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Abstract 30 

Urban on-road vehicle emissions affect air quality and human health locally and globally. Such emissions 

typically exhibit distinct spatial heterogeneity, varying sharply over short distances (10 m ~ 1km). 

However, all-around observational constraints on the emission sources are limited in much of the world. 

Consequently, traditional emission inventories lack the spatial resolution that can characterize on-road 

vehicle emission hotspots. Here we establish a bottom-up approach to reveal a unique pattern of urban 35 

on-road vehicle emissions at 1 ~ 3 orders of magnitude higher spatial resolution than current inventories. 

We interconnect all-around traffic monitoring (including traffic fluxes, vehicle-specific categories, and 

speeds) via an intelligent transportation system (ITS) over the Xiaoshan District in the Yangtze River 

Delta (YRD) region. This enables us to calculate single-vehicle-specific emissions over each fine-scale 

(10 m ~ 1 km) road segment. Thus, a hyperfine emission dataset is achieved, and on-road emission 40 

hotspots appear. The resulting map shows that the hourly average on-road vehicle emissions of CO, NOx, 

HC, and PM2.5 are 74.01 kg, 40.35 kg, 8.13 kg, and 1.68 kg, respectively. More importantly, widespread 

and persistent emission hotspots emerge, of significantly sharp small-scale variability, up to 8 ~ 15 times, 

attributable to distinct traffic fluxes, road conditions, and vehicle categories. On this basis, we investigate 

the effectiveness of routine traffic control strategies on on-road vehicle emission mitigation. Our results 45 

have important implications for how the strategies should be designed and optimized. Integrating our 

traffic-monitoring-based approach with urban air quality measurements, we could address major data 

gaps between urban air pollutant emissions and concentrations.  
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1. Introduction 

Rapid growth in vehicle population for decades has led to widespread and severe levels of fine 50 

particulate matter (PM2.5) and ozone (O3) (Anenberg et al., 2017; He et al., 2020; Huang et al., 2020; 

Kelly and Zhu, 2016; Tessum et al., 2014; Zhang et al., 2012, 2019). However, the gradients of on-road 

vehicle emissions are not well represented in routine emission inventories. That is, the traffic states (e.g., 

traffic fluxes, road conditions, and vehicle categories) can vary sharply over short distances (10 m ~ 1 

km), particularly in urban zones (Chen et al., 2020; Gately et al., 2017; Liu et al., 2019; Wu et al., 2019; 55 

Yu et al., 2020).  Routine inventories of on-road vehicle emissions are established based on macro-scale 

and retrospective statistics. Consequently, they are temporally static for a historical year or month and 

spatially coarse (> 1 ~ 25 km) (Janssens-Maenhout et al., 2015; Li et al., 2017; Zhang et al., 2013). Earlier 

studies have applied traffic models to improve spatiotemporal resolution (Zhang et al., 2016). However, 

given that the traffic states were assumed, the simulated emissions were prone to deviate from real-world 60 

situations, especially from fine-scale gradients. More importantly, the emission hotspots and their 

anthropogenic drivers are missed. 

Recently, significant advances have been made in comprehensive traffic monitoring techniques. 

These methods include GPS-instrumented floating cars (e.g., GPS-equipped probe taxis), open-access 

congestion maps, radio frequency identification, and traffic video records, each of which has distinct 65 

advantages and limitations (Gately et al., 2017; Gately and Hutyra, 2017; Jing et al., 2016; Liu et al., 2018; 

Wen et al., 2020; Wu et al., 2019; Yang et al., 2019, 2018b). The individual GPS-instrumented floating 

cars allow us to extrapolate regional-scale vehicle activity levels. Yet, they are relatively scarce compared 

to the whole fleet, unable to characterize the fine-scale gradients (10m ~ 1km) as well as emission hotspots. 

Open-access congestion maps typically originate from navigation software, such as Baidu Map. 70 

Technically, they collect locations of individual mobile phones as real-time traffic information. On this 

basis, hierarchical traffic congestion indices can be built up and treated as spatiotemporal surrogates of 

traffic fluxes and speeds. Despite this, the information for individual vehicles, like speed and categories, 

remains unavailable. A recent study (Deng et al., 2020) utilized the BeiDou Navigation Satellite System 

to develop a full-sample high-resolution emission inventory, but only for trucks. 75 
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In contrast, comprehensive traffic monitoring technologies, such as radio frequency identification 

(Paul et al., 2013) coupled with traffic video records (Song et al., 2019), can offer valuable opportunities 

to obtain real-time vehicle-specific traffic information. Despite this, in the United States, daily traffic 

activities are released annually at the state-level rather than at high spatiotemporal resolution (hourly and 

10m ~ 1km) (Gately et al., 2013). On the other hand, those facilities are inter-complementary but usually 80 

owned and operated by different governmental agencies or private companies. Hence, relying on either 

party, hyperfine-resolution emission inventories cannot be derived comprehensively.  

It is essential to introduce an intelligent transportation system (ITS) that is capable of 

interconnecting independent traffic monitoring and thus offering a complete picture of traffic states (Avila 

and Mezić, 2020; Yang et al., 2020; Zhang et al., 2018). Here, we derive a hyperfine-resolution on-road 85 

vehicle emission inventory. For most developing regions, especially in populous parts of Asia and Africa, 

such an integrated system is largely absent.  

