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Abstract. Satellite observations provide a wealth of information on atmospheric clouds and cover almost every region of the

globe with high spatial resolution. The measured radiances constitute a valuable data set for evaluating and improving clouds

and radiation representation in climate and numerical weather prediction (NWP) models. An accurate, bias-free representation

of clouds and radiation is crucial for data assimilation and the increasingly important solar photovoltaic (PV) power production

prediction. The present study demonstrates that visible (VIS) and infrared (IR) Meteosat SEVIRI observations contain valuable5

and complementary cloud information for these purposes.

We analyse systematic deviations between satellite observations and convection-permitting, semi-free ICON-D2 hindcast

simulations for a 30-day period with strong convection. Both visible and infrared satellite observations reveal significant devi-

ations between the observations and model equivalents. The combination of infrared brightness temperature and visible solar

reflectance allowed to attribute individual deviations to specific model shortcomings. Furthermore, we investigate the sensitiv-10

ity of model-derived VIS and IR observation equivalents to modified model and visible forward operator settings to identify

dominant error sources. The results reveal that model assumptions on subgrid-scale water clouds are the primary source of

systematic deviations in the visible spectrum. Visible observations are, therefore, well-suited to advance this essential model

assumption. The visible forward operator uncertainty is lower than uncertainties introduced by model parameter assumptions

by one order of magnitude. In contrast, infrared satellite observations are very sensitive to ice cloud model assumptions. Fi-15

nally, we show a strong negative correlation between VIS solar reflectance and global horizontal irradiance. This implies that

improvements in VIS satellite reflectance prediction will coincide with improvements in the prediction of surface irradiation

and PV power production.

1 Introduction20

Satellite observations provide an indispensable data source with a high spatial and temporal resolution for evaluating model

clouds, particularly when conventional cloud observations are sparse or missing. Especially satellite observations in the visible
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range and infrared channels in atmospheric windows with low absorption by atmospheric trace gases are very sensitive to the

presence of clouds. Approximately, all radiation reaching the satellite instrument originates from liquid (e.g. water clouds)

and solid particles (e.g. ice clouds, aerosols) in the atmosphere or the earth’s surface. Hence, the radiation flux is determined25

by the atmospheric state and surface properties. While reflection of solar radiation dominates in the visible range, thermal

emission is the primary source of radiation in the infrared. The statistical comparison of model cloud properties with satellite

observations is an important tool for evaluating and improving the representation of clouds in numerical models (Roebeling

et al., 2006). Prerequisite for a fair comparison of model fields with observations is an appropriate transform, either from model

to observation space or from observation to model space. The latter approach, where observations are transformed to model30

variables has potential for evaluating cloud properties like cloud fraction, cloud optical depth, and cloud top height. However,

retrieving these quantities from satellite-measured radiances introduces errors with magnitudes of up to 40-80%. These errors

make it challenging to evaluate clouds produced by an NWP model (Jonkheid et al., 2012). The other option is to assess

observed and simulated radiances directly in observation space. The errors of forward operators that calculate observation

equivalents from the model state are usually significantly smaller than that of the retrieval procedure. Furthermore, it is easier35

to quantify the embedded uncertainties (Reitter et al., 2011), and we, therefore, pursue the comparison in observation space.

Besides model evaluation, satellite observations are an important source of information for data assimilation, nowcasting

and forecast verification. For these purposes, forward operators that calculate model equivalents of the observations have to

be both computationally efficient and accurate. In the infrared, the radiative transfer package RTTOV (Saunders et al., 2018)

fulfils these criteria and is operationally used by many weather centres (e.g. ECMWF). Related uncertainties were examined by40

several authors (e.g. Senf and Deneke, 2017; Saunders et al., 2017, 2018). The newly developed fast and precise forward oper-

ator VISOP is applied for visible channels, which is based on the 1D radiative transfer method MFASIS Scheck et al. (2016).

