-data/
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flights and 25% for cargo operations (according to Department of Aviation, Hartsfield-Jackson Atlanta International Airport, 

https://www.atl.com/business-information/statistics/, accessed on Nov. 15, 2021). For illustration purpose only, for Hartsfield-

Jackson Atlanta International Airport, the 2017 EPA emissions inventory value was used to calculate NO2 VCD in column g 

of Fig. 6 for 2018 and 2019 and a half of that value for 2020. 

 The Pittsburgh area includes the cities Pittsburgh (population of ~2.4 million) and Cleveland (~3.6 million) and has 5 

one of the highest emissions from industrial sources among the analysed areas. Several coal-burning power plants are located 

east, west, and south of the city. Their emissions are comparable or even larger than from Pittsburgh itself. The NO2 distribution 

around major industrial sources “reconstructed” from the reported emissions (Fig.6, column g) is similar to the NO2 distribution 

from industrial sources based on satellite estimates (Fig.6, column f ). The differences (column  f  minus column g) are small 

although NO2 from the reported emissions are slightly larger for the cluster of power plans east of the city. The total reported 10 

emissions from all industrial sources in the Pittsburgh area are 43, 37, 26 kt y-1 for 2018, 2019, 2020 respectively, while our 

estimates are 36, 34, 24 kt y-1 (with 2-σ uncertainty of about 1.5 kt y-1), i.e., the 2020 decline from our estimates is 35%, while 

the decline in reported emissions is 31%. The urban emissions declined from about 72±2.3  kt y-1 in 2018 and 2019 to 36±1.2  

kt y-1 in 2020, i.e., by -50%.  

In the case of Houston, the EPA NEI CEMS emissions inventory contains emissions from the power plants in the 15 

area, but not from large oil refineries that are responsible for hotspots seen on the TROPOMI mean NO2 plot. Their coordinates 

and emissions estimates were obtained from the eGRID inventory. The reported industrial emissions values for the analyzed 

Houston area in 2018-2019 are 17 kt y-1, while our estimates are 36 and 31 kt y-1 for 2018 and 2019 respectively and the 

estimated value for 2020 is 33 kt y-1. It appears that TROPOMI-based emissions estimates agree with emissions from the 

power plants from CEMS but are noticeably larger that emissions from oil refineries available from the eGRID inventory (Fig. 20 

6, column h). Our estimated changes in background and urban components for the Houston area are -2.3%±0.4% and -

18%±1.6% respectively, i.e., we see a decline in the urban component and practically no changes in the two other components. 

Goldberg et al., (2020) estimated the decline over Houston in -15.6%, although the spread between three used methods of 

estimation is large, from -26.3% to -1.9%. Note that the lockdown period in Houston was relatively short, from April 2 to 

April 30.  25 

4.2 Relative contribution of different components 

NO2 VCD represents total number of molecules, and equivalently mass, per area unit. When background, urban, and 

industrial components of the NO2 distribution are estimated as described in Section 3, it is possible to calculate the total NO2 

mass, of each of the components and estimate their relative contribution to the total NO2 mass. The diagram in Fig. 7 shows 

such contribution of individual components for the Montreal area (Fig. 3 d, e, f). Most NO2 mass is associated with the term 30 

related to the background component. For the Montreal area, the contribution of industrial sources is four times less than the 

contribution of the urban component and the two of these components are responsible for less than a quarter of the total NO2 

mass in the area. Relative contribution of the three components in the other areas for the 2018-2019 period are shown in Fig. 

https://www.atl.com/business-information/statistics/
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S1. Most of NO2 mass belongs to the background component that is not directly linked to plumes from urban and industrial 

sources. These plumes are responsible about a third of total satellite estimated NO2 mass in New York and Los Angeles and 

far less in the other analysed 3° by 4° urban areas in the U.S and Canada. This result depends on a particular size of the area, 

but the fraction of the background component is larger for larger areas as all major urban areas are already included in the 

analysis. Fig. S1 also shows that NO2 mass emitted from cities are larger than emissions from the industrial sources for most 5 

of analysed areas in the U.S. and Canada. Note that characteristics such as the mean background value and annual emissions 

per capita are much less dependent on the area size and the rest of the study is focused on them.   

 The mean NO2 distribution near major emissions sources has sharp gradients  that suggest that the NO2 lifetime is 

relatively short, on the order of a few hours that is also confirmed by direct estimates (Beirle et al., 2011; de Foy et al., 2015). 

However, large background component may suggest that the lifetime should be relatively long since NO2 distribution follows 10 

the terrain over large areas. This difference in the lifetime could be reconciled if we assume that a fraction of NO2 emitted 

from cities and industrial sources gets into the free troposphere and have a longer lifetime there than near the ground. Also, 

levels of the OH radical, the main chemical NOx sink, within a plume can be much larger than under “clean” conditions and 

NO2 lifetime could be longer under such condition than in the plume (Juncosa Calahorrano et al., 2021). Other sources, e.g., 

lightning or soil emissions may contribute to background component NO2 directly. The background term can also include 15 

components of stratospheric NO2 that was imperfectly removed as part of the retrieval algorithm (von Geffen et al., 2020). 

Finally, estimates of NO2 lifetime from TROPOMI data (e.g., de Foy et al., 2015; Liu et al., 2016; Lange et al., 2021) are based 

on daytime observations only. However, the lifetime at night could be different (Kenagyet al., 2018) and nightime emissions 

and NOx evolution during the nights are not reflected in our estimates. 

4.3. Variability and uncertainty estimates 20 

 Two characteristics of uncertainties of the estimated NO2 components are calculated, and the results are presented in 

Table 1. Uncertainties related to the random measurement errors can be estimated assuming that the residuals ε in Eq. 1 are 

uncorrelated and have the same variance. Since the total number of satellite pixels in the statistical model is very large, several 

hundred thousand, and the number of parameters is small, such uncertainties are typically low. These uncertainties are 

calculated for the three components in each analysed year and the average value for each area (in percent) are given in Table 25 

1 as “random error”. On average, these random errors are about 0.25%, 1% and 3% for the baseline, urban, and industrial 

components respectively. The random uncertainty represents how precise the component value is calculated and provides the 

lowest limit of the total uncertainty. 

 Interannual variability is another characteristic that reflect uncertainties related to the contributions from meteorology, 

possible instrument or algorithm-related issues, differences in sampling due to variations in cloud cover, and perhaps, other 30 

factors. It is also affected by the changes in emissions themselves. Internal variability can be estimated by comparing the 

components, estimated for different years. The 2020 data are not used in this estimate since they were largely affected by the 

lockdowns. Instead, we added estimates for 2021 and calculated the standard deviations from the three values (Table 1). 
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Although estimates from just three data points are not very reliable, they show similar results for most of the analyzed areas 

and their average can be used as a characteristic of the interannual variability.  The average standard deviation of the interannual 

variability for the background component is only 7.5%. The interannual variabilities for the urban and industrial components 

are 10% and 18% respectively. The interannual variability represents the upper limit of the total uncertainty. 

 The uncertainty of the percentage change between 2018-2019 and 2020 values is a combination of the uncertainty of 5 

the baseline, estimated from just two years and the uncertainty of the 2020 value. This gives the following values for 2-σ 

confidence limits for the percent changes: 18%, 24%, and 44% for the baseline, urban, and industrial components respectively.  

4.4 The COVID-19 lockdown impact: the U.S. and Canada 

The ability of the method to isolate individual components of the satellite measured total NO2 mass makes it possible to 

estimate the impact of the COVID-19-related lockdown on these components separately. As mentioned, we compared the 10 

averages for the period from March 16 to June 15 in 2018 and 2019 to the same period averages for 2020. 

 To illustrate the changes in the background component, Fig. 8 (top) shows the mean VCD values of that component 

shown in Fig 6, column d (or, in other words, the mean value of  α0 + (β0 + β1(θ – θ0) + β2(φ – φ0))·exp(-H/H0)) for the analyzed 

areas for the two time intervals (left column) as well as the percentage change in 2020 vs.  2018-2019 values (right column). 

The mean value of decline for the background components among all urban areas is -6.5% ± 3.0%. As mentioned, the largest 15 

decline of the background component was observed at Boston. The decline was also large, about -20%, over two areas 

(Edmonton and Calgary) in Canadian province of Alberta. It is unlikely that this decline is related to the lockdown: the 

restrictions in Alberta were not as tight as in many other areas: only some non-essential cervices were closed on March 27 and 

the restriction started to be eased in May (https://edmonton.citynews.ca/2020/12/24/2020-look-back-albertas-pandemic-

response/ accessed on Nov. 20, 2021). In 2020, Alberta had a “historically low” level of forest fires: by June of 2020, fires had 20 

burned just about 450 hectares of forest, compared to, for example,  650,000 hectares by June of 2019. 

(https://globalnews.ca/news/7396849/alberta-2020-slow-wildfire-season/  accessed on Nov. 10, 2021) and therefore, likely 

lower than normal natural NO2 emissions resulting in lower background levels.  

   The changes in the urban component are shown in Fig. 8 (middle row) expressed as annual NO2 emissions per capita. 

Recall, that emission rate is the mass divided by the constant lifetime, therefore, the percent changes in emissions per capita 25 

and the changes in total mass are identical. The relative changes for the urban component (Fig. 8 right column) are typically 

larger than those for the background component. The average total emissions per capita declined by -28% in 2020 compared 

to 2018-2019 average (from 5.6 to 4.2 kg per year). The median value of decline among all urban areas is -26% and the mean 

value of percentage decline is -27% ± 6.2%. The changes in emissions per capita are rather uniform except Vancouver where 

2020 emissions are 15% larger than the average 2018-2019 emissions. This Vancouver anomaly is within the 2-σ limits of 30 

natural variability as discussed in section 4.3 (Table 1) and  may be related to unusual meteorology and persistent cloud cover 

there in 2020. Edmonton is excluded from this panel because two industrial sources are located in the city itself and, therefore, 

it is hard to separate their emissions from the urban emissions.  

https://edmonton.citynews.ca/2020/12/24/2020-look-back-albertas-pandemic-response/
https://edmonton.citynews.ca/2020/12/24/2020-look-back-albertas-pandemic-response/
https://globalnews.ca/news/7396849/alberta-2020-slow-wildfire-season/
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 The number of sources and emission strength from large industrial sources varies from area to area. Some areas, e.g., 

Las Vegas, do not have such emissions sources at all. The total emissions from all large industrial emissions sources and 

percentage change in emissions are shown in Fig. 8 (bottom row). The mean value of percentage decline in the areas with 

industrial sources is -22%±11%. Unlike background and urban components, changes in emissions from industrial point sources 

demonstrate rather large scattering from one area to another. It is not a surprise since in addition to the difference in the strength 5 

and length of the lookdown between the areas, there is a difference in the lockdown impact on various industrial sectors.  

