1 Supplementary Information

2 S1 List of institutions involved in EMeRGe

Project Partners			
Institution	Head of Department	Principal Investigator	Link
University of Bremen Institute of Environmental Physics: - Physics and Chemistry of the Atmosphere	Prof. Dr. John P. Burrows	Prof. Dr. John P. Burrows / Dr. Maria Dolores Andrés Hernández	www.iup.uni- bremen.de
University of Bremen LAMOS - Laboratory for Modeling and Observation of the Earth System	Prof. Dr. Mihalis Vrekoussis	Prof. Dr. Mihalis Vrekoussis / (in cooperation with Dr. Andrea Pozzer_MPI)	www.iup.uni- bremen.de/ lamos
DLR - German Aerospace Center Institute of Atmospheric Physics	Prof. Dr. Markus Rapp	Dr. Hans Schlager / Dr. Helmut Ziereis / Dr. Daniel Sauer	www.dlr.de/pa
Max Planck Institute for Chemistry Particle Chemistry	Prof. Dr. Stephan Borrmann	Dr. Johannes Schneider	www.mpic.de/
Max-Planck-Institute for Chemistry Multiphase Chemistry	Prof. Dr. Ulrich Pöschl	Dr. Mira Pöhlker	www.mpic.de
Johannes Gutenberg University Mainz Institute for Atmospheric Physics: - Aerosol and Cloud Physics	Prof. Dr. Stephan Borrmann	Prof. Dr. Stephan Borrmann	www.ipa.uni- mainz.de
Heidelberg University Institute of Environmental Physics: - Tropospheric Chemistry	Prof. Dr. Ulrich Platt	Prof. Dr. Ulrich Platt / Dr. Denis Pöhler	www.iup.uni- heidelberg.de
Heidelberg University Institute of Environmental Physics: - Atmospheric Radiation and Applications	Prof. Dr. Klaus Pfeilsticker	Prof. Dr. Klaus Pfeilsticker	www.iup.uni- heidelberg.de/
University of Wuppertal Institute for Atmospheric and Environmental Research	Prof. Dr. Ralf Koppmann	Prof. Dr. Ralf Koppmann / Dr. Marc Krebsbach	www.iau.uni- wuppertal.de
Karlsruhe Institute of Technology (KIT) Institute of Meteorology and Climate Research: - Atmospheric Trace Gases and Remote Sensing	Prof. Dr. Peter Braesicke	Dr. Andreas Zahn / Dr. Harald Bönisch	www.imk- asf.kit.edu
Forschungszentrum Jülich Institute of Energy and Climate Research: Troposphere (IEK-8)	Prof. Dr. Astrid Kiendler-Scharr / Prof. Dr. Andreas Wahner	Dr. Birger Bohn	www.fz-juelich .de/iek/iek-8

3

5 S2 List of institutions involved in EMeRGe international

-

Country	Institution	Link
Belgium	KMI - Royal Meteorological Institute of Belgium	www.meteo.be
France	CNRS - French National Centre for Scientific Research	www.cnrs.fr
	University of Lille	www.univ-lille1.fr
~	DWD - German Meteorological Service - Meteorological Observatory Hohenpeissenberg - Richard Assmann Observatory Lindenberg	www.dwd.de
Germany	IASS - Institute for Advanced Sustainability Studies	www.iass-potsdam.de www.uc2-program.org
	TROPOS - Leibniz Institute for Tropospheric Research	www.tropos.de
	Aristotle University of Thessaloniki	www.auth.gr
	FORTH - Foundation for Research and Technology - Hellas	www.forth.gr
Greece	IERSD - Institute for Environmental Research and Sustainable Development, National Observatory of Athens	www.iersd.noa.gr
	National Technical University Of Athens	www.ntua.gr
	NOA - National Observatory of Athens	www.noa.gr
	PANACEA - Panhellenic infrastructure for Atmospheric Composition and Climate Change	panacea-ri.gr
	University of Crete	www.uoc.gr
Ireland	UCC - University College of Cork	www.ucc.ie
	CNR-ISAC - National Research Council of Italy, Institute of Atmospheric Sciences and Climate	www.isac.cnr.it
	CNR-IMAA - National Research Council of Italy Istituto di Metodologie per l'Analisi Ambientale	www.imaa.cnr.it
Italy	University of L'Aquila JRC	www.univaq.it
	University of Naples Federico II	www.unina.it
	Sapienza University of Rome	www.phys.uniroma1.it
	University of Salento , Mathematics and Physics Department	www.unisalento.it
Netherlands	KNMI - Royal Netherlands Meteorological Institute	www.knmi.nl
	CEAM – Mediterranean Center for Environmental Studies	www.ceam.es
Spain	CIEMAT - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas	www.ciemat.es
	IDAEA-CSIC – Spanish National Research Council, Institute of Environmental Assessment and Water Research	www.idaea.csic.es
	University of Granada	www.ugr.es

	University of Valencia	www.uv.es				
	UPC - Universitat Politècnica de Catalunya	www.upc.edu				
	NCAS - National Center for Atmospheric Science	www.ncas.ac.uk				
	University of Hertfordshire	www.herts.ac.uk				
United Kingdom	University of Manchester	www.manchester.ac.uk				
	University of York	www.york.ac.uk				
	FAAM - Facility for Airborne Atmospheric Measurements	www.faam.ac.uk				
Asian Partners						
Country	Institution	Link				
	Chubu University	www.chubu.ac.jp				
	Chiba University	www.chiba-u.jp				
	CRIEPI - Central Research Institute of Electric Power Industry	criepi.denken.or.jp				
	Fukuoka University	www.fukuoka-u.ac.jp				
	JAMSTEC - Japan Agency for Marine-Earth Science and Technology,- Research Institute for Global Change (RIGC)	www.jamstec.go.jp				
	JAXA - Japan Aerospace Exploration Agency	www.jaxa.jp				
	JMA - Japan Meteorological Agency	www.jma.go.jp				
	Kanazawa University,Institute of Nature and Environmental Technology	www.kanazawa-u.ac.jp				
	Kobe University	www.kobe-u.ac.jp				
Japan	Kyushu University	www.kyushu-u.ac.jp				
	MRI - Meteorology Research Institute	www.mri-jma.go.jp				
	Nagoya University	www.nagoya-u.ac.jp				
	Nara Womens's University, - Department of Chemistry, Biology and Environmental Science	www.nara-wu.ac.jp				
	NICT - National Institute of Information and Communications Technology	www.nict.go.jp				
	NIES - National Institute for Environmental Studies	www.nies.go.jp				
	NIPR - National Institute of Polar Research	www.nipr.ac.jp				
	Osaka Prefecture University, - Department of Applied Chemistry	www.osakafu-u.ac.jp				
	Tokyo Metropolitan University	www.tmu.ac.jp				
	University of Tokyo	www.u-tokyo.ac.jp				
	University of Toyama	www.u-toyama.ac.jp				
Peoples's Republic of	Peking University, College of Environmental Sciences and Engineering	www.pku.edu.cn				
China	Nanjing University, School of Atmospheric Science	www.nju.edu.cn				
	Jinan University, Guangzhou	www.jnu.edu.cn				