As one of the most developed regions in the Yangtze River Delta (YRD), the Xiaoshan District is 

confronting severe air pollution, particularly with surface O3 frequently exceeding air quality standards 

in summertime (http://www.cnemc.cn/). Moreover, this is one of few areas, in which comprehensive 90 

traffic monitoring realizes full coverage and is interconnected via an ITS (named “City Brain”) since 2017 

(Fig. 1) (Hua, 2018). This allows one to calculate single-vehicle-specific emissions over each fine-scale 

(10 m ~ 1 km) road segment. Consequently, here we derive the largest and most hyperfine urban on-road 

vehicle emission dataset of its type. Thus, fine-scale gradients (10 m ~ 1 km) and hotspots of on-road 

vehicle emissions are exposed. On this basis, we can directly evaluate the potential impacts of precise 95 

(e.g., vehicle-type-specific, road-segment-specific, or traffic-flux-specific) emission mitigation strategies. 

Our results provide new insights into the spatial variability of urban on-road vehicle emissions. 

2. Materials and methods 

The objective of this study is to apply a bottom-up model approach to establish a hyperfine-

resolution inventory of on-road vehicle emissions over the Xiaoshan District in the YRD (Fig. 1). All key 100 

input data, including traffic fluxes, vehicle-specific categories, and vehicle speeds, were obtained from 

comprehensive traffic monitoring coupled with an ITS. Besides, vehicle-specific emission factors come 
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from the local official vehicle Inspect/Maintenance (I/M) dataset, the methodology of which has been 

described in China’s National Emission Inventory Guidebook (ICCT, 2020). 

2.1. Comprehensive traffic monitoring network 105 

The Xiaoshan District, located in the YRD in China (Fig. 2) had in 2019 a population of over 1.58 

million, 18.56% of the population of New York City. Its GDP was close to 200 billion Yuan, ranking fifth 

among districts in China. The total length of the road network was around 2000 km within a limited 

geographical extent (i.e., 1417.83 km2). With this background, the Xiaoshan District has become an 

important urban transportation hub in the YRD, for which on-road vehicle emissions were projected to 110 

be intensive and to play a critical role in affecting fine-scale air quality (and exposure equity). Since 2016, 

routine measures to ease traffic congestion, such as license restrictions during the morning and afternoon 

rush hours, were implemented over the Xiaoshan District. This would significantly alter fine-scale 

spatiotemporal patterns of traffic states (including traffic fluxes, vehicle speeds, and fleet compositions) 

and thus on-road vehicle emissions, the impacts of which remain unclear. 115 

2.2. Hyperfine-resolution bottom-up model framework 

A hyperfine-resolution bottom-up model framework was established to calculate primary on-road 

vehicle emissions, including carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and 

PM2.5. Figure 1 is a flow diagram to illustrate the overall methodology for this framework. The results 

depend on an ensemble calculation of traffic fluxes, road segments, vehicle-specific speed, categories, 120 

and emission factors (Eq. 1) (Wu et al., 2019; Yang et al., 2019; Zhang et al., 2016): 

𝑬𝑬𝒉𝒉,𝒋𝒋,𝒍𝒍 = ∑ 𝑬𝑬𝑭𝑭𝒄𝒄,𝒋𝒋(𝒗𝒗) × 𝑻𝑻𝑭𝑭𝒄𝒄,𝒉𝒉,𝒍𝒍 × 𝑳𝑳𝒍𝒍𝑡𝑡 , (Eq. 1). 

𝑬𝑬𝒉𝒉,𝒋𝒋,𝒍𝒍 is the consequent emission of the pollutant 𝒋𝒋 on the road link 𝒍𝒍 at the hour 𝒉𝒉, the unit of which is 

grams per hour (g h-1), while the remaining variables denote the input data for the model. 𝑬𝑬𝑭𝑭𝒄𝒄,𝒋𝒋(𝒗𝒗) is the 

average emission factor of the pollutant 𝒋𝒋 for the vehicle category 𝒄𝒄 at the speed 𝒗𝒗, the unit of which is 125 

grams per kilometre (g km-1); 𝑻𝑻𝑭𝑭𝒄𝒄,𝒉𝒉,𝒍𝒍 is the traffic flux of the vehicle category 𝒄𝒄 on the road segment 𝒍𝒍 at 

the hour 𝒉𝒉, in units of vehicles per hour (veh h-1); 𝑳𝑳𝒍𝒍 is the length of the road segment 𝒍𝒍 in units of 

kilometres (km).  
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The major technical advance in this study is that all these input data were vehicle-specific and 

obtained from all-round traffic monitoring, introduced and detailed in Sect. 2.3. Detailed road segments 130 

are important carriers reflecting traffic states and on-road vehicle emissions. In this study, we divided the 

entire road network over the Xiaoshan District into 1894 road segments. Over the entire district, such 

road segments were divided into three road classes: highways, arterial roads, and residential streets (Fig. 

2). Spatially, each road segment was adaptive to a set of traffic monitoring platforms that can collect 

comprehensive traffic profiles, including traffic fluxes, vehicle-specific categories, and speeds. Therefore, 135 

the all-round traffic monitoring derived the hyperfine-resolution map of road segments and thus 𝑬𝑬𝒉𝒉,𝒋𝒋,𝒍𝒍. 