 Overall, the 2020 values for the baseline and industrial components at individual sites are within 2-σ limits of the 

interannual variability (the grey dashed lines in the right panel of Fig. 8) with just few exceptions, while 16 of 27 urban 

component values are outside these limits. As noted in Section 4.3, the interannual variability is rather large and therefore, the 

decline for individual areas is often not significant. For this reason, we analysed 27 individual areas covering a vast region 10 

with very different meteorological conditions, so the average of individual area estimates (i.e., the regional mean) can be 

calculated with high confidence. Indeed, the regionally mean values of the ratios of changes in 2020 urban and industrial 

components to  the standard errors of these regional means are about 8.5 and 5.9 respectively (assuming that deviations for 

individual areas are not correlated), i.e., well outside the limits of interannual variability. The approach that is focused on 

regional statistics rather than on individual areas is used for all other regions in this study. 15 

 Since industrial point source emissions estimates are obtained as part of our TROPOMI NO2 VCD data analysis, such 

estimated emissions can be compared to the reported ones. In general, there is an agreement between estimated and reported 

emissions, as was already demonstrated in Fig. 6 a. The scatter plot of estimated vs. reported emissions in 2018-2019 is shown 

in Fig. 9 for the U.S. urban areas. Each dot on the plot corresponds to industrial emissions from one area in either 2018 or 2019 

with the total of 40 data points. The correlation coefficients between the two data sets from Fig. 9 is 0.84. The slope of the 20 

regression line is about 0.7 suggesting that, on average, our estimates are 30% higher that reported emissions. The standard 

deviation of the residuals is about 5 kt y-1. This value gives an approximate uncertainty for point source of NO2 emissions 

estimates for a 3-month period from TROPOMI data.  As it is a direct comparison with the actual reported emissions, it includes 

all possible sources of errors. Then, the annual NO2 emissions are expected to be estimated with uncertainties of about 2.5 kt 

y-1 that is twice less than about 5 kt y-1 for SO2 emissions uncertainties (Theys et al., 2020).  25 

  

4.5 The COVID-19 lockdown impact: Europe 

The described technique was applied to the European Union countries (plus non-members from former Yugoslavia) where 

detailed information about the industrial emissions sources is available. The analysis was also done for 3° by 4° areas around 

36 largest European cities with population greater than 1 million plus some national capitals with population more than 30 

500,000.  Note, that to avoid double-counting, if more than one city located within an area, we used that area just once (e.g., 

Manchester and Birmingham are in one area).     
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 The absolute and relative changes between 2018-2019 and 2020 for the three components are shown in Fig. 10. The 

NO2 decline of the urban component was particularly large, more than 50%, for the countries in the most western part of the 

continent where the strictest lockdown measures were taken: France, Spain, and UK (Fig. 10 a). In contrast, the decline in the 

German, Czech and some other East European cities was only 20-25% (Fig. 10 b). For this reason, two sub-regions were 

formed for the analysis: Europe-1 (Italy, France, Spain, Portugal, Belgium, Ireland, and UK) and Europe-2 with all other 5 

countries. In general, the mean background values and estimated NO2 emissions rates per capita in Europe are similar to those 

in the U.S. and Canada. However, relative changes are somewhat different.  

 In 2018-2019, the estimated annual emissions per capita for both European regions were very similar to those for the 

U.S. and Canada. In 2020, the urban component declined in almost every analysed area. The average declines for Europe-1 

and Europe-2 regions were -54%±4% and -13% ±8% respectively. This is in general agreement with total NOx emissions 10 

reduction for these two European sub-regions: -50% for Europe-1 countries (Italy, Spain, France) and -15% to -25% for 

Europe-2 countries (Germany, Sweden) with -85% of the total reduction attributable to on-road transport (Guevara et al., 

2021). The decline in Europe-1 was rather uniform with all but one area demonstrating a decline of more than -40%. In contrast, 

only two areas demonstrated a -40% decline in Europe-2, while most of the areas had a decline under -20%. Two areas in 

Europe-2 (Budapest and Belgrade) demonstrated an increase in NO2. They are located 320 km apart and it is possible that 15 

relatively high NO2 values there were caused by some specific meteorological conditions in spring of 2020: the NASA GEOS 

Composition Forecasting (GEOS-CF) simulations with constant anthropogenic emissions show a positive NO2 anomaly over 

Hungary in April-May 2020 (Liu et al., 2020b).  

 As in the case of the U.S. and Canada, the mean background component in Europe shows a smaller decline than the 

urban component. On average, it was -5.9%±2% and -11.5±3% lower in 2020 than in 2018-2019 for Europe-1 and Europe-2 20 

regions respectively, but it was pretty consistent as almost all individual areas demonstrated a decline. Large decline in 

population-related emissions and relatively small decline in the background component for Europe-1 and the opposite for 

Europe-2 may create an impression that here is anticorrelation between the background level and population-related 

component, but it is not true. The large decline in average background for Europe-2 was caused by large negative background 

values for the Scandinavian countries in 2020 that also had large negative changes in the urban components. As discussed later 25 

in Section 4.6, there is no correlation between the changes in the background levels and urban component. 

  The emissions from industrial sources also demonstrated a decline, although the scattering of the values is large as 

the changes varied from country to country and from sector to sector. Guevara et al., (2021) estimated that the emissions 

decline in the energy industry was up to -30% in Italy, but under -5% in Sweden. The emissions decline from the manufacturing 

industry was smaller, from about -15% in Italy, Spain, France, UK to -5% in Germany and near zero in Sweden. Emissions 30 

from aviation were reduced by -90% in all European countries (Guevara et al., 2021). We estimated changes in emissions only 

for industrial sources that are located in the analysed areas around major cities and therefore do not represent the entire 

industrial emissions, but our estimates also show a difference between Europe-1 and Europe-2 regions: the average decline 

values -34%±10% and -13%±16%, respectively.  
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 The uncertainty estimates are also in general similar to those for the U.S. and Canada: the random uncertainty is about 

0.25% for the background component and 1% for the urban component. The interannual variability estimates are also similar 

for the background component (5.6%, 6.8% and 7.5% for Europe-1, Europe-2 and Canada-U.S. respectively). The interannual 

variability for the urban component for Europe-1 (12%) is also the same as that for the Canada-U.S. region, but higher (15%) 

for the Europe-2 region (Supplement, Tables S1 and S2). For Europe-1, the decline of the background component is within 5 

the 2-σ level for all the areas and the decline of the urban component outside the 2-σ level for all the areas.  For Europe-2 

however, the decline of the urban component is inside the natural variability limits. For the industrial component, the variability 

is high and the 2020 decline is within the 2-σ level for most of the areas. 

 For illustration purposes, four areas are examined in greater detail in Fig. 11. The Manchester map (Fig. 11 top row) 

illustrates a large area of high population density in Central England with several power plants to the East. Recall, that the 10 

urban component is essentially the population density convoluted with EMG functions and the two large hotspots in the urban 

component corresponds to Manchester and Liverpool area to the north and Birmingham area at the south. Our TROPOMI data 

analysis shows a -40%±1.4% decline in the urban component and about -18%±5.6% decline from total emissions from the 

power plants. These numbers are close the reported by the UK Office of National Statistics decline in road traffic (-35% and -

50% for April and May, respectively) and industrial activity (-20%) (Potts et al., 2021). The estimated decline in the urban 15 

component is very close to the -42% decline in the surface NO2 concentrations reported by Lee et al., (2020). In contrast, the 

background component shows almost no change in 2020 compared to 2018-2019. For this reason, the total decline in 

TROPOMI NO2 VCD over Manchester (-27% according Barré et al., 2021, and -32% according to Potts et al., 2021) is smaller 

than our estimates for the urban component alone. 

 Paris is an example of a city that appears as a large, isolated urban source. The change between the two periods in the 20 

background component (Fig. 11, col. d) is about -10%±0.5%, while the decline in the urban component (Fig. 11, col. e) is 

about -57%±1.5% clearly seen on the plot. As in the other cases, this value of decline is larger than the decline from TROPOMI 

NO2 VCD data without separation of the two component and closer to the changes in NO2 surface concentrations. Estimated 

decline in TROPOMI NO2 VCDs over Paris was about -30% (Bauwens et al., 2020; Barré et al., 2021), while the estimated 

decline in NO2 concentrations was -40-50% (Keller et al., 2021; Barré et al., 2021). The terrain does not play a major role in 25 

background component for the Paris area. There is some north-south gradient in the background component with higher values 

at the north-eastern corner of the area. The only relatively large industrial point source in the Paris area is Charles de Gaulle 

Airport which is evident on the 2018-2019 plot and practically disappeared on the 2020 plot. Our estimates show about 90% 

decline in NO2 emissions from 2018-2019 averages (from about 6.1±2.2 kt y-1 to  0.5±0.2 kt y-1) that is in line with more than 

-95% decline in the passenger traffic of Charles de Gaulle Airport in April and May 2020 30 

(https://www.parisaeroport.fr/en/group/finance/investor-relations/traffic accessed on Nov. 10, 2021).  

 Milan was one of the first European cities where some lockdown measures were imposed in late February and -40 to 

-60 reduction in NO2 concentrations was reported (Collivignarelli et al., 2020). Complex terrain affects the NO2 distribution 

creating large differences between VCD values over the mountains and valleys and also makes it more difficult to fit the 

https://www.parisaeroport.fr/en/group/finance/investor-relations/traffic
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observations with the plume functions based on assumption of straight-line plumes resulting in relatively high residuals. The 

background component shows practically no difference between the two periods. The contribution from industrial point 

sources for that area is small. The urban component demonstrates a -53%±1.5% decline in 2020 that is similar to other 

TROPOMI-based estimates for Milan: -38%±10% (Bauwens et al., 2020) and about -50% (Barré et al., 2021), while the 

estimated decline in surface NO2 concentrations was only slightly larger, -41% (Keller et al., 2021) and about -52% (Barré et 5 

al., 2021). Such small difference in the decline between VCDs and surface concentrations may be due to a relatively small 

contribution of the background component to the total VCD: it is just about one third of the urban component over Milan. 

  The maps for the Prague- Dresden area illustrate how changes in NO2 from industrial sources reflect differences in 

COVID-19 lockdown policies in Germany and Czech Republic. The decline in the urban component was only about -16%±3%. 

In addition to Prague, that component also includes cities in East Germany (Dresden, Leipzig), but the changes over these 10 

cities and Prague are similar and close to -20% (Barré et al., 2021). Otherwise, the difference would appear in the residuals 

(Fig. 11, column c). The main industrial sources in the Prague area are coal mines and coal-burning power plants in Czech 

Republic west of Prague near the German border and in Germany north of Prague, near the Polish border. In Czech Republic, 

the NO2 values of the industrial component remain unchanged, while the values over German industrial sources declined by a 

factor of 2. This is likely the result of different approaches to coal power industry in two countries. In the Czech case, power 15 

plants remained fully functioning and certain steps were taken to assure smooth operation and protect the workers: employees 

of power plants stayed on their job for longer periods, to avoid the risk of infection at home (EC, 2020). In Germany, the power 

generation from coal-burning plants was reduced by 60% (from 13.4 TWh to 5.6 TWh per month) in April-May 2020 compared 

to 2019 (https://www.energy-charts.info/charts/energy/chart.htm?l=en&c=DE&year=2020 accessed on March 1, 2021).  As a 

result, we see a large difference in NO2 VCDs from the power plants in two countries. 20 

4.6 The global COVID-19 lockdown impact 

To evaluate the COVID-19 lockdown impact worldwide, the analysis described earlier in Section 4 was performed for 261 

urban areas around the world.  All cities with population greater than 1 million were considered. However, some of them, 

particularly in Africa, do not produce significant NO2 emissions that can be measured by TROPOMI over the three-month 

period selected for this study. Another obstacle is in Western Africa, where biomass burning made it difficult to estimate 25 

“background” levels as they were very different from year to year. Biomass burning areas appears as large anomalies on the 

maps of the residuals (such as shown in Fig. 3 c) making the standard deviations of the residuals much higher than at the other 

African cities. For this reason, several areas with population over a million in Western Africa were not included in the analysis. 