	Oscar M. Lopez Center for Climate Change and Disaster Management Foundation	www.omlopezcenter.org	
Philippines	University of the Philippines Diliman, - IESM - Institute of Environmental Science and Meteorology	upd.edu.ph	
	HUFS - Hankuk University of Foreign Studies, - Department of Environmental Science	www.hufs.ac.kr	
	Seoul National University - School of Earth and Environmental Sciences), - Atmospheric & Climate Environment Laboratory	www.snu.ac.kr	
Republic of Korea	Yonsei University Atmospheric Radiation Laboratory	www.yonsei.ac.kr	
	Academia Sinica - RCEC - Reseach Center for Environmental Changes	www.sinica.edu.tw	
	NTU - National Taiwan University	www.ntu.edu.tw	
Taiwan (Republic of	NCKU – National Cheng Kung University, Tainan	www.iaa.ncku.edu.tw	
China)	AIT - Asian Institute of Technology, - SERD - School of Environment, Resources and Development	www.ait.ac.th	
Thailand	LPRU - Lampang Rajabhat University, - Faculty of Science, Atmospheric Science and Astronomy Research Unit	www.lpru.ac.th	
	NARIT - National Astronomical Research Institute of Thailand,	www.narit.or.th	
	Climate		
	 Near-Earth Objects, space weather and Earth's Climate NARIT - National Astronomical Research Institute of Thailand, Near-Earth Objects, Space Weather and Earth's Climate 	www.narit.or.th	
Other Partners	 Near-Earth Objects, space weather and Earth's Climate NARIT - National Astronomical Research Institute of Thailand, Near-Earth Objects, Space Weather and Earth's Climate 	www.narit.or.th	
Other Partners Country	• Near-Earth Objects, space weather and Earth's Climate NARIT - National Astronomical Research Institute of Thailand, • Near-Earth Objects, Space Weather and Earth's Climate Institution	www.narit.or.th	
Other Partners Country European Union	- Near-Earth Objects, space weather and Earth's Climate NARIT - National Astronomical Research Institute of Thailand, - Near-Earth Objects, Space Weather and Earth's Climate Institution JRC - EU Science Hub - Joint Research Centre, Ispra	www.narit.or.th Link ec.europa.eu/jrc/en/about/ jrc- site/ispra	
Other Partners Country European Union Australia	 Near-Earth Objects, space weather and Earth's Climate NARIT - National Astronomical Research Institute of Thailand, Near-Earth Objects, Space Weather and Earth's Climate Institution JRC - EU Science Hub - Joint Research Centre, Ispra UOW - University of Wollongong, Centre for Atmospheric Chemistry 	www.narit.or.th Link ec.europa.eu/jrc/en/about/ jrc- site/ispra www.uow.edu.au	

7 S3 Model simulations used for flight planning

S3.1 CAMS

9 CAMS (Copernicus Atmosphere Monitoring Service, http://atmosphere.copernicus. eu) is the successor of the 10 former GEMS (Global and regional Earth-system Monitoring using Satellite and in-situ data) (Hollingsworth et 11 al., 2008) and three succeeding MACC (Monitoring Atmospheric Composition and Climate, http://www.gmes-12 atmosphere.eu/) projects. It extends weather services of the ECMWF (European Centre for Medium-Range 13 Weather Forecasts) with simulations of atmospheric trace gases and aerosols as part of its global component. 14 Operational air quality forecasts and analyses for Europe are provided at much finer resolution through the 15 regional component.

16 CAMS-global simulations of atmospheric composition are based on the C-IFS (Composition - Integrated 17 Forecasting System; Flemming et al., 2015) of the ECMWF. C-IFS is a version of the CB05 (Carbon Bond 2005 18 chemistry scheme; Huijnen et al., 2010) derived from the CTM Transport Model 5 (TM5). Within C-IFS, 19 modules of atmospheric chemistry and physical processes are integrated on-line and several ground-based and 20 satellite data are assimilated (see Innes et al., 2015). For EMeRGe in Europe, CO passive tracer forecasts for the 21 MPCs of London, the Ruhr area, Amsterdam/Rotterdam, Berlin, Po Valley, Madrid, Paris, Rome and of biomass 22 burning from Europe, North America and Siberia were provided through the CAMS field campaign support (see 23 also Flemming et al., 2019) service. A stratospheric ozone tracer subject to loss in the troposphere from the 24 CAMS operational model system was used as indicator of stratospheric versus tropospheric air masses. For flight 25 planning and analysis of conditions for EMeRGe in Europe, the CAMS tracer output is used in addition to full 26 atmospheric chemistry runs of the operational suite. The CAMS-global simulations were performed with 27 T511L60 model resolution. The MACCity (Granier et al., 2011) emission inventory is used for anthropogenic 28 emissions, GFASv1.2 (Kaiser et al., 2012) for near-real-time fire emissions, and a climatology of MEGAN-29 MACC (Sindelarova et al., 2014) for biogenic emissions. Stratospheric chemistry is not implemented in C-IFS, 30 stratospheric ozone is derived from the Cariolle scheme (Cariolle and Teyssèdre, 2007), stratospheric NO_x is 31 implicitly constrained by fixing the HNO_3/O_3 ratio at the 10 hPa level.

32 S3.2 HYSPLIT

33 The Lagrangian Particle Dispersion Model HYSPLIT (https://www.arl.noaa. gov/hysplit/) was used to calculate 34 the transport and dispersion of local CO emissions, accumulated over 6 days. The values do not include 35 accumulated "background" concentrations due to the much longer life-time of CO and are thus not to be 36 compared with absolute concentrations but rather with "enhancements" inside of local plumes. HYSPLIT was 37 driven by meteorology data from operational ECMWF forecast (0-11 hours forecast, 12-hourly update, 38 interpolated at 0.1 deg horizontally, pressure levels, 1-hourly output). CO emission rates were taken from 39 EDGAR HTAP V2 emission inventory, http://edgar.jrc.ec.europa.eu/htap_v2/). Dry and wet deposition can be 40 modelled, but no chemical reactions. No convection, only large-scale vertical movements as provided by the 41 meteorological data set used as input. The computation (core-model) and the visualisation (post-processing) are 42 controlled by a specific client-server infrastructure developed at DLR-IPA for campaign-support as well as post-43 campaign analysis.

Figure S3.1. Example of HYSPLIT forecast for the flight planning on 20 July 2017 resulting from a 6 days accumulation of
CO from selected EU metropolitan areas, as indicated by the squares (in purple). In this example the ECWMF forecast is
initialised on 19 July 2017 at 12 UTC for a) total maximum volume mixing ratio (VMR) between ground level and 3200m, b)
mean VMR between 300-700m above ground level (agl), c) mean VMR between 700-1200m agl d) mean VMR between
1200-1800m agl, e) mean VMR between 1800-2500m agl, and f) mean VMR between 2500-3200m agl; all averaged from 12
to 15 UTC. The flight track is superimposed in black.

52 S4 BAHAMAS

53 Basic meteorological and aircraft data were provided from DLR-FX developed BAHAMAS (BAsic HALO

54 Measurement And Sensor System) instrument at 1s and 0.1s time resolution in NASA Ames and NetCDF

55 (<u>Network Common Data Form</u>) format. In standard configuration BAHAMAS acquires data from airflow and

56 thermodynamic sensors as well as from the aircraft avionics and a high-precision GNSS/IMU (Global

57 <u>Navigation Satellite System / Inertial Measurement Unit</u>) system to derive basic meteorological parameters like

58 pressure, temperature, humidity, and the 3-D wind vector as well as aircraft position and attitude.

59 High accuracy water vapor concentration and further derived humidity parameters are measured by SHARC

- 60 (Sophisticated Hygrometer for Atmospheric ResearCh) instrument, installed inside of BAHAMAS, based on
- 61 direct absorption measurement by a tunable diode laser (TDL) system.

62 Typical absolute accuracy of the basic meteorological data is 0.3hPa for static pressure, 0.5K for temperature,

63 0.5 m s^{-1} for east and north and 0.3 m s^{-1} for vertical wind component, 10m for pressure altitude, 4.2m for altitude

above mean sea level (Schumann, 2020) and $5\% \pm 1$ ppmv for water vapor volume mixing ratio from SHARC

65 (Schulz et al., 2018).

6	6
6	7

Data	Parameter [unit]	Data	Parameter [unit]
Time	Seconds after midnight (UTC)		Pressure altitude [m]
	WGS84 altitude [m]		Calculated altitude above sea level from meteorological data [m]
	WGS84 latitude and longitude[°]		Static pressure [hPa]
	root mean square value for x-, y- and z- position [m]		Dynamic pressure [hPa]
	Ground speed [m s ⁻¹]		Static air temperature [K]
e	Calculated true air speed [m s ⁻¹]		Total air temperature [K]
titud	Mach number [Ma]	_	Potential temperature [K]
ıd at	North-, East-, up-velocity [m s ⁻¹]	gica	Virtual temperature [K]
n an	x-, y- and z-axis acceleration $[m s^{-2}]$	orolo	Virtual potential temperature [K]
sitic	Vertical acceleration [m s ⁻²]	letec	Dewpoint temperature [K]
ft pc	Angle of attack [°]	Z	Absolute humidity $[g m^{-3}]$
rcra	Angle of sideslip [°]		Relative humidity respect to water [%]
Ai	Actual track angle [°]		H ₂ O volume mixing ratio [µmol mol ⁻¹]
	True heading [°]		H_2O mass mixing ratio [g kg ⁻¹]
	Pitch angle [°]		Horizontal wind direction [°]
	Roll angle [°]		Horizontal windspeed [m s ⁻¹]
	Yaw rate [° s ⁻¹]		Wind vector North component [m s ⁻¹]
	Pitch rate [° s^{-1}]		Wind vector East component [m s ⁻¹]
	Roll rate $[\circ s^{-1}]$		Wind vector vertical component $[m s^{-1}]$