To obtain the key input data for this model, we explored traffic monitoring information that 

achieved full coverage over the Xiaoshan District (Fig. 2). On this basis, vehicle-specific speed and 

categories were collected. Besides, the vehicle-category-specific emission factors were obtained from the 

local official I/M dataset. Consequently, an ITS (named “City Brain”) was developed to simultaneously 140 

upload the traffic monitoring information and, more importantly, to establish vehicle-specific links 

between those parameters. Therein, traffic fluxes played a major role in affecting vehicle emissions (Deng 

et al., 2020; Yang et al., 2019). Particularly, traffic congestion in narrow spaces might contribute to urban 

emission hotspots. To this end, traffic video records, together with image recognition algorithms, were 

applied to detect vehicle license plates and thus to monitor traffic fluxes. As a result, we constructed a 145 

total dataset of 254.31 million records from 13 November 2020 to 13 January 2021. Such measurements 

were recorded by different video facilities integrated into the ITS and thus accessible simultaneously. 

Moreover, accurate vehicle speeds are another key driver that is of great significance for optimizing 

vehicle emission factors (Yang et al., 2019). Here, together with traffic fluxes, the vehicle-specific speed 

was measured concurrently by radar velocimeters. Collectively, a high-resolution map of traffic states, 150 

including traffic fluxes and vehicle-specific speed, was captured by comprehensive traffic monitoring 

over the Xiaoshan District. From this perspective, this work is distinct from previous attempts that 

introduced spatial surrogates for traffic states (e.g., floating cars and traffic congestion index in open-

source maps) to fill the monitoring gaps. Other key input data are the vehicle-specific category that is 

closely related to vehicle-specific emission factors (Huang et al., 2020). For each vehicle, an image 155 

detection technology based on traffic video records was utilized to recognize license plate and category. 
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According to the license plate, the identified vehicle category is verified via the I/M data. Herein, six 

vehicle categories were detected and defined, including light-duty vehicles (LDVs), middle-duty vehicles 

(MDVs), heavy-duty vehicles (HDVs), light-duty trucks (LDTs), middle-duty trucks (MDTs), and heavy-

duty trucks (HDTs).  160 

According to the detected license plates, these vehicles fell into two types: registered vehicles and 

non-registered ones in the local official I/M dataset. The emission factors of the former were vehicle-

category-specific and speed-dependent, obtained from the I/M dataset, while those of the latter were also 

speed-dependent but vehicle-category-specific averages (Fig. S1). Here, the detailed species profiles of 

HC, as well as evaporative HC, were not included.  165 

2.3. Traffic control strategies 

Based on a hyperfine-resolution map of on-road vehicle emissions, the impacts of traffic control 

measures on vehicle emission reductions can be directly investigated. Here, four scenarios were designed, 

which were mainly oriented to traffic fluxes and fleet compositions. Therein the key point was to 

determine how to conduct these strategies spatially and temporally (Table 1). First, the routine scenario 170 

(S1) was conducted during the morning and evening rush hours (from 7:00 to 9:00 and from 16:30 to 

18:30, Local Time) on weekdays (i.e., from Monday to Friday). It required that vehicles with specific tail 

numbers of the license plates were prohibited on the arterial and residential roads. For instance, the 

prohibited tail numbers were 1 and 9 on Monday. Other detailed rules were illustrated in Table 1. Second, 

similar to but more stringent than the routine scenario (S1), the scenario (S2) adopted the even-odd rule 175 

to reduce the traffic fluxes in half at the same space. Third, the truck scenario (S3) oriented at both local 

registered and non-registered trucks, which were strictly prohibited all day long over the highways. 

Finally, the G20 scenario (S4) reflected the traffic states during the G20 summit in 2016 over the Xiaoshan 

District, with much stricter traffic limitations than normal situations (Ji et al., 2018; Wang et al., 2020; 

Zhang et al., 2020). It can be regarded as the combination of the scenario (S2) and the truck scenario (S3). 180 

Thus, all vehicles should comply with the even-odd rule over the entire district.  
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2.4. Monte Carlo subsampling 

The hyperfine bottom-up model was a big-data-driven framework. We should thus apply a sub-

sampling analysis to evaluate the stability of the resulting on-road vehicle emission inventory. The 

objective was to investigate the extent to which less repeated traffic monitoring information can reproduce 185 

the long-term spatial emission patterns driven by the entire dataset (Apte et al., 2017; Hankey and 

Marshall, 2015).  

Here we focus only on weekdays rather than weekends when the expected casual trips might affect 

the analysis. We utilized Monte Carlo simulations to subsample the full-traffic-monitoring-driven 

emissions repeatedly. Briefly, we randomly sampled the emission information in unique weekdays (1 ≤ 190 

N ≤ 42) at each road segment from our universal dataset. Each road segment has 35 weekdays of 

sampling on average. For each value of N, we performed 1000 random draws to generate 10000 

subsampled “maps” of fine-scale hourly average emissions. For road segments with fewer than N days of 

sampling, the “subsampling” effectively contained all data. Consequently, the subsampled maps 

converged to the full-data-driven results, since N approached the total number of full traffic monitoring 195 

information.  

