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Abstract. The aim of this paper is two-fold: to provide guidance on how to best interpret TROPOMI trace gas 14 

retrievals and to highlight how TROPOMI trace gas data can best be used and interpreted to understand event-based 15 

impacts on air quality from regional to city-scales around the globe. For this study, we present the observed changes 16 

in the atmospheric column amounts of five trace gases (NO2, SO2, CO, HCHO and CHOCHO) detected by the 17 

Sentinel-5P TROPOMI instrument, driven by reductions of anthropogenic emissions due to COVID-19 lockdown 18 

measures in 2020. We report clear COVID-19-related decreases in TROPOMI NO2 concentrations column amounts 19 

on all continents. For megacities, reductions in column amounts of tropospheric NO2 range between 14% and 63%. 20 

For China and India supported by NO2 observations, where the primary source of anthropogenic SO2 is coal-fired 21 

power generation, we were able to detect sector-specific emission changes using the SO2 data. For HCHO and 22 

CHOCHO, we consistently observe anthropogenic changes in two-week averaged column amounts over China and 23 

India during the early phases of the lockdown periods. That these variations over such a short time scale are detectable 24 

from space, is due to the high resolution and improved sensitivity of the TROPOMI instrument. For CO, we observe 25 

a small reduction over China which is in concert with the other trace gas reductions observed during lockdown, 26 

however large, interannual differences prevent firm conclusions from being drawn. The joint analysis of COVID-19 27 

lockdown-driven reductions in satellite observed trace gas column amounts, using the latest operational and scientific 28 

retrieval techniques for five species concomitantly is unprecedented. However, the meteorologically and seasonally 29 

driven variability of the five trace gases does not allow for drawing fully quantitative conclusions on the reduction of 30 

anthropogenic emissions based on TROPOMI observations alone. We anticipate that in future, the combined use of 31 

inverse modelling techniques with the high spatial resolution data from S5P/TROPOMI for all observed trace gases 32 

presented here, will yield a significantly improved sector-specific, space-based analysis of the impact of COVID-19 33 

lockdown measures as compared to other existing satellite observations. Such analyses will further enhance the 34 

scientific impact and societal relevance of the TROPOMI mission.  35 

 36 
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1 Introduction  38 

In an effort to limit the transmission of the SARS-CoV-2 virus responsible for the Coronavirus disease 2019 (hereafter 39 

referred as COVID-19), drastic lockdown measures were implemented around the globe in the first half of 2020. These 40 

policies led to dramatic reductions in human activity, especially in the transport and industrial sectors, resulting in 41 

large decreases in the concentration of air pollutants (Bauwens et al., 2020; Shi and Brasseur, 2020; Forster et al., 42 

2020; Diamond and Wood, 2020; Kroll et al., 2020; Le Quéré et al., 2020; Guevara et al., 2021; Gkatzelis et al., 2021). 43 

These changes were observed over China as early as February 2020 (Bauwens et al., 2020; Liu et al., 2020; Zhang, Z. 44 

et al., 2020; Zhao, N. et al., 2020) and were detected later in many other countries as similar lockdown measures were 45 

adopted (Bauwens et al., 2020; Broomandi et al., 2020; Collivignarelli et al., 2020; Lee et al., 2020; Gkatzelis et al., 46 

2021; Koukouli et al., 2021).  47 

    The TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012; Ludewig et al., 2020) on board the 48 

European Copernicus Sentinel-5 Precursor (S5P) satellite, launched on 13 October 2017, is specifically designed for 49 

tropospheric monitoring on the global scale and has a daily revisit time. Compared to its predecessor OMI, 50 

TROPOMIôs highest spatial resolution (3.5 x 5.5 km2) is about 16 times better and its signal-to-noise ratio per ground 51 

pixel is substantially higher. This results in a spectacular large improvement in measurement sensitivity for relevant 52 

air quality products, including NO2, SO2, HCHO, and CHOCHO, thus enabling the study of rapid emission changes 53 

for even smaller sources as compared to previous instruments. For CO measurements, the daily global coverage of 54 

TROPOMI at a resolution of 7 x 5.5 km2 represents a huge improvement to its predecessor SCIAMACHY 55 

(Bovensmann et al., 1999; Borsdorff et al., 2016; Borsdorff et al., 2017) with a spatial resolution of 120 x 30 km2.  56 

    The observations from TROPOMI thus provide a unique opportunity to observe the magnitude and timing of the 57 

changes in tropospheric trace gas constituents, resulting from unprecedented COVID-19 lockdown measures. The 58 

initial TROPOMI observations of dramatic reductions in NO2 concentrations column amount over regions with strictly 59 

enforced lockdowns, over China in particular, triggered a high level of interest worldwide, and initiated a large number 60 

of studies, mainly aimed at regional scales and largely focused on NO2. However, the unparalleled capacity of 61 

TROPOMI to provide relevant information on COVID-19 driven emission reductions based on multiple species 62 

measurements has not been exploited yet. The objective of this work is to investigate the COVID-19 driven changes 63 

in the concentration column amounts of five trace gases (NO2, SO2, CO, HCHO, and CHOCHO) from the global level 64 

down to individual cities using state-of-the-art TROPOMI operational and scientific data products. More specifically, 65 

we aim to 66 

1. Expand Summarize the analysis of tropospheric NO2 at city-scale for to all continents.  67 

A large body of studies investigated the impact of the COVID-19 lockdowns on NO2 concentrations (e.g. Bauwens et 68 

al., 2020; Baldasano, 2020; Huang et al., 2020), at regional and continental scale. Here, we analyze the time series of 69 

NO2 measurements from a single satellite instrument for globally distributed locations on regional to city scales. In 70 

doing so, we further demonstrate the unique capabilities of how the TROPOMI instrument can be used to consistently 71 

track changes in air quality and anthropogenic emissions across the globe.  72 



3 

 

 73 

2. Explore the high spatial resolution and simultaneous TROPOMI observations of NO2, SO2, CO, HCHO, and 74 

CHOCHO. 75 

While all of these gases have significant anthropogenic sources, they differ in their relative contribution to the energy, 76 

industry, and transport sector emissions, and each sector exhibits a different response to COVID-19 lockdown 77 

measures. Therefore, the combination of several TROPOMI trace gas products contains additional information on 78 

sector-specific emissions and COVID-19 lockdown-induced changes in atmospheric composition. We show that 79 

meaningful trends and source detection can be obtained by using the unprecedentedly high spatial resolution of 80 

TROPOMI data and by averaging that data over relatively short time periods. Although this is in large part the result 81 

of the improved sensitivity of the instrument, we also introduce new developments in trace gas retrieval techniques 82 

and ad-hoc corrections to enhance the sensitivity of the TROPOMI datasets to even smaller emissions and smaller 83 

changes in emissions. In order to achieve these goals, we discuss the strengths and limitations of each of the retrievals 84 

for tracking global to city-scale changes. 85 

   In the next section, the TROPOMI data will first be described in general terms, followed by a description per species 86 

to address the retrieval methods, as well as a description of how we handle each data product in this study. The goal 87 

of this methods and data section is not only to explain how this study was conducted but also to provide guidance to 88 

data users on how to best interpret and analyze TROPOMI trace gas data not only for lockdown-driven emission 89 

changes but also for other event-driven changes. This will be followed by a context-setting section describing 90 

reviewing the global and regional impacts of COVID-19 lockdown measures and city-scale effects on for all 91 

continents, using TROPOMI NO2 data. The next two sections will describe the effect of the lockdown measures on a 92 

regional scale by examining NO2, SO2, CO, HCHO, and CHOCHO for China and India. The last section will feature 93 

an outlook of future applications for this type of analysis followed by conclusions.  94 

2 Methods and Data  95 

In this work, our analysis is primarily based on TROPOMI data for regional lockdown periods in 2020 as compared 96 

to the same periods in 2019 and will be presented in the broader context of the TROPOMI operational data record, 97 

which started on 30 April 2018. We make use of observations from the TROPOMI instrument on board S5P which is 98 

a push-broom imaging spectrometer (Veefkind et al., 2012) measuring in the ultraviolet (UV), visible (VIS), near-99 

infrared (NIR), and shortwave infrared (SWIR) spectral bands selected to measure the absorption by a large number 100 

of trace atmospheric constituents as well as by clouds and aerosolscover absorption regions for clouds and a large 101 

number of trace atmospheric constituents. Using the spectral radiance measurements from TROPOMI, atmospheric 102 

concentrations column amounts of different gases are retrieved as well as cloud and aerosol properties. For this work, 103 

we use the following TROPOMI data products: NO2, SO2, CO, HCHO and CHOCHO as summarized in Table 1. We 104 

did not include the following TROPOMI data products: tropospheric ozone columns, due to the tropics-only spatial 105 

coverage; methane, due to an even longer atmospheric lifetime than CO where its sources were not as impacted by 106 

lockdown measures; and aerosol index, designed to highlight long-range transported and/or elevated plumes of smoke, 107 

dust, and/or ash and which is not a quantitative measure of aerosol amount nor sensitive to near-surface emissions.  108 
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   The S5P satellite flies in a Sun-synchronous orbit, with a local overpass time of 13:30. TROPOMI has a 2600 km 109 

wide swath, providing near-daily global coverage. The spatial sampling of TROPOMI varies over the spectral bands. 110 

The nadir sampling at the start of the operational period on 30 April 2018 was approximately 3.5 x 7 km2 (across- x 111 

along-track) for the ultraviolet and visible bands, and 7 x 7 km2 in the shortwave infrared band. On 6 August 2019, 112 

after implementation of a modified co-adding scheme, the sampling for these bands was improved to 3.5 x 5.5 km2 113 

and 7 x 5.5 km2, respectively.  114 

   TROPOMI observations are being widely used within and beyond the scientific community and so it is crucial to 115 

provide information on how these observations can best be used, interpreted, and analyzed. The COVID-19 lockdown 116 

periods provide a unique use-case for the TROPOMI lead algorithm developers to highlight important differences in 117 

the individual atmospheric lifetime and detectability of each trace gas and show how these characteristics are key to 118 

the interpretation of the concomitant observations. It is not sufficient, for example, to illustrate lockdown-driven 119 

changes in emissions simply by selecting a single day or week of TROPOMI column data for a given region as 120 

measured during a lockdown period to the same day or week from year(s) prior (Braaten et al., 2020). We go further 121 

to address the importance of delineating meteorological and seasonal variability from lockdown-driven changes in 122 

emissions.  123 

   Therefore, we start this methods and data section with a general overview of considerations for the data user to take 124 

into account for analyses aimed at the quantification of changes in the emission of these trace gases. Next, in dedicated 125 

subsections, we provide a summary of the most relevant documentation and retrieval methods employed for each trace 126 

gas (see Table A1). Even though each retrieval is based on the analysis of the amount of trace gas specific absorption 127 

in measured radiance spectra, methods differ significantly per species.  128 

2.1 Understanding and Interpreting TROPOMI trace gas retrievals 129 

For this paper we will focus on TROPOMI trace gas retrievals for NO2, SO2, CO, HCHO, and CHOCHO (See Table 130 

1). To understand and interpret the TROPOMI measurements of these trace gas species and how they vary with respect 131 

to COVID-19 lockdown measures, it is necessary to consider their sources, variability through the atmospheric 132 

column, and their atmospheric lifetimes. Although the mechanisms for the emission of each gas are different, there 133 

are several common anthropogenic emission sources, most notably from transportation and industry, as listed in Table 134 

1 which were significantly impacted by lockdown measures.  135 

 136 

Table 1: Summary of the retrieval spectral range, atmospheric lifetime, and primary main emission sources, for each trace 137 
gas addressed in this study. 138 

Trace Gas  

Data Product Type 

(retrieval reference) 

Spectral Range Typical li fetime Primary Main emission 

sources 

 

NO2 

Operational  

(van Geffen et al., 2019) 

405-465 nm 2 to 12 hours 

 

- Transportation 

- Industry 

- Power generation 

- Biomass burning 
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SO2 

Prototype 

(Theys et al., 2021) 

310.5-326 nm 6 hours to several days 

 

- Power generation 

- Industry 

- Transportation 

- Volcanoes1 

 

CO 

Operational 

(Landgraf et al., 2016) 

2324ï2338 nm Weeks to a month  

 

 

- Transportation 

- Residential cooking and 

heating  

- Industry Power generation 

- Industry 

- Transportation 

- Residential cooking and 

heating 

- Biomass burning 

- Oxidation of biogenic 

hydrocarbons 

- Methane Oxidation 

- Power generation 

 

HCHO 

Operational 

(De Smedt et al., 2018) 

328.5-359 nm Several hours 

(lifetime of NMVOC 

precursors up to 

several days) 