7	Table S4.1.	BAHAMAS	1Hz and	10Hz	standard	output	data
		D	III mana		order of the second second	ouput	creecee

68 S5 HALO-FAAM intercomparison exercise

- 69 HALO and FAAM research aircrafts flew in close formation for 1.6 hours around noon in the northern part of a
- restricted airspace, "TRA Allgaeu", between Augsburg and Ulm, in Southern Germany. HALO and FAAM flew
- 71 closely together in a racetrack pattern on three flight levels. The formation flight started at FL150 (4572 m) in a
- rather dry and clean troposphere and ended at FL 40 (1219 m) in a more polluted convective boundary layer.
- 73 Table S5.1 summarises the instrumentation on- board FAAM available for comparison. In total, 24 instruments
- 74 were operated on the two aircraft and provided data for the comparison.
- 75 The uploaded data were evaluated by an external referee. The data collection identified 28 parameters sampled 76 on both aircrafts and further 13 pairs of data from sampling on either HALO or FAAM. In addition, 77 observational data were collected from the German Weather Service at the observatory Hohenpeissenberg, 78 located about 1000 m above sea level and 40 to 100 km downstream of the aircraft track in the TRA Allgaeu,
- and model results were generated from 6 models and interpolated along the common flight path. Together, the
- 80 combined data set includes 221 parameters allowing for comparisons between 277 pairs of data. An overview of
- 81 the measured and modelled data available for direct comparisons is provided in the following tables. More
- 82 details on the intercomparison results can be found in Schumann (2020)
- 83 Table S5.1. FAAM instrumentation for the intercomparison exercise on 13 July 2017. NS: navigation system; SDPS: Static
- 84 and dynamic pressure sensor; PtRT: platinum resistance thermometers; RH: relative humidity; C-ToF-AMS: Compact time-

- 85 of-flight aerosol mass spectrometer; CPC: Condensation Particle Counting; FGGA: Fast greenhouse gas analyser; TILDAS:
- 86 Tunable IR laser direct absorption spectrometer; WAS-GC-FID: Whole air canister sample Gas chromatography Flame-
- 87 ionization detection; OA.-COS: Off axis-integrated cavity output spectroscopy, AC: Academic institution

	FAAM measurements			
Species/parameters	Acronym	Institution	Technique/Instrument	
Org, NO ₃ , SO ₄ , NH ₄ , Chl, Org44	AMS	Manchester AC	C-ToF-AMS	
NO, NO ₂	AQD	York AC	Chemiluminescence	
Lon, Lat, altitude , T, U, V, W, T_DI, CO, (O_3) , H ₂ O, P, CPC, RH	CORE	FAAM	Satellite/inertial NS, SDPS, PtRT, VUV fluorometry (CO), UV photometry (O ₃), CPC	
CH ₄ , CO ₂	FGGA	NERC AC	OA-COS	
Np, Dp	SMPS	Manchester AC	Scanning mobility particle sizer	
rBCm, rBCn, SCn, MMD, CTTR	SP2	Manchester AC	Single particle soot photometry	
C ₂ H ₆	TILDAS	Manchester AC/York AC	Laser absorption spectrometry	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WAS-GC- FID	York AC	Off line GC-FID	

90 Table S5.2. Overview of measured and model data available for the intercomparison exercise on 13 July 2017. x, xx, xxx

denotes data from 1, 2 or 3 instruments on one aircraft, and (x): outside comparison period. Columns: HALO and FAAM:
 aircraft instruments; HOP: measurements at Germany Weather Service (Deutscher Wetterdienst, DWD) Hohenpeissenberg;

aircraft instruments; HOP: measurements at Germany Weather Service (Deutscher Wetterdienst, DWD) Hohenpeissenberg;
 Models: CAMS: Copernicus Atmosphere Monitoring Service model, EMAC: Global ECHAM/MESSy atmospheric

94 climate/chemistry model, MECO: Regional air chemistry/climate model based on ECHAM/COSMO, CESM2: air chemistry

95 version of the CAM6 model, Photo: a photochemistry equilibrium model, IFS: Integrated Forecasting System (IFS) of the

96 European Centre for Medium-Range Weather Forecasts (ECMWF).

	HALO	FAAM	HOP	CAMS	EMAC	MECO	CESM2	Box	97S
CO ₂	Х	Х	х		Х	Х			
CH_4	Х	Х	х	Х	Х	Х	Х		98
O ₃	XX		х	Х	Х	Х	Х		~~
CO	Х	Х	Х	Х	Х	Х	Х		99
NO	Х	Х	х	Х	Х	Х	Х		100
NO_2	Х	Х	х	Х	Х	Х	Х	Х	100
HONO	Х				Х	Х	Х		101
HNO ₃	Х			х	Х	Х	Х		101
PAN	(x)			х	Х	Х	Х		4.0.2
NOy	Х				Х	Х	Х		102
J _{NO2} , J _{O1D} ,	Х		Х		Х	Х	Х		
SO_2	Х			Х	Х	Х	Х		103
RO ₂	Х				Х	Х	Х		104
Org aerosol	Х	Х	х	Х			Х		104
NO ₃ aerosol	Х	Х	х				Х		105
SO ₄ aerosol	Х	Х	х	Х			Х		105
NH ₄ aerosol	Х	Х	х				Х		106
Chl aerosol	Х	Х	х	Х			Х		100
Org44 aerosol	Х	Х	х				Х		107
BCm aerosol	Х	Х	х	х			Х		107
BCn aerosol	Х	Х	х				Х		100
SCn aerosol	Х	Х	х				Х		108
CPC	Х	Х	Х						400
CH ₂ O_FOR	XX		х	Х	Х	Х	Х		109
C ₂ H ₆ _ETA		XX	х	Х	Х	Х	Х		110
CH ₃ OH_MET	XX		х		Х	Х	Х		110
C ₂ H ₄ O_ACA	XX		х		Х	Х	Х		111
C ₃ H ₆ O_ACE	XX		Х		Х	Х	Х		TTT
C ₅ H ₈ _ISO	XX		Х	Х	Х	Х	Х		112
C ₆ H ₆ _BEN	XXX	Х	Х				Х		112
C ₇ H ₈ _TOL	XXX	Х	х				Х		112
C ₈ H ₁₀ _XYL	XXX		Х				Х		112
C ₇ H ₁₆ _HEP	Х	Х	Х				Х		111
CCl ₄	Х		Х		Х	Х			114
H ₂ O, RH	х	Х	х	Х	х	х	x		11 ^X
U, V, W	Х	Х	х	Х	Х	Х	Х		X CTT
T, p, h, lon, lat	Х	Х	Х	Х	Х	Х	Х		Х

118 Figure S6.1. Coordinated lidar and ceilometer measurements during the EMeRGe campaign in Europe. Names

corresponding to the abbreviations are listed in Table S6.1.