We adopted three metrics to compare the performance of each subsampled emission map to that 

of the full-data-driven result. First, as a metric of precision, we calculated the 𝜸𝜸𝟐𝟐 for them. The second 

metric was the normalized root-mean-square error (i.e., the coefficient of variation of the RMSE, 

CVRMSE). Third, as a metric of the temporal stability of sub-sampled spatial patterns, we calculated the 200 

intraclass correlation (ICC) of each sub-sampled iteration, grouped by road segments. The ICC is a metric 

that results from one-way Analysis of Variance (ANOVA) to quantify the degree of similarity among 

repeated measurements within individual groups (i.e., road segments). After computing the ANOVA for 

data grouped by road segments, the ICC is calculated as the ratio of the variability between groups (Mean 

Squares of Treatment/Group, MST) to the sum of the MST and the variability within individual groups 205 

(Mean Square Error, MSE): 

𝑰𝑰𝑰𝑰𝑰𝑰 = 𝑴𝑴𝑴𝑴𝑻𝑻
𝑴𝑴𝑴𝑴𝑻𝑻+𝑴𝑴𝑴𝑴𝑬𝑬

 (Eq. 2). 
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By definition, ICC is bounded from 0 to 1. For a hypothetical dataset where all repeated measurements at 

each location were precisely equal to each other, the ICC would converge to 1.0. In contrast, for a dataset 

where the concentration variability among repeated measures at each individual location is very high 210 

relative to the spatial differences in concentration among roads, the ICC would approach 0. For this 

application, ICC values of 0.75 ~ 1 reflected large and systematic spatial differences, with low residual 

temporal variability at each location.  

3 Results and discussion 

3.1 Traffic characteristics and hotspots 215 

Comprehensive traffic monitoring, coupled with the ITS, painted vivid pictures of within-urban 

traffic states, including traffic fluxes, fleet compositions, and traffic speeds (Figs. 3, 4 and Figs. S2 ~ S5). 

Remarkable spatiotemporal heterogeneities in fine-scale patterns were revealed. First, most (i.e., > 

96.49%) of the traffic fluxes concentrated over the arterial roads and the residential streets rather than the 

highways (Fig. 3a). Figure 3b illustrates fine-scale variabilities in the traffic fluxes for an indicative ~ 1 220 

km2 urban zones. Within this small area, the hourly average traffic fluxes varied by more than 15 times. 

Even within individual roads, they still varied by more than eight times overall. An expected feature 

throughout the traffic monitoring dataset was the ubiquity of sharp spatial “traffic hotspots” (length < 100 

m). Such hotspots were tentatively classified as individual road segments or clusters, where traffic fluxes 

exceeded the median level over the whole district. Figure 4 confirms potential causes for an indicative set 225 

of hotspots via imagery analysis. A uniform explanation was traffic congestion that, however, resulted 

from different drivers, such as large traffic fluxes in major arterial roads and their intersections or 

constructions in the middle of the roads. Such supplemental information provides further details on the 

hotspot identification scheme.  

Second, the hourly average traffic fluxes on weekdays were close to those on weekends (Fig. 3 230 

and Fig. S3). Nevertheless, the variation tendencies displayed a distinct picture during different moments 

between weekdays and weekends (Fig. S2). On weekdays, the diurnal traffic fluxes showed dramatic 

fluctuations, two peaks at 07:00 and 17:00, obviously related to the morning and evening rush hours. We 
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noted that such temporal peaks enhanced extensive spatial hotspots, spatially consistent with the above 

hotspots based on the hourly average data but quantitatively more prominent (Fig. 3). This was because 235 

that the morning and evening rush hours deteriorated the traffic congestion (Fig. 4). By comparison, the 

variation extent on weekends was slightly lower than on weekdays and the early peak appeared two hours 

later (Fig. S2). Overall, the maximum peak on weekends barely hit roughly 96.46% of those on weekdays. 

Spatially, the hotspots of the traffic fluxes on weekdays were mostly consistent with those on weekends 

but more variable, reflecting frequent casual travels (Fig. S3). Collectively, the fine-scale spatiotemporal 240 

patterns of traffic fluxes over the entire district, particularly the hotspots, relied more on those on 

weekdays. 

Third, significantly strong correlations were found between the traffic speeds and fluxes spatially 

and temporally. Following the traffic fluxes, the simultaneous vehicle-specific speeds fluctuated 

substantially throughout the day (Fig. S2). When the traffic fluxes peaked at the morning and evening 245 

rushes, the vehicle-specific speeds were expected to be at their lowest. Although the peaks changed from 

weekdays to weekends, the valleys kept following such peaks. Spatially, the traffic flux hotspots likely 

determined the traffic speed hotspots, particularly at the morning and evening rush hours (Fig. S4). In 

contrast, the vehicle categories were independent of the traffic fluxes. Their diurnal variations showed 

relative stability, even for different road types, after the morning rush hours (Fig. S2 and Fig. 3). On the 250 

other hand, the HDVs and HDTs peaked in the early hours of the morning (i.e., from 1:00 to 5:00). Besides, 

a striking picture lay in the spatial distributions (Fig. 3 and Fig. S5). The four types of vehicles, including 

LDVs, MDVs, LDTs, and MDTs, flocked over (98.52%) the arterial and residential roads, while the rest 

of vehicle categories, i.e., HDVs and HDTs, concentrated over (3.61%) the highways. Figure 3 details 

fine-scale spatial distributions of HDVs and HDTs for three indicative highway zones (~ 1 km2). Therein 255 

the spatial hotspots scattered extensively. According to the image analysis (Fig. 4), the traffic congestion 

attributed to the large traffic fluxes of HDVs and HDTs should be the unique driver. Therefore, the fleet 

compositions would also affect emission distributions significantly, particularly over fine-scale zones.  
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3.2 Characteristics of on-road vehicle emissions 