In case of China, there are too many cities with population over one million. We raised the limit for China and considered only 

cities with population greater than 6 million to keep the number of analysed areas similar to other regions.  30 

The analysis algorithm requires coordinates of individual industrial sources in order to separate them from the urban 

component. The world power plant database (see section 2.3) was used to locate most of the power plants. Other sources were 

identified from hotspots on the NO2 residual maps as typically correspond to emission sources that are not included in the 

https://www.energy-charts.info/charts/energy/chart.htm?l=en&c=DE&year=2020
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original fitting. Coordinates of such sources are determined from high-resolution satellite imagery and added to the point 

source list and then the fitting process is repeated.  A total of 357 such additional sources were identified. Most of them were 

cement and steel factories, and oil refineries. In addition, the world busiest airports were included as “industrial” emission 

sources. However, other sources, e.g., ship tracks or major highways may still be missing that may affect estimates for some 

areas. Some of these sources are identifiable in the residual maps and could be added to the statistical model in the future. 5 

 The map of the background and urban components for all 261 sites in 2018-2019 is shown in Fig. 12. The analysed 

period from mid-March to mid-June is close to spring in the Northern Hemisphere and autumn in the Southern Hemisphere, 

i.e. the seasons with very similar values of lifetime (Lange et al., 2021). Therefore, seasonal differences between the two 

hemispheres should be minimal, and maps of the main estimated components should well represent their global distribution. 

The highest background values are seen over East China and the northern part of Central Europe, while the lowest are mostly 10 

over South America and East Africa.  

 The urban component demonstrates the highest values are over Siberian region of Russia. They are likely related to 

additional NOx emissions due to heating there since the climatological temperatures there are relatively low in March-April 

compared to other regions. Another hotspot is Edmonton, but as mentioned, its high value is due to poor separation of urban 

and industrial sources there. Annual emissions per capita are also high over Middle East. However, in this region we found 15 

that the population density data in some areas including, for example, Riyadh, may not be reliable and emissions per capita 

may be overestimated. The population density maps there do not match Google map satellite images and other proxies such as 

night light data. This requires further investigation. 

As Fig. 12 (bottom) shows, the lowest annual emissions per capita are in South America, Africa, and India (under 2 

kg y-1). Although emissions per capita were calculated for each area independently and the population and industrial sources 20 

vary greatly from area to area, the per capita values are uniform: for example, almost all areas in India marked by green dots 

(0 to 2 kg y-1), most of European areas are orange (4 to 6 kg y-1), etc. This further gives a confidence in the obtained estimates. 

Fig. 12 shows NO2 emissions based on the NO2 total mass estimates and a fixed lifetime. These could be further converted to 

the NOx emissions by applying a conversion factor that typically varies from 1.2 to 1.4 (Beirle, et al., 2021).  

Note that the urban NO2 “footprints” of cities with the same population vary greatly from region to region with the 25 

highest values in Northern Eurasia and Australia, and the smallest in Africa and India. To illustrate these large differences, 

Fig. S2 shows the examples of NO2 distribution near cities with population of about 5-6 million with very large (Saint 

Petersburg, Russia) and very small (Dar es Salaam, Tanzania) per capita emissions. The total mass of NO2 per capita related 

to the urban component for Saint Petersburg was 40 times larger than for Dar es Salaam.  

Fig. 13 shows the maps of percent changes for individual areas for the background and urban components. Relative 30 

changes of the background component are typically within ±15% and much smaller than in the urban component. One of the 

regions with large negative changes in the background component is Middle East. As mentioned, the population density data 

are not always accurate in that region and the background component may not be perfectly separated from the urban and 

industrial components. In contrast, the urban component demonstrates a much larger decline, particularly over Europe-1 and 
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India. Note the changes in the urban and background components are fairly independent: analysis of all 261 areas revealed that 

the correlation coefficient between them is -0.007. 

 The estimates for individual areas were then grouped into 13 large regions with 10-20 areas in each: the U.S. and 

Canada, Europe-1 and -2, China, India, South-East Asia (also includes Pakistan and Bangladesh), Japan with Taiwan and 

South Korea, Northern Eurasia (former USSR countries and Mongolia), Middle East, Africa, Australia and New Zealand, 5 

Central America, and South America. The regions are based on geographical location with similarities in economic 

development and reactions to the COVID-19 pandemic were also considered. Then, the average characteristics of the 

background, urban and industrial components were calculated for each region. Johannesburg (South Africa), and Pyongyang 

(North Korea) were not included in any particular region because their NO2 emissions were very different from those form 

neighbouring countries and therefore may bias regional statistics.  10 

 The summary results for the regions are shown in Fig. 14. The regions in Fig. 14 are sorted by relative decline in the 

urban component (from smallest to largest). The regional changes were calculated as the average of percent changes for 

individual areas for that region.  The uncertainty values in Fig. 14 are based on variation of the values for individual areas 

within the region. The background component has the smallest variability among the three components typically between 5% 

and 9%. The urban component variability is between 7% and 17% and the decline observed in the urban component for South 15 

America, Europe-1 and India is outside 3-σ limits even for individual areas in these regions. The industrial component was 

added to separate emissions from large industrial sources in the urban areas from urban emissions themselves. Emissions from 

such industrial sources are typically similar or smaller than urban emissions and the variability of the industrial component 

(10%-30%) is similar or larger than that for the urban component.  

 China shows the smallest and not significant decline in the urban component over the analysed period as the main 20 

COVID-19 lockdown in China occurred earlier (in February). Most of the regions demonstrated statistically significant urban 

emissions decline within the range -18 to -28%. The decline was the largest, -36 to -52%, in three regions: Europe-1, South 

America and India.  The map of the urban emissions changes (Fig.13, bottom) shows that the first two regions indeed contain 

countries with large decline of urban emissions. In case of India, a similar decline can be seen in neighbouring Pakistan and 

Bangladesh. In Africa, a decline is seen at the south and the north of the continent, while countries in West Africa mostly show 25 

no decline and even some increase probably due to a contribution from forest fires. 

 As mentioned in section 4.3, the industrial NO2 component varies from area to area and from one type of NO2 source 

to another, although there are some clear regional differences. Chinese cities demonstrated small changes in both urban and 

industrial components (-2.8% and +5% respectively) with one exception.  Emissions from Wuhan, the city where the pandemic 

begun, declined by more than -60%. Industrial emissions there also declined, but only by -30%. The background component 30 

shows no change there. A very strict Wuhan lockdown ended on April 8, 2020, but during that lockdown, NO2 emissions in 

Wuhan declined -82% relative to the 2019 level (Ghahremanloo et al., 2021). That strict lockdown period lasted for less than 

one third of the analysed period, but apparently, it took some time for NO2 emissions to return to the pre-lockdown levels.  
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 It is more difficult to interpret changes in industrial source emissions because they are changing over time for various 

reasons that may require an investigation on a case-by-case basis. For example, the large uncertainties in the industrial emission 

changes for Central America in Fig. 14 are caused by doubling of emissions from power plants near Havana. This increase is 

likely caused by emissions from three powerships (power plants on ships) with total capacity of 184 MW, that started their 

operation in Port de Mariel near Havana in the second half of 2019 (https://karpowership.com/en/project-cuba, accessed Nov. 5 

4, 2021).  The largest regional industrial emissions decline was observed over Europe-1 and India, i.e., where also largest 

urban emissions decline was observed. It is likely the severe restrictions during the COVID-19 lockdown period there affected 

the industrial activity. However, on a larger scale, this link is not that obvious. Although the lockdown had impact on industrial 

sources, the correlation coefficient between changes in urban and industrial emissions among all analysed areas is -0.01.  

 As mentioned, statistical errors related to the fitting procedure are relatively small due to a very large number of 10 

satellite pixels used in the fit. For the urban component, they are between 1% and 10% for the cities analysed in this study. 

However, the year-to-year variability could be high. Table 2 summarizes the uncertainty for the 13 regions analysed in this 

study. It is similar to Table 1; however individual rows contain the averages of uncertainty estimates for all individual areas in 

the region. The uncertainties for the background component are between 4.9 and 9%. The urban component demonstrates the 

interannual variability between 9% and 22% with the largest value over the Middle East were, as mentioned, there could be a 15 

problem with the population density data quality. It is far more difficult to interpret the estimated interannual variability for 

the industrial sources because it depends on multiple factors from the meteorological conditions to the emission strength itself. 

The main conclusion here is that it is typically -10% to -20% for emissions from large (about 5 kt y-1 or more) sources estimated 

based on 3 months of data.  

  To demonstrate that the observed NO2 changes in urban emissions are indeed linked to the restricting measures taken 20 

by different countries, the estimated percent NO2 changes in annual emissions per capita were compared to the Google Each 

Community Mobility Report data. The mobility data represent the changes in the number of people at locations of various type 

and can be used as a proxy for the urban traffic. The changes in the background and urban components were calculated for 

every country and compared to changes in mobility data. Only countries with two or more cities were used in the comparison. 

Note that the mobility data were averages of all regions for the entire country, while the NO2 changes were estimated for areas 25 

around large cities only. Mobility data for China, Korea and some other countries were not available. 

 The scatter plot of the mobility and the NO2 VCD changes (Fig. 15) demonstrates a very different relationship between 

the urban and background components. Changes in mobility and urban components are correlated (Fig. 15 left). As expected, 

the relative changes in the urban component are smaller than the mobility changes as the urban component includes more than 

just mobility-related traffic. The highest correlation is observed when changes in the NO2 urban component are compared with 30 

mobility for “retail and recreation”, covering visits to restaurants, cafes, shopping centers, theme parks, museums, libraries, 

movie theatres, and similar locations. The correlation coefficient between the percent changes in per capita emissions and 

“retail and recreation” mobility is 0.62 (the probability that there is no correlation is less than 0.0003). There is no statistically 

significant correlation (the correlation coefficient is -0.08) between the background NO2 and mobility data (Fig. 15 right).  

https://karpowership.com/en/project-cuba
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 For individual areas, the uncertainties due to the interannual variability rather large, so the observed 2020 decline of 

the urban component in many areas is within that uncertainty. Regional averages are more accurate and declines in urban 

emissions are statistically significant for all regions except China. Finally, mean 2020 declines of all areas (except China) 

are -6.0%±1.2% and -26.7%±2.6% for the background and urban components respectively that corresponds to 10-σ and 20-σ 

levels (Supplement, Fig. S3). In 2018, 2019, and 2021, such global averages are remarkable stable, as all mean values are 5 

within ±2.5%, and within ±5% if the means are taken with the two-sigma uncertainties. This suggests that there are no 

substantial drifts or shifts on the global scale in TROPOM data and the 2020 data is clearly an outlier.  

5 Discussion and conclusion  

Statistical regression analysis was used to separate contribution from industrial sources, urban areas, and background levels to 

the satellite observed tropospheric NO2 columns (VCDs) and to study the impact of the COVID-19 lockdown on each 10 

component separately. The analysis was done for 261 major urban areas around the world grouped into 13 large regions. The 

algorithm also estimates urban and industrial emissions assuming a constant NO2 lifetime (or, more accurately, decay time). 

A constant value of 3.3 hours was used as the lifetime.  