Table S6.1. Coordinated lidar and ceilometer measurements provided from EARLINET ground based stations during the

122 EMeRGe IOP in Europe, Coordinates, abbreviations and principal investigators are additionally specified Multiwavelength-

123 Polarization; MR: Multiwavelength-Raman; MPR: Multiwavelength-Polarization-Raman; PR: Polarization-Raman.

Station	Coordinates	Instrument	Principal Investigator
Barcelona (BRC)	41.386 N 2.117 E	Polarization-Lidar	J. M. Baldasano, M. Sicard
Bologna (BOL)	44.652 N 11.624 E	Polarization-Lidar	A. Marinoni
Cabauw (CBW)	51.970 N 4.930 E	MPR Lidar	A. Apituley
Cork (CRK)	51.893 N -8.494 E	PR Lidar	A. Ruth
Evora (EVO)	38.568 N -7.912 E	MPR Lidar	D. Bortoli
Granada (GRA)	37.1640 N -3.605 E	MPR Lidar	L. A. Arboledas
Hohenpeissenberg (HOP)	47.802 N 11.012 E	MPR Lidar	I. Mattis
Ispra (IPR)	45.817 N 8.617 E	MPR Lidar	JP. Putaud
Lecce (LCC)	40.333 N 18.100 E	Multiwavelength-Lidar	M. R. Perrone
Lille (LLE)	50.612 N 3.142E	MP Lidar	P. Goloub
London (LND)	51.775 N -0.095 E	Lidar	D. Müller
Madrid (MDR)	40.456 N -3.726 E	MR Lidar	M. Pujadas
Montsec (MSA)	42.050 N 0.733 E	Ceilometer	A. Alastuey
Montseny (MSY)	41.767 N 2.350 E	Ceilometer	A. Alastuey
Naples (NAP)	40.838 N 14.183 E	MPR Lidar	N. Spinelli
Palaiseau (PLS)	48.713 N 2.208 E	MP Lidar	M. Haeffelin
Rome I (RME_BAQ)	41.920 N 12.520 E	MPR Lidar	M. Campanelli,
Rome II (RME_VERG)	41.833 N 12.650 E	Raman-Lidar	F. Barnaba
Valencia (VLC)	39.500 N -0.420 E	Multiwavelength-Lidar	J. L. Gómez-Amo

124

Flight number	Flight date	Ground-based station	Distance (km)
		Bologna (BOL)	70
		Hohenpeissenberg (HOP)	20
	11.07	Ispra (IPR)	
E-EU-03	11.07.	Lecce (LCC)	350
		Naples (NAP)	170
		Rome (RME)	0
E-EU-04	13.07.	Hohenpeissenberg (HOP)	135
		Cabauw (CBW)	185
		Cork (CRK)	390
E-EU-05	17.07.	Lille (LLE)	40
		London (LND)	160
		Palaiseau (PLS)	115
		Bologna (BOL)	45
	20.07.	Ispra (IPR)	100
E-EU-06		Lecce (LCC)	395
		Naples (NAP)	170
		Rome (RME)	0
		Barcelona (BRC)	55
		Hohenpeissenberg (HOP)	25
E EU 07	24.07	Ispra (IPR)	155
E-EU-07	24.07.	Madrid (MDR)	530
		Montsec (MSA)	185
		Montseny (MSY)	50
		Cabauw (CBW)	90
		Hohenpeissenberg (HOP)	130
E-EU-08	26.07.	Lille (LLE)	85
		London (LND)	80
		Palaiseau (PLS)	106
		Barcelona (BRC)	50
		Granada (GRA)	435
E-EU-09	28.07	Hohenpeissenberg (HOP)	85
	20.07.	Montsec (MSA)	50
		Montseny (MSY)	10
		Valencia (VLC)	60

Table S6.2. Ground-based stations with estimated horizontal distance from HALO during the flights carried out during EMeRGe in Europe. For flight details see Sect. 3.3.

128 S7 AOD measurements retrieved from AERONET sites for 500 nm and 675 nm

- 129 For 500 and 675 nm and in all EMeRGe target regions, the AOD retrieved from the AERONET sun-sky
- photometer stations in July 2017 is slightly lower than its 10-year-average, as for the results presented in Sect.
- 131 3.2. Except for the region of Eastern Spain, the relative differences between the AODs in July 2017 and their 10-
- 132 year averages are larger than for the 1020 nm wavelength. The differences range from 15% to 31%. The AODs
- determined for BNL/Ruhr, Paris, Eastern Spain and Southern Great Britain are within the standard deviation of
- the 10-year-average AODs. In contrast, The AODs for the Po valley and Rome in 2017 are not within the
- standard deviation. The Po valley has poor data coverage at the wavelengths of 500 and 675 nm. The AOD
- 136 retrieved at 675 nm in Rome are significantly lower than the 10-year-average.
- 137 The AERONET measurements at 500 and 675 nm indicate that the AODs over most EMeRGe target regions in
- 138 July 2017 are representative. Further wavelengths are not suitable for a comparison due to the low data coverage
- in the 2009 to 2019 time period.
- 140 **Table S7.1.** AERONET stations used for the assessment of the aerosol load in six targeted regions of EMeRGe in Europe

EMeRGe target region	Station
Paris	Palaiseau Paris
BNL/Ruhr	Brussels Cabauw Lille Jülich
Southern Great Britain	Bayfordbury Chilbolton
Eastern Spain	Burjassot Montsec Palma de Mallorca
Rome	Rome Tor Vergata
Po Valley	Modena Sirmione

Figure S7.1. AODs derived at 500 and 675 nm for AERONET stations in all six target regions of EMeRGe in Europe. Black

lines show mean AOD values. The AODs derived for July 2017 and the 2009 to 2019 average are shown on each diagram.The AODs from July 2017 are representative of the average AODs from 2009 to 2019.

148 S8 Coordinates of the MPC target areas shown in Figure 4

150 English Channel (purple)

- 151 Longitude: [-5.0, 0.5, 0.5, 1.5, 1.5, -5.0, -5.0]
- 152 Latitude: [48.0, 48.0, 49.5, 49.5, 50.8, 50.8, 48.0]
- 153 North Sea (red)

- 154 Longitude: [-0.5, 3.0, 3.0, 4.0, 4.0, -0.5, -0.5]
- 155 Latitude: [50.8, 50.8, 51.8, 51.8, 54.8, 54.8, 50.8]
- 156 Benelux/Ruhr (orange)
- 157 Longitude: [3.0, 49.5]
- **158** Latitude: [8.5, 51.8]
- 159 Paris (black)
- 160 Longitude: [0.5, 47.0]
- 161 Latitude: [7.0, 49.5]
- 162 Po Valley (cyan)
- 163 Longitude: [7.5, 11.0, 11.0, 14.5, 14.5, 7.5, 7.5]
- **164** Latitude: [43.5, 43.5, 44.5, 44.5, 46.5, 46.5, 43.5]
- 165 Central Italy (blue)
- 166 Longitude: [10.0, 16.0, 16.0, 11.0, 11.0, 10.0, 10.0]
- **167** Latitude: [40.5, 40.5, 44.5, 44.5, 43.5, 43.5, 40.5]
- 168 East Mediterranean (green)
- 169 Longitude: [0.5, 38.5]
- 170 Latitude: [8.5, 43.5]
- 171

172 S9 Details of selected flights tracks and flight routes

Flight route 1	E-EU-03	E-EU-06
Alps	ca. 10:20 UTC FL170, 5100 m ca. 15:50 UTC FL 170-240, 5100-7300 m	ca 9:20 UTC FL 170-110, 5100-3300 m 16:20 UTC FL300, 9100 m
MPC Po Valley	10:30 UTC FL110, 3300m	shuttles 9:39 UTC and 10:00 UTC FL15/50/100: 450/1500/3000 m 11:50-12:10 UTC; FL:25, 750 m
Mediterranean coast of Italy	10:50 UTC FL90, 2700 m	12:20 UTC FL30, 900 m
Shuttle upwind Rome	12:00 UTC FL40/110/150 1200/3300/4000 m	13:00 UTC FL15/50/100 450/1500/3000 m
MPC Rome	13:30 UTC; FL 110,3300 m	14:00 UTC FL 100, 3000m
Adriatic coast	shuttle 13:42 UTC, FL150/110/40 4600/3300/900 m to the North FL30, 900 m	shuttle 14:15 UTC FL15/50/100 450/1500/3000 m Croatian coast shuttle 15:15 UTC FL15/50/100; 450/1500/3000 m
Munich		16:50-17:30 UTC Special landing ca 1000 m

Table S9.1. Details of the EMeRGe flights in Flight route 1

Figure S9.1. Details of the E-EU-03 track on the 11 July 2017. Two shuttles took place upwind Rome (R) and along the Adriatic coast and are marked with red lines on the map in a) as red shaded areas on the altitude diagram in b), as 3-D depiction in c). The flight track during the shuttles is shown in grey. The flight track in a) is coloured as in Fig. 4 and the EMeRGe MPC targets in red. Main changes in course and altitude are marked (a-g) on the graphs for reference. OP indicates the position of the HALO base.

Figure S9.2. Details of the E-EU-06 track on the 20 July 2017. Three shuttles took place downwind of the Po Valley (PV), upwind Rome (R) and along the Adriatic coast are marked with red lines on the map in a) as red shaded areas on the altitude diagram in b), and as a 3-D depiction in c), d) and e). The flight tracks during the shuttles d) and e) are shown in grey. The flight track in a) is coloured as in Fig. 4 and the EMeRGe MPC targets in red. Main changes in course and altitude are marked (a-l) on the graphs for reference. OP indicates the position of the HALO base.