We established a hyperfine-resolution on-road vehicle emission inventory and captured the 260 

emission hotspots (Fig. 5 and Fig. S6). Overall, the hourly average emissions were summed up based on 

the classified roads (Table S1). It was clear that the emission intensities in the arterial roads, residential 

streets, and highways followed a descending order, although the residential streets were of the longest 

length and the largest traffic fluxes. The leading cause was the difference in vehicle categories in different 

road types (Table S1). For instance, we estimated that the hourly average NOx emission intensities in the 265 

arterial roads, residential streets, and highways were 157.76 g/km, 135.22 g/km, and 107.83 g/km, 

respectively. For the highways, the hourly average traffic fluxes were 10277, accounting for 1.99% of the 

total amount, while their emissions amounted to more than 2.04 % of the total emissions.  

From the temporal perspective, on-road vehicle emissions of CO, HC, NOx, and PM2.5 showed 

similar trends all day (Fig. S7). For instance, the daytime NOx emissions accounted for approximately 270 

85.90% of the daily total emissions. Moreover, the NOx emissions varied throughout the day but reached 

agreement among the different road types (i.e., the arterial roads, residential streets, and highways). Yet, 

there was an apparent difference between emissions on weekdays and those on weekends. Similar to the 

temporal variations in the traffic fluxes on weekdays, those in on-road vehicle emissions also peaked at 

the morning and evening rush hours. In turn, such temporal patterns were indistinct on weekends.  275 

Spatially, the high hourly average emissions with the unprecedented hyperfine resolution spread all over 

the district (Fig. 5 and Fig. S6). Such spatial pattern was distinct from previous results that generally show 

radiating decreases from the centre to the periphery (Jing et al., 2016; Yang et al., 2019), mostly associated 

with the spatial patterns of the traffic fluxes and vehicle categories (Fig. 3 and Fig. S4). Specifically, the 

high emissions at the centre were mainly attributed to the high traffic fluxes and low traffic speeds. Note 280 

that, on the border of the district, the emission intensities in the residential streets far exceeded (> 436%) 

those in the neighbouring highways. This divergence could be interpreted by the spatial emission 

distributions of different vehicle categories (Fig. 3 and Fig. S5). For instance, the emissions of HDVs and 

HDTs in the residential streets contributed the most (79.79%), much higher than those (1.34%) in the 

neighbouring highways.  285 
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3.4 Emission hotpots and drivers 

The emissions of each pollutant (i.e., CO, HC, NOx, and PM2.5) generally peaked at the major road 

intersections, leading to the spatial emission hotspots (Fig. 5 and Fig. S6). The highest hourly average 

emissions occurred at the intersection of two arterial roads (i.e., North Shixin Road and Shanyin Road), 

where the measurement monitored the largest traffic fluxes (Fig. 3). At broader spatial scales, these 290 

hotspot emissions varied substantially among different road types. For instance, the hourly average 

emissions for the hotspots in Tonghui North Road and Hongda Road (i.e., arterial roads) were 

approximately consistent with those in Benjing Road and Hongni Road (i.e., residential streets) (Fig. 5 

and Fig. S6, arterial roads vs. residential streets: 374.91g/km vs. 216.12g/km CO; 48.90g/km vs. 

34.13g/km HC; 180.61g/km vs. 348.38g/km NOx; 7.41 vs. 15.81g/km PM2.5). In contrast, the hotspot 295 

emissions in the arterial roads and highways were substantially elevated above the residential levels. For 

CO, the hotspot emissions in the highways [arterial roads] exceed those on the residential roads by a 

factor of 2.1 [2.3]; for HC by a factor of 1.4 [2.6]; for NOx by a factor of 0.9 [1.1]; and for PM2.5 by a 

factor of 0.8 [1]. Therein, emission hotspots for a given highway road were typically intensive and evident 

in several areas of the Xiaoshan District (Fig. 5). For instance, we estimated consistently higher (1.2 ~ 2 300 

times) emission levels on a highway (i.e., Airport Road) than those on the neighbouring residential street 

(i.e., Wenming Road) (Fig. S8). More importantly, the diurnal emission hotspots remained stable spatially 

(Fig. S9), consistent with the hourly average level (Fig. 5 and Fig. S6). However, the emission intensities 

of the hotspots varied during different moments between weekdays and weekends (Fig. S10). The higher 

emissions of hotspots typically appeared at 08:00 and 18:00 on weekdays, 2.2 ~ 3.4 times larger than the 305 

hourly average level.  

The indicative hotspots over the urban zones generally stretched for 100 ~ 200 m (Fig. 5). Over 

the short length of the transects, the hourly average emissions rose and fell more than 2.2 times. From the 

hotspot cores outwards, the hourly average emissions consistently followed “distance-decay” 

relationships (Fig. 6). An unconstrained three-parameter exponential model, 𝑬𝑬(𝒅𝒅) = 𝜶𝜶 + 𝜷𝜷𝐞𝐞𝐞𝐞𝐞𝐞 (−𝟑𝟑𝒅𝒅/310 

𝒌𝒌), reproduced the emission-distance relationship 𝑬𝑬(𝒅𝒅) with high fidelity (r2 = 0.96). Specifically, the 

isotropic parameter 𝒅𝒅  reflected the distance to the hotspot cores (m); the background parameter 𝜶𝜶 

represented the background emissions far from the hotspots (d → 1000m); the parameter 𝜷𝜷 represented 
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the emission increment resulting from proximity to the hotspots; the decay parameter 𝒌𝒌 governed the 

spatial scale over which emissions relaxed to 𝜶𝜶 . For all pollutants, estimated values of (𝜶𝜶 + 𝜷𝜷 ) 315 

approached a constant (1.0), indicating that the combined contribution of the background and the near-

hotspot increment approached the hotspot emission levels.  