To verify the obtained emissions estimates, we compared our result with the estimates from a similar study by Lange 

et al., (2021). In that study, TROPOMI NO2 data were used to estimate emissions from 45 sources worldwide and then the 15 

results were compared with the available emissions inventories and some other satellite-based emission estimates. There were 

33 sources common to both works.  In order to compare them we first calculated our total emissions, i.e., the sum of urban and 

industrial emissions, and then converted them to the same lifetimes as in Lange et al., (2021), and then multiplied them by 1.4 

to calculate NOx emission. As expected, our emission estimates were higher than from Lange et al., (2021) because there is 

typically more than one emissions source in the analysed 3° by 4° areas of this study. Nevertheless, there is 0.78 correlation 20 

coefficient between the two estimates.  

Unlike other similar studies that simply removed the background offset (e.g., Beirle et al., (2011); Lange et al., 

(2021)), this study included the background component as a function of the elevation in the analysis. On a scale of several 

hundred km (as we analyzed 3° by 4° areas), most of the NO2 mass is typically related to the background component. Even in 

the areas such as New York City, the background component accounts for 2/3 of the total mass. This explains why the estimated 25 

impact of the COVID-19 lockdown in urban areas depends on the size of the analysed area: the larger the area the more 

background NO2 it includes and, therefore, the smaller the NO2 difference between the COVID-19 lockdown and reference 

periods.  

In most of the analysed areas, changes in the background components between the COVID-19 lockdown period 

analysed here (from March 16 to June 15, 2020) were typically within 10% from the 2018-2019 levels. In contrast, the urban 30 

component, based on population density, demonstrated a substantial and rather uniform decline of about -18% to -28% in most 

of the regions. Two regions (most western part of Europe and India) demonstrated a larger decline, about -40% to -50%. China 
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showed a much smaller decline (-4.4%±8%) because the lockdown there occurred prior to the analysed period. As for industrial 

point sources, emissions from them varied from region to region and from sector to sector. They demonstrate a decline of 

about  -20% or less except for India and Europe-1 regions.  

Abrupt changes in urban and industrial emissions due to COVID-19 lockdown did not immediately result in a similar 

decline in the background component. This may explain why large changes in NO2 emissions in urban areas produced a 5 

relatively small, about 9% decline in global NO2 (Bray et al., 2021). The importance of background NO2 VCD was previously 

noted by Qu et al., (2021) and Silvern et al., (2019) when they found that the observed satellite tropospheric NO2 VCD trends 

in remote areas do not match the expected changes. The origins of background NO2 are still largely related to urban and 

industrial sources as it is clearly higher in the northern hemisphere, particularly over China, Central Europe and Eastern U.S., 

than in the southern hemisphere and tropics. However, the analysed three-month period may simply not be long enough for 10 

the lockdown to cause large changes in the background levels. There are also other NOx sources such as soil emissions 

(Hudman et al., 2012; Sha et al., 2021). They as well as sources aloft, such as lightning, and to a lesser extent, aircraft NOx 

directly contribute to the background component.  It is estimated that lightning is  responsible for roughly 16% of global 

production and most of this NOx is found in the free troposphere (Bucsela et al., 2019). Furthermore, Zhang et al., (2012) 

estimated that sources such as lightning, soils, and wildfires that account for about 20% of emissions annually and up to 39% 15 

in summer. Satellite measurements are also more sensitive to NO2 in the free troposphere than in the boundary layer and  

relatively small amounts of NO2 there produce a larger signal in satellite data. Another possible explanation is that at low NO2 

concentration in the boundary layer and free troposphere may have longer lifetimes than in the plumes. The fact that NO2 

fluctuations remain persistent over longer time in clean conditions than over polluted areas (Vinnikov et al., 2017) indirectly 

confirms that. 20 

Barré et al., (2021), noticed a different lockdown-related decline between NO2 VCDs and surface concentrations 

(-23% and -43% over Europe respectively). Moreover, Qu et al., (2021) reported that VCDs and surface concentrations had a 

similar decline between 2019 and 2020 at only 5% of the most pollutes sites. At the other sites, TROPOMI NO2 VCDs data 

demonstrated, on average, a smaller decline than surface concentrations. Different changes in background and urban 

components in TROPOMI NO2 could explain this inconsistency between the surface and satellite VCD-based results. The 25 

urban component is directly linked to city plumes and therefore is a better proxy for surface concentrations in polluted areas, 

while the background component includes contribution from other sources that were not affected by the lockdown.  

The urban and industrial components are based on plume dispersion functions that correspond to NO2 near the ground, 

almost always in the boundary layer. The urban component is based on the population density and the assumption that annual 

emissions per capita are uniform in the analysed 3° by 4° area. There are very large differences, up to factor of 40, in estimated 30 

emissions per capita among the different areas. The estimates were done for 3-month periods. For such a short time interval, 

most of the cities with population more than 1 million produce a statistically significant signal that can be readily detected in 

TROPOMI NO2 data. As estimated emissions per capita are rather uniform, they can be used to account for urban component 
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outside large cities. Thus, it should be possible to estimate background, urban, and industrial components on the global scale 

and analyse the residuals in search of other factors contributing to the NO2 budget.  

 The approach described in this study can be used to estimate emissions from cities and industrial point sources. For 

the latter, only source coordinates are required. A comparison of reported and TROPOMI-derived NOx emissions for the U.S. 

demonstrated a good correlation between them. As source coordinates can be also detected from satellite data alone (Beirle et 5 

al., 2019; Ding et al., 2020; McLinden et al., 2016), it may be possible to develop an independent “top-down”  NOx emissions 

inventory from satellite measurements to complement and improve available “bottom-up” inventories as it was done for SO2 

(Liu et al., 2018).  This could be important for regions, where no other emissions information is available.  

Data availability 

The TROPOMI  NO2 product  is  publicly   available  on  the  Copernicus  Sentinel-5P  data  hub (https://s5phub.copernicus.eu). 10 

The reprocessed (RPRO) and offline mode (OFFL) data of version V1.2.2 to version V1.3.2 were used. The Google Each 

Community Mobility Report data are available from https://www.google.com/covid19/mobility/. The Gridded Population of 

the World (GPW) dataset is available from NASA Socioeconomic Data and Applications Center at 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4. The European Centre for Medium-Range Weather Forecasts 

(ECMWF) ERA5 reanalysis data are available from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. 15 

Elevation data are from gridded global relief ETOPO2v2 database (https://www.ngdc.noaa.gov/mgg/global/etopo2.html). 
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Appendix 

This appendix contains additional details of the used fitting algorithm that is largely based on the algorithm for multiple point 

source emission estimates (Fioletov et al., 2017). TROPOMI NO2 VCD can be expressed as a sum of contributions αi·Ωi from 

all individual industrial sources (i), a population density-related term αp Ωp, an elevation-related background, and noise (ε): 

TROPOMI NO2 (θ, φ) =  α0 +αp Ωp (θ, φ)+ Σ αiΩi (θ, φ)+ (β0 + β1(θ – θ0) + β2(φ - φ0))·exp(-H(θ, φ)/H0) + ε(θ, φ)    (A1) 5 

All Ω function are normalized (i.e., their total integral equals to 1) plume functions: the value of that function for a particular 

pixel with latitude θ and longitude φ, is proportional to the value of the plume parameterization from the source i located at 

the latitude θi and longitude (φi) (all in radian).  The parameterization assumes that the plume is moving downwind along a 

straight line has a Gaussian shape spread across that line. To describe the plume, we can rotate satellite pixels for a particular 

day around the source, so the plume would always be moving from north to south, apply the plume parameterization, and then 10 

rotate the pixels back.  If (xi, yi) and (x′i, y′i ) are the pixel’s Cartesian coordinates (km) in the system with the origin at the 

source i before and after the rotation respectively, then they can be calculated from the pixel and source latitudes and longitudes 

as: 

xi= r·(φ-φi)·cos(θi);  

 yi= r·(θ-θi); 15 

 x′i =  xi · cos(-ω) + yi · sin(-ω); 

 y′i = -xi · sin(-ω) + yi · cos(-ω); 

 

where r=111.3 km·180/ π  (or r=6371 km· π/180 for latitude  and longitude in degrees); ω is the pixel wind direction (0 for 

north); φi and θi are the source i longitude and latitude (all in radian). Note that there was a typo in this original formula for r 20 

in Fioletov et al., (2017). 

   Following Fioletov et al., (2017), the contribution αi·Ωi=𝛼𝑖𝛺(𝜃, 𝜙, 𝜔, s, 𝜃𝑖 , 𝜙𝑖) from the source i can be expressed as 

αi·Ωi = αi·f(x′i, y′i) ·g(y′i, s), where:           

𝑓(𝑥𝑖
′ , 𝑦𝑖

′) =
1

𝜎1√2𝜋
𝑒𝑥𝜌 (−

𝑥𝑖
′ 2

2𝜎1
2) ; 25 

𝑔(𝑦𝑖
′ , 𝑠) =

𝜆1

2
𝑒𝑥𝜌 (

𝜆1(𝜆1𝜎2 + 2𝑦𝑖
′)

2
) ⋅ 𝑒𝑟𝑓𝑐 (

𝜆1𝜎2 + 𝑦𝑖
′

√2𝜎
) ; 

𝜎1 = {
√𝜎2 − 1.5𝑦𝑖

′ , 𝑦𝑖
′ < 0;

𝜎, 𝑦𝑖
′ ≥ 0;

 

𝜆1 = 𝜆/𝑠;                                                                                                                            (A2) 

It is assumed that NO2 emitted from a point source decline exponentially (i.e., as exp(-λt)) with time (t) with a constant 

“lifetime” (or decay rate) τ=1/λ. The second parameter is the plume width (σ).  
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 Note that ∫ ∫ 𝑓(𝑥, 𝑦) ⋅ 𝑔(𝑦, 𝑠)𝑑𝑥𝑑𝑦 = ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥) ⋅ 𝑔(𝑦, 𝑠)𝑑𝑦 = ∫ 𝑔(𝑦, 𝑠)𝑑𝑦 =
∞

−∞

∞

−∞

∞

−∞
1

∞

−∞

∞

−∞
, therefore the 

parameter αi represents the total observed number of NO2 molecules (or the NO2 mass) near the source i. If TROPOMI NO2 is 

in DU, and σ is in km, then a is in 2.69·1026 molec. or 0.021 T(NO2).  Furthermore, the emission strength (E) can be calculated 

as E= α/τ assuming a simple mass balance.   

 As mentioned in section 3, some of the sources used in the analysis are not point sources but clusters. In that case, Ωi 5 

= ∑ 𝑤𝑗𝛺𝑗(𝜃, 𝜙, 𝜔, s, 𝜃𝑗 , 𝜙𝑗)𝑗 , where Ωj is the plume function for source j and wj is the weighting coefficient established by the 

factor analysis. 

 Similarly, αp Ωp represent the contribution from the population density-related component, where Ωp is the plume 

function from an area-distributed source. Ωp is a weighted sum of plume functions from a grid with the weighting coefficients 

proportional to the population of at the grid points Ωp = ∑ 𝜌𝑖𝑗𝛺(𝜃, 𝜙, 𝜔, s, 𝜃𝑖𝑗 , 𝜙𝑖𝑗)𝑖𝑗 , where 𝜃𝑖𝑗 , 𝜙𝑖𝑗  are the grid points 10 

coordinates and 𝜌𝑖𝑗 is the population associated with that grid points. Thus, αp is the coefficient that represent the total NO2 

mass the corresponds to one person. In our calculations we used 3° by 4° area with a 0.2° by 0.2° grid with 336 (16 x 21) grid 

cell.  