Table S9.2. Details of the EMeRGe flights in Flight route 2 and special case E-EU-04

Flight route 2	E-EU-05	E-EU-08
MPC BNL/Ruhr	ca. 10:40 UTC FL180, 5500 m	ca. 12:45 -14:30 UTC ~FL80 cloudy Shuttle 13:20 UTC FL 30/50/80 900/1500/2400 m
MPC London	English Channel 12:00-16:45 UTC FL15-80, 400-2400 m	Two shuttles (North Sea) 10:14 UTC; FL20/40/200: 600/1200/600 m 13:05 UTC; FL30/50/80, 900/1500/2400 m
MPC Paris	17:00 UTC FL70, 2100 m	8:40 UTC FL70, 2100 m
Munich		ca 15:00 UTC Special landing ca 1000 m

E-EU-04	
FAAM_HALO intercomparison exercise	ca. 10:55 UTC entering race track FL90 (ca 2700 m) FL150/FL90/FL40 4500/2700/1200 m ca 12:51 UTC end exercise
Intercontinental transport pollution/Canada fires	ca. 13:20-14:00 UTC FL230, 7100 m
Munich	ca 14:40 UTC, ca FL30, 1000 m

Figure S9.3. Details of the E-EU-05 track on the 17 July 2017. The probing area of the outflow of London over the English
Channel is shown in a), as a blue shaded area on the altitude diagram in b), and as a 3-D depiction in c). The flight track in a)
is coloured as in Fig. 4 and the EMeRGe MPC targets marked in red. Main changes in course and altitude are marked (a-e)
on the graphs for reference. OP indicates the position of the HALO base.

198 Figure S9.4. Details of the E-EU-08 flight on the 26 July 2017. The position of the shuttles downwind London and the BNL/ 199 Ruhr area are indicated in red on the map in a), marked by the red shaded areas in b), and as a 3-D depiction in c) and d). The 200 flight tracks during the shuttles are shown in c) and d) in grey. On the map in a) the EMeRGe MPC targets are marked in red 201 and the flight track coloured as in Fig.4. Main changes in course and altitude are marked (a-g) on the graphs for reference. OP 202

indicates the position of the HALO base.

Figure S9.5. Details of the E-EU-04 flight on the 13 July 2017. The flight track coloured as in Fig. 4 is shown on the map in
a). The HALO-FAAM intercomparison exercise is indicated by the blue shaded area in b), and as a 3-D depiction in c). The
flight track is shown in c) in grey. In a), the position of the nearest MPC targets is indicated in red. Main changes in course
and altitude are marked (a-d) on the graphs for reference. OP indicates the position of the HALO base.

Table S9.3. Details of the EMeRGe flights in Flight route 3.

Flight route 3	E-EU-07	E-EU-09
Po Valley	ca. 10:20 UTC FL60, 1800m	10-11 UTC FL 240,7300m
Outflow South France (Marseille fires)	shuttle11:35 UTC FL90/50/15, 2700/1500/450m	shuttle 10:55 UTC FL100/30/15, 300/100/450m 16:00 UTC FL90, 2700m
MPC Barcelona	shuttle 12:40 UTC FL50/15 1500m/450m	shuttle 15 UTC coast of Barcelona FL15/50/90 3000/900/450m
Mediterranean	ca. 13:30 UTC FL15-50, 450-1500m shuttle 14:50 UTC NW of Sardinia FL15/50/110 450/1500/3300m	11:50 UTC FL60, 1800m shuttle 13:45 UTC East of Valencia FL100/30/15 3000/900/450m,
Central France	16:40 UTC FL 200, 6100m	16:40 UTC FL 200, 6100m
Munich		18:00-18:30 UTC Special landing ca 1000m

Figure S9.6. Details of the E-EU-07 flight on the 24 July 2017. The position of the shuttles taking place downwind of Marseille, Barcelona and the West coast of Sardinia are indicated in red on the map in a), marked by the red shaded areas in b), and as 3-D depicted in c) and d). The flight tracks during the shuttles are shown in c) and d) in grey. In a) the EMeRGe MPC targets are marked in red and the flight track coloured as in Fig. 4. Main changes in course and altitude are marked (a-i) on the graphs for reference. OP indicates the position of the HALO base.

Figure S9.7. Details of the E-EU-09 flight on the 28 July 2017. The position of the shuttles taking place downwind of Marseille, Barcelona and the East coast of Spain are indicated in red on the map in a), marked by the red shaded areas in b), and 3-D depicted in c) and d). The flight tracks during the shuttles are shown in c) and d) in grey. In a) the EMeRGe MPC targets are marked in red and the flight track coloured as in Fig. 4. Main changes in course and altitude are marked (a-j) on the graphs for reference. OP indicates the position of the HALO base.

223 S10 Selected measured average concentrations for all the EMeRGe flights

Table S10.1. Mean concentrations (mean), median (med) and quartiles $(25^{\text{th}} 75^{\text{th}})$ of selected measured trace gases and aerosol particles for the EMeRGe flights not presented in the manuscript. n.a. non-available ^xHCHO: HCHO from PTRMS measurements; ^{*}HCHO: HCHO from miniDOAS measurements; N_{CN}: N_{D>250nm} particle with D> 10 nm, and D>250 nm, respectively (inlet cut-off 1.5 to 3 µm depending on height); BCm: black carbon mass concentration; BCn: black carbon number concentration; OA: Organic aerosol. Note that NCN, N_D, BCm, BCn, OA, NO₃⁻, SO₄²⁻, NH₄⁺ and Cl⁻ are given for standard temperature and pressure conditions.

E-EU-03		<200	00 m		2000-4000 m			>4000 m					
species	mean	med	25 th	75 th	mean	med	25 th	75 th	mean	med	25 th	75 th	Unit
O ₃	61.9	63.4	57.4	68.6	60.1	60.1	56.8	63.3	73.7	75.5	63.8	83.9	ppbV
CO	96.7	99.9	86.7	104.5	80.8	85.1	75.9	89	89	88.7	83	95.6	ppbV
NO	144	135	108	167	66	57	39	82	38	36	28	44	pptV
NOy	1561	1414	880	2035	576	599	340	751	410	409	355	470	pptV
HONO	51	49	35	65	42	25	12	40	5	5	4	6	pptV
NO ₂	363	331	120	475	86	60	51	73	44	34	29	49	pptV
*HCHO	1983	2006	1322	2503	751	737	547	914	342	338	288	382	pptV
RO ₂ *	58	64	37	78	46	43	34	62	30	26	11	43	pptV
SO ₂	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
N _{CN}	4478	4309	2232	5951	2142	1835	1084	2777	974	877	771	1031	cm ⁻³
N _{D>250nm}	103.3	106.1	55	126.8	48.4	36.6	13.2	82.3	9.8	9	6	11.8	cm ⁻³
BCm	0.215	0.196	0.118	0.279	0.048	0.03	0.01	0.065	0.01	0.005	0.002	0.01	µg m ⁻³
BCn	97	96	54	128	23	16	6	36	4	3	2	5	cm ⁻³
OA	1.992	2.157	1.236	2.543	1.424	1.264	0.549	2.213	0.394	0.394	0.307	0.478	µg m ⁻³
NO ₃ ⁻	0.224	0.114	0.07	0.21	0.187	0.184	0.067	0.272	0.044	0.038	0.028	0.05	µg m ⁻³
SO4 ²⁻	1.088	1.115	0.783	1.469	0.386	0.263	0.161	0.551	0.113	0.108	0.092	0.127	µg m ⁻³
NH4 ⁺	0.521	0.497	0.329	0.659	0.289	0.288	0.139	0.399	0.08	0.072	0.058	0.085	µg m ⁻³
CI	0.03	0.029	0.018	0.039	0.021	0.02	0.017	0.025	0.01	0.01	0.01	0.01	µg m ⁻³
C ₃ H ₆ O	2375	2473	1901	2906	1560	1613	1210	1933	1656	1691	1512	1863	pptV
CH ₃ CN	123	121	104	138	118	120	104	129	140	139	125	156	pptV
C ₅ H ₈	100	93	68	116	66	64	53	75	77	68	57	90	pptV
C ₆ H ₆	115	123	55	162	40	31	24	46	28	27	24	31	pptV
C ₇ H ₈	45	44	23	60	23	21	18	25	28	25	20	31	pptV
[×] НСНО	2190	2197	1364	2841	816	770	562	1018	469	460	385	551	pptV
$C_2H_2O_2$	183	158	125	219	120	89	58	139	93	90	71	122	pptV
C ₃ H ₄ O ₂	1235	1231	1106	1346	988	806	621	1126	790	758	623	1013	pptV
E-EU-04		<200	00 m			2000-4	4000 m		>4000 m				
species	mean	med	25 th	75 th	mean	med	25 th	75 th	mean	med	25 th	75 th	Unit
03	45	45	42	48	55	54	51	60	67	69	59	74	ppbV
CO	86	86	84	89	79	79	78	80	94	89	87	99	ppbV
NO	310	274	220	375	50	40	30	50	41	34	27	43	pptV
NOy	2078	1885	1651	2419	345	234	166	427	294	273	233	327	pptV
HONO	75	73	68	82	19	17	11	24	11	11	8	13	pptV
NO ₂	722	544	423	964	72	59	49	78	32	32	28	35	pptV
*HCHO	1251	1196	1147	1431	375	347	314	411	169	168	150	182	pptV
RO ₂ *	21	24	8	30	29	29	20	36	19	18	8	28	pptV
SO ₂	181	176	154	202	111	107	100	119	107	106	97	115	pptV
N _{CN}	9619	7905	4444	13898	928	691	587	849	1701	1172	980	1632	cm ⁻³
N _{D>250nm}	68.8	67.6	54.4	80.7	7.6	6	4.7	8.1	8.9	7.3	5.8	10	cm ⁻³
BCm	0.08	0.06	0.04	0.09	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.01	µg m⁻³
BCn	44	39	31	52	3	2	1	4	3	2	1	4	cm ⁻³