 

Primary and secondary product 

(NMVOC precursors) from: 

- Biogenic emissions 

- Biomass burning 

- IndustryTransportation 

- TransportationIndustry 

 

CHOCHO 

Prototype 

(Lerot et al., 2010, 2020) 

435-460 nm Several hours 

(lifetime of NMVOC 

precursors up to 

several days)2 to 3 
hours 

 

Primary and secondary product 

(NMVOC precursors) from: 

- Biogenic emissions 

- Biomass burning 

- Transportation 

- Industry 

1Volcanic emissions are not significant for this work. 139 

 140 

   A brief evaluation of how the sources of these trace gases were or were not affected by lockdown-driven changes 141 

lends insight into expected changes. In general, primary production trace gases, like NO2 and SO2 with relatively short 142 

atmospheric lifetimes exhibit emission changes most clearly and rapidly. Although NO2 and SO2 are both important 143 

primary production anthropogenic pollutants, their sectoral sources are different. For instance, the impact of lockdown 144 

on the transportation sector is expected to have a bigger impact on NO2 than SO2, since this sector is responsible for 145 

about 30% of the global NOx emissions and only 1% of the global SO2 emissions, according to the CAMS-ANT 146 

inventory (Granier et al., 2019). On the other hand, SO2 emissions are more likely to be impacted by possible changes 147 

in power generation, since this sector accounts for 52% of the global SO2 emissions and only 30% of the global NOx 148 

emission (Granier et al., 2019). 149 

   For CO, secondary production by methane oxidation and the oxidation of (biogenic) hydrocarbons accounts for at 150 

least 60% of the total atmospheric CO, followed by contributions from biomass burning and fossil fuel use (Müller et 151 

al., 2018; Holloway et al., 2000). Anthropogenic CO emissions originate from the industry, transportation, and 152 
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residential sectors and account for about 30% of the global emissions (Granier et al., 2019). However, it is noted that 153 

the relative contribution of these sources varies per global region (Granier et al., 2019 (Janssens-Maenhout et al., 154 

2015). Although local impacts of lockdown are likely for locations with strong anthropogenic CO emissions, overall 155 

a much smaller lockdown-driven impact is expected for CO based on its longer atmospheric lifetime and smaller 156 

contributions from lockdown affected sources (Clark et al., 2021).  157 

   Both HCHO and CHOCHO are short-lived indicators of non-methane volatile organic compound (NMVOC) 158 

emissions resulting from biogenic processes, large biomass burning events, and anthropogenic activities (Millet et al., 159 

2008; Fu et al., 2008; Stavrakou et al., 2009; Bauwens et al., 2016; Chan Miller et al., 2016). They are mostly produced 160 

as secondary products from oxidation of other NMVOCs but are also directly emitted from combustion and industrial 161 

processes, although to a lesser extent. In general, the relative production of CHOCHO from such combustion processes 162 

and from the oxidation of aromatics, originating mostly from the industrial sector, is higher than for HCHO. Thus, the 163 

CHOCHO response to changes in anthropogenic emissions is expected to be stronger (Chan Miller et al., 2016; Cao 164 

et al., 2018).  165 

   It is important to note that the retrievals provide information on the tropospheric or total column amount of these 166 

gases, because the spectra contain limited information on their vertical distribution in the atmosphere. TROPOMI 167 

observations thus provide a two-dimensional representation of the three-dimensional atmosphere. The vertical profiles 168 

of each trace gas vary significantly depending on the injection height of the emissions and atmospheric lifetime (see 169 

Table 1). For example, NOx emissions at the surface result in NO2 vertical profiles that peak in the near-surface layer 170 

(lowest 1-2 km of the troposphere), due to the short lifetime of NO2. Similarly, SO2 has a vertical profile which 171 

generally peaks in the lower troposphere. CO on the other hand, has a lifetime of weeks to a month (depending on the 172 

reaction with the hydroxyl radical) and can be transported over great distances, both horizontally and vertically. 173 

Therefore, CO even though it is often co-emitted with NO2, has a significantly higher background concentration 174 

throughout the troposphere as compared to NO2. HCHO and CHOCHO have lifetimes of a few hours but are generally 175 

formed in the atmosphere via secondary production processes, which leads to an intermediate profile shape as 176 

compared to NO2 and CO.  177 

   In addition to vertical profiles that vary per trace gas species, the vertical sensitivity of the TROPOMI measurements 178 

also varies per species. For the trace gases retrieved in the UV and VIS ranges, the sensitivity decreases towards the 179 

surface so that the accuracy of the retrieved column depends on a well-characterized a priori knowledge of the vertical 180 

distribution. Due to scattering, the near-surface sensitivity is lower in the UV (SO2, HCHO) than in the VIS (NO2 and 181 

CHOCHO). In the SWIR range, the vertical sensitivity is more constant. As part of the retrieval process, a priori 182 

vertical profiles of each trace gas are scaled to match the measured tropospheric column. An uncertainty in the 183 

retrieved column amount or vertical column density (VCD) is associated with inherent differences between the true 184 

and a priori vertical profiles. However, the averaging kernels, which are reported in the data products, can be used to 185 

replace the a priori profiles with custom profiles (e.g. Eskes and Boersma, 2003; Eskes et al., 2020) thereby reducing 186 

the corresponding uncertainty. In this study, we mostly focus on relative changes in VCDs and use standard a priori 187 

profiles for each data product. Therefore, the uncertainty related to the vertical profile is rather small (as detailed in 188 

Sect. 2.2 through 2.6). Another contribution to this error is the use of partly cloudy scenes by each retrieval which 189 
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increases the amount of data available but does change the vertical sensitivity. The cloud fraction threshold for each 190 

trace gas is described in Sect. 2.2 through 2.6. In future studies, the averaging kernels could be used for inversion 191 

modelling of emissions. As explained in Eskes and Boersma 2003, relative comparisons between the observations and 192 

the model used in the inverse modelling system, and therefore the resulting emissions, no longer depend on the 193 

retrieval a-priori profile shape when the kernel is applied to the model.In future studies, the averaging kernels could 194 

be used for inversion modelling of emissions thus eliminating this error completely. 195 

   TROPOMI observes atmospheric concentrations of trace gases averaged over a vertical column, which is not the 196 

same as a direct measurement of the (near-surface) emission. The column averaged amount of a given trace gas 197 

measured at a certain location depends not only on emission and deposition, but also on atmospheric transport and 198 

(photo)chemical reactions. TROPOMI observes atmospheric concentrations of trace gases integrated over a vertical 199 

column, which is not the same as a direct measurement of the (near-surface) emission. The amount of a given trace 200 

gas integrated over a vertical column at a certain location depends not only on emission and deposition, but also on 201 

atmospheric transport and (photo)chemical reactions. Note that the background concentration is higher for trace gases 202 

with a longer atmospheric lifetime. In turn, enhanced background concentrations will increase the relative importance 203 

of atmospheric transport versus local emissions. Local NO2 emissions have a relatively large impact on the measured 204 

column amounts, while for CO the contribution of remote sources can in some cases be superimposed on local 205 

emissions thus making the interpretation more difficult. To attribute a change in concentration to a corresponding 206 

change in local emissions, the effects of meteorology and chemical lifetime must be accounted for as well.  207 

   While emissions can be estimated from satellite observations using data-driven methods (Beirle et al., 2019, Beirle 208 

et al., 2021; Fioletov et al., 2016; Goldberg et al., 2019) or using complex inverse modelling techniques (e.g. Millet 209 

et al., 2008; Stavrakou et al., 2009; Bauwens et al., 2016; Ding et al., 2020; Miyazaki et al., 2020; Borsdorff et al., 210 

2019; Borsdorff et al., 2020), here we use a more qualitative approach to probe emission changes. First we compare 211 

the concentrations column amounts in 2020 with those from the same period from earlier years and then carry out 212 

additional analysis to separate the lockdown-driven variability from seasonal and meteorological variability taking 213 

into account local information about lockdown and anticipated impacts from different source sectors.taking in account 214 

emission changes driven by mechanisms. 215 

2.2 Nitrogen dioxide (NO2) 216 

The tropospheric column of nitrogen dioxide (NO2) is a TROPOMI operational data product (Veefkind et al., 2012; 217 

doi.org/10.5270/S5P-s4ljg54). Product versions are listed in the Product Readme File (PRF, Eskes and Eichmann, 218 

2019a). The retrieval method is described in detail in the NO2 Algorithm Theoretical Basis Document (ATBD, van 219 

Geffen et al., 2019). The data product and data usage are described in in the NO2 Product User Manual (PUM, Eskes 220 

et al., 2020). The dataset used for most of NO2 analyses cover the period from 1 January 2018 to 30 May 2020. For 221 

Europe, the dataset was extended through 31 August 2020. 222 

   The retrieval algorithm derives NO2 information from spectral range 405-465 nm and is largely based on the OMI 223 

NO2 retrieval developments implemented during the EU QA4ECV project (Boersma et al., 2018). The retrieval 224 

consists of three steps. The first step is based on the DOAS approach, in which the total slant column of NO2 is 225 
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retrieved from the TROPOMI spectra, as discussed in van Geffen et al. (2020). The second step is the estimation of 226 

the 3-D stratospheric distribution of NO2 based on an assimilation of the TROPOMI slant column data of previous 227 

days using the chemistry-transport model TM5-MP (Williams et al., 2017) run at 1° x 1°. This assimilation is set up 228 

to predominantly make use of measurements over clean areas (e.g. ocean and remote land regions) with limited 229 

tropospheric NO2. The third step is the conversion of the tropospheric slant column (total minus stratosphere) into a 230 

tropospheric vertical column by combining radiative transfer calculations with a priori profile shapes from the TM5-231 

MP model. The data product is very comprehensive and provides all the input (such as surface and cloud information) 232 

and intermediate products.  233 

   The tropospheric column is delivered with corresponding averaging kernels and a detailed error estimate. The 234 

random error on the slant column is discussed in van Geffen et al. (2020), and is on the order of 0.56x1015 molec cm-235 

2 for individual measurements after 6 August 2019 (for pixel size 3.5 x 5.5 km2). This translates to only small random 236 

errors in the total columns on the order of 0.2x1015 molec cm-2. Uncertainties in the estimate of the local stratospheric 237 

column amount is of the same order of magnitude. The uncertainty related to the computation of the air mass factor 238 

(AMF) is much more significant for tropospheric columns over polluted areas. The AMF uncertainties are driven by 239 

the treatment of surface albedo, clouds, aerosols, and profile shape. Such errors are multiplicative, and are of the order 240 

of 20-60% depending on the geographical location, time of day, and season (van Geffen et al., 2021). These 241 

uncertainties are modelled for individual observations and are provided in the data product.   242 

   As for all operational TROPOMI data products, a quality assurance value (qa_value) is provided to filter the data 243 

and remove lower quality data where, the recommended threshold value depends on the application (see also Appendix 244 

A, Table A1). For direct visualization or gridding applications a qa_value greater than 0.75 is recommended. For 245 

comparisons with models and data assimilation through the use of the averaging kernels, a relaxed qa_value of greater 246 

than 0.5 may be used. In this study we use NO2 retrievals with a qa_value greater than 0.75. Application of this 247 

qa_value threshold corresponds to data with mostly clear-sky conditions (cloud radiance fractions < 0.5) and implies 248 

that the data is filtered to remove retrievals which do not meet certain quality criteria as described van Geffen et al. 249 

(2019). 250 

   Several recent papers discuss the validation of the NO2 product against independent observations (Verhoelst et al., 251 

2021; Tack et al., 2021; Judd et al., 2020; Dimitropoulou et al., 2020; Ialongo et al., 2020). The main findings can be 252 

summarized as follows: the stratospheric and slant columns are in good overall agreement with other satellite 253 

measurements (van Geffen et al., 2020) and with ground-based observations (Verhoelst et al., 2021). However, the 254 

tropospheric column presents a negative bias of the order of 30% with respect to ground-based remote sensing 255 

reference observations (Verhoelst et al., 2021; Dimitropoulou et al., 2020), as well as with imaging data from airborne 256 

measurements (Judd et al., 2020; Tack et al., 2021). Although the origin of this bias remains unclear and may be due 257 

to several causes, validation results indicate that it scales linearly with the retrieved tropospheric column amount 258 

(Verhoelst et al., 2021; see Fig. C1). As a result, (COVID-related) relative changes in the NO2 column, e.g., (2020-259 

2019)/2019, should be largely insensitive to this bias.  260 
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2.3 Sulphur dioxide (SO2) 261 