 Finally, the elevation-related background term 𝛼0 + (𝛽0 + 𝛽1(𝜃– 𝜃0) + 𝛽2(𝜑 − 𝜑0)) · 𝑒𝑥𝑝(−𝐻/𝐻0), where θ0 and 

φ0 are the coordinates of the centre of the analyzed area and 𝐸 is the elevation in km and H0=1 km, is determined by three 15 

parameters.  

 Equation (A1) represents a linear regression model where the unknown parameters αp, αi can be estimated from the 

measured variable (TROPOMI NO2) at many pixels and known regressors. The fitting was done three times using all data for 

the analysed period (March 16 – June 15) in 2018, 2019, and 2020.   

  20 



31 

 

References 

 

Ass, KE, Eddaif, A, Radey, O, Aitzaouit, O,Yakoubi, ME, Chelhaoui, Y.: Effect of restricted emissions during Covid-19 

lockdown on air quality in Rabat—Morocco. Global NEST Journal 22.DOI: http://dx.doi.org/10.30955/gnj.003431, 

2020. 5 

Aydın, S, Nakiyingi, BA, Esmen, C, Gu¨neysu, S, Ejjada, M.: Environmental impact of coronavirus (COVID-19) from Turkish 

perceptive. Environment, Development and Sustainability. DOI: http://dx.doi. org/10.1007/s10668-020-00933-5, 

2020. 

Bao, R. and Zhang, A.: Does lockdown reduce air pollution? Evidence from 44 cities in northern China, Sci. Total Environ., 

731, doi:10.1016/j.scitotenv.2020.139052, 2020. 10 

Bar, S., Parida, B.R., Mandal, S.P., Pandey, A.C., Kumar, N., Mishra, B.: Impacts of partial to complete COVID-19 lockdown 

on NO2 and PM2.5 levels in major urban cities of Europe and USA, Cities, Volume 117,  103308, ISSN 0264-2751, 

https://doi.org/10.1016/j.cities.2021.103308, 2021. 

Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-

Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., 15 

Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and 

Kouznetsov, R.: Estimating lockdown-induced European NO2 changes using satellite and surface observations and 

air quality models, Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, 2021. 

Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J. F., van Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. 

P., Vlietinck, J., Yu, H. and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using 20 

TROPOMI and OMI Observations, Geophys. Res. Lett., 47(11), 1–9, doi:10.1029/2020GL087978, 2020. 

Beirle, S., Platt, U., von Glasow, R., Wenig, M. and Wagner, T.: Estimate of nitrogen oxide emissions from shipping by 

satellite remote sensing, Geophys. Res. Lett., 31(18), L18102, doi:10.1029/2004GL020312, 2004. 

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G. and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides 

probed from space, Science, 333, 1737–1739, doi:10.1126/science.1207824, 2011. 25 

Beirle, S., Hörmann, C., Penning de Vries, M., Dörner, S., Kern, C. and Wagner, T.: Estimating the volcanic emission rate and 

atmospheric lifetime of SO2 from space: a case study for Kīlauea volcano, Hawai`i, Atmos. Chem. Phys., 14(16), 

8309–8322, doi:10.5194/acp-14-8309-2014, 2014. 

Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y. and Wagner, T.: Pinpointing nitrogen oxide emissions from 

space, Sci. Adv., 5(11), doi:10.1126/sciadv.aax9800, 2019. 30 

Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A., and Wagner, T.: Catalog of NOx emissions from point 

sources as derived from the divergence of the NO2 flux for TROPOMI, Earth Syst. Sci. Data, 13, 2995–3012, 

https://doi.org/10.5194/essd-13-2995-2021, 2021. 



32 

 

Belhekar, V. M.: Factor Analysis and Structural Equation Modeling, in A Step-by-Step Approach to Using SAS® for Factor 

Analysis and Structural Equation Modeling, Second Edition, edited by N. O’Rourke and L. Hatcher, pp. 314–361, 

SAS Institute., 2013. 

Bray, C. D., Nahas, A., Battye, W. H. and Aneja, V. P.: Impact of lockdown during the COVID-19 outbreak on multi-scale air 

quality, Atmos. Environ., 254, 118386, doi:10.1016/j.atmosenv.2021.118386, 2021. 5 

Bucsela, E. J., Pickering, K. E., Allen, D. J., Holzworth, R. H. and Krotkov, N. A.: Midlatitude Lightning NOx Production 

Efficiency Inferred From OMI and WWLLN Data, J. Geophys. Res. Atmos., 124, 13475–13497, 

doi:10.1029/2019JD030561, 2019. 

C3S: Copernicus Climate Change Service (C3S) : ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global 

climate. Copernicus Climate Change Service Climate Data Store (CDS), [online] Available from: 10 

https://cds.climate.copernicus.eu/cdsapp#!/home (Accessed 20 June 2020), 2017. 

Chong, H., Lee, H., Koo, J.H., Kim, J., Jeong, U., Kim, W., Kim, S.W., Herman, J.R., Abuhassan, N.K., Ahn, J.Y., Park, J.H., 

Kim, S.K., Moon, K.J., Choi, W.J. and Park, S.S.:gional Characteristics of NO2 Column Densities from Pandora 

Observations during the MAPS-Seoul Campaign. Aerosol Air Qual. Res. 18: 2207-2219. 

https://doi.org/10.4209/aaqr.2017.09.0341, 2018. 15 

Collivignarelli, M. C., Abbà, A., Bertanza, G., Pedraz- zani, R., Ricciardi, P., and Carnevale Miino, M.: Lockdown for CoViD-

2019 in Milan: What are the effects on air quality?, Sci Total Environ, 732, 139280–139280, 

https://doi.org/10.1016/j.scitotenv.2020.139280, 2020. 

Cunnold, D. M., Zawodny, J. M., Chu, W. P., Pommereau, J. P., Goutail, F., Lenoble, J., McCormick, M. P., Veiga, R. E., 

Murcray, D., Iwagami, N., Shibasaki, K., Simon, P. C. and Peetermans, W.: Validation of SAGE II NO 2 20 

measurements, J. Geophys. Res., 96, 12913, doi:10.1029/91JD01344, 1991. 

Dammers, E., McLinden, C. A. , Griffin, D., Shephard, M. W., van Der Graaf, S., Lutsch, E., Schaap, M., Gainairu-Matz, Y., 

Fioletov, V., van Damme, M., Whitburn, S., Clarisse, L., Cady-Pereira, K., Clerbaux, C., Francois Coheur, P. and 

Erisman, J.-W. J. W.: NH3 emissions from large point sources derived from CrIS and IASI satellite observations, 

Atmos. Chem. Phys., 19, 12261–12293, doi:10.5194/acp-19-12261-2019, 2019. 25 

Dantas, G, Siciliano, B, França, BB, da Silva, CM, Ar- billa, G. The impact of COVID-19 partial lock- down on the air quality 

of the city of Rio de Janeiro, Brazil. Science of the Total Environment, 729, DOI: 

http://dx.doi.org/10.1016/j.scitotenv.2020.139085. 2020. 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., 

Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, 30 

M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., 

Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P. de, Tavolato, 

C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation 

system, Q. J. R. Meteorol. Soc., 137, 553–597, doi:DOI: 10.1002/qj.828, 2011. 



33 

 

Ding, J., van der A, R. J., Eskes, H. J., Mijling, B., Stavrakou, T., van Geffen, J. H. G. M. and Veefkind, J. P.: NOx Emissions 

Reduction and Rebound in China Due to the COVID-19 Crisis, Geophys. Res. Lett., 47, e2020GL089912, 

doi:10.1029/2020GL089912, 2020. 

Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz, M. M. and Pickering, K. E.: A 

space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005–2014), J. 5 

Geophys. Res.  Atmos., 121, 976–996, doi:10.1002/2015JD024121, 2015. 

EC: European Commission: COVID-19 in European coal regions. [online] Available from: 

https://ec.europa.eu/energy/sites/ener/files/documents/covid-19_in_european_coal_regions.pdf (Accessed 1 Marchy 

2021), 2020. 

EPA: U.S. Environmental Protection Agency (EPA) National Emissions Inventory, [online] Available from: 10 

https://www.epa.gov/air-emissions-inventories (Accessed 17 July 2020), 2020. 

ESA EOP-GMQ: Sentinel-5 Precursor Calibration and Validation Plan for the Operational Phase, available at: 

https://sentinel.esa.int/documents/247904/2474724/Sentinel-5P-Calibration-and-Validation-Plan.pdf (last access: 29 

August 2021), 2017. 

Fioletov, V., McLinden, C. A., Kharol, S. K., Krotkov, N. A., Li, C., Joiner, J., Moran, M. D., Vet, R., Visschedijk, A. J. H. 15 

and Denier Van Der Gon, H. A. C.: Multi-source SO2 emission retrievals and consistency of satellite and surface 

measurements with reported emissions, Atmos. Chem. Phys., 17, doi:10.5194/acp-17-12597-2017, 2017. 

Fioletov, V. E., McLinden, C. A., Krotkov, N. and Li, C.: Lifetimes and emissions of SO2 from point sources estimated from 

OMI, Geophys. Res. Lett., 42, doi:10.1002/2015GL063148, 2015. 

Fioletov, V. E., McLinden, C. A., Krotkov, N. A., Li, C., Joiner, J., Theys, N., Carn, S. and Moran, M. D.: A global catalogue 20 

of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11497–

11519, doi:doi:10.5194/acp-16-11497-2016, 2016. 

de Foy, B., Wilkins, J. L., Lu, Z., Streets, D. G. and Duncan, B. N.: Model evaluation of methods for estimating surface 

emissions and chemical lifetimes from satellite data, Atmos. Environ., 98, 66–77, 

doi:10.1016/j.atmosenv.2014.08.051, 2014. 25 

de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N. and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes 

from OMI NO2 satellite retrievals, Atmos. Environ., 116, 1–11, doi:10.1016/j.atmosenv.2015.05.056, 2015. 

van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D. and Veefkind, J. P.: TROPOMI ATBD of the total 

and tropospheric NO2 data products., [online] Available from: 

http://www.tropomi.eu/sites/default/files/files/publicS5P-KNMI-L2-0005-RP-ATBD_NO2_data_products-30 

20190206_v140.pdf (Accessed 17 June 2020), 2019. 

van Geffen, J., Eskes, H., Boersma, K., Maasakkers, J. and Veefkind, J.: TROPOMI ATBD of the total and tropospheric NO2 

data products (issue 1.2. 0), De Bilt, the Netherlands, s5P-KNMI-L2-0005-RP., 2018. 

van Geffen, J., Folkert Boersma, K., Eskes, H., Sneep, M., Ter Linden, M., Zara, M. and Pepijn Veefkind, J.: S5P TROPOMI 



34 

 

NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13(3), 

1315–1335, doi:10.5194/amt-13-1315-2020, 2020. 

van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., 

Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and 

comparisons with OMI and ground-based data, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-5 

2021-329, in review, 2021.Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C., 

McDonald, B. C., Peischl, J., Petzold, A., Thompson, C. R., and Kiendler-Scharr, A.: The Global Impacts of COVID-

19 Lockdowns on Urban Air Quality: A Critical Review and Recommendations, Elem. Sci. Anth., 9, 

doi:10.1525/elementa.2021.00176, 2021. 