Figure 6 shows the decay patterns of the hourly average emissions over urban zones on weekdays. 

These results reflected the hourly average emission ratios (normalized at the hourly average emissions of 

the hotspots) from hotspots outwards as a function of the distance (𝒅𝒅). Note that the ratios of the hourly 320 

average traffic fluxes and vehicle category proportions were calculated in the same way.  

Consistent with expectations about the speed-dependent emission factors (Fig. S1), our estimated 

distance-decay relationships were sharpest for NOx, intermediate for HC and PM2.5, and most shallow for 

CO. In theory, comprehensive traffic profiles underlay the estimated hotspot emissions. To elucidate 

determinants of the emission hotspot patterns, we mined those traffic data (Fig. 3, Fig. 5, and Fig. S6). 325 

As expected, we found that the traffic fluxes largely shaped the spatial emission hotspot patterns over the 

arterial and residential roads. Besides, the specific vehicle categories (i.e., HDVs and HDTs) also play a 

key role.  

For the emission hotspots in the highways, the traffic fluxes and emissions were both distance-

dependent and applicable to the “distance-decay” exponential models, while the vehicle categories were 330 

consistently stable (Fig. 6). This demonstrates that the traffic fluxes played a cardinal role in determining 

the spatial emission hotspot patterns over the highways. In contrast, in the arterial and residential roads, 

coincident peaks of the specific vehicle categories (i.e., HDVs and HDTs) and traffic fluxes corresponded 

in space to the emission hotspots (Fig. 6). This reveals that, besides the traffic fluxes, the specific vehicle 

categories (i.e., HDVs and HDTs) also substantially contributed to the high emissions over the arterial 335 

and residential roads.  

 

3.5 Impacts of traffic control scenarios 

Four scenarios (i.e., S1 ~ S4) demonstrated substantial impacts of traffic management on 

spatiotemporal traffic states (Fig. S11). Therein the S1 and S2 scenarios focused on reducing the traffic 340 

https://doi.org/10.5194/acp-2021-533
Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



14 
 

fluxes, while the S3 and S4 scenarios gave full consideration to not only the traffic fluxes but also the 

fleet compositions (Table 1). Without strict traffic restrictions, the S1 scenario only reduced the traffic 

fluxes by 3.82 % and showed no significant effects on the traffic flux hotspots. On this basis, the traffic 

fluxes were further decreased by 9.56 % under the S2 scenario. Most of the traffic flux hotspots vanished. 

Under the S3 scenario, the fleet compositions were changed evidently over the highways, where HDTs 345 

and HDVs were removed. The S4 scenario combined the exclusive settings in the S2 and S3 scenarios 

and thus realized their consequences. This scenario achieved further decreases in the traffic fluxes 

(51.3%). 

This study estimated that the daily average on-road vehicle emissions were 3.40 tons for CO, 

0.482 tons for HC, 2.306 tons for NOx, and 0.097 tons for PM2.5 (Fig. 7 and Fig. S12). Under the S1 350 

scenario, the daily average emissions decreased by small percentages (i.e., 3.74% for CO, 3.43% for 

HC, 3.13% for NOx, and 3.08% for PM2.5). Compared with the S1 scenario, the S2 scenario led to 

significant reductions over the arterial and residential roads (i.e., 9.34% for CO, 8.59% for HC, 7.83% 

for NOx, and 7.69% for PM2.5). This represents the effects of strictly traffic flux controls on on-road 

vehicle emissions, particularly over the urban zones. The S3 scenario reveals that the HDVs and HDTs 355 

were responsible for a major part (15.94 ~ 57.50%) of CO, NOx, PM2.5, and HC emissions over the 

highways. On this basis, the S4 scenario adopted comprehensive traffic controls, thus reducing roughly 

additional emissions (i.e., 50.77% for CO, 67.44% for HC, 82.72% for NOx, and 84.20% for PM2.5). As 

a result, the emission hotspots over all roads were mostly removed.  

3.6 Comparison with other inventories 360 

The bottom-up on-road vehicle emissions in this study were compared with conventional emission 

inventories (i.e., MEICv1.3 for 2016 and HTAPv2.2 for 2010) (Fig. S13) (Janssens-Maenhout et al., 2015; 

Li et al., 2017). It should be noted that the spatial resolution of MEICv1.3 and HTAPv2.2 was roughly 

0.25° * 0.25° and 0.1° * 0.1°, respectively. Hence, the total emissions over the Xiaoshan District were re-

aggregated with area-weighting. It was clear that the monthly average on-road vehicle emissions in this 365 

study were significantly lower than those in MEICv1.3 and HTAPv2.2 (i.e., MEIC:14.8% for CO, 30.1% 

for HC, 40.1% for NOx, and 19.7% for PM2.5. HTAP: 22.4% for CO, 44.5% for HC, 67.7% for NOx and 
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29.1% for PM2.5). This could be attributed to the on-road vehicle emission mitigation measures in China. 