C ₇ H ₈
×нсно
$C_2H_2O_2$

OA

NO₃

SO42-

 $\mathbf{NH_4}^+$

СГ

C₃H₆O

CH₃CN

 C_5H_8

 $C_3H_4O_2$

1.47

0.73

0.63

0.49

0.05

1356

69

83

41

40

1215

168

1108

1.45

0.70

0.62

0.48

0.04

1351

70

77

38

38

1175

150

1150

1.33

0.54

0.55

0.40

0.03

1261

61

63

32

29

1017

112

844

1.59

0.82

0.71

0.55

0.06

1442

80

96

48

48

1378

208

1303

0.37

0.13

0.18

0.15

0.04

1376

98

70

30

26

518

98

806

0.33

0.03

0.18

0.08

0.03

1388

100

68

30

22

515

65

641

0.27

0.03

0.14

0.05

0.03

1314

88

55

26

19

448

28

409

0.40

0.04

0.22

0.15

0.05

1435

112

84

35

28

594

103

866

0.56

0.04

0.10

0.08

n.a.

1682

134

75

31

22

487

68

560

0.51

0.04

0.09

0.07

n.a.

1614

132

72

28

21

469

71

453

0.41

0.03

0.07

0.07

n.a.

1543

108

61

23

18

385

19

250

0.71

0.05

0.12

0.10

n.a.

1716

149

90

35

27

607

112

829

µg m⁻³

µg m⁻³

µg m⁻³

µg m⁻³

µg m⁻³

pptV

pptV

pptV

pptV

pptV

pptV

pptV

pptV

E-EU-05	<2000 m					2000-4	1000 m		>4000 m				
species	mean	med	25 th	75 th	mean	med	25 th	75 th	mean	med	25 th	75 th	Unit
O ₃	32	33	30	35	44	43	36	50	61	58	52	71	ppbV
CO	79	80	76	83	65	63	54	73	63	63	57	67	ppbV
NO	173	109	91	150	57	39	24	58	34	33	27	40	pptV
NOy	2725	2455	2056	3025	1115	931	751	1175	577	547	280	822	pptV
HONO	8	3	0	15	4	3	0	7	0	0	0	0	pptV
NO ₂	275	258	186	339	87	49	34	149	27	29	25	30	pptV
*HCHO	1004	1010	926	1107	613	425	370	914	209	204	185	231	pptV
RO ₂ *	25	24	16	31	27	26	19	32	28	28	15	40	pptV
SO ₂	111	84	61	116	52	49	39	62	44	42	34	52	pptV
N _{CN}	3545	2833	1843	4555	1681	578	402	2855	852	692	592	935	cm ⁻³
N _{D>250nm}	89.9	84.4	45.8	127.8	25.3	9.3	5.1	50.3	3.4	2.6	1.8	3.8	cm ⁻³
BCm	0.11	0.09	0.05	0.14	0.04	0.01	0.00	0.07	0.00	0.00	0.00	0.00	µg m⁻³
BCn	52	50	28	69	22	4	2	47	2	2	1	3	cm ⁻³
OA	1.44	1.49	0.98	1.86	2.20	2.28	0.39	3.79	0.24	0.21	0.16	0.27	µg m ⁻³
NO ₃ ⁻	0.73	0.49	0.24	1.11	0.65	0.49	0.39	0.70	0.02	0.02	0.02	0.03	µg m⁻³
SO4 ²⁻	0.71	0.69	0.42	0.88	0.29	0.19	0.16	0.51	0.19	0.18	0.12	0.25	µg m⁻³
NH_4^+	0.54	0.49	0.30	0.73	0.32	0.32	0.09	0.42	0.08	0.08	0.06	0.09	µg m⁻³
CI	0.04	0.04	0.02	0.06	0.03	0.03	0.02	0.04	n.a.	n.a.	n.a.	n.a.	µg m⁻³
C ₃ H ₆ O	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
CH ₃ CN	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
C₅H ₈	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
C ₆ H ₆	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
C ₇ H ₈	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
[×] HCHO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
$C_2H_2O_2$	161	144	106	201	82	59	15	96	66	69	19	109	pptV
$C_3H_4O_2$	1128	1175	884	1318	753	626	416	848	613	585	260	822	pptV

E-EU-07		<200	00 m		1	2000-4	1000 m		>4000 m				
species	mean	med	25 th	75 th	mean	med	25 th	75 th	mean	med	25 th	75 th	Unit
O ₃	47	46	41	54	51	51	44	56	64	62	58	69	ppbV
CO	105	101	92	109	115	102	92	110	103	106	97	110	ppbV
NO	189	136	110	265	120	67	47	121	283	49	37	72	pptV
NOy	1335	919	743	1823	904	564	390	729	1140	451	393	604	pptV
HONO	25	16	7	34	9	5	0	16	5	0	0	5	pptV
NO ₂	202	172	144	236	161	61	27	152	52	53	24	67	pptV
*HCHO	973	832	720	1245	438	382	323	450	280	265	140	380	pptV
RO ₂ *	39	40	29	49	35	33	19	48	26	19	5	32	pptV
SO ₂	224	177	118	262	78	66	48	91	60	57	44	73	pptV
N _{CN}	6508	3446	2367	6854	2919	1995	1235	2907	4350	3123	1518	5453	cm ⁻³
N _{D>250nm}	99.2	65.1	33.4	111.1	94	15.7	7.8	65.1	11.4	6.1	3.9	11.1	cm ⁻³
BCm	0.12	0.07	0.04	0.12	0.10	0.02	0.01	0.04	0.01	0.01	0.00	0.01	µg m ⁻³
BCn	55	37	21	62	46	9	3	20	5	4	2	6	cm ⁻³
OA	2.34	1.68	1.21	3.12	1.30	0.59	0.36	2.03	0.44	0.35	0.26	0.45	µg m ⁻³
NO ₃	0.31	0.15	0.08	0.49	0.18	0.08	0.03	0.26	0.07	0.04	0.03	0.06	µg m ⁻³
SO4 ²⁻	0.82	0.85	0.38	1.16	0.25	0.13	0.07	0.30	0.10	0.08	0.05	0.13	µg m ⁻³
NH_4^+	0.46	0.43	0.29	0.62	0.31	0.23	0.15	0.51	0.09	0.08	0.06	0.09	µg m ⁻³
CI	0.09	0.05	0.02	0.16	0.04	0.04	0.02	0.05	0.10	0.10	0.10	0.10	µg m ⁻³
C ₃ H ₆ O	1734	1678	1400	1974	1580	1399	1244	1644	1535	1605	1364	1691	pptV
CH ₃ CN	124	117	103	131	191	139	119	154	132	134	117	149	pptV
C₅H ₈	92	69	57	114	170	80	58	108	66	62	54	70	pptV
C ₆ H ₆	81	66	43	94	71	39	29	54	31	29	24	35	pptV
C ₇ H ₈	51	44	34	61	69	26	20	38	32	31	18	43	pptV
×нсно	1391	1211	903	1684	1015	682	468	925	467	446	385	527	pptV
$C_2H_2O_2$	221	201	141	268	192	116	54	259	132	88	22	172	pptV
$C_3H_4O_2$	1603	1380	1140	1999	1430	808	591	1841	1012	616	430	1255	pptV