Fu, F, Purvis-Roberts, KL, Williams, B. Impact of the COVID-19 pandemic lockdown on air pollution in 20 major cities 10 

around the world. Atmosphere 11. DOI: http://dx.doi.org/10.3390/atmos 11111189, 2020. 

Georgoulias, A. K., Boersma, K. F., Vliet, J. van, Zhang, X., A1, R. van der, Zanis, P. and Laat, J. de: Detection of NO2 

pollution plumes from individual ships with the TROPOMI/S5P satellite sensor, Environ. Res. Lett., 10, 0–6, 2020. 

Ghahremanloo, M., Lops, Y., Choi, Y. and Mousavinezhad, S.: Impact of the COVID-19 outbreak on air pollution levels in 

East Asia, Sci. Total Environ., 754, doi:10.1016/j.scitotenv.2020.142226, 2021. 15 

Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R., Lange, A. C., McDonald, B. C., Peischl, J., Petzold, A., 

Thompson, C. R. and Kiendler-Scharr, A.: The global impacts of COVID-19 lockdowns on urban air pollution: A 

critical review and recommendations, Elementa, 9, doi:10.1525/elementa.2021.00176, 2021. 

Goldberg, D. L., Anenberg, S. C., Griffin, D., McLinden, C. A., Lu, Z. and Streets, D. G.: Disentangling the impact of the 

COVID‐19 lockdowns on urban NO2 from natural variability, Geophys. Res. Lett., doi:10.1029/2020GL089269, 20 

2020. 

Griffin, D., McLinden, C. A., Racine, J., Moran, M. D., Fioletov, V., Pavlovic, R., Mashayekhi, R., Zhao, X. and Eskes, H.: 

Assessing the impact of corona-virus-19 on nitrogen dioxide levels over southern Ontario, Canada, Remote Sens., 

12(24), 1–13, doi:10.3390/rs12244112, 2020. 

Guevara, M., Jorba, O., Soret, A., Petetin, H., Bowdalo, D., Serradell, K., Tena, C., Van Der Gon, H. D., Kuenen, J., Peuch, 25 

V. H. and Pérez Garciá-Pando, C.: Time-resolved emission reductions for atmospheric chemistry modelling in Europe 

during the COVID-19 lockdowns, Atmos. Chem. Phys., 21, 773–797, doi:10.5194/acp-21-773-2021, 2021. 

Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan, N.: NO2 column amounts from ground-based 

Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to 

OMI validation, J. Geophys. Res., 114, D13307, doi:10.1029/2009JD011848, 2009. 30 

Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C. and Cohen, R. C.: Steps towards a 

mechanistic model of global soil nitric oxide emissions: Implementation and space based-constraints, Atmos. Chem. 

Phys., 12, 7779–7795, doi:10.5194/acp-12-7779-2012, 2012. 

Judd, L. M., Al-Saadi, J. A., Szykman, J. J., Valin, L. C., Janz, S. J., Kowalewski, M. G., et al.:valuating Sentinel-5P 



35 

 

TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and 

Long Island Sound. Atmospheric Measurement Techniques, 13, 6113–6140. https://doi.org/10.5194/amt-13-6113-

2020, 2020. 

Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations 

with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-5 

2020, 2020. 

Juncosa Calahorrano, J. F., Lindaas, J., O’Dell, K., Palm, B. B., Peng, Q., Flocke, F., Pollack, I. B., Garofalo, L. A., Farmer, 

D. K., Pierce, J. R., Collett, J. L., Weinheimer, A., Campos, T., Hornbrook, R. S., Hall, S. R., Ullmann, K., Pothier, 

M. A., Apel, E. C., Permar, W., Hu, L., Hills, A. J., Montzka, D., Tyndall, G., Thornton, J. A. and Fischer, E. V.: 

Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes, J. Geophys. Res. Atmos., 10 

126, e2020JD033484, doi:10.1029/2020JD033484, 2021. 

Kenagy, H. S., Sparks, T. L., Ebben, C. J., Wooldrige, P. J., Lopez-Hilfiker, F. D., Lee, B. H., et al.: NOx lifetime and NOy 

partitioning during WINTER. Journal of Geophysical Research: Atmospheres, 123, 9813–9827. 

https://doi.org/10.1029/2018JD028736, 2018 

Kanniah, K. D., Kamarul Zaman, N. A. F., Kaskaoutis, D. G. and Latif, M. T.: COVID-19’s impact on the atmospheric 15 

environment in the Southeast Asia region, Sci. Total Environ., 736, 139658, doi:10.1016/j.scitotenv.2020.139658, 

2020. 

Keller, C. A., Evans, M. J., Emma Knowland, K., Hasenkopf, C. A., Modekurty, S., Lucchesi, R. A., Oda, T., Franca, B. B., 

Mandarino, F. C., Valeria Díaz Suárez, M., Ryan, R. G., Fakes, L. H. and Pawson, S.: Global impact of COVID-19 

restrictions on the surface concentrations of nitrogen dioxide and ozone, Atmos. Chem. Phys., 21, 3555–3592, 20 

doi:10.5194/acp-21-3555-2021, 2021. 

Kim, Minsu, Gerrit, Kuhlmann, Dominik, Brunner, Dataset for: Importance of satellite observations for high-resolution 

mapping of near-surface NO2 by machine learning. Remote Sensing of Environment, 264, 112573, 

https://doi.org/10.1016/j.rse.2021.112573, 2021. 

Kondragunta, S., Wei, Z., McDonald, B. C., Goldberg, D. L., & Tong, D. Q. COVID-19 induced fingerprints of a new normal 25 

urban air quality in the United States. Journal of Geophysical Research: Atmospheres, 126, e2021JD034797. 

https://doi. org/10.1029/2021JD034797, 2021. 

Konovalov, I. B., Beekmann, M., Richter, A. and Burrows, J. P.: Inverse modelling of the spatial distribution of NOX emissions 

on a continental scale using satellite data, Atmos. Chem. Phys., 6, 1747–1770, doi:10.5194/acp-6-1747-2006, 2006. 

Koukouli, M. E., Skoulidou, I., Karavias, A., Parcharidis, I., Balis, D., Manders, A., Segers, A., Eskes, H. and Van Geffen, J.: 30 

Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19, Atmos. 

Chem. Phys., 21, 1759–1774, doi:10.5194/acp-21-1759-2021, 2021. 

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., 

Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, 

https://doi.org/10.1016/j.rse.2021.112573


36 

 

Z. and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. 

Chem. Phys., 16, 4605–4629, doi:10.5194/acp-16-4605-2016, 2016. 

Lamsal, L. N., Martin, R. V., Parrish, D. D. and Krotkov, N. A.: Scaling relationship for NO2 pollution and urban population 

size: A satellite perspective, Environ. Sci. Technol., 47, 7855–7861, doi:10.1021/es400744g, 2013. 

Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. a., Pickering, K. E., Streets, D. G. and Lu, Z.: U.S. NO2 trends (2005–5 

2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument 

(OMI), Atmos. Environ., 110, 130–143, doi:10.1016/j.atmosenv.2015.03.055, 2015. 

Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E.-S., Fasnacht, Z., Joiner, J., Choi, S., Haffner, 

D., Swartz, W. H., Fisher, B., and Bucsela, E.: Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard 

product version 4.0 with improved surface and cloud treatments, Atmos. Meas. Tech., 14, 455–479, 10 

https://doi.org/10.5194/amt-14-455-2021, 2021. 

Lange, K., Richter, A. and Burrows, J. P.: Variability of nitrogen oxide lifetimes and emission fluxes estimated by Sentinel-

5P observations, Atmos. Chem. Phys. Discuss., doi:https://doi.org/10.5194/acp-2021-273, 2021. 

Laughner, J. and Cohen, R. C.: Direct observation of changing NOx lifetime in North American cities, Science, 366 (6466), 

723–727 [online] Available from: https://science.sciencemag.org/content/366/6466/723.full, 2019. 15 

Lee, J. D., Drysdale, W. S., Finch, D. P., Wilde, S. E., and Palmer, P. I.: UK surface NO2 levels dropped by 42 % during the 

COVID-19 lockdown: impact on surface O3, Atmos. Chem. Phys., 20, 15743–15759, https://doi.org/10.5194/acp-

20-15743-2020, 2020. 

Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Fioletov, V., Carn, S., Laat, J. De, Deland, M., 

Marchenko, S. and Mcpeters, R.: The Ozone Monitoring Instrument : overview of 14 years in space, Atmos. Chem. 20 

Phys, 18, 5699–5745, doi:https://doi.org/10.5194/acp-18-5699-2018, 2018. 

Levelt, P. F., Stein Zweers, D. C., Aben, I., Bauwens, M., Borsdorff, T., De Smedt, I., Eskes, H. J., Lerot, C., Loyola, D. G., 

Romahn, F., Stavrakou, T., Theys, N., Van Roozendael, M., Veefkind, J. P., and Verhoelst, T.: Air quality impacts 

of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace 

gases from Sentinel-5P/TROPOMI, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-534, in review, 25 

2021. 

Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K. and Wagner, T.: NOx lifetimes and emissions of cities and power plants in 

polluted background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283–5298, doi:10.5194/acp-16-

5283-2016, 2016. 

Liu, F., Choi, S., Li, C., Fioletov, V. E., Mclinden, C. A. and Joiner, J.: A new global anthropogenic SO 2 emission inventory 30 

for the last decade : a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571–16586, 

2018. 

Liu, F., Page, A., Strode, S. A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L. N., Li, C., Krotkov, N. A., Eskes, H., Ronald 

Vander, A., Veefkind, P., Levelt, P., Joiner, J. and Hauser, O. P.: Abrupt declines in tropospheric nitrogen dioxide 



37 

 

over China after the outbreak of COVID-19, arXiv, (2), 2–7, 2020a. 

Liu, F., Page, A., Strode, S.A., Yoshida, Y., Choi, S., Smith, S., Knowland, K.E., Zheng, B., Lamsal, L.N., Li, C. and Krotkov, 

N.A., Abrupt decline in tropospheric nitrogen dioxide after the outbreak of COVID-19. In AGU Fall Meeting 2020. 

AGU, 2020b. 

Lorente, A., Boersma, K. F., Eskes, H. J., Veefkind, J. P., van Geffen, J. H. G. M., de Zeeuw, M. B., Denier van der Gon, H. 5 

A. C., Beirle, S. and Krol, M. C.: Quantification of nitrogen oxides emissions from build-up of pollution over Paris 

with TROPOMI, Sci. Rep., 9, 1–10, doi:10.1038/s41598-019-56428-5, 2019. 

Lu, Z., Streets, D. G., De Foy, B., Lamsal, L. N., Duncan, B. N. and Xing, J.: Emissions of nitrogen oxides from US urban 

areas: Estimation from Ozone Monitoring Instrument retrievals for 2005-2014, Atmos. Chem. Phys., 15, 10367–

10383, doi:10.5194/acp-15-10367-2015, 2015. 10 

Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E., Gleason, J. F., Palmer, P. I., Bey, I., Fiore, 

A. M., Li, Q., Yantosca, R. M. and Koelemeijer, R. B. A.: An improved retrieval of tropospheric nitrogen dioxide 

from GOME, J. Geophys. Res. D Atmos., 107, doi:10.1029/2001JD001027, 2002. 