Moreover, owing to the limitation of the spatial resolution, these conventional inventories were incapable 

of depicting the emission hotspots over the Xiaoshan District. Such limitations could be propagated to 370 

previous CTM simulations driven by those conventional inventories, thus unable to reproduce the fine-

scale on-road vehicle emissions. 

3.7 Stability Analysis 

Through systematic subsampling of our weekday emission dataset, we found that 15 ~ 30 

weekdays were sufficient to reproduce key spatial patterns with good precision and low bias (Figure 8). 375 

The following trends hold: a small number of drive days (N < 5) typically resulted in a poor approximation 

of long-term spatial patterns from the full data set, with generally low precision (𝜸𝜸𝟐𝟐) and high bias (CV-

RMSE). However, each additional sampling day resulted in a substantial improvement in 𝜸𝜸𝟐𝟐 and CV-

RMSE.  

For our dataset, diminishing returns for improvement in 𝜸𝜸𝟐𝟐 set in at 15 ~ 25 drive days, with mean 380 

𝜸𝜸𝟐𝟐 for NOx and PM2.5 approaching 0.7 after 15 weekdays, and approaching 0.9 after 30 ~ 35 weekdays. 

We found that ICC values ranged from 0.72 to 0.91 for all pollutants (Table S2). This indicates that our 

measurement-based long-term spatial patterns were robust to stochastic variability among those samples. 

Average values of ICC (Figure S14) were generally high for 10 or fewer weekdays, indicating that 

stochastic temporal variability from a small number of weekdays did not obscure an overall spatially 385 

dominated emission pattern. Note that our sampling was restricted to weekday conditions, while spatial 

patterns may differ at other times (weekends) due to casual trips. Future work may reveal whether similar 

scaling considerations hold over a broader range of conditions. 

4 Conclusions 

In this study, comprehensive traffic conditions are fully measured and interconnected via the ITS. 390 

We find the spatial variabilities existing at much finer scales (i.e., 10m ~ 1km). Further, we capture the 

emission hotspots generally driven by high traffic fluxes. Over the highways, they are also associated 

with the distributions of HDVs and HDTs. Such findings might be missed by conventionally sparse 
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sampling and previous model predictions.  Overall, routine accessibility of hyperfine-resolution on-road 

vehicle emissions could have transformative implications for air pollution control, urban management 395 

and policymaking, epidemiology, and public awareness (Daellenbach et al., 2020; Dedoussi et al., 2020; 

Geng et al., 2019; Nyhan et al., 2016; Yang and Zhang, 2018; Zeger et al., 2000). By pinpointing localized 

emission hotspots, these data may provide new opportunities for air pollution control. In turn, Street-level 

emission data can complement, challenge, and validate other emission and air quality datasets, including 

CTM outputs and near-road air quality measurements (Apte et al., 2017; Grange et al., 2017; Jiang et al., 400 

2018; Yang et al., 2018a). Moreover, such refinements can help address exposure misclassification and 

even directly alter personal behaviour, much as real-time traffic navigation data now inform individual 

driving patterns. In addition, this hyperfine-resolution on-road vehicle emissions and subsequent air 

quality maps might result in broader societal consequences, including urban land-use decisions, 

ecological planning, and political economy. 405 
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 555 

 
Figure 1. A hyperfine-resolution bottom-up model framework for on-road vehicle emissions. Each set of 

comprehensive traffic monitoring includes radar velocimeters and surveillance cameras. Consequently, vehicle-

specific information is collected, including license plates, speed, categories, and traffic fluxes. According to the 

license plates, the speed-/category-dependent emission factors are obtained from the local official vehicle I/M 560 

dataset. Over the entire district, road segments are divided into three road classes: highways, arterial roads, and 

residential streets. Each road segment is adaptive to a set of traffic monitoring that can collect comprehensive traffic 

profiles. Therefore, all-round traffic monitoring produces the hyperfine-resolution road map. On the basis of these 

input data, a hyperfine-resolution bottom-up model framework is established to calculate primary on-road vehicle 

emissions. The detailed information is illustrated in Sect. 2.2. Here, an intelligent transportation system (ITS) 565 

(named “City Brain”) is developed to interconnect these input data. In addition, an image recognition algorithm is 

embedded to recognize the category for a certain vehicle.   
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Figure 2. Comprehensive traffic monitoring network in the Xiaoshan District. (a) The Xiaoshan District (the red 

rectangle) is located in the hinterland of the YRD in China. (b) Comprehensive traffic monitoring achieves full coverage 570 

over the Xiaoshan District. Each dot represents a set of comprehensive traffic monitoring that can recognize traffic 

fluxes, vehicle-specific speed, categories, and license plates. The gaps between two sets, ranging from 10 m to 1 km, 

determine the spatial resolution of the road and emission map. The entire road network over the Xiaoshan District is 

divided into 1894 road segments. Such road segments are divided into three road classes: highways (red lines), arterial 

roads (yellow lines), and residential streets (grey lines). Map data © 2021, Gaode Map. 575 
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Figure 3. Hyperfine-resolution mapping of observed traffic fluxes. (a) Hourly average traffic fluxes in each 580 

road segment based on two-month traffic monitoring data over the entire district and (b) for three indicative 1 km2 
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urban zones therein. The subgraphs (c) and (d) are as the same as (a) and (b) but for the hourly average traffic 

fluxes during the morning and evening rush hours (from 7:00 to 9:00 and from 16:30 to 18:30, Local Time) on 

weekdays (from Monday to Friday). The subgraphs (e) and (f) are as the same as (a) and (b) but for the hourly 

average traffic fluxes of HDVs and HDTs. The subgraphs (g) and (h) are as the same as (c) and (f) but for the 585 

morning and evening rush hours on weekdays. The indicative zones are marked by white rectangles in (a) and their 

spatial scales are presented in (b).  Illustrative traffic hotspots (circles) are also annotated in (a), including Tonghui 