Initial analyses were performed using the TROPOMI operational data product for SO2 (Theys et al., 2017). However, 262 

biases present in those data (Fioletov et al., 2020) hamper the detection of the type of small changes in SO2, typically 263 

on the order of -0.1 DU, that are under investigation in this work. Therefore, an alternative retrieval scheme was 264 

applied, the so-called COvariance-Based Retrieval Algorithm (COBRA; Theys et al., 2021). In brief, the approach 265 

considers a set of SO2-free spectra in the wavelength range 310.5-326.0 nm (from TROPOMI band 3) to represent the 266 

radiance background variability, in the form of a covariance matrix. The latter is updated for each orbit, TROPOMI 267 

row, and per latitude band. The covariance matrix is used to determine the SO2 slant columns from individual spectral 268 

measurements using an optimally weighted single parameter retrieval (see Walker et al., 2011). We note that COBRA 269 

does not recalculate air mass factors (AMF). These are simply extracted from the operational product to convert SO2 270 

slant columns into vertical columns (VCDs). Compared to the operational DOAS results, COBRA significantly 271 

improves the SO2 VCDs, both in terms of precision and accuracy. Because the approach empirically accounts for all 272 

sources of systematic variability in the measured signal, large-scale biases typically observed with the DOAS approach 273 

are efficiently removed leading to a large gain in sensitivity (see Fig. C2). 274 

   In this study, we use SO2 retrievals under clear-sky conditions (cloud fractions less than 30%) with solar zenith 275 

angles lower than 60°, and we eliminate 25 swath edge pixels from each side of the orbit swath (450 pixels wide). The 276 

random error in the SO2 vertical columns is rather small in the range of 0.5-1.0 DU, and can be largely reduced by 277 

data averaging. Errors due to spectral interferences are estimated to be very low, about 0.05 DU (Theys et al., 2021). 278 

Remaining systematic uncertainties are mostly from the auxiliary data used in the AMF calculation, and are in the 30-279 

50% range. The dataset used for this analysis covers the period from May 2018 to June 2020. 280 

2.4 Carbon monoxide (CO) 281 

The total column of carbon monoxide (CO) is a TROPOMI operational data product obtained using TROPOMI 2.3 282 

micron measurements (Veefkind et al., 2012; doi.org/10.5270/S5P-1hkp7rp). Product versions are listed in the Product 283 

Readme File (Landgraf et al., 2020). The data product and data usage are described in in the CO Product User Manual 284 

(Apituley et al., 2018). This CO retrieval uses the Shortwave Infrared CO retrieval (SICOR) algorithm method and is 285 

described in detail in the CO Algorithm Theoretical Basis Document (Landgraf et al., 2018). The algorithm software 286 

is based on a scattering forward model and retrieves trace gas columns simultaneously with effective cloud parameters 287 

(cloud height, cloud optical thickness) from the SWIR channel to account for cloud contaminated measurements 288 

(Landgraf et al., 2016, 2018). The inversion deploys a profile scaling approach by which a vertical CO reference 289 

profile is scaled to obtain agreement between the forward simulation and the spectral measurement (Borsdorff et al., 290 

2014). The reference profile is based on a monthly averaged simulation from the global chemical transport model 291 

TM5 and thus varies spatially and temporally (Krol et al., 2005). The vertical sensitivity of the retrieval for clear-sky 292 

conditions is good throughout the atmosphere while measurements for cloudy conditions have reduced sensitivity 293 

under the cloud (Borsdorff et al., 2018). 294 

   In this study, we use the CO retrieval for measurements under clear-sky and cloudy atmospheric conditions (cloud 295 

altitude less than 5000m). This corresponds to filtering the dataset by using the quality assurance values (qa_value 296 
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greater than 0.5) that are supplied with the data product. CO retrievals under low cloud conditions perform well for 297 

unpolluted scenes however can lead to e.g. lower CO values when pollution hot spots are present below the cloud due 298 

to optical shielding and scattering (Borsdorff et al., 2018). Consequently, retrievals under cloudy conditions must be 299 

considered with care, however they are essential to improve the data coverage especially over the oceans where clear-300 

sky measurements are hampered by the low reflectivity of water in the SWIR spectral range. 301 

   The CO retrieval skill lies well within the requirements of the TROPOMI mission (Veefkind et al., 2012) on accuracy 302 

(< 15%) and precision (< 10%). This was shown by validation with ground-based FTIR measurements operated by 303 

the Total Carbon Column Observing Network (TCCON). TROPOMI CO is biased high compared to TCCON by 304 

about 6 ppb with a station to station variability of about 4 ppb (Borsdorff et al., 2018; Lambert et al., 2020). The 305 

dataset used for this analysis covers the period from 1 January 2018 to 30 May 2020.  306 

2.5 Formaldehyde (HCHO) 307 

The tropospheric column of formaldehyde (HCHO) is a TROPOMI operational data product (Veefkind et al., 2012; 308 

doi:10.5270/S5P-tjlxfd2). Product versions are listed in the HCHO Product Readme File (De Smedt et al., 2020a). 309 

The data product and data usage are described in in the HCHO Product User Manual (PUM, Romahn et al., 2020). 310 

The TROPOMI HCHO retrieval algorithm has been fully described in De Smedt et al. (2018) and in the HCHO ATBD 311 

(De Smedt et al., 2020b). It is based on the DOAS method, and is directly inherited from the OMI QA4ECV product 312 

(https://doi.org/10.18758/71021031).  The fit of the slant columns is performed in the spectral interval of 328.5-359.0 313 

nm. Reference spectra are updated daily using an average of Earth radiances selected in the Equatorial Pacific region. 314 

The conversion from total slant to tropospheric vertical columns is performed using a look-up table of vertically 315 

resolved air mass factors calculated at 340 nm. A priori vertical profiles are provided by the TM5-MP daily forecast 316 

with a spatial resolution of 1 x 1 degree (Williams et al., 2017). Cloud properties are taken from the S5P operational 317 

product Cloud as Reflecting Boundary (CRB; Loyola et al., 2018). In order to correct for any remaining offset and 318 

striping due to instrumental artefacts or unknown misfits in the spectral retrieval, a background correction is applied 319 

based on HCHO slant columns selected in the emission-free Pacific Ocean. The background HCHO vertical column, 320 

due to the methane oxidation, is added using data from the TM5 model in the reference region.  We use the quality 321 

assurance values (qa_value greater than 0.5) to filter out observations presenting a solar zenith angle larger than 70° 322 

or cloud fractions larger than 0.4.  323 

   The HCHO retrieval fulfils  the requirements of the TROPOMI mission (Veefkind et al., 2012) on accuracy (40-324 

80%) and precision (12x1015 molec cm-2). The precision of a single observation is estimated to be 5x1015 molec cm-2 325 

in remote locations. The dispersion is naturally larger over polluted sites (from 7-10x1015 molec cm-2). Validation 326 

using a global network of FTIR measurements indicates that TROPOMI HCHO columns present a negative bias over 327 

high emission sites (-30% for HCHO columns larger than 7.5x1015 molec cm-2) and a positive bias for clean sites 328 

(+20% for HCHO columns lower than 2.5x1015 molec cm-2) (Lambert et al., 2020; Vigouroux et al., 2020).  329 

   To characterize the HCHO interannual and seasonal variability, we have used the QA4ECV OMI dataset to construct 330 

a climatology based on recent years (2010-2018). This is justified the good agreement between OMI and TROPOMI 331 

https://doi.org/10.18758/71021031
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HCHO columns which is better than 10% for most regions (Lambert et al., 2020). For our analysis, we use two-week 332 

averaged columns. This reduces the random uncertainty to about 10%.   333 

   One of the main drivers of the observed HCHO variability is temperature, which has a direct impact on NMVOC 334 

emissions and on the chemical production of HCHO (Stavrakou et al., 2018). It results in a strong correlation between 335 

HCHO columns and surface temperatures. For this paper, we correct the HCHO concentrations column amounts for 336 

this meteorological impact prior to using the data in the analyses. We introduce a temperature correction method (Zhu 337 

et al., 2017) based on data from OMI for 2005-2020, and from TROPOMI for 2018-2020. In brief, this correction 338 

entails fitting a second-order polynomial through daily HCHO columns reported as a function of the temperature. This 339 

novel analysistemperature correction is performed for each region and on the OMI and TROPOMI time series 340 

separately. On this basis, the temperature-induced variations in HCHO are removed from the time series using local 341 

daily temperatures specified by ERA5-Land 2m meteorological datasets (Muñoz Sabater, 2019a; See Fig. C3). This 342 

correction is designed to minimize the impact of temperature fluctuations on the HCHO anomalies. Finally, a 343 

polynomial obtained using a climatology of surface temperatures is added to the differential HCHO columns, in order 344 

to reintroduce the natural seasonal cycle, assuming the same temperature every year. These temperature-corrected 345 

HCHO columns are used throughout this paper. Note that the difference with uncorrected HCHO columns is generally 346 

small (less than 10%), but can be significant when looking for small effects such as those induced by COVID-19 347 

related emission changes. The dataset used for this analysis covers the period from May 2018 to June 2020.  348 

2.6 Glyoxal (CHOCHO) 349 

Glyoxal (CHOCHO) is not one of the TROPOMI operationals data products. For this study we used the prototype 350 

data product developed as part of the ESA S5p+I GLYRETRO project, which relies on scientific developments 351 

performed using the GOME-2 and OMI instruments (Lerot et al., 2010). The algorithm is described in detail in the 352 

GLYRETRO ATBD (Lerot et al., 2020). In brief, the retrieval approach consists of a DOAS-type spectral fit for the 353 

observed optical depth with reference absorption cross-sections for glyoxal and other absorbing species (NO2, O3, O2-354 

O2, liquid water and water vapor, and the Ring effect) in the spectral interval of 435-460 nm to derive glyoxal slant 355 

column densities. The latter are converted into tropospheric columns using calculated air mass factors, after application 356 

of a background correction procedure aimed at reducing possible remaining (row-dependent) systematic biases. Air 357 

mass factors are calculated following the formulation of Palmer et al. (2001), which combines altitude-dependent air 358 

mass factors (or Box-AMFs) with a priori glyoxal concentration profiles. The Box-AMFs represent the instrumental 359 

sensitivity to changes in concentration at any altitude and are precomputed using the radiative transfer model 360 

VLIDORT v2.7 (Spurr and Christi, 2019), while the a priori profiles are provided by the MAGRITTE chemistry-361 

transport model (Müller et al., 2018, 2019).Air mass factors are calculated following the formulation of Palmer et al. 362 

(2001), which combines box-air mass factors precomputed with the radiative transfer model VLIDORT v2.7 (Spurr 363 

and Christi, 2019) and a priori glyoxal concentration profiles provided by the MAGRITTE chemistry-transport model 364 

(Müller et al., 2018, 2019). 365 

   The glyoxal optical depth is very small (< 5x10-4), which makes its retrieval very sensitive to instrumental noise and 366 

to interferences with spectral signatures of species absorbing more significantly in the same spectral region. The first 367 
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factor introduces large random errors, in the range 6-10x1014 molec cm-2, which can however be reduced by spatial-368 

temporal averaging, that is, using multiple observations averaged time and/or space. Systematic uncertainties are 369 

dominated by spectral interferences, but also by uncertainties associated with the auxiliary data used as an input for 370 

the AMF calculation. These uncertainties are estimated to be 2-3x1014 molec cm-2 (~50% for source regions). To limit 371 

uncertainties related to cloud contamination, glyoxal observations are only provided for scenes with effective cloud 372 

fractions smaller than 20% (taken from the operational NO2 product). As with HCHO, to account for seasonal and 373 

interannual variability, a climatology of OMI CHOCHO columns was built to further delineate sources of variability 374 

for glyoxal column amounts.  375 

   Validation of satellite glyoxal column observations is generally limited, mostly due to the scarcity of independent 376 

ground-based data. However, a preliminary validation based on a few MAX-DOAS stations in Asia and Europe, 377 

indicates that the satellite and ground instruments measure consistent glyoxal tropospheric column amounts with mean 378 

differences generally less than 2x1014 molec cm-2, except in particular conditions such as low sun elevation or for 379 

stations that are frequently covered by clouds (Alvarado et al., 2020). The dataset used for this analysis covers the 380 

period from May 2018 to June 2020. 381 

3 Global Observations of Nitrogen Dioxide  382 

Numerous papers have shown that TROPOMI measurements of tropospheric NO2 column amount are well-suited for 383 

detecting emission from a variety of anthropogenic sources including traffic, power plants, and industry (van der A et 384 

al., 2020; Goldberg et al., 2019). The atmospheric lifetime of NO2 and its vertical profile shape dictate that the high 385 

spatial resolution measurements from TROPOMI can readily capture rapid week-to-week changes in near-surface 386 

emissions from COVID-19 impacted cities and point sources (Sekiya et al., 2021; Fioletov et al., 2021; Stavrakou et 387 

al., 2021; Gkatzelis et al., 2021). To give context and overview, the global distribution of tropospheric NO2 based on 388 

an annual average for 2019 with an oversampling resolution of approximately 0.02° x 0.02° is illustrated in Figure 1. 389 