Clouds must be adequately analysed, since they affect the model’s energy balance and indicate locations of possible convective

initiation (Mecikalski et al., 2013). By applying forward operators to model state, clouds can be easily examined based on

the comparison to observations. Furthermore, the minimisation of systematic errors is a prerequisite for data assimilation, and45

the observations can only be assimilated if observed and simulated clouds exhibit a similar climatology. Unfortunately, this is

not necessarily the case for cloud-related quantities in current NWP systems. Therefore, understanding and mitigating these

systematic deviations will be an essential ingredient for the operational assimilation of such observations. Some studies already

showed the benefit of assimilating cloud-related quantities in the infrared (e.g. Geer et al., 2018; Honda et al., 2018) and in the

visible (Scheck et al., 2020) in experimental setups or idealized experiments (Schröttle et al., 2020). The assimilation led to50

significant improvements in cloud-related quantities and dynamical variables as clouds are often associated with meteorologi-

cally sensitive areas (McNally, 2002). However, current convection-permitting operational NWP systems still do not assimilate

cloud-affected satellite observation (Gustafsson et al., 2018), which is to a large extent due to issues with systematic deviations.

Improving the model representation of clouds is also essential, given the rising share of renewable energy in the world’s total

electricity supply. While solar photovoltaic (PV) power production is one of the fastest-growing forms of renewable energy,55

with an increase of 22% in 2019 (IEA, 2020), it will soon become challenging to integrate PV power into the electricity grid

given its strong weather-related fluctuations. The accurate prediction of these fluctuations based on NWP models is important
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Figure 1. ICON-D2 and reduced verification domain (red box) from MSG’s point of view. Orange x indicate the 122 pyranometer stations

measuring global radiation.

in terms of network safety and the efficient deployment of alternative power sources. More specifically, solar irradiance fluc-

tuations determine 90 % of the output power fluctuations of a photovoltaic (PV) power plant. Solar irradiance fluctuations, in

turn, are mainly determined by atmospheric clouds (Zack, 2011). According to Köhler et al. (2017), the main shortcomings of60

NWP in this context is the prediction of low stratus and fog, the spatial and temporal resolution of convection, shallow cumulus

and Saharan dust outbreaks. Kurzrock et al. (2018) also demonstrated that clouds and in particular, the representation of low

stratus in the model dominate the uncertainty of PV power production. However, a better representation of these meteorological

features is challenging due to the subgrid-scale nature of clouds and the lack of aerosols information.

In this paper, we evaluate and analyse shortcomings of the representation of clouds in the preoperational convection-65

permitting ICON-D2 model of Deutscher Wetterdienst based on the comparison to satellite observations for a 30-day highly

convective period. For the generation of synthetic MSG SEVIRI satellite observations from the model state, we applied the

forward operators VISOP and RTTOV. Through this, systematic deviations became apparent in solar reflectance (VIS006)

and brightness temperature (IR108) cloud distributions. Moreover, we combined these two channels and computed 2D PDFs,

revealing additional shortcomings as both channels contain complementary information. To better understand the reasons70

for these deviations, we perturbed cloud-related model parameters to examine their effects on synthetic VIS006 and IR108

observations. For the visible forward operator VISOP, we investigated operator uncertainties related to 3D effects, overlap

assumptions, aerosols and ice habits. As RTTOV is a well-established RT package and other studies already investigated its

uncertainties, we did not assess operator sensitivities for the infrared channels. Finally, we determined the dependence of global

horizontal irradiance (GHI) on VIS006 and IR108, respectively.75

The remainder of the paper is structured as follows: The experimental setup is presented in section 2. Two selected days with

clouds on different levels are analysed in section 3 to introduce satellite observations and their characteristics. This is followed

by a discussion of the cloud climatology and associated systematic deviations. Then, we investigate the dependence between

surface radiation and the utilised satellite channels. In section 4, we assess the sensitivity of synthetic satellite images to
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model and visible operator settings. For solar reflectances, forward operator uncertainties and model sensitivity are compared.80

Conclusions are provided in section 5.

2 Experimental setup

2.1 Model setup and sensitivity experiments

To evaluate the cloud climatology during this period, we use the pre-operational convection-permitting ICON-D2 (ICOsahedral

Non-hydrostatic; (Zängl et al., 2015)) model configuration with prescribed lateral boundary conditions (BCs) and a one-way85

nesting. ICON-D2 will replace the operational COSMO-D2 model (Baldauf et al., 2018). Simulations over Germany with a

horizontal grid spacing of 2.1km and 65 vertical levels are initialised once at 26 May 2016 00 UTC from downscaled ICON-

EU analysis initial conditions. ICON-EU analysis BCs drive this semi-free simulation with an hourly update and a forecast

horizon of 30 days. The simulation period and domain size are sufficiently large for the atmospheric model to develop its

own cloud climatology without perturbations from data assimilation or nudging. In our reference simulation, the operational90

single-moment bulk microphysical parameterisation accounting for cloud water, cloud ice, snow, rain and graupel is used (Lin

et al., 1983; Reinhardt and Seifert, 2006).