McLinden, C. A., Fioletov, V., Boersma, K. F., Krotkov, N., Sioris, C. E., Veefkind, J. P. and Yang, K.: Air quality over the 

Canadian oil sands: A first assessment using satellite observations, Geophys. Res. Lett., 39, 1–8, 15 

doi:10.1029/2011GL050273, 2012. 

McLinden, C. A., Fioletov, V., Shephard, M. W., Krotkov, N., Li, C., Martin, R. V., Moran, M. D. and Joiner, J.: Space-based 

detection of missing sulfur dioxide sources of global air pollution, Nat. Geosci., 9, 496–500, doi:10.1038/ngeo2724, 

2016. 

McLinden, C. A., Adams, C. L. F., Fioletov, V., Griffin, D., Makar, P. A., Zhao, X., Kovachik, A., Dickson, N. M., Brown, 20 

C., Krotkov, N., Li, C., Theys, N., Hedelt, P. and Loyola, D. G.: Inconsistencies in sulphur dioxide emissions from 

the Canadian oil sands and potential implications, Environ. Res. Lett., 16, doi:10.1088/1748-9326/abcbbb, 2020. 

Mehmood K, Bao Y, Petropoulos GP, Abbas R, Abrar MM, Saifullah, Mustafa A, Soban A, Saud S, Ahmad M, Hussain I, 

Fahad S. Investigating connections between COVID-19 pandemic, air pollution and community interventions for 

Pakistan employing geoinformation technologies, Chemosphere, 272:129809. doi: 25 

10.1016/j.chemosphere.2021.129809. Epub 2021 Jan 29. PMID: 33582510; PMCID: PMC7846247, 2021 

Mijling, B. and Van Der A, R. J.: Using daily satellite observations to estimate emissions of short-lived air pollutants on a 

mesoscopic scale, J. Geophys. Res. Atmos., 117(17), 17302, doi:10.1029/2012JD017817, 2012. 

Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F. and Hawkins, J. D.: Suomi satellite brings to light a unique 

frontier of nighttime environmental sensing capabilities, Proc. Natl. Acad. Sci. U. S. A., 109, 15706–15711, 30 

doi:10.1073/pnas.1207034109, 2012. 

Misra, P., Takigawa, M., Khatri, P., Dhaka, S.K., Dimri, A.P., Yamaji, K., Kajino, M., Takeuchi, W., Imasu, R., Nitta, K., 

Patra, P.K., Hayashida, S.; Nitrogen oxides concentration and emission change detection during COVID-19 

restrictions in North India (2021) Scientific Reports, 11, art. no. 9800 



38 

 

NOAA: 2-Minute Gridded Global Relief Data (ETOPO2v2), [online] Available from: 

https://www.ngdc.noaa.gov/mgg/global/etopo2.html (Accessed 17 June 2020), 2006. 

NPRI: National Pollutant Release Inventory (NPRI). Sulfur oxide emissions for Canada, [online] Available from: 

www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html 

(Accessed 17 July 2020), 2020. 5 

Pommier, M., McLinden, C. A. and Deeter, M.: Relative changes in CO emissions over megacities based on observations from 

space, Geophys. Res. Lett., 40, 3766–3771, doi:10.1002/grl.50704, 2013. 

Potts, D.A., Marais, E.A., Boesch, H., Pope, R.J., Lee, J., Drysdale, W., Chipperfield, M.P., Kerridge, B., Siddans, R., Moore, 

D.P., Remedios, J. Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and 

GEOS-Chem (2021) Environmental Research Letters, 16, art. no. 054031, 2021. 10 

Qu, Z., Jacob, D. J., Silvern, R. F., Shah, V., Campbell, P. C., Valin, L. C. and Murray, L. T.: US COVID-19 shutdown 

demonstrates importance of background NO2 in inferring NOx emissions from satellite NO2 observations, Geophys. 

Res. Lett., 48(10), doi:10.1029/2021GL092783, 2021. 

Richter, A., Eyring, V., Burrows, J. P., Bovensmann, H., Lauer, A., Sierk, B. and Crutzen, P. J.: Satellite measurements of 

NO2 from international shipping emissions, Geophys. Res. Lett., 31(23), 1–4, doi:10.1029/2004GL020822, 2004. 15 

Sannigrahi S., P. Kumar, A. Molter, Q. Zhang, B. Basu, A. S. Basu, F. Pilla, Examining the status of improved air quality in 

world cities due to COVID-19 led temporary reduction in anthropogenic emissions, Environmental Research, 196,, 

110927, https://doi.org/10.1016/j.envres.2021.110927, 2021 

SEDAC: The Gridded Population of the World (GPW), [online] Available from: 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4, 2017. 20 

Sha, T., Ma, X., Zhang, H., Janechek, N., Wang, Y., Wang, Y., Castro Garciá, L., Jenerette, G. D. and Wang, J.: Impacts of 

Soil NOxEmission on O3Air Quality in Rural California, Environ. Sci. Technol., doi:10.1021/acs.est.0c06834, 2021. 

Siciliano, B.; Carvalho, G.; Da Silva, C.M.; Arbilla, G. The Impact of COVID-19 Partial Lockdown on Primary Pollutant 

Concentrations in the Atmosphere of Rio de Janeiro and São Paulo Megacities (Brazil). Bull. Environ. Contam. 

Toxicol., 105, 2–8, 2020. 25 

Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., Cohen, R. C., Laughner, J. L., Choi, 

S., Joiner, J. and Lamsal, L. N.: Using satellite observations of tropospheric NO2 columns to infer long-term trends 

in US NOx emissions: The importance of accounting for the free tropospheric NO2 background, Atmos. Chem. Phys., 

19(13), 8863–8878, doi:10.5194/acp-19-8863-2019, 2019. 

Stavrakou, T., Müller, J. F., Bauwens, M., Boersma, K. F. and van Geffen, J.: Satellite evidence for changes in the NO2 weekly 30 

cycle over large cities, Sci. Rep., 10, 1–9, doi:10.1038/s41598-020-66891-0, 2020. 

Streets, D. G., Canty, T., Carmichael, G. R., De Foy, B., Dickerson, R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., 

Henze, D. K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N., Liu, Y., Lu, Z., Martin, R. V., Pfister, G. 

G., Pinder, R. W., Salawitch, R. J. and Wecht, K. J.: Emissions estimation from satellite retrievals: A review of current 



39 

 

capability, Atmos. Environ., 77, 1011–1042, doi:10.1016/j.atmosenv.2013.05.051, 2013. 

Tack, F., Merlaud, A., Iordache, M.-D., Pinardi, G., Dimitropoulou, E., Eskes, H., Bomans, B., Veefkind, P., and Van 

Roozendael, M.: Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations, 

Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, 2021.Vadrevu, K. P., Eaturu, A., 

Biswas, S., Lasko, K., Sahu, S., Garg, J. K. and Justice, C.: Spatial and temporal variations of air pollution over 41 5 

cities of India during the COVID-19 lockdown period, Sci. Rep., 10, 1–15, doi:10.1038/s41598-020-72271-5, 2020. 

Theys, N., Fioletov, V., Li, C., De Smedt, I., Lerot, C., McLinden, C., et al. (2021). A Sulfur Dioxide Covariance-Based 

Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources. Atmos. Chem. Phys., 1–42. 

doi:10.5194/acp-2021-294.Veefkind, J. P. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., 

Eskes, H. J. J., de Haan, J. F. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., 10 

Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H. and Levelt, P. F. F.: TROPOMI on the ESA 

Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality 

and ozone layer applications, Remote Sens. Environ., 120, 70–83, doi:10.1016/j.rse.2011.09.027, 2012. 

Venter, Z. S., Aunan, K.,  Chowdhury, S. Jos Lelieveld, J.: COVID-19 lockdowns cause global air pollution declines, PNAS 

117, 18984-18990;; https://doi.org/10.1073/pnas.2006853117, 2020. 15 

Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J. C., Eskes, H. J., Eichmann, K. U., Fjæraa, A. M., Granville, J., 

Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Folkert Boersma, K., 

Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter De La Mora, M., Gruzdev, A., 

Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., 

Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J. P., Portafaix, T., Prados-Roman, C., 20 

Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Cárdenas, C. R., De Miguel, L. S., Sinyakov, V. P., 

Stremme, W., Strong, K., Van Roozendael, M., Pepijn Veefkind, J., Wagner, T., Wittrock, F., Yela González, M. and 

Zehner, C.: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC 

ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14(1), 481–510, doi:10.5194/amt-

14-481-2021, 2021. 25 

Vinnikov, K. Y., Dickerson, R. R., Krotkov, N. A., Edgerton, E. S. and Schwab, J. J.: The net decay time of anomalies in 

concentrations of atmospheric pollutants, Atmos. Environ., 160, 19–26, doi:10.1016/j.atmosenv.2017.04.006, 2017. 

Vîrghileanu, M., Săvulescu, I., Mihai, B. A., Nistor, C. and Dobre, R.: Nitrogen dioxide (No2) pollution monitoring with 

sentinel-5p satellite imagery over europe during the coronavirus pandemic outbreak, Remote Sens., 12, 1–29, 

doi:10.3390/rs12213575, 2020. 30 

Williams, J. E., Folkert Boersma, K., Le Sager, P. and Verstraeten, W. W.: The high-resolution version of TM5-MP for 

optimized satellite retrievals: Description and validation, Geosci. Model Dev., 10(2), 721–750, doi:10.5194/gmd-10-

721-2017, 2017. 

Zhao, X., Griffin, D., Fioletov, V., McLinden, C., Cede, A., Tiefengraber, M., Müller, M., Bognar, K., Strong, K., Boersma, 



40 

 

F., Eskes, H., Davies, J., Ogyu, A., and Lee, S. C.: Assessment of the quality of TROPOMI high-spatial-resolution 

NO2 data products in the Greater Toronto Area, Atmos. Meas. Tech., 13, 2131–2159, https://doi.org/10.5194/amt-

13-2131-2020, 2020. 

Zhang, H., Lin, Y., Wei, S., Loo, B. P. Y., Lai, P. C., Lam, Y. F., Wan, L. and Li, Y.: Global association between satellite-

derived nitrogen dioxide (NO2) and lockdown policies under the COVID-19 pandemic, Sci. Total Environ., 761, 5 

144148, doi:10.1016/j.scitotenv.2020.144148, 2021. 

Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C., van Donkelaar, A., Wang, Y. X., and 

Chen, D.: Nitrogen deposition to the United States: distribution, sources, and processes, Atmos. Chem. Phys., 12, 

4539–4554, https://doi.org/10.5194/acp-12-4539-2012, 2012.Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. 

F., Flittner, D. E., Al-Saadi, J. A., Hilton, B. B., Nicks, D. K., Newchurch, M. J., Carr, J. L., Janz, S. J., Andraschko, 10 

M. R., Arola, A., Baker, B. D., Canova, B. P., Chan Miller, C., Cohen, R. C., Davis, J. E., Dussault, M. E., Edwards, 

D. P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J. R., Houck, J., Jacob, D. J., Joiner, J., 

Kerridge, B. J., Kim, J., Krotkov, N. A., Lamsal, L., Li, C., Lindfors, A., Martin, R. V., McElroy, C. T., McLinden, 

C., Natraj, V., Neil, D. O., Nowlan, C. R., O’Sullivan, E. J., Palmer, P. I., Pierce, R. B., Pippin, M. R., Saiz-Lopez, 

A., Spurr, R. J. D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H., Wang, J. and Chance, K.: 15 

Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transf., 

doi:10.1016/j.jqsrt.2016.05.008, 2016. 