The high resolution of these measurements enables further zooming to the regional, suburban, and city scale providing 390 

detailed information about spatial distributions. Three further zoom-in cases for central Chile and its capital Santiago, 391 

for Paris, and for New Delhi are shown in A regional zoom-in over central South America reveals high NO2 levels 392 

over the megacities of Rio de Janeiro, São Paulo, Buenos Aires, and Santiago. A further zoom-in to central Chile and 393 

its capital Santiago is shown in Figure 1., These cases focusing on a shorter periods coinciding with region-specific 394 

COVID-19 lockdowns (see Appendix B). Observed column amounts of NO2 are compared to similar periods in 2019, 395 

which are chosen to be longer than the 2020 period in order to reduce the effects of natural variability. Strong 396 

reductions in the NO2 tropospheric column amounts are observed during lockdown periods (Bauwens et al., 2020; 397 

Barré et al., 2021; Griffin et al., 2020; Qu et al., 2021). Interestingly, further zoom in shows that the relative reduction 398 

is not uniform over a city, reflecting differences in the mix of source contributions for different quarters of a given 399 

city. from 23 March to 10 April 2020, which coincides with a region-specific COVID-19 lockdown (Figure 2k), as 400 

compared to the mean tropospheric NO2 column for March-April 2019. Note that the period in 2019 is chosen to be 401 

longer than 2020 in order to reduce the effects of natural variability, but the period is centered at the beginning of 402 

April to avoid the influence of the seasonal NO2 cycle. A strong reduction in the NO2 tropospheric concentration of 403 
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about 40% is observed over Santiago during this period, and a 28% reduction is observed between 23 March and 15 404 

May corresponding to the period when restrictions were eased (Figure 2k). Interestingly, a further zoom shows that 405 

the relative reduction is not uniform over the city, reflecting differences in the mix of source contributions for the 406 

different quarters of the city. 407 

 408 

 409 

 410 
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 411 

Figure 1: Global distribution of NO 2 based on the annual average of tropospheric column amounts of NO2 measured by 412 
TROPOMI for 2019 (top panel) shown in units of micromole per m2. Using the same data, several zoom-in plots are shown 413 
in the middle and bottom panels:  regional zoom-in for central South America (middle left) and a city-scale zoom-in over 414 
Santiago, Chile (middle right panels, comparing 23 March to 10 April 2020 with March-April 2019), over Paris (lower left, 415 
comparing 15 March to 15 April 2020 with March-April 2019) and over New Delhi (lower right, comparing 28 March to 22 416 
April 2020 with April 2019). Note the different color scales in the three subpanels. The domain size of the panels is 1.5 x 1.0 417 
degree for Paris, and 1.1 x 1.0 degree for New Delhi. 418 
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 419 

 420 

   The lockdown periods and the measures taken to mitigate the spread of COVID-19 were rolled out on country- and 421 

often city-specific basis. Figure 2 illustrates the temporal evolution of NO2 tropospheric column amounts from January 422 

to May over large cities across different continents. The observed reductions in China and India are discussed in more 423 

detail in Sections 4 and 5. Detailed information about the lockdown measures adopted for those cities is given in Table 424 

B2.  Appendix B provides a detailed description of the observed reductions during the specific lockdowns for 425 

individual (mega)cities shown in Figure 2 and Figure 3. The TROPOMI observations indicate substantial decreases 426 

in NO2 during the lockdowns in all studied cities, but the reductions vary significantly from one city to another. Two 427 

more examples of lockdown-related NO2 column reductions in major cities are shown for Paris and New Delhi in 428 

Figure 1 with time windows selected to reflect region-specific lockdown periods. In Paris, the NO2 levels for the 429 

period 15 March to 15 April 2020 are about a factor of two lower than in March-April 2019 (see also Figure 4). For 430 

New Delhi the reduction is even more striking in comparison to April 2019 (about a factor of 3, Figure 2c). Both Paris 431 

and New Delhi also show significant reductions in background values around the cities. Background locations are 432 

subject to a variety of wind directions and sometimes downwind of city plumes thus influencing background 433 

concentrations. Such plumes are typically on the order of 100 km long, and, given the atmospheric residence time of 434 

NO2 (2-12 hours), these plumes can fill the small domains around Paris and New Delhi shown in Figure 1. 435 

 436 
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 438 

Figure 2: Time series of TROPOMI NO2 column amounts (in 1015 molecmol cm-2) for selected cities for the period 1 January 439 
to 11 June December in 2019 (black dots) and 2020 (red dots). TROPOMI observations are averaged over a 25 x 25km2 box 440 
around the city center. The lines indicate the two-week running mean for 2019 (black) and 2020 (red). The grey zones 441 
indicate the official lockdown period for each city. The reduction of the average NO2 column during the lockdown period 442 
relative to the same period in 2019 is given inset. Details about the lockdown dates are summarized in Table BC2. 443 

 444 

   The lockdown periods and the measures taken to mitigate the spread of the COVID-19 were rolled out on a country- 445 

and often city-specific basis. Figure 2 Figure 2and Figure 3 illustrates the temporal evolution of NO2 tropospheric 446 

columns from January to May over large cities for different continents. The observed reductions in China and India 447 

are discussed in more detail in Sect. 4 and 5. Detailed information about the lockdown measures adopted for those 448 

cities is given in Table BC2. The TROPOMI observations indicate substantial decreases in NO2 during the lockdowns 449 

in all studied cities, but the reductions vary significantly from one city to another. 450 

   In Wuhan, the first city to issue quarantines and lockdown measures, the observed NO2 column drastically declined 451 

(-60%) between 23 January and 8 April 2020 compared to the same period in 2019 (Table C2). This decrease is in 452 

good agreement with estimated reductions for the period 11 February to 2 March 2020 based on TROPOMI NO2 (-453 

43%, Bauwens et al., 2020) and in situ NO2 observations in Wuhan (-55%, Shi and Brasseur, 2020). However, it 454 

should be noted that there was strong day-to-day variability in the NO2 column amount due to meteorological factors, 455 
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as well as missing data over Wuhan in February 2019 due to clouds. Model calculations by Liu et al. (2020) indicate 456 

that meteorological variability could have led to increased NO2 columns in 2020 compared to 2019, suggesting that 457 

the observed NO2 reductions underestimate the impact of emission reductions due to COVID-19. The partial lifting 458 

of the restrictions on 8 April led to a progressive increase in NO2 levels, yet remained lower than in 2019, likely 459 

because the population was still advised to stay at home and schools remained closed. A similar response in NO2 460 

levels was observed in Beijing. The decreases were less pronounced (-40%) and are in excellent agreement with the 461 

reported decrease based on in situ NO2 measurements (-40%, Shi and Brasseur, 2020). The weaker response could be 462 

due to the less drastic measures adopted in Beijing, because locally sustained COVID-19 cases were lower than in the 463 

Hubei province (Leung et al., 2020). Strong NO2 reductions were observed for other Chinese cities, like Nanjing, 464 

Qingdao, and Zhengzhou, based on TROPOMI NO2 observations (Bauwens et al., 2020). 465 

   India enforced strict restrictions of human activities on 24 March 2020 to tackle the spread of COVID-19. In New 466 

Delhi and Mumbai, the onset of the lockdown induced a sharp decline in the observed NO2 columns (by a factor of 467 

2). The columns remained low during the entire lockdown period (-56% and -46%, respectively) (see Table 2 for 468 

timing of lockdown phases). This is very much in line with the decreases reported in New Delhi based on NO2 data 469 

from monitoring stations, -53% (Mahato et al., 2020) and -48% (Jain and Sharma, 2020). 470 

   As compared to other cities, a very strong NO2 decrease was observed in Lima (-63%), where strict regulations to 471 

stay indoors were enforced (Collyns, 2020). A drastic drop in NO2 compared to the 2019 levels marked the start of 472 

the lockdown, and the levels remained very low throughout the entire lockdown period. The gradual increase of NO2 473 

columns in Lima and other Southern Hemispheric cities from January to May (Figure 2) reflects the natural seasonal 474 

variation when levels peak during the Southern Hemispheric winter, as temperatures decrease and NO2 lifetime 475 

increases.  476 

   In Buenos Aires, the observed reduction was not as strong compared to Lima for the entire lockdown period (-34%, 477 

Table C2), but was particularly marked during the first month of the lockdown (20 March through 20 April 2020), 478 

due to a compulsory quarantine period and strict limitation of activities for many sectors. Although partial lifting of 479 

measures was issued after 10 April for many provinces in Argentina, the measures in the Buenos Aires agglomeration 480 

were maintained due to the elevated number of cases (Raszewski and Garrison, 2020). More moderate reductions are 481 

found for Mexico City (-22%) and Santiago (-23%) during the lockdown in comparison to the same period in 2019, 482 

that could be attributed to less strict adherence to and enforcement of lockdown measures (Uchoa, 2020; Pasley, 2020). 483 

   Strong reductions were observed over the entire lockdown period in the heavily hit cities in southwest Europe, Los 484 

Angeles, and New York, with reductions ranging between -32% and -54% (Bauwens et al., 2020). It should be noted 485 

however, that in these regions, the start of the lockdown period is generally less marked partly because the lockdowns 486 

were not as strictly enforced in Europe and the U.S. as in China and India. Moreover, the observed TROPOMI data 487 

displays a strong variability attributable to meteorology, e.g. over Paris, New York and Los Angeles in 2019.  488 

   In Sydney, the reduction was moderate (-14%) and delayed with respect to the onset of the measures (Figure 2). 489 

This could be related to observations of less strict compliance in the early period of lockdown measures (New South 490 

Wales Public Health, 2020). A rapid and strong decrease was observed for NO2 column amount as a result of lockdown 491 

measures in Auckland, New Zealand (-55%). Similarly, the lockdown measures in New Zealand were implemented 492 
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swiftly with high levels of compliance (Matthews, 2020). The end of the lockdown coincided with a strong increase 493 

in NO2 pollution, from 1.8×1015 molec cm-2 to 3×1015 molec cm-2 in the last three weeks of May. 494 

   In Africa, Nigeria is among the countries most affected by COVID-19 and reported the first confirmed case in sub-495 

Saharan Africa (Odunsi, 2020; Adigun and Anna, 2020). A two-week lockdown period was put in place for Lagos 496 

starting 30 March. The NO2 column amount decreased by 33% during the lockdown (Figure 2) with respect to the 497 

same period of 2019 and remained lower even after the lifting of restrictions on 4 May (Table C2). An NO2 column 498 

decrease of similar magnitude (-35%) was observed in Johannesburg, where a national lockdown was issued on 26 499 

March 2020, with a gradual easing of restrictions starting 1 May. In Sub-Saharan Africa, the emission reductions in 500 

April were significant for larger populous and industrialized areas, whereas no noticeable drop was found in less 501 

developed regions (Masaki et al., 2020). 502 

   Finally, the Iraqi capital of Baghdad faced an initial lockdown from 22 March through 21 April. A second partial 503 

lockdown was issued starting 20 May in response to a sharp increase in COVID-19 cases due to the temporary 504 

relaxation of restrictions to allow the celebration of Ramadan in late April (Table C2). The NO2 column responded 505 

quickly (Figure 2n) as confirmed by the rapid decrease once curfew measures were issues in late-May. 506 

   Figure 3 and Figure 4 illustrate the tropospheric concentration of NO2 over Europe, focusing on Milan, Madrid, 507 

Paris and Berlin (Figure 3), extending the analysis to include summer months. In France, Spain and Italy we detect 508 

strong reductions of NO2, which can be largely attributed to the lockdown measures. In Berlin, the measured 509 

differences are smaller, and a more detailed analysis of the meteorological variability is needed to quantify the impact 510 

of the lockdown (see Figure 3). The extended time series shows a recovery of the NO2 pollution levels to pre-COVID-511 

19 values. However, the recovery is not complete, suggesting that remaining restrictions, new stay-at-home life and 512 

working practices, together with a downturn in industrial and service-based activities have contributed to a longer 513 

lasting impact. 514 

 515 

 516 

 517 

 518 
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 519 

Figure 3: Same as Figure 2, Figure 2, for the European cities Milan, Madrid, Paris, and Berlin, for an extendedthe same 520 
period of 1 January to 11 SeptemberDecember in units of mol m-2. Additional shading indicates the lockdown period (dark 521 
grey), a transition period (grey), and the period with relaxed regulations (light grey). 522 