The reference pre-oprational model configuration has been reached through extensive tuning of many parameters whose

values are uncertain. Since many of these parameterisations are related to clouds, it would be very beneficial if such parameter-

isations could be further constrained by satellite observations. For this reason we examine the sensitivity of solar reflectances95

and infrared brightness temperatures to variations in cloud-related parameterisations. We performed six simulations in which

cloud-related parameterisations were modified within their range of uncertainty, i.e. using perturbed values that are physically

plausible. The objective was to determine which parameterisations produce a change in the synthetic-satellite signal beyond

the uncertainties of the forward operator, and therefore can be improved by using satellite observations. For this purpose, we

modified the following four parameterisations:100

1. The cloud-concentration number in ICON is used to calculate the cloud optical properties and the onset of precipitation.

ICON employs the parameterisation of Segal and Khain (2006), which determines how many droplets are in a cloud

depending on an aerosol number concentration derived from the climatology and on an updraft velocity at nucleation.

The determination of the updraft velocity in a 2km resolution model is not straightforward, because updrafts are under

resolved. ICON assumes a constant updraft velocity, which serves as a control parameter: the number of nucleated105

droplets increases with the updraft velocity.

2. The turbulent subgrid-scale cloud parameterisation determines the cloud cover due to the unresolved variability in the

model. We focus on the parameterisation of liquid clouds because those are more abundant than ice clouds in the summer

period chosen for the experiments. Not including limiters and other correction factors which will not be discussed here,
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the cloud cover in ICON is a function of the absolute humidity:110

cc=
(
qv + qc +A∆q− qsat

B∆q

)2

, (1)

where qv is the vapor water content, qc is the cloud-water content, ∆q is a parameter that quantifies the variance of

water inside the grid box (mostly determined by the turbulent scheme) and B and A are two tunable parameters. In the

pre-operational configuration it is set A= 3.5 and B = 1 +A= 4.5. The parameter A (called asymmetry factor, which

should not be confused with the factor g in radiation) determines the number of subgrid clouds. This is a common tuning115

parameter when changing the model configuration. For example, it is expected that the model requires less subgrid clouds

as grid spacing is reduced and more clouds are resolved.

3. The shallow-convection parameterisation of Bechtold et al. (2014) predicts unresolved shallow convection in the model

and also contributes to subgrid clouds. The model limits the parameterisation to clouds that are sufficiently thin, so that

thicker clouds have to be resolved by the model. The thickness of the thickest non-resolved cloud is thus an uncertain120

parameter that limits the strength of the parameterisation.

4. The microphysical scheme describes the hydrometeors dynamics. We check the effect of using the two-moment pa-

rameterisation of Seifert and Beheng (2006), in which the number concentrations of different variables are treated as

prognostic variables. This is a more complex scheme and can potentially simulate more realistic clouds, However, the

two-moment scheme has never been tuned like the operational one.125

In order to investigate the sensitivity of satellite synthetic observations to these parameterisations we have evaluated seven

simulations:

I Reference simulation with pre-operational model configuration.

II Decreased cloud-concentration number by increasing the updraft velocity at activation ( from 0.25m/s to 1m/s). This

produces liquid clouds that are optically thicker as the number concentration of droplets increases roughly by a factor130

three.

III Modified distribution of turbulent subgrid liquid clouds. The idea is to produce less and thicker subgrid clouds in a way

that the radiative balance of the model remains unchanged. This was achieved after a few trial and error experiments by

using the parameters A= 2.5 , B = 0.21.

IV Stronger shallow-convection parameterisation by doubling the thickness of the thickest unresolved cloud (from 2 ·104 to135

4 · 104 hPa).

V Simulation with the two-moment scheme while all other parameterisations are equal to the operational configuration.

VI Two-moment scheme in which the subgrid-cloud parameterisation for ice clouds is switched off.
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Figure 2. Water and ice cloud signals from VIS006 (a) and IR108 (b), computed using DIS-

ORT and the simulated period mean total column cloud water and ice content at 12 UTC.