  



41 

 

Table 1. The standard deviations of the random errors and interannual variability for background, urban and industrial 

components for the U.S. and Canada in percent. The random errors are calculated as the averages of estimates for individual 

years. The interannual variability estimates are the standard deviations calculated from three years (2018, 2019, and 2021). 

Interannual variability of the industrial component is calculated for regions with estimated total emissions greater than 1 kt 

yr-1.  5 

 Random Error (%) Interannual Variability (%) 

Area Background Urban Industrial Background Urban Industrial 

Atlanta 0.20 1.04 1.47 5.9 9.7 11.3 

Boston 0.29 0.93 5.68 4.0 10.8 39.3 

Calgary 0.27 1.62 2.40 7.5 3.5 23.8 

Charlotte 0.25 1.80 2.64 5.1 7.0 19.2 

Chicago 0.27 0.73 1.74 17.5 9.3 11.6 

Dallas 0.20 0.82 2.34 5.8 9.2 6.2 

Denver 0.27 0.89 2.29 4.0 7.8 17.5 

Detroit 0.27 0.99 2.17 13.3 5.5 16.8 

Edmonton 0.34 0.80 1.91 11.0 15.6 8.1 

Houston 0.22 0.78 1.25 6.7 13.0 10.5 

Las Vegas 0.12 0.48  7.6 16.7  

Los Angeles 0.22 0.22  1.4 9.2  

Miami 0.15 0.88 2.66 1.9 5.8 40.7 

Minneapolis 0.20 1.42 3.28 15.1 10.1 29.5 

Montreal 0.29 1.21 3.24 11.8 7.3 19.7 

New York 0.36 0.41 5.17 8.2 5.8 8.0 

Orlando 0.17 1.17 2.16 4.0 10.6 16.5 

Phoenix 0.17 0.75 2.84 4.9 17.0 23.5 

Pittsburgh 0.33 1.62 2.20 6.5 6.3 7.0 

Portland 0.29 0.87 4.32 5.8 21.2 23.2 

San Antonio 0.18 1.50 1.20 8.1 5.9 42.0 

San Francisco 0.17 0.64 4.64 1.1 12.8 20.9 

Seattle 0.31 1.14 2.71 9.0 11.0 18.9 

St. Louis 0.20 1.48 1.87 16.3 4.5 7.8 

Toronto 0.29 0.78 1.97 10.8 12.9 13.7 

Vancouver 0.49 0.74 5.74 2.1 9.6 14.7 

Washington 0.24 1.03 2.76 6.8 13.2 8.0 

Average 0.25 0.99 2.82 7.5 10.0 18.3 

Standard deviation 0.08 0.4 1.3 4.4 4.3 10 
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Table 2. The standard deviations of the random errors and interannual variability for background, urban and industrial 

components for 13 regions in percent. The random errors and interannual variability are calculated from three years (2018, 

2019, and 2021) for each area and then averaged for all areas in the region. Interannual variability of the industrial 

component is calculated for regions with estimated total emissions greater than 1 kt yr-1.  5 

 

 

 Random Error (%) Interannual Variability (%) 

Area Background Urban Industrial Background Urban Industrial 

Africa 0.21 1.56 2.42 7.3 19.8 21.3 

Australia and New Zealand 0.34 0.80 1.22 8.6 9.2 12.2 

Canada and US 0.25 0.99 2.82 7.5 10.0 18.3 

Central America 0.21 0.95 1.72 5.4 11.0 20.3 

China 0.30 1.06 1.90 7.3 19.6 16.4 

Europe-1 0.23 0.96 4.06 5.6 12.3 27.6 

Europe-2 0.25 1.30 3.13 6.8 15.4 17.1 

India 0.23 1.78 0.77 9.0 16.6 12.4 

Japan Korea, Taiwan 0.31 0.86 1.29 4.9 12.9 13.2 

Middle East 0.29 1.43 0.86 7.5 22.2 19.9 

Northern Eurasia 0.29 1.42 2.78 8.8 13.5 25.4 

South America 0.39 2.97 6.72 7.8 18.6 23.6 

South-East Asia 0.29 1.03 1.68 8.0 14.1 16.1 

Average 0.28 1.32 2.41 7.3 15.0 18.8 

Standard deviation 0.05 0.58 1.61 1.3 4.1 4.9 
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Figure 1. Mean TROPOMI NO2 VCDs over the US and southern Canada for March 16–June 15, in (top) 2018-2019 and 

(bottom) 2020. The main features of the NO2 distribution such as elevated NO2 values over large cities, industrial sources and 5 

in the valleys such the California Central Valley (1) and lower values over the mountains such as Appalachian (2) are evident 

from the plot. Note, that NO2 VCDs are not negligible (about 5·1014 cm-2) even over vast remote areas such as National Forests 

in Montana (3) or Algonquin Provincial Park in Ontario (4) as well as over the oceans. The maps are based on Level 2 data 

gridded on 0.1° by 0.1° grid grouped by the wind speed: (left) less than 10 km per hour and (right) more than 10 km per hour. 
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Figure 2. Changes in weekly Google mobility data (for “retail and recreation” category) relative to the baseline period (Jan 3 

– Feb 6, 2020) for twelve regions analysed in this study. The black vertical lines represent the beginning and the end of the 

period analyzed in this study (March 16 – June 15). 

 5 
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Figure 3. (a) Mean TROPOMI NO2 for March 16– June 15, 2018-2019, over the Montreal area, (b) the fitting results and (c) 

the residuals (i.e., the difference between (a) and (b)). Tropospheric NO2 VCDs have a large “background” level that is 

reflected by (d) the elevation-related component. (e) The population density-related and (f) industrial sources-related 

components. Panel (b) is the sum of panels (d), (e) and (f). Emission point sources are shown by the black dots and the airport 5 

by the slightly larger gray dot. The industrial sources-related component is comprised of three clusters: one (g) with two 

sources and two (h, i) with one source each. The data are smoothed by the oversampling technique with the averaging radius 

R=10 km.  Proxies used by the statistical model (Eq. 1): (j) Elevation map on the colour scale that is similar to that for the 

elevation-related (“background”) component; (k) population density map. (l) Mean TROPOMI values (panel a) vs. the fitting 

results (panel b). Each dot represents the mean value for a cell on 0.2 by 0.2 grid for 2018 or 2019. The number of data points 10 

(N), the correlation coefficient (R) and the slope are also shown.  
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Figure 4. Mean TROPOMI NO2 for March 16 – June 15 over a flat area around Minneapolis and mountain area around 

Seattle as indicated. The columns represent: mean TROPOMI NO2 values, (column a, d), the fitting results (b, e), and the 5 

elevation-related background component (c, f). Elevation map on the colour scale that is similar to the background 

component (g, i) and the population density maps (h, j). The “hotspots” on the population density maps correspond to 

Minneapolis (h) and Seattle (j). 
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Figure 5. The map of locations of the analysed 27 most populated urban cites in (red) the US and (blue) Canada (22 and 5 

areas respectively). The analysis was done for 3° (latitude) by 4°(longitude) areas around the sites. The mean NO2 values for 5 

eight areas for the period from March 16 to June 15 in 2018-2019 and 2020 are also shown.  
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Figure 6. Mean TROPOMI NO2 for March 16–June 15 over the four areas as indicated. For each area, the first row shows the 

2018-2019 averages and the second row shown the 2020 averages. The columns represent: mean TROPOMI NO2 VCD values, 

(column a), the fitting results (b), the residuals (c) as well as individual components of the fitting: the background (elevation-

related) (d), the urban (population density-related) (e), and the industrial sources-related (f). VCDs estimated from reported 5 

emissions are in column (g) and the difference between columns f and g is in column h. 1- Hartsfield–Jackson Atlanta 

International Airport, 2- oil refineries near Houston.   
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Figure 7. The contribution of the three components to the total NO2 mass in the Montreal area for March 16 – June 15 (average 

for 2018-2019). The total mass can be represented as a sum of three components shown in Figure 2. 
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Figure 8. (left) The background (top row), urban (middle row), and industrial (bottom row) components for all 27 analysed 

areas in the U.S. and Canada in 2018-2019 (blue) and 2020 (orange). (right) The decline 2020 values in percent from the 2018-5 

2019 values. The background component is expressed as the mean value of that component for the analysed area. The urban 

component is expressed as annual emissions per capita, and the industrial component is expressed as total emissions from the 

point sources for the period from March 16 to June 15.  The grey dashed lines on the right panels indicate the 2-σ level for the 

interannual variability. 
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Figure 9. Estimated and reported annual NO2 emissions rates for U.S. sources for 2018-2019. Each dot represents the sum of 5 

all emissions in one urban area in 2018 or 2019 and there are 40 dots on the plot. The emissions are expressed as annual rates.  

The correlation coefficient between the two data sets is 0.84 and the slope is 0.71±0.15. The standard deviation of the residuals 

is about 5 kt y-1.  The plot also shows the predicted regression line (blue), 95% confidence intervals for the regression mean 

(the shaded area), and 95% prediction intervals (dashed lines). 
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Figure 10a. The same as Fig. 8, but for Europe-1 sub-region (Italy, France, Spain, Portugal, Belgium, Ireland, and UK).  5 

 

  



53 

 

 

 

Figure 10b. The same as Fig. 8, but for Europe-2 sub-region (other EU countries and non-members from former Yugoslavia). 
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Figure 11.  Similar to Figure 6 columns a-f, for areas around four European cities: Manchester, Paris, Milan, and Prague. 1- 

Charles de Gaulle Airport, 2- power plants in Germany, 3- power plants in Czech Republic.  
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Figure 12. (top) The map of the mean background component NO2 for all individual areas in 2018-2019 for the period March 5 

16 – June 15 estimated from TROPOMI. (bottom) The map of annual per capita urban NO2 emissions for the same period. 

The analysis was done using estimates for cities with population greater than 6 million in China and 1 million for the rest of 

the world. 
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Figure 13. The map of NO2 percent changes between 2018-2019 and 2020 for the period March 16 – June 15 estimated from 

TROPOMI data for (top) background component and (bottom) urban annual emissions per capita. The analysis was done using 5 

estimates for cities with population greater than 6 million in China and greater than 1 million for the rest of the world. 
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Figure 14. (left) The mean values for March 16–June 15 in 2018-2019 (blue) and 2020 (orange) values for (top) the 

background-, (middle) urban-, and (bottom) industrial components for the 13 regions. (right) The decline of 2020 mean values 

in percent from the mean 2018-2019 values. The data are sorted according to the changes between 2020 and 2018-2019 in the 

urban component (middle right panel). Mean values for each region were calculated as a mean of the values from all areas for 5 

that region. The uncertainty (σ) was calculated as a standard error of the mean. The error bars represent 2σ intervals. 
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Figure 15. A scatter plot of Google mobility statistic changes vs. TROPOMI NO2 VCD changes for (left) the urban and (right) 

background components during the period from March 16 to June 15, 2020 compared to the baseline period The Google 

mobility statistic changes show the difference with the pre-lockdown period (Jan 3 – Feb 6, 2020) in percent. For TROPOMI, 5 

the difference is between the 2020 and the 2018-2019 average. Each symbol represents one country; the dot colour 

demonstrates the region as shown in the legend. Only countries with at least two cities used in this study are included in this 

plot.  The correlation coefficient between the two data sets is 0.62. The dashed Y=X line is shown for reference. The error bars 

represent the standard errors. 