 523 

 524 
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 525 

Figure 4: TROPOMI NO 2 tropospheric columns over Europe in the lockdown months March-April (top) and the post-526 
lockdown months July-August (bottom), comparing 2019 (left) with 2020 (middle) in units of mol m-2. The difference is 527 
shown in the right panel. 528 

 529 

   Relative concentration changes between 2019 and 2020, as mentioned previously, should not be fully attributed to 530 

COVID-19 lockdown measures and the subsequent reduction of emissions. Daily changes in the weather have a strong 531 

influence on the NO2 concentrations, even when the data is averaged over a month. In order to estimate the impact of 532 

meteorological variability on TROPOMI-based NO2 observations, simulations were performed with the LOTOS-533 

EUROS chemistry-transport model over Europe at a resolution of 0.1° x 0.1°. Using the same emissions for 2019 and 534 

2020, the simulations show that meteorological variability is responsible for changes in the monthly-mean, city-535 

averaged NO2 columns with a 1-sigma standard deviation of about 13%. This variability is clearly illustrated in e.g. 536 

the individual daily observations in Figure 2. The drastic changes in the range of 30-60% observed in the TROPOMI 537 

data and shown in Figure 1 through Figure 4 clearly fall outside this range and cannot be attributed to weather alone.   538 

Relative concentration changes between 2019 and 2020 (as shown in Figure 4), as mentioned previously, should not 539 

be fully attributed to COVID-19 lockdown measures and the subsequent reduction of emissions. Daily changes in the 540 

weather have a strong influence on the NO2 concentrations, even when the data is averaged over a month. In order to 541 

estimate the impact of meteorological variability on TROPOMI-based NO2 observations, simulations were performed 542 

with the LOTOS-EUROS chemistry-transport model over Europe at a resolution of 0.1° x 0.1°. Using the same 543 

emissions for 2019 and 2020, the simulations show that meteorological variability is responsible for changes in the 544 

monthly-mean, city-averaged NO2 columns with a 1-sigma standard deviation of about 13%. This variability is clearly 545 

illustrated in e.g. the individual daily observations in Figure 2. The drastic changes in the range of 30-60% observed 546 
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in the TROPOMI data and shown in Figure 1 through Figure 4 clearly fall outside this range and cannot be attributed 547 

to weather alone. 548 

   A second complication is the presence of clouds. Months with persistent local cloud cover will therefore have a 549 

reduced number of tropospheric column observations and will exhibit more natural variability. For quantitative 550 

estimates of the COVID-19 measures, these factors should be carefully taken into account. This can be done through 551 

(i) daily-based analysis of the NO2 plumes from cities using wind speed fields from meteorological models and 552 

subsequent emission derivation (Lorente et al., 2019; Goldberg et al., 2019); (ii) combining NO2 observations with 553 

analyzed wind fields (Beirle et al., 2019, 2021); (iii) regression models to estimate the impact of natural variability 554 

and emission trends in the observations (Diamond and Wood, 2020); (iviii ) chemistry-transport modelling (Chang et 555 

al., 2020; Liu et al., 2020; Barré et al., 2021); and (iv) inverse modelling and data assimilation approaches  (Ding et 556 

al., 2020; Miyazaki et al., 2020). 557 

4 Regional Observations for China 558 

China was the first country to impose measures to limit the spread of the SARS-CoV-2 virus. Although no national 559 

lockdown was declared, strict local lockdown measures were implemented in many cities and provinces. In Wuhan, 560 

the epicenter of the virus outbreak, the lockdown period lasted from 23 January 2020 until 8 April 2020, while in other 561 

regions, it generally started in early February with measures being eased and lifted through March. In addition to the 562 

lockdown measures, the yearly Chinese New Year holidays also affected the amount of anthropogenic emissions (Tan 563 

et al., 2009), and so needs to be considered for proper interpretation of the observations. The timing of the holiday 564 

period differs from year to year and took place from 24 January to 2 February in 2020, and in the periods 4-10 February 565 

and 15-21 February for 2019 and 2018, respectively. 566 

   The impact of the COVID-19 crisis on air quality in China has already been investigated in several studies. Bauwens 567 

et al. (2020) reported that tropospheric NO2 column amounts observed by TROPOMI during the lockdown dropped 568 

by 40-50% in the most impacted cities compared to the same period in 2019 (see Sect. 3). Accordingly, top-down 569 

estimated NOx emissions exhibited sharp reductions of up to 50% during the strict lockdown period in late January 570 

through early February (Ding et al., 2020; Liu et al., 2020; Zhang, R. et al., 2020). 571 

   In situ data indicate significant reductions of ground concentrations for NO2, but also for PM, SO2, and CO (Shi and 572 

Brasseur, 2020; Wang et al., 2020; Zhang, Z. et al., 2020; Zhao, Y. et al., 2020). On the other hand, those studies 573 

consistently reported increases of ozone concentrations. With the support of models, Zhao, Y. et al. (2020) have shown 574 

that the observed decreases in NO2 concentration were mostly caused by emissions reductions. They also show that 575 

the contribution of meteorological changes to the observed concentration reductions of other species depends on the 576 

exact location. Based on OMI observations, Zhang, Z. et al. (2020) observed reductions in East Asia of about 33% 577 

and 41% for NO2 and SO2, respectively. 578 

   City-scale impacts of lockdown on NO2 tropospheric column amounts for Wuhan and Beijing are presented in Sect. 579 

3. Here, we investigate whether a lockdown signature can be detected from space at the regional scale for other key 580 

pollutants by focusing on TROPOMI tropospheric column measurement of SO2, CO, HCHO, and CHOCHO. We also 581 

compare the identified changes with the marked changes in NO2 concentration. Figure 5 compares monthly mean 582 
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tropospheric columns of those different species for February 2019 and 2020. The NO2 and SO2 tropospheric column 583 

amounts are clearly lower in February 2020 compared to 2019. A small general reduction is also visible in the CO, 584 

HCHO and glyoxal column amounts. As discussed before, many factors other than the lockdown measures may 585 

explain changes in pollutant concentrations, such as the meteorology or emission reduction related to the timing of 586 

holidays. Another difficulty to compare different years is the data sampling. In February 2019, large parts of Southern 587 

China were covered by clouds, preventing space-based observation of the lowermost atmospheric layers. This is 588 

clearly illustrated in the upper panel of Figure 5 showing CHOCHO concentrationscolumn amounts, where data is 589 

missing over large regions since this product uses the most stringent cloud filtering as compared to the other trace 590 

gases. Therefore, the following detailed discussion only focuses on the northern part of China (black box in Figure 5 591 

top left panel), even though the lockdown measures were stricter in the region of Wuhan. 592 

 593 

 594 

 595 

 596 

Figure 5: Tropospheric and total columns for various trace gases over China as observed by TROPOMI over China in 597 
February 2019 (upper panels) and 2020 (lower panels) in units of mol m-2. The black box indicates the geographical region 598 
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used in the time series analysis (Figure 6). Note: the grey-shaded regions in NO2 and CHOCHO panels (far left and far 599 
right, respectively) indicate areas with little or no data available due to persistent local cloud cover. 600 

 601 

   Figure 6 shows the seasonal cycles for tropospheric column amounts of TROPOMI NO2, SO2, CO, HCHO, and 602 

CHOCHO for different years in northern China (region in black box highlighted in Figure 5) starting at the beginning 603 

of the operational phase of the S5P/TROPOMI mission (30 April 2018). The different colored curves show two-week 604 

medians of the daily mean tropospheric columns. In order to focus on the effect of COVID-19 lockdown measures for 605 

HCHO and CHOCHO, the TROPOMI-based time series are compared with an OMI-based climatology for these 606 

species using OMI data from 2010 to 2018, and shown by the black dashed curves. The associated uncertainties 607 

represent the interannual variability as estimated from OMI. This type of climatological reference based on a longer 608 

time series is not available for CO. Therefore, Figure 6 shows CO columns starting from 1 January 2018, which have 609 

been added to extend the time series even though the data sampling was more limited in the early phase of the mission. 610 

The light vertical boxes in January and February indicate the period of Chinese New Year holidays. Note that the 2020 611 

holiday period was slightly extended as a first measure against the COVID-19 spread.  612 

 613 

 614 
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 616 

Figure 6: Two-week median tropospheric column concentrations amounts of NO2, SO2, CO, HCHO and CHOCHO (from 617 
top to bottom) for northern China (34°N-40°N; 110°E-120°E) in units of (micro)mol m-2. The year 2020 is represented in 618 
red (2018 in blue, 2019 in black) and The different curves represent different years as indicated in the legend. The colored 619 
boxes represent correspond to the yearly Chinese New Year holidays for those same years. The dashed black lines in the 620 
HCHO and CHOCHO panels represent a climatological seasonality as obtained using the OMI data sets from 2010 to 2018 621 
and the error bars represent the interannual variability (1-sigma standard deviation). 622 

 623 

   Superimposed on the overall seasonal cycle of NO2 (maximum during wintertime caused by a longer atmospheric 624 

lifetime), a clear reduction of the NO2 columns is systematically observed which corresponds to the New Year 625 

festivities. While a quick return to higher values is usually observed after that period (Tan et al., 2009), the NO2 626 

columns remained lower for several weeks in 2020 likely as a consequence of the reduced traffic and industrial 627 
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activities. For example, NO2 column amounts at the end of February were about 45% lower than those of 2019. In 628 

March 2020, NO2 columns return progressively to a similar level as compared to other years. 629 

   SO2 emissions in China mostly originate from fossil fuel burning of coal and oil (Wang et al., 2018). Although 630 

Chinese SO2 emissions have dropped significantly in the last decade (van der A et al., 2017; Zheng et al., 2018a), 631 

enhanced SO2 columns are still observed in some regions of northern China (Figure 5). As illustrated in Figure 6, SO2 632 

column amounts are larger during wintertime mostly due to its longer atmospheric lifetime (Lee et al., 2011). No clear 633 

reduction could be related to the yearly holidays. However, in 2020 a sharp drop is observed starting in late January 634 

through mid-March with a reduction of up to 77% as compared to 2019. By late-March/early-April values returned to 635 

levels similar to previous years, which is consistent with the NO2 lockdown signature. 636 

   In northern China the residential sector, consisting of mostly of emissions from heating and cooking, accounts for 637 

nearly half of the anthropogenic CO emissions, while the rest is distributed between traffic, power generation, and 638 

industry (Zheng et al., 2018b). Since the impact of lockdown measures is more limited for the residential sector as 639 

compared to the transport or industrial sectors, the response of CO to the lockdown measures is expected to be less 640 

distinct. Also, due to the longer atmospheric lifetime of CO (weeks to a month), the observed column amounts result 641 

from the accumulation of the trace gas over source regions and from long-range transport from regional and global 642 

sources. As such, meteorology significantly influences CO concentrations. The observed day-to-day variability is 643 

indeed large, leading to more scatter in the two-week median time series shown in Figure 6. The CO columns observed 644 

in late February/early March are lower than those observed in the last two years, which might be partly caused by the 645 

lockdown measures. However, the high temporal and spatial natural variability of the CO column amount is of the 646 

same magnitude as the possible COVID-19 lockdown signal, and the large, year-to-year interannual differences 647 

prevent firm conclusions from being drawn. Dedicated model simulations or a longer time series of the TROPOMI 648 

CO data may help to disentangle these effects in the future. 649 

   There are difficulties associated with the investigation of a possible lockdown signature in the satellite HCHO and 650 

CHOCHO data sets. Large uncertainties are associated with both of these column retrievals owing to their low optical 651 

depth. Moreover, HCHO and CHOCHO columns are dominated by biogenic emissions, which explains the observed 652 

seasonal pattern of HCHO and CHOCHO column values with a maximum during summertime as illustrated in Figure 653 

6. Variability in meteorology (temperature changes, winds, precipitation) may lead to changes in column amounts on 654 

the same order of magnitude as the expected lockdown-related reduction in anthropogenic emission changes. The 655 

interannual variability as inferred from the OMI data sets is estimated to be in the range of 1x1014 molec cm-2 (~30%) 656 

and 1.2x1015 molec cm-2 (~12%) for CHOCHO and HCHO, respectively. Despite those issues, a clear minimum is 657 

visible for both HCHO and CHOCHO in late February 2020, with columns significantly lower than 2019 and lower 658 

than the OMI climatology (about -40% and -50% for HCHO and CHOCHO, respectively). The differences are also 659 

larger than what can be explained by the typical interannual variability. This is in agreement with Sun et al. (2021), 660 

who finds a significant HCHO decrease in the Northern China Plain. For glyoxal, a reduction of the column amounts 661 

starts already in late January but similar reductions are observed in other years and might be related to a holiday effect 662 

similar to that observed for NO2.  663 
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   It is interesting to note that local minima are observed simultaneously in late February 2020 for all species except 664 

NO2, despite the data products being generated using independent retrieval algorithms. This gives confidence into the 665 

detected reductions and their anthropogenic origin. The small delay between the initial decrease in NO2 concentration 666 

column amount and the observed decreases in the other trace gases signals is related to a combination of longer 667 

atmospheric lifetimes and production being dominated by secondary processes as compared to NO2 (Stavrakou et al., 668 

2021) and is also likely tied to the early timing of the Chinese New Year in 2020. 669 

5 Regional Observations for India  670 

India implemented strict national lockdown measures limiting activities across the country starting 24 March 2020 for 671 

a period of 21 days in order to tackle the spread of the SARS-CoV-2 virus amongst its 1.3 billion inhabitants. The 672 

initial stringent phase 1 restrictions were followed by careful region-based relaxations in three subsequent phases 673 

carried out through the end of May as shown in Table 2. 674 

 675 

Table 2: Lockdown phases in India. 676 

  Dates Measures Reference 

 

Phase 1 

 

24 Mar to 14 Apr 

 

Nearly all services and factories suspended. 