[–alpha 45 –albedo 0.1 –re↵w 10 –taui 0 –re� 40.0 –sza 30 –vza 60]

• The Rapid Radiative Transfer Model (RRTM,(Mlawer et al., 1997)) is ICON’s ra-152

diatiave transfer package: provide downwelling solar radiation fluxes at the sur-153

face.154

2.2 Sensitivity of SEVIRI channels155

The SEVIRI instrument onboard METEOSAT Second Generation, has eight chan-156

nels in the solar and thermal part of the atmospheric window (Schmetz et al., 2002). In157

the solar regime, radiances are dominated by multiple scattering of photons from the sun158

to the satellite sensor, while emission of earth’s surface and cloud top is dominant in the159

thermal. In general, VIS and NIR channels are very sensitive to clouds. In this paper160

we use VIS006, because di↵erent to NIR016, the influence of cloud phase on reflected so-161

lar radiation can be neglected and additionally, the impact of surface albedo is usually162

relatively low (R<0.15), compared to VIS008 and NIR016. This allows us to easily study163

the climatology of clouds in the solar range.164

For the use of the cloud top detection or rather the point from where solar radi-165

ation is reflected to the sensor or at least penetrated in VIS006, we chose channel IR108,166

because the emissivity is equal for ice and water clouds. In other words, an error or mis-167

interpretation of the signal due to cloud phase can be ruled out. Other window chan-168

nels show deficiencies for our purpose. In this paper, the brightness temperature is de-169

duced from the IR 10.8 µm channel and is equal to the cloud top temperature for opaque,170

high clouds. That is not true for lower-level and/or semi-transparent clouds, because of171

two di↵erent reasons: on the one hand the measured brightness temperature from low-172

level clouds is a↵ected by atmospheric absorption, and hence, the true cloud top tem-173

perature is higher (approximately 3K for a BT of 300K). Semi-transparent clouds on the174

other hand are a↵ected by a) the underlying surface and b) by the e↵ective cloudiness175

(emissivity times cloudiness) of the cloud top temperature.176

For a better understanding and interpretation of our results, we show the theoret-177

ical sensitivity of cloud water and ice signal in VIS006 and IR108 (Figure 2a & 2b). The178

signals are computed using DISORT (Discrete Ordinates Radiative Transfer; (Stamnes179

et al., 2000)) for a predefined sun-satellite geometry, e↵ective radius and albedo (see val-180

ues in caption of Fig. 2). The water cloud is located at 4 km height, and the ice cloud181

at 10 km. In general, the solar reflectance and infrared brightness temperature depend182

strongly on the total column cloud water (TCW; or LWP) and ice content (TCI; or IWP),183

but in di↵erent ranges: VIS006 is most sensitive to TCQ/TCI-values in the range [10�2,184

100] kg/m2, whereas IR108’s sensitivity is limited to thinner clouds with values in the185

range [10�2, 10�1] kg/m2, due to a fast saturation of the signal by absorption of pho-186

tons. Hence, Fig. 2 allows following conclusions for our purpose: First, in VIS006 solar187

radiation reflects more strongly from optically dense objects than from transparent ones,188
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Figure 2. Water and ice cloud signals with different effective particle radii from VIS006 (a) and IR108 (b), computed using DISORT. Dashed

lines indicate saturation in IR108 for water (red) and ice (blue) clouds. The albedo was set to 0.1, the solar zenith angle to 30◦, the satellite

zenith angle to 60◦ and the scattering angle to 135◦.

VII Two-moment scheme with strongly reduced asymmetry factor for subgrid-liquid clouds (A= 1.5, B = 2.5) and no

subgrid ice-clouds. This simulations was motivated because the two-moment scheme reflected too much radiation, and140

therefore we reduced the amount of subgrid clouds.

2.2 Satellite observations

The SEVIRI instrument onboard METEOSAT Second Generation has eight channels in the solar and thermal part of the at-

mospheric window (Schmetz et al., 2002). In the solar regime, radiances are dominated by scattering of photons from the sun

to the satellite sensor, while emission of the earth’s surface and cloud top is dominant in the thermal. In this paper, we use145

the visible 0.6µm channel (VIS006), which has the advantage that at this wavelength the surface albedo is usually relatively

low (R<0.15) and thus also errors in the albedo are smaller than for the 0.8µm channel (VIS008) that would also be available

from SEVIRI. Additionally, we use the 10.8µm thermal infrared window channel (IR108). At this wavelength, the signal is

not strongly affected by gaseous absorption within the atmosphere and mainly determined by emission from the ground and

clouds at all heights. For a better understanding and interpretation of our results, we discuss the sensitivity of the VIS006 and150

IR108 signals to total column cloud water (TCW) and ice (TCI), as shown in Fig. 2. The signals are computed using DISORT

(DIScrete Ordinates Radiative Transfer; Stamnes et al. (2000)) for idealised scenes with a single-layer water cloud at the height

of 4km or a single-layer ice cloud at the height of 10km.