E-EU-09	e de la companya de l					2000-4	1000 m		>4000 m				
species	mean	med	25 th	75 th	mean	med	25 th	75 th	mean	med	25 th	75 th	Unit
O ₃	46	45	41	53	59	60	51	69	54	53	46	62	ppbV
CO	94	94	89	103	104	102	84	129	65	62	60	64	ppbV
NO	148	135	101	190	84	80	67	95	39	35	27	46	pptV
NOy	1151	1051	851	1287	827	907	357	1169	331	281	189	379	pptV
HONO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
NO ₂	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
*HCHO	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
RO ₂ *	46	48	35	62	53	55	39	66	13	10	1	20	pptV
SO ₂	301	287	193	384	203	204	98	281	73	68	54	85	pptV
N _{CN}	4080	3921	2960	4813	2634	3025	865	3493	2282	1465	1125	3191	cm ⁻³
N _{D>250nm}	66	65.1	42.8	78.8	133.9	129	12.6	251.2	1.2	0.6	0.2	1.5	cm ⁻³
BCm	0.12	0.10	0.07	0.15	0.33	0.32	0.02	0.57	0.00	0.00	0.00	0.00	µg m ⁻³
BCn	57	52	40	69	97	102	7	165	1	0	0	1	cm⁻³
OA	2.41	1.89	1.06	3.58	5.47	6.11	4.61	7.27	0.25	0.23	0.19	0.31	µg m ⁻³
NO ₃ ⁻	0.22	0.17	0.13	0.27	0.34	0.32	0.23	0.44	n.a.	n.a.	n.a.	n.a.	µg m ⁻³
SO4 ²⁻	0.97	0.66	0.46	1.45	0.36	0.34	0.20	0.50	0.16	0.17	0.12	0.21	µg m ⁻³
NH_4^+	0.45	0.41	0.28	0.60	0.36	0.34	0.26	0.45	0.12	0.12	0.10	0.13	µg m ⁻³
CI	0.05	0.05	0.04	0.06	0.05	0.05	0.04	0.06	0.04	0.04	0.03	0.04	µg m⁻³
C ₃ H ₆ O	1774	1610	1419	2022	1811	1851	1319	2302	915	814	774	955	pptV
CH ₃ CN	126	126	111	140	168	169	147	192	133	131	118	141	pptV
C₅H ₈	72	69	55	84	68	63	54	75	64	60	55	67	pptV
C ₆ H ₆	79	72	54	96	80	81	54	104	33	31	25	35	pptV
C ₇ H ₈	35	28	20	38	25	22	19	27	23	18	17	28	pptV
*HCHO	1418	1369	1209	1555	1136	1201	788	1406	433	421	341	493	pptV
$C_2H_2O_2$	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV
$C_3H_4O_2$	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	pptV

235 S11 Backward trajectories

Air mass back trajectories for the EMeRGe flights are calculated with the FLEXTRA 5.0 trajectory model
developed by Stohl et al., (1999) and using the European Centre for Medium-Range Forecasts (ECMWF)
operational data set ERA5 meteorological data at 0.25° horizontal resolution. Trajectories are started every 1
minute of flight time and reach back 10 days. The general content of the model output has been enhanced by

adding manually other parameters after the simulations (troph, tropp, blh, sp, surf, cwc) which provide additional

- 241 information over the BL conditions along the trajectory.
- 242 There are two sets of data:

243 1. Original trajectories of the FLEXTRA runs at the ~10 min temporal resolution along the flight tracks.

244 2. Interpolated trajectories at a strict 5 min temporal resolution, linearly interpolated from the original

trajectories. In the interpolated trajectories the timestamps are the same for all releases / trajectories and the

temporal resolution is higher.

247 S12 General description of MECO(n)

248 The MECO(n) model system (Kerkweg and Jöckel, 2012a,b, Hofmann et al., 2012, Mertens et al., 2016,

249 Kerkweg et al., 2018) consists of the global chemistry-climate model EMAC and the regional chemistry-climate

250 model COSMO-CLM/MESSy. The nesting of COSMO in EMAC is performed during runtime. The boundary 251 conditions which are necessary for the regional model instances are provided by the next coarser resolved model

- 251 conditions which are necessary for the regional model instances are provided by the next coarser resolved model 252 instance. New boundary conditions are provided at every time step of the driving model, and specific events of
- 253 long-range transport (e.g. from biomass burning) are captured well in the regional refinements.

254 S12.1 Model dynamics

255 EMAC and COSMO-CLM/MESSy are chemistry-climate models which calculate the atmospheric dynamics by 256 solving the primitive equations. The global model EMAC applies the spectral core of the global circulation 257 model ECHAM5. The Newtonian relaxation (nudging) is performed in spectral space for the prognostic 258 variables divergence, vorticity, temperature, and the (logarithm of the) surface pressure. This applied for 48, 6, 259 24, and 24 h, respectively for the EMeRGe simulations (see Jöckel et al., 2016). The nudging data are linearly 260 interpolated during updates every 6 hours. Usually, ERA-Interim, ECMWF operational analysis or ERA-5 data 261 are used for the nudging (see below). The regional refinements are not nudged towards ECMWF or any other 262 data. As in classical downscaling applications the prognostic variables are relaxed towards the global model (or 263 coarser resolved regional refinements) at the lateral and top boundaries. This means that the regional model can 264 develop to a certain degree its own dynamics.

265 S.12.2 Chemical kinetics

In total, the mechanism is described by 298 reactions of 188 species. The chemical species and reactions are as described by Jöckel et al. (2016). Basic gas-phase chemistry of ozone, methane, and odd nitrogen, alkanes and alkenes up to C4 are included. Alkynes and aromatics are not considered. Halogen chemistry includes bromine and chlorine species. For the chemistry of isoprene and selected non-methane hydrocarbons (NMHCs), version 1 of the Mainz Isoprene Mechanism (MIM1) based on Pöschl et al. (2000) is used. Heterogeneous reactions of dinitrogen pentoxide (N₂O₅), halogen nitrates (CINO₃, BrNO₃), and hypohalous acids (HOCl, HOBr) are also included. All Hg reactions are switched off.

273 NO_y is defined as: NO_y =BrNO₂+BrNO₃+ClNO₂+CLNO₃+HNO+HONO+HNO₃+HNO₄+IC₃H₇NO₃ 274 +ISON+LC₄H₉NO₃ +N+2 \cdot N₂O₅ +NO+NO₂ +NO₃ +NO₃⁻_{cs}+PAN.

275 $NO_3^{-}_{cs}$ is a residual aerosol as reaction product of the heterogeneous reaction of N_2O_5 : $N_2O_5 \rightarrow 2 NO_3^{-}_{cs} + 276 2H^+_{cs}$

277 RO₂ is defined as: RO₂ =HO₂ +CH₃O₂ +ISOOH+CH₃ CO₃+CH₃COCH₂O₂ +C₂H₅O₂

278 S12.3 Aqueous phase chemistry, scavenging, wet and dry deposition

279 As in Jöckel et al. (2016) aqueous-phase chemistry in clouds and wet deposition are simulated with the help of 280 the combined explicit scavenging submodel SCAV (Tost et al., 2006a, 2007a, 2010), which calculates the 281 uptake/release to/from the gas and aqueous phase and subsequent wet deposition. In contrast to more simplified 282 schemes, dissociation and aqueous-phase redox reactions are also explicitly calculated, e.g. the sulphur (IV) to 283 sulphur (VI) oxidation, such that the effective exchange between gas and liquid phase is taken into account. The 284 scheme also includes nitric acid (HNO₃) uptake on. Wet deposition is calculated from the in-cloud (and 285 subsequent conversion of in-cloud to in-precipitation) and in-precipitation chemical concentrations for both 286 large-scale and convective clouds.