 

Singh et al. (2020) 

 

Phase 2 

 

15 Apr to 3 May 

 

Extension of lockdown with relaxations, 

reopening of agricultural businesses and 

small shops at half capacity.  

 

BBC News (2020) 

 

Phase 3 

 

4 May to 17 May 

 

Country split in 3 zones: (i) lockdown zone, 

(ii) zone with movement with private and 

hired vehicles, and (iii) normal movement 

zone. 

 

India today (2020) 

 

Phase 4 

 

17 May to 31 May 

 

Additional relaxations, more authority given 

to local bodies. 

 

The Economic Times, 

2020 

 677 

 678 

   Figure 7 gives an overview of TROPOMI observations of NO2, SO2, CO, HCHO, and CHOCHO, over India for 679 

April 2020, thus covering most of phase 1 and 2 of the Indian lockdown, as compared to the same month in 2019. For 680 

NO2 and SO2 the concentrations column amounts are clearly lower across the country in 2020 as compared to 2019. 681 

Although less prominent, concentrations column amounts of CO, HCHO, and CHOCHO appear to be lower in April 682 

2020 over the domain of the Indo-Gangetic Plain (IGP), which is one of the most densely populated areas of the world 683 

with roughly 900 million people.  684 

 685 
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 686 

 687 

 688 

Figure 7: Tropospheric and total columns Concentrations maps for April 2019 (top row) and April 2020 (bottom row) for 689 
the various trace gas species measured by TROPOMI from left to right, NO2, SO2, CO, HCHO and CHOCHO, shown in 690 
units of mol m-2. 691 

 692 

   The two main sources of NO2 are road transport and power generation, each accounting for about 30% of total 693 

anthropogenic emissions in India (Granier et al., 2019). During phase 1 of the lockdown the Tom-Tom traffic index 694 

dropped by 80% (Aloi et al., 2020; Prabhjote, 2020) and energy consumption dropped by 25% compared to 2019 695 

(Dattakiran, 2020; POSOCO, 2021) (Fig. D1). As such, we expect a strong reduction in NO2 particularly in urban 696 
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areas due to large decreases in transport sector activities and we expect a weaker reduction near power plants due to 697 

smaller decreases in energy demand.  698 

   Indeed, as indicated by the maps of NO2 column concentrations amounts in Figure 7, a notable reduction in NO2 can 699 

be seen in April 2020 as compared to April 2019. A clear reduction is observed over major cities as well as over the 700 

eastern part of India where most large power plants are located. Figure 8a shows the average NO2 total column 701 

concentrations amounts as measured by TROPOMI for 2018, 2019 and 2020, for the 40 largest cities in India selected 702 

on the basis of the number of inhabitants (www.geonames.org) where NO2 is averaged over a 15 x 15 km2 area around 703 

each city center. When both city centers and power plants are located within a 45 x 45 km2 box, this box is excluded 704 

from the averages to avoid potential outflow of one source to the other. A sharp reduction of 42% can be seen in the 705 

amount of NO2 over cities during the first phase of the lockdown period starting at the end of March, as compared to 706 

the same period in 2019. This initial drop in NO2 is then followed by a slow but gradual increase in line with the 707 

successive relaxation phases (Table 2). Power generation is a major source for NO2 in India, in particular from coal-708 

fired power plants. When examining the average amount of NO2 over the 100 largest coal-fired power plants 709 

(www.wri.org), we observe a significant drop in NO2 during phase 1 of the lockdown period. This drop, observed 710 

over coal-fired power plants of 23% as compared to 2019 (Figure 8b), is less pronounced than the observed drop in 711 

NO2 over cities (Figure 8a). The TROPOMI-observed reduction in NO2 over coal-power plants is in line with the 712 

initial 25% decrease in maximum electricity demand reported by National Load Dispatch Centre (NLDC) during phase 713 

1 and tapering to an 8% decrease during phase 4 of the lockdown as compared to 2019 (Fig. D1, Dattakiran, 2020).  714 

 715 
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 717 

Figure 8: Average tropospheric NO2 concentrations column amounts for May 2018 (green), 2019 (black) up until June 718 
December 2020 (red) over the 40 largest Indian cities (top); over the 100 largest power plants in India (middle); and 719 
average SO2 concentrations over the 59 largest SO2-emitting power plants in India (bottom). The four different phases of 720 
the lockdown period are denoted by the different grey shading. For each phase, the reductions in NO2 (or SO2) 721 
concentrations are given relative to the same period in 2019. The dots are the daily means, and the solid lines represent 722 
the 7-day running means. 723 

 724 

   According to the CAMS-GLOB-ANT emission inventory for 2019 the major sources for SO2 in India are power 725 

generation (65%) and industry (25%) (Granier et al., 2019). Since India largely relies on coal for producing energy, it 726 

is the worldôs top emitter of anthropogenic SO2 (Li et al., 2017). So, most of the SO2 signal we see in TROPOMI data 727 

for this region (Figure 7) is from coal-fired power plants, where contributions from oil and gas plants in India comprise 728 

a much smaller part of the signal (Fioletov et al., 2016). From Figure 7, a reduction in SO2 is visible over most areas, 729 

and is especially noticeable for the easternmost part of India, which is Indiaôs largest SO2-emitting region with more 730 

than 20 coal-fired power plants. 731 
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   We have investigated the SO2 VCD amounts over the largest power plants, and adapted the selection method used 732 

for NO2 by considering a larger area of 50 x 50 km² around each power plant. This is justified by (1) the longer lifetime 733 

of SO2 compared to NO2, (2) the lower contamination by other sources, and (3) the need to reduce the noise on the 734 

SO2 data to more clearly isolate the signal from the power plant. The results of the averaged SO2 VCD time series are 735 

presented in Figure 8c. It should be noted that, compared to NO2, an additional selection of the power plants was 736 

applied. Based on the SO2 VCD map for April 2019 (Figure 7), only the power plants with mean SO2 columns larger 737 

than 0.15 DU were considered (59 power plants in total). Although the signal is relatively weak for SO2, we find very 738 

similar reductions in SO2 as compared to NO2. Especially during the first two phases of the lockdown, a reduction of 739 

about 20% is found which is in line with the NO2 observations and the reported reduction in energy demand. In May, 740 

for the different years, the consistency between NO2 and SO2 VCDs is less straightforward and the reason for this is 741 

not fully understood. It should however be noted that the NO2 and SO2 data products do not use the same cloud 742 

products for filtering and this might be a reason for discrepancy. Moreover, the possibility of a systematic 743 

contamination of the NO2 signal over power plants by other sources cannot be ruled out completely. A noticeable 744 

feature of Figure 8b and Figure 8c is the overall excellent correspondence between NO2 and SO2 VCD evolution (on 745 

short-term/seasonal basis, and outside the lockdown periods) as well as from year to year. This further strengthens the 746 

observed COVID-19 related drop in both trace gases, although it is clear that meteorology and chemistry likely play 747 

a large role in the observed VCD variability. Also, ground-based studies in New Delhi find a more important reduction 748 

in NO2 compared to SO2 (Mahato et al., 2020; Kumari and Toshniwal, 2020). 749 

   For HCHO, CHOCHO, and CO, various regions over India have been investigated to detect a possible signal 750 

resulting from COVID-19 lockdown measures. We could only identify such a signal in the densely populated areas of 751 

the Indo-Gangetic Plain and New Delhi. These areas, due to the high intensity of traffic and industrial activities, are 752 

most likely to exhibit large impacts on atmospheric pollution levels due to COVID-19 lockdown measures. 753 

    754 

Figure 9Figure 9 shows two-week averaged column values for HCHO, CHOCHO, and CO over the IGP and New 755 

Delhi, based on TROPOMI data from January 2018 to June 2020. To support the interpretation of the observed 756 

seasonal and interannual variations, Fig. D2 presents the corresponding temperature, precipitation amount, and fire 757 

count. The temperature starts increasing in January and reaches a maximum in June. The period from July to 758 

September corresponds to the monsoon season with heavy rains and lower temperatures, and therefore lower pollution 759 

levels. Fire activity peaks around May with a second peak is observed in November for the IGP. The time series of 760 

the HCHO, CHOCHO, and CO columns correlate with these seasonal events, although with a different amplitude. For 761 

example, HCHO shows the strongest correlation with temperature (see Sect. 2.5), while CHOCHO mainly follows 762 

fire emissions. The smaller amplitude in CO variations is caused by its longer lifetime.  763 
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 764 

 765 

 766 

 767 

Figure 9: Time evolution of HCHO, CHOCHO, and CO over the densely populated Indo-Gangetic plain (right panel, 768 
defined by the region within this 4 coordinates: 29.5°N 72°E,  21.5°N 86°E, 24.5°N 88.5°E , 32.5°N 74.5°E), and over the 769 
megacity New Delhi (left panel, radius of 25 km, or 50 km for CHOCHO) as observed with TROPOMI.  The year 2020 is 770 
represented in red (2018 in blue, 2019 in black). With the HCHO and CHOCHO time series, the OMI climatology is shown 771 
for comparison (dashed black line, 2010-2018), the error bars represent the interannual variability of the two-week 772 
averaged columns. The HCHO columns have been corrected in order to assume the same temperature every year (see Sect. 773 
2).  774 

 775 

   A large part of the observed HCHO and CHOCHO columns for India are due to natural emissions which can vary 776 

significantly due to changes in meteorology, in particular temperature and precipitation. Hence a possible reduction 777 

of the anthropogenic VOC emissions due to the lockdown measures is expected to have a small contribution to the 778 

variability of the measured columns. During the most stringent phase 1 lockdown, a reduction in HCHO column 779 

concentrations amount is observed for the IGP and is even more pronounced over New Delhi ( 780 

Figure 9Figure 9 top panels; respectively -2 and -4x1015 molec cm-2 [-20% and -40%] compared to the OMI 781 

climatology for 2010-2018). In both cases, the anomaly is larger than the interannual variations observed during this 782 

period (about 1.5x1015 molec cm-2), where changes in temperature or precipitation do not seem to explain the observed 783 
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column decrease during phase 1. The observed column decline is even more pronounced over New Delhi than over 784 

the IGP, suggesting that the origin of the reduction is mostly anthropogenic. 785 

   The case for lockdown-driven reductions is further supported by the CHOCHO observations, which exhibit the 786 

clearest COVID-19 signal during phase 1 of the lockdown ( 787 

Figure 9Figure 9). The reduction of CHOCHO during the lockdown period over the IGP is slightly larger than the 788 

interannual variability of 1x1014 molec cm-2 (or -25%) as determined from the OMI CHOCHO climatology. Similar 789 

to HCHO, the reduction in CHOCHO over New Delhi is twice as large (-50%) and well beyond the 1-sigma OMI 790 

climatology range. Phase 2 is also characterized by lower CHOCHO column amounts in 2020 as compared to 2019, 791 

but temperatures are also lower, unlike phase 1. Accounting for temperature-driven variability (Sect. 2.5) brings the 792 

HCHO columns close to the mean HCHO seasonal levels. The somewhat more pronounced effect of the lockdown on 793 