North Road, Hongda Road, Shixin North Road, Shanyin Road, and Airport Road. Map data © 2021, Gaode Map. 
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Figure 4. Imagery analysis for illustrative traffic hotspots. (a ~ b) Over the hotspots in the urban zones, frequent 590 

large traffic fluxes are identified in major arterial roads and their intersections. (c) Constructions in the middle of 

the roads also lead to traffic congestion. (d ~ e) Morning and afternoon traffic rushes further deteriorate traffic 

congestion. (f) Over the highways, the hotspots are related to large traffic fluxes of MDTs and HDTs. The vehicle 

licence plates are pixelated. The hotspot locations are presented in Fig. 3. 

https://doi.org/10.5194/acp-2021-533
Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



28 
 

 595 

https://doi.org/10.5194/acp-2021-533
Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



29 
 

 

https://doi.org/10.5194/acp-2021-533
Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



30 
 

Figure 5. Hyperfine-resolution mapping of on-road vehicle emissions. (a) Hourly average on-road vehicle NOx 

emissions for each road segment based on two-month traffic monitoring data for the entire district and (b) for three 

indicative 2.5 km2 urban zones therein. The subgraphs (c) and (d) are as the same as (a) and (b) but for the hourly 

average emissions during the morning and evening rush hours (from 7:00 to 9:00 and from 16:30 to 18:30, Local 600 

Time) on weekdays (from Monday to Friday). The subgraphs (e) and (f) are as the same as (a) and (b) but for the 

hourly average emissions of HDTs and HDVs. The subgraphs (g) and (h) are as the same as (a) and (b) but for the 

hourly average emissions of HDTs and HDVs during the morning and evening rush hours on weekdays. The 

indicative zones are marked by white rectangles in (a). Map data © 2021, Gaode Map. 

 605 
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 610 

Figure 6. Decay of on-road vehicle emissions, traffic fluxes, and vehicle categories from indicative hotspots 

outwards on weekdays. (a ~ d) Points denote the ratio of hourly average emissions (NOx, CO, HC, and PM2.5) 

over different road types at a given distance from hotspots to hourly average hotspot emissions. Error bars present 

standard deviations. An unconstrained three parameter exponential model reproduces the decay relationships with 

high fidelity. The isotropic parameter 𝒅𝒅 reflected the distance to the hotspot cores (m); the background parameter 615 

𝜶𝜶 represented the background emissions far from the hotspots (d → 1000m); the parameter 𝜷𝜷 represented the 

emission increment resulting from proximity to the hotspots; the decay parameter 𝒌𝒌 governed the spatial scale over 

which emissions relaxed to 𝜶𝜶. The subgraphs (e) and (f) are the same as (a) but for traffic fluxes and the vehicle 

category proportions, respectively.  
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 620 
Figure 7. Impacts of traffic control strategies (i.e., S1, ~ S4) on daily average on-road vehicle NOx emissions. 

Map data © 2021, Gaode Map.  
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Figure 8. Scaling analysis through systematic subsampling. (a) Mean subsampled 𝜸𝜸𝟐𝟐 as a function of each road segment 

emissions relative to the full data set, plotted as function the number of unique weekdays for CO, HC, NOx, and PM2.5. (b) 625 

Mean subsampled coefficient of variation of root mean squared errors (CV-RMSE) versus the number of unique weekdays 

for CO, HC, NOx, and PM2.5.  
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Table 1. Traffic control strategies. The detailed rules are presented spatially and temporally. 

Traffic control 
strategy Time scale Space scale Vehicle category Rule 

S1 
Morning and evening 

rush hours during from 
Monday to Friday 

Arterial and 
residential roads All 

For each weekday (from Monday to 
Friday), vehicles with specific tail 
numbers of the license plates were 
prohibited on the arterial and residential 
roads during the morning and evening 
rush hours (from 7:00 to 9:00 and from 
16:30 to 18:30, Local Time). The 
prohibited tail numbers were 1 and 9 on 
Monday, 2 and 8 on Tuesday, 3 and 7 on 
Wednesday, 4 and 6 on Thursday, and 5 
and 0 on Friday. 

S2 
Morning and evening 

rush hours during from 
Monday to Friday 

Arterial and 
residential roads All 

The even-odd rule for the license plates 
was adopted over the arterial and 
residential roads on weekdays. 

S3 All day Highways HDVs and HDTs 
Both local registered and non-registered 
trucks were strictly prohibited all day 
long over the highways.  

S4 All day All roads All 
All kinds of vehicles complied with the 
even-odd rule of the license plates over 
the entire District. 
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