- 287 Dry deposition of chemical species is calculated using the big leaf approach as proposed by Wesely (1989). The
- 288 implementation of this process in EMAC/MECO(n) is described in detail by Kerkweg et al. (2006).
- 289

290 S12.4 Simulation set-up

The simulations are performed using MECO(n) in a MECO(3) configuration, meaning three refinements of
 COSMO-CLM/MESSy are embedded in EMAC: a) 50 km horizontal resolution, 131 x 121 horizontal grid

boxes, time step length = 240 s (CM50), b) 12 km horizontal resolution, 245 x 221 horizontal grid boxes, time

- step length = 120 s (CM12) and c) 7 km resolution, 330 x 310 horizontal grid boxes, time step length = 60 s (CM7)
- 295

- **Figure S12.1.** Definition of the computational domains of the MECO(3) set-up.
- EMAC is applied at a horizontal spectral resolution of T42 (approx. 2.8° x 2.8°) and 90 vertical, terrain following
- 298 levels from the surface up to approx. 80 km. The time step length is 12 minutes. All COSMO-CLM/MESSy
- refinements are applied with 40 terrain following vertical levels from the surface up to around 20 km. The results
- 300 of CM12 and CM7 were not significantly different.
- 301 The emission set-up of the reference simulation is the following:
- Long lived greenhouse gases (CO₂, N₂O, CH₄) and CFCs concentrations are relaxed to- wards prescribed
 concentrations at surface following the RCP 8.5 emission inventory. These concentrations are zonally
 averaged.
- Anthropogenic emissions according to the 4.3.1 emission inventory (monthly resolution for the year 2010).
- Emissions from biomass burning and agricultural waste burning following the RCP 8.5 emission inventory
 (does not correspond the 'real biomass burning emissions in 2017).
- Emissions of NOx from soils and biogenic VOC are calculated depending on the meteorological conditions
 following the parametrisations of Yienger and Levy (1995) and Guentheret al. (1995).
- Lightning NOx is parametrised according to Price and Rind (1994).

312 S12.5 Sensitivity experiments

- emerge3 b (CM50, CM12): Reference simulation with emissions as described above. Nudging of EMAC
 towards ERA-Interim.
- emerge3 s1 (CM50,CM12,CM7): CH₄ emissions from the EDGAR 4.2 FT emission inventory.
- emerge3 s3 (CM50,CM12): VEU2 emission inventory for anthropogenic emissions are applied for Europe
 instead of EDGAR 4.3.1
- emerge3 s4 (CM50,CM12): Dynamics in EMAC is nudged towards ECMWF operational analysis data
 instead of ERA-Interim
- emerge3 s5 (CM50,CM12): 50 instead of 40 vertical model layers increasing vertical resolution in the free
 troposphere
- emerge3 s6 (CM50, CM12): EDGAR 5.0 emissions for CO₂ and CH₄, diagnostic SO₂ tracer with reaction
 SO₂ + OH as only loss, additional budget terms for the kinetic calculations.

324 S12.6 Tagging method for source apportionment

- 325 The tagging method used for source apportionment is reported by Grewe et al., 2017 and Rieger et al., 2018.
- 326 This method is an accounting system which follows the reaction pathways of emissions from different emission
- 327 sectors. The source apportionment is made for O₃, CO, PAN, NO_y (without PAN), NMHC, OH and HO₂. In this
- 328 study 12 categories are used (Table S12.1).

330 Table S12.1. Definition of the tagging categories used for EMeRGe.

Tagging Category	Description
Stratosphere	downward Transport from the stratosphere
CH ₄	degradation of CH ₄
Biogenic	biogenic emissions (soil-NOx, biogenic VOCs and CO)
N ₂ O	degradation of N ₂ O
Biomass Burning	biomass burning emissions
Lightning	lightning emissions (NOx)
Shipping	shipping emissions (IPCC codes 1A3d+1C2)
Aviation	aviation emissions
Anth. non-traffic EU	emissions of IPCCs sectors 1A1a, 1A1b+1B2a5, A1c+1A5b1+1B1b+1B2a6+1B2b5+2C1b, 1A2, 1A4, 1B1a+1B2a1+1B2a2+1B2a3+1B2a4+1B2c, 2+3, 4B+4C+4D+4F, 6 and 7A in Europa
Anth. non-traffic ROW	emissions of IPCCs sectors 1A1a, 1A1b+1B2a5, 1A1c+1A5b1+1B1b+1B2a6+1B2b5+2C1b, 1A2, 1A4, 1B1a+1B2a1+1B2a2+1B2a3+1B2a4+1B2c, 2+3, 4B+4C+4D+4F, 6 and 7A in rest of the world
Landtransport EU	emissions of IPCCs sectors 1A3b + 1A3c+1A3e in Europe
Landtransport ROW	emissions of IPCCs sectors 1A3b + 1A3c+1A3e in Rest of the World

331 S12.7 References

- 332 Grewe, V., Tsati, E., Mertens, M., Frömming, C., and Jöckel, P.: Contribution of emissions to concentrations:
- the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52), Geosci. Model Dev.,
- 334 10, 2615–2633, doi:10.5194/gmd-10-2615-2017, https://www.geosci-model-dev.net/10/2615/2017/, 2017.
- 335 Guenther, A., Hewitt, C., E., D., Fall, R. G., C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.,
- Pierce, T., S., B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmermann, P.: A global model of natural
 volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, 1995.
- 338 Hofmann, C., Kerkweg, A., Wernli, H., and Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model
- 339 system MECO(n) Part 3: Meteorological evaluation of the on-line coupled system, Geosci. Model Dev., 5, 129–
- 340 147, doi:10.5194/gmd-5-129-2012, http://www.geosci-model-dev.net/5/129/2012/, 2012.
- 341 Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff,
- 342 C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S.,
- 343 Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R.,
- 344 Scharffe, D., and Zahn, A.: EarthSystem Chemistry integrated Modelling (ESCiMo) with the Modular Earth
- 345 Submodel System(MESSy) version 2.51, Geosci. Model Dev., 9, 1153–1200, doi:10.5194/gmd-9-1153-2016,
- 346 http://www.geosci-model-dev.net/9/ 1153/2016 /, 2016.

- 347 Kerkweg, A. and Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 1:
- 348 Description of the limited-area atmospheric chemistry model COSMO/MESSy, Geosci. Model Dev., 5, 87–110,
- 349 doi:10.5194/gmd-5-87-2012, http://www.geosci-model-dev.net/5/87/2012/, 2012a.
- 350 Kerkweg, A. and Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 2:
- 351 On-line coupling with the Multi-Model-Driver (MMD), Geosci. Model Dev., 5, 111–128, doi:10.5194/gmd-5-
- 352 111-2012, http://www.geosci-model-dev.net/5/111/2012/, 2012b.
- 353 Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P.: Development and Intercomparison of Condensed
- Isoprene Oxidation Mechanisms for Global Atmospheric Modeling, J. Atmos. Chem., 37, 29–
 152,doi:10.1023/A:1006391009798, 2000.
- 356 Price, C. and Rind, D.: Modeling Global Lightning Distributions in a General Circulation Model, Mon. Wea.
- 357 Rev., 122, 1930–1939, doi:10.1175/1520-0493(1994)122h1930:MGLDIAi2.0.CO;2, doi.org/10.1175/1520-
- **358** 0493(1994)122<1930:MGLDIA>2.0.CO;2, 1994.
- 359 Rieger, V. S., Mertens, M., & Grewe, V.: An advanced method of contributing emissions to short-lived chemical
- 360 species (OH and HO2): the TAGGING 1.1 submodel based on the Modular Earth Submodel System (MESSy
- 361 2.53), Geoscientific Model Development, 11, 2049–2066, doi: 10.5194/gmd-11-2049-2018, URL
- 362 https://www.geosci-model-dev.net/11/2049/2018/. 2018
- 363 Wesely, M.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical
- 364 models, Atmospheric Environment (1967), 23, 1293–1304, doi: http://dx.doi.org/10.1016/0004-6981(89) 90153-
- 365 4, http://www.sciencedirect.com/ science /article/pii/ 0004698189901534, 1989.
- 366 Yienger, J. J. and Levy, H.: Empirical model of global soil-biogenic NOx emissions, J. Geophys. Res. Atmos.,
- 367 100, 11 447–11 464, doi:10.1029/95JD00370, URL http://dx.doi.org/10.1029/95JD00370, 1995.