CHOCHO compared to HCHO in New Delhi is most likely due to the strong contribution of anthropogenic VOC 794 

precursors to CHOCHO amounts (Chan Miller et al., 2016). Interestingly, fire counts show that there were fewer fires 795 

in May 2020 compared to previous years (Fig. D2), most likely as a consequence of the lockdown measures, which 796 

may also contribute to the lower glyoxal columns. 797 

   As it was the case for China, it is more difficult to identify a signal in CO column data driven by the COVID-19 798 

lockdowns over India. An important reason for this is the much longer atmospheric residence time of CO that varies 799 

depending on the OH concentration (Holloway et al., 2000). Moreover, according to bottom-up inventories, the major 800 

anthropogenic CO source in India are due to the residential sector (42%), road transportation (21%), agricultural waste 801 

burning (18%) and the industrial sector (16%) (Granier et al., 2019). Hence, during a lockdown we expect that the 802 

main source of CO, residential, to be less affected. Figure 7 shows that the CO amounts in southern India are higher 803 

in 2020 as compared to 2019. The enhanced CO values in 2019 and 2020 are detected above regions (e.g. Madhya 804 

Pradesh, Odisha, and Chhattisgarh) where seasonal forest fires commonly occur in April/May (Chandra and Kumar 805 

Bhardwaj, 2015, Srikanta et al. 2020). Thus, the enhancement of CO for the different years depends not only on the 806 

fire activity but also on how the meteorological situation prevents or permits the accumulation of CO in the 807 

atmosphere. To more fully address the reasons why CO is higher in 2020 than 2019, future studies could carry out 808 

calculations using a chemical transport modelFigure 7 shows that the CO amounts in southern India are higher in 2020 809 

compared to 2019. The reason could be the accumulation of CO originating from elsewhere prior to the lockdown 810 

period. The long atmospheric residence time of CO complicates the identification of COVID-19 lockdown signals. 811 

Also for CO we derived the full TROPOMI time series for the IGP and New Delhi as shown in  812 

Figure 9Figure 9 (lower panel). The time series for New Delhi in mid-April shows somewhat lower CO values in 2020 813 

compared to 2019, but the large natural variability of CO prevents clear identification of a COVID-19 lockdown driven 814 

effect. In future, analysis of a longer TROPOMI CO time series or model experiments may help to quantify the 815 

COVID-19 effects. 816 

 817 
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6 Conclusions 818 

In this paper, we have analyzed the impact of COVID-19 lockdown measures on air quality around the globe, based 819 

on observations of several trace gases from the Sentinel-5P/TROPOMI instrument. TROPOMI provides daily, global 820 

observations of multiple trace gases, where the measured vertical column amounts are driven by emissions as well as 821 

atmospheric and chemical processes of transport, transformation, and deposition. We compared the 2020 TROPOMI 822 

data with similar periods from previous years and carried out additional analysis to disentangle changes in emissions 823 

due to COVID-19 lockdown measures from meteorological variability, seasonal variability, and from other non-824 

lockdown emission drivers. We analyzed time series of NO2 measurements from city to regional scales for several 825 

locations around the globe, showing the potential of TROPOMI to globally monitor local to regional impacts of 826 

COVID-19 lockdown measures on air quality and anthropogenic emissions. Furthermore, for the first time, we used 827 

a combination of five trace gases observed by TROPOMI, specifically NO2, SO2, CO, HCHO and CHOCHO, to assess 828 

the impact of COVID-19 related lockdown measures on trace gas concentrations. 829 

   From the global to city scale, we have illustrated consistent, sharp decreases in NO2 concentrations column amount 830 

driven by the COVID-19-related lockdown measures. These findings are based on detailed analysis of the distribution 831 

of NO2 using daily measurements from TROPOMI. For the city of Wuhan in China, the first city to issue a lockdown, 832 

NO2 concentrations measured by TROPOMI were about 60% lower than the same period in February-March 2019. 833 

After China, lockdowns were issued across all continents and for the majority of countries from March through May 834 

2020. For megacities all over the world, reductions in column amounts of tropospheric NO2 range between 14% and 835 

63%. The strength of the reduction depends on the type and efficiency of local measures carried out and on the relative 836 

contribution of traffic, industry, and power generation to NO2 emissions for a given area. Owing to the unprecedented 837 

resolution of TROPOMI of about 5 km, reductions of different source contributions to NO2 such as city traffic, 838 

highways (Liu et al., 2020), power plants (Miyazaki et al., 2020), industry, and shipping (Ding et al., 2020) can be 839 

estimated separately.  840 

   As demonstrated by time series analysis of the NO2 observations, there is substantial variability even in two-week 841 

averages, which is attributable to meteorological variability. On average, we estimate the standard deviation of this 842 

variability to be about 13% (1-sigma standard deviation) for major cities in Europe, but locally the effect can 843 

sometimes be larger. The large and systematic reductions (30-60%) observed, however, cannot be explained by 844 

meteorological variability alone and are therefore attributed to the effect of the lockdown measures. 845 

   For SO2, we observe significant column reductions in China and India over coal-fired power plants, which are the 846 

primary sources of anthropogenic SO2 in these areas. Over northeastern China in late February 2020, large reductions 847 

of SO2 vertical column amounts were observed, as a result of lockdown measures, with a decrease up to 77% as 848 

compared to the same time period in 2019, which cannot be explained by interannual variability alone. An analysis of 849 

SO2 vertical column amounts over the largest SO2-emitting power plants in India, reveals a reduction in SO2 of about 850 

25% during the first two phases of the lockdown, as compared to 2019. For India, the reductions in SO2 were highly 851 

correlated with NO2 reductions for the same power plants and with the national energy demand for that period.  852 
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   The natural variability of HCHO and CHOCHO does not allow detection of a significant decrease due to the COVID-853 

19 measures in most regions of the world based on TROPOMI observations alone. Exceptions are northern China and 854 

New Delhi, where observed reductions could be attributed to the lockdown measures. For northeastern China, a 50% 855 

reduction in the CHOCHO concentration column amount is observed during the second half February, which is larger 856 

than the typical observed interannual variability of 30%. For HCHO, after correcting for the effect of seasonal and 857 

temperature variations, we observe a coincident 40% reduction. We analyzed column amounts of CO, CHOCHO, and 858 

HCHO over the Indo-Gangetic Plain, which is the most densely populated region of India. For CHOCHO and HCHO, 859 

we observed small reductions in column amount due the COVID-19 measures, where these observed effects are 860 

slightly larger than the interannual variability as determined using an OMI climatology (2010-2018). The observed 861 

reduction of 25% of CHOCHO in this region is of the same order as the typical interannual variability. A stronger 862 

reduction of 60% is observed for the city of New Delhi, which is similar to the reduction observed over northern China 863 

but occurs later due to the difference in lockdown timing. For HCHO, we also observe a significant 40% decrease 864 

over New Delhi in April, while over the whole Indo-Gangetic Plain, a decrease of 20% is observed.  865 

   For CO, reductions related to COVID-19 measures were much more difficult to identify, although over northern 866 

China we see that the reductions in CO correlate with those for HCHO and CHOCHO. We could not find a similar 867 

effect for CO over New Delhi. The fact that it is so hard to draw conclusions for CO based on the TROPOMI data 868 

alone is due to the high variability in CO driven by meteorological conditions, in combination with the difficulty of 869 

distinguishing localized emission changes from the high and variable background values, caused by the long 870 

atmospheric lifetime of CO. 871 

   TROPOMI data have already been used in many publications (Gkatzelis et al., 2021; Bauwens et al., 2020; Liu et 872 

al., 2020; Huang et al., 2020) aiming to analyze the impact of COVID-19 lockdown measures on air pollution levels. 873 

Predominantly, these studies have been based on the use of TROPOMI NO2 observations alone. We anticipate that 874 

the combined use of multiple trace gases from TROPOMI together with the high spatial resolution of the 875 

measurements, has large potential for a significantly improved sector-specific analysis of the impact of the COVID-876 

19 lockdown measures than previously possible. Such a multi-species analysis offers promise for in-depth 877 

understanding of changes in air quality, the chemical interplay of pollutants in the atmosphere and their relation to 878 

emissions. While keeping in mind the importance of accounting for interannual, seasonal, and meteorologically driven 879 

variability (e.g. Miyazaki et al., 2020), it is clear that a detailed analysis cannot be based on TROPOMI observations 880 

alone. For more quantitative estimates of the impact of COVID-19 lockdown measures on trace gas concentrations 881 

and emissions, we need (inverse) models driven by high-quality meteorological analyses, or at least wind information 882 

or statistical relationships to account for weather-driven variability (Goldberg et al., 2020; Miyazaki et al., 2020; Ding 883 

et al., 2020).  884 

   In summary, our analyses using the most recent operational and scientific retrieval techniques have shown that by 885 

taking emission sources, atmospheric lifetime as well the seasonal and meteorological variability into account for a 886 

variety of trace gases measured by TROPOMI, rapid changes in anthropogenic emissions can be observed as induced 887 

by the implementation of regional COVID-19 lockdown measures. It is our hope that this case study will serve as 888 
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reference for future analyses aimed at characterizing emission changes of not just NO2, but by utilizing the 889 

concomitant observation of the variety of trace gases measured by TROPOMI. 890 

 891 

Appendix A 892 

Table A1: Summary of documentation available for TROPOMI operational data products from the Sentinel 5-P Library 893 
(https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms). 894 

 Title  Document content description and 

product-specific reference 

Document and Data links 

Product Readme 

File (PRF) 

 

 

NO2 

 

CO 

 

HCHO 

 

Description of changes between in 

different product versions, 

recommended qa_values, and overall 

quality information 

 

Eskes and Eichmann, 2020 

 

Landgraf et al., 2020 

 

De Smedt et al., 2020a 

https://sentinels.copernicus.eu/web/sentinel/technical

-guides/sentinel-5p/products-algorithms  

 

 

qa_value recommendation: > 0.75 

 

qa_value recommendation: > 0.5 

 

qa_value recommendation: > 0.5 

Product User 

Manual (PUM) 

 

 

NO2 

 

CO 

 

HCHO 

 

Technical description of file 

formatting for each TROPOMI Level 

2 operational data product 

 

Eskes et al., 2020 

 

Apituley et al., 2018 

 

Romahn et al., 2020 

https://sentinels.copernicus.eu/web/sentinel/technical

-guides/sentinel-5p/products-algorithms  
 

 

 
 

 

Algorithm 

Theoretical 

Basis Document 

(ATBD)  

NO2 

 

CO 

 

HCHO 

 

Detailed description of methods used 

for each TROPOMI L2 operational 

retrieval algorithm 

 

van Geffen et al., 2019; 2021 

 

 

Landgraf et al., 2018 

 

De Smedt et al., 2020b 

https://sentinels.copernicus.eu/web/sentinel/technical

-guides/sentinel-5p/products-algorithms  

 

 

Note: the 2019 ATBD describes v. 1.3.0 NO2 data used 

in this paper. 

Quarterly 

Validation 

Report 

(ROCVR) 

Detailed description of the latest 

validation available for each 

TROPOMI L2 operational dataset, 

product-specific  

 

https://mpc-vdaf.tropomi.eu/   

Operational 

Data Product 

Specifications  

 

Product-specific overview pages with 

TROPOMI L2 dataset specifications, 

including how to access and how to 

cite each data product. 

https://sentinels.copernicus.eu/web/sentinel/data-

products  

 

 

 

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://mpc-vdaf.tropomi.eu/index.php?option=com_vdaf&view=showReport&format=rawhtml&id=48
https://sentinels.copernicus.eu/web/sentinel/data-products
https://sentinels.copernicus.eu/web/sentinel/data-products
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Operational 

Data Product  

Citation and 

Digital Object 

Identifier  (DOI)  

NO2  

Copernicus Sentinel 5-P, 2018a 

 

CO 

Copernicus Sentinel 5-P, 2018b 

 

HCHO 

Copernicus Sentinel 5-P, 2018c 

 

doi:10.5270/S5P-s4ljg54  

 

 

doi:10.5270/S5P-1hkp7rp 

 

 

doi:10.5270/S5P-tjlxfd2 

 

 895 

Appendix B 896 

Appendix B contains additional information (Table B2) and description supporting the timing of COVID-19 driven 897 

emissions changes for global cities evaluated in this study and shown in Figure 2. Fig. 2. 898 

 899 

Table B2. Details about the lockdown dates for the cities illustrated in  Figure 2.Figure 2. 900 

City  

 

Date (2020) Comment Reference 

Wuhan 23 January 

 

Lockdown Wuhan and Hubei province Bloomberg (2020) 

  8 April 

 

Lockdown lifted Bloomberg (2020) 

Mumbai and 

New Delhi 

24 March Closure of schools, public transport and most 

businesses 

 

BBC (2020a) 

  31 May Nationwide lockdown is extended until end of 

May 

 

Aljazeera (2020a) 

Manila  16 March Philippines announced strict home quarantine 

 

Calonzo and Jiao (2020) 

  1 June Most businesses  allowed to re-open, but bars, 

restaurants and schools remain closed 

 

Jennings (2020) 

Madrid  14 March Nationwide lockdown 

 

Minder and Peltier (2020) 

  9 May Easing, stores and restaurants allowed to open 

 

Goodman et al. (2020) 

Milan  8 March Locking down of Northern Italy including 

Milan 

 

Horowitz (2020a) 

  4 May Loosening of strictest lockdown measures 

 

Horowitz (2020b) 

Paris 17 March France imposes nationwide  the restriction 

 

Onishi and Méheut (2020) 

  11 May Gradually relaxed lockdown measures, most 

shops open 

 

Makooi (2020) 

Los Angeles 19 March California enters lockdown 

 

BBC (2020b) 

  1 June Reopening of some shops and restaurants Patel (2020) 

https://sentinels.copernicus.eu/web/sentinel/data-products/-/asset_publisher/fp37fc19FN8F/content/sentinel-5-precursor-level-2-nitrogen-dioxide
https://doi.org/10.5270/S5P-1hkp7rp
https://doi.org/10.5270/S5P-tjlxfd2
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New York 22 March New York state enters lockdown 

 

BBC (2020b) 

  13 June Stay-at-home orders put in place until further 

notice 

CBS News (2020) 

Sydney 24 March Strict lockdown measures adopted in  Australia 

 

Wahlquist (2020) 

  15 May New South Wales eases lockdown restrictions 

 

Sonali (2020) 

Auckland 23 March In New Zealand stay-at-home orders are issued 

 

Menon (2020) 

  14 May All businesses can open in New Zealand 

 

Conforti (2020) 

Mexico City 23 March Most economic sectors stopped in Mexico 

 

Pasley (2020) 

  1 June Gradual reopening of Mexico city 

 

Associated Press (2020) 

Lima 16 March Stringent quarantine enforced by police and 

army 

 

Collyns (2020) 

  30 June Peru extended nationwide lockdown through 

end of June 

 

Aljazeera (2020b) 

Sao Paulo 24 March Start of lockdown, but measures were largely 

ignored 

 

Uchoa (2020) 

  31 May Quarantine extended through May 

 

CGTN (2020) 

Buenos Aires 20 March Argentina under mandatory lockdown Do Rosario and Gillespie 

(2020) 

  28 June Lockdown extended Misculin and Garrison (2020) 

Baghdad 22 March Iraq imposed a total nationwide lockdown 

 

The Star (2020) 

  21 April Relaxed restrictions: shops reopen for limited 

hours 

 

Saleh (2020) 

  20 May In Baghdad strict lockdown re-imposed for 6 

districts 

 

Saleh (2020) 

Lagos 30 March Stay-at-home order, markets open for limited 

hours 

 

Orjinmo (2020) 

  4 May Easing of restrictions,  but schools, bars, and 

cinemas remain closed 

 

Mbah (2020) 

Johannesburg 26 March Stay-at-home orders issued in South Africa 

 

Winter (2020) 

  1 June Most economic sectors permitted to operate 

 

Aljazeera (2020c) 

 901 

Detailed observations of NO2 reductions in major cities worldwide  902 

  Three examples of lockdown-related NO2 column reductions in major cities are shown for Santiago, Paris and New 903 

Delhi in Figure 1 with time windows selected to reflect region-specific lockdown periods. A strong reduction in the 904 
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NO2 tropospheric concentration of about 40% is observed over Santiago. In Paris, the NO2 levels for the period 15 905 

March to 15 April 2020 are about a factor of two lower than in March-April 2019 (see also Figure 4). For New Delhi 906 

the reduction is even more striking in comparison to April 2019 (about a factor of 3, Figure 2c). Both Paris and New 907 

Delhi also show significant reductions in background values around the cities. Background locations are subject to a 908 

variety of wind directions and sometimes downwind of city plumes thus influencing background concentrations. Such 909 

plumes are typically on the order of 100 km long, and, given the atmospheric residence time of NO2 (2-12 hours), 910 

these plumes can fill the small domains around Paris and New Delhi shown in Figure 1. 911 

  In Wuhan, the first city to issue quarantines and lockdown measures, the observed NO2 column drastically declined 912 

(-60%) between 23 January and 8 April 2020 compared to the same period in 2019 (Figure 2a, Table B2). This decrease 913 

is in good agreement with estimated reductions for the period 11 February to 2 March 2020 based on TROPOMI NO2 914 

(-43%, Bauwens et al., 2020) and in situ NO2 observations in Wuhan (-55%, Shi and Brasseur, 2020). However, it 915 

should be noted that there was strong day-to-day variability in the NO2 column amount due to meteorological factors, 916 

as well as missing data over Wuhan in February 2019 due to clouds. Model calculations by Liu et al. (2020) indicate 917 

that meteorological variability could have led to increased NO2 columns in 2020 compared to 2019, suggesting that 918 

the observed NO2 reductions underestimate the impact of emission reductions due to COVID-19. The partial lifting 919 

of the restrictions on 8 April led to a progressive increase in NO2 levels, yet remained lower than in 2019, likely 920 

because the population was still advised to stay at home and schools remained closed. A similar response in NO2 921 

levels was observed in Beijing. The decreases were less pronounced (-40%) and are in excellent agreement with the 922 

reported decrease based on in situ NO2 measurements (-40%, Shi and Brasseur, 2020). The weaker response could be 923 

due to the less drastic measures adopted in Beijing, because locally sustained COVID-19 cases were lower than in the 924 

Hubei province (Leung et al., 2020). Strong NO2 reductions were observed for other Chinese cities, like Nanjing, 925 

Qingdao, and Zhengzhou, based on TROPOMI NO2 observations (Bauwens et al., 2020). 926 

   India enforced strict restrictions of human activities on 24 March 2020 to tackle the spread of COVID-19. In New 927 

Delhi and Mumbai, the onset of the lockdown induced a sharp decline in the observed NO2 columns (by a factor of 928 

2). The columns remained low during the entire lockdown period (-56% and -46%, respectively) (see Table 2 for 929 

timing of Indian lockdown phases). This is very much in line with the decreases reported in New Delhi based on NO2 930 

data from monitoring stations, -53% (Mahato et al., 2020) and -48% (Jain and Sharma, 2020). 931 

   As compared to other cities, a very strong NO2 decrease was observed in Lima (-63%), where strict regulations to 932 

stay indoors were enforced (Collyns, 2020). A drastic drop in NO2 compared to the 2019 levels marked the start of 933 

the lockdown, and the levels remained very low throughout the entire lockdown period. The gradual increase of NO2 934 

columns in Lima and other Southern Hemispheric cities from January to May (Figure 2j) reflects the natural seasonal 935 

variation when levels peak during the Southern Hemispheric winter, as temperatures decrease and NO2 lifetime 936 

increases.  937 

   In Buenos Aires, the observed reduction was not as strong compared to Lima for the entire lockdown period (-34%, 938 

Table B2), but was particularly marked during the first month of the lockdown (20 March through 20 April 2020), 939 

due to a compulsory quarantine period and strict limitation of activities for many sectors. Although partial lifting of 940 

measures was issued after 10 April for many provinces in Argentina, the measures in the Buenos Aires agglomeration 941 
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were maintained due to the elevated number of cases (Raszewski and Garrison, 2020). More moderate reductions are 942 

found for Mexico City (-22%) and Santiago (-23%) during the lockdown in comparison to the same period in 2019, 943 

that could be attributed to less strict adherence to and enforcement of lockdown measures (Uchoa, 2020; Pasley, 2020). 944 

   Strong reductions were observed over the entire lockdown period in the heavily hit cities in southwest Europe, Los 945 

Angeles, and New York, with reductions ranging between -32% and -54% (Bauwens et al., 2020). It should be noted 946 

however, that in these regions, the start of the lockdown period is generally less marked partly because the lockdowns 947 

were not as strictly enforced in Europe and the U.S. as in China and India. Moreover, the observed TROPOMI data 948 

displays a strong variability attributable to meteorology, e.g. over Paris, New York and Los Angeles in 2019.  949 

   In Sydney, the reduction was moderate (-14%) and delayed with respect to the onset of the measures (Figure 2g). 950 

This could be related to observations of less strict compliance in the early period of lockdown measures (New South 951 

Wales Public Health, 2020). A rapid and strong decrease was observed for NO2 column amount as a result of lockdown 952 

measures in Auckland, New Zealand (-55%). Similarly, the lockdown measures in New Zealand were implemented 953 

swiftly with high levels of compliance (Matthews, 2020). The end of the lockdown coincided with a strong increase 954 

in NO2 pollution, from 1.8×1015 molec cm-2 to 3×1015 molec cm-2 in the last three weeks of May. 955 

   In Africa, Nigeria is among the countries most affected by COVID-19 and reported the first confirmed case in sub-956 

Saharan Africa (Odunsi, 2020; Adigun and Anna, 2020). A two-week lockdown period was put in place for Lagos 957 

starting 30 March. The NO2 column amount decreased by 33% during the lockdown with respect to the same period 958 

of 2019 and remained lower even after the lifting of restrictions on 4 May (Table B2). An NO2 column decrease of 959 

similar magnitude (-35%) was observed in Johannesburg (Figure 2p), where a national lockdown was issued on 26 960 

March 2020, with a gradual easing of restrictions starting 1 May. In Sub-Saharan Africa, the emission reductions in 961 

April were significant for larger populous and industrialized areas, whereas no noticeable drop was found in less 962 

developed regions (Masaki et al., 2020). 963 

   Finally, the Iraqi capital of Baghdad faced an initial lockdown from 22 March through 21 April. A second partial 964 

lockdown was issued starting 20 May in response to a sharp increase in COVID-19 cases due to the temporary 965 

relaxation of restrictions to allow the celebration of Ramadan in late April (Table B2). The NO2 column responded 966 

quickly (Figure 2n) as confirmed by the rapid decrease once curfew measures were issues in late-May. 967 

  Figure 3 and Figure 4 illustrate the tropospheric column amount of NO2 over Europe, focusing on Milan, Madrid, 968 

Paris and Berlin, extending the analysis up to 1 December. In France, Spain and Italy we detect strong reductions of 969 

NO2, which can be largely attributed to the lockdown measures. In Berlin, the measured differences are smaller, and 970 

a more detailed analysis of the meteorological variability is needed to quantify the impact of the lockdown (see Figure 971 

3). The extended time series shows a recovery of the NO2 pollution levels to pre-COVID-19 values. However, the 972 

recovery is not complete, suggesting that remaining restrictions, new stay-at-home life and working practices, together 973 

with a downturn in industrial and service-based activities have contributed to a longer lasting impact. 974 

Appendix C 975 

Appendix C contains figures which support the technical understanding of individual retrieval algorithms. 976 
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 977 

  978 

Figure C1: Bias in S5p-TROPOMI tropospheric NO2 as estimated from comparisons to co-located ground-based MAX-979 
DOAS measurements, presented as a function of the ground-based VCD measurement. The grey-scale background 980 
represents a 2-D histogram, where the median difference per MAX-DOAS VCD bin is shown as the red curve, and the blue 981 
dashed line shows a multiplicative bias (b) model with  b ~ 0.5 x VCD. More details on the ground-based data and co-982 
location scheme can be found in Verhoelst et al., 2021. 983 

 984 

 985 
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 986 

Figure C2: Monthly averaged TROPOMI SO2 columns over India for April 2019, from (left) DOAS operational product 987 
and (right) COBRA scientific product. The reduction in noise and offsets reductionas described and illustrated in Theys et 988 
al. (2021) can also be seen here where there is more contrast betweenis clear from the maps the background and the. The 989 
emissions from individual point sources (power plants, darker pink and purple) can be better discerned in the COBRA SO2 990 
map. 991 

 992 

 993 
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 994 

Figure C3: Example of temperature correction of the TROPOMI HCHO tropospheric columns in the Indogangetic Plain 995 
region. The dashed line presents the HCHO columns after correction using climatological temperatures. The correlation 996 
between the local daily temperatures from ERA5-Land 2m and the HCHO columns is shown inset for the entire period.    997 

Appendix D 998 

Appendix D contains additional figures that support the interpretation timing of observed changes in COVID-19 999 

driven emissions related to power generation (Fig. D1) and meteorological conditions (Fig. D2). 1000 
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 1001 

Figure D1: Maximum energy demand over India during the period of the lockdown (red) compared to the same period in 1002 
2019 (black), For each of the phases of the lockdown the reductions in maximum energy demand is given relative to the 1003 
same period in 2019.  Data from: www.posoco.in/covid-19. 1004 

 1005 

 1006 
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 1008 
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 1011 

 1012 

 1013 

 1014 