Both, solar reflectance and infrared brightness temperature strongly depend on TCW and TCI, but in different ranges: VIS006

is most sensitive to TCW/TCI-values in the range [10−2, 100]kg/m2. In comparison, IR108’s sensitivity is limited to thinner155

clouds with values in the range [10−2, 10−1]kg/m2, due to a fast saturation of the signal by the absorption of photons. Fig-

ure 2b implies that for a single-layer water cloud with TCW>0.03kg/m2 or a single-layer ice cloud with TCI>0.1kg/m2, only

cloud top height and its corresponding temperature determines the observed BT. The IR signal can thus provide the cloud top
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temperature but does not allow for retrieving the TCW/TCI. In contrast, the solar reflectance is only 0.35 at these threshold

values and can still provide information on the water/ice content up to TCW/TCI values of about 1kg/m2. As the flux of the160

reflected radiation is anticorrelated with the flux of the transmitted radiation (which will be discussed more quantitatively in

Sect. 3.3), solar reflectances are sensitive to changes in cloud water/ice content in the range where such changes have also the

strongest impact on the incoming solar radiation at the surface.

These different and complementary sensitivities show that model evaluation with solar and thermal channels has the po-

tential to provide more information on the nature of the systematic errors and to possibly identify specific shortcomings that165

would not be visible by only examining a single channel.

2.3 Satellite forward operators

To compute model equivalents for visible satellite images from the ICON model state, we employ the VISible satellite image

Forward OPerator (VISOP) that uses the fast 1D radiative transfer (RT) method MFASIS (Scheck et al., 2016). MFASIS is170

based on a compressed lookup table (LUT), computed using the DISORT solver. It is possible to consider aerosols or different

kind of ice habits for the computation of the MFASIS LUT (results in section 4.2). VISOP takes the slant satellite viewing

angle into account (tilted independent column approximation; (Wapler and Mayer, 2008)) and accounts for the most important

3D RT effect by using the cloud top inclination correction (CTI) described in Scheck et al. (2018). The surface albedo values

required as input for MFASIS are taken from the RTTOV-BRDF Atlas (Vidot et al., 2018).175

As we aim to achieve consistent assumptions in both the operator and the NWP model, we decided to use effective radii

from the model output for water clouds directly. This is based on the consideration that radiative transfer, micro-physics and

possibly operators should deal with the same optical properties.

However, some adjustments are required for the ice clouds, as will be motivated in the following. The micro-physics scheme

in the simulation predicts six hydrometeor categeories: cloud water, cloud ice and precipitating liquid water, snow, hail, and180

graupel. Rain droplets, hail and graupel particles are assumed to be much larger than cloud droplets and cloud ice particles

in the model. Therefore, for the same mass they are also much less effective in scattering radiation and are thus neglected in

the forward operators. However, the distinction between snow and cloud ice particles in the model is rather artificial. Model

snow particles can be small enough to cause non-negligible scattering effects (see discussion in Hogan et al., 2001). Hence, as

a (first) approximation we construct a frozen phase whose total mass, Q tot
i , is the sum of the diagnosed ice water content (grid185

and subgrid-scale) and snow content (only grid scale available) and whose "effective effective radius",

Rtot
I ,eff =

Q tot
i

(QDIA
i /ri,eff + Qs/rs,eff )

, (2)

is defined using the simulated effective radii of cloud ice ri,eff and snow rs,eff . This approximation assumes that the optical

thickness of the frozen phase is equal to the sum of the optical thicknesses of the ice and snow phases. The approximation be-

comes exact in case of wavelengths much smaller than the hydrometors size (optical limit), and therefore it is quite appropriate190

for visible channels.
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In general, we use the diagnosed cloud water- and ice content including subgrid contributions as input for VISOP. If no subgrid-

scale cloud is diagnosed in a particular grid box, then QDIA
x = Qx , where x could be either water or ice.

An accurate calibration is a prerequisite for using satellite observations, but unfortunately the calibration of SEVIRI VIS006 is

uncertain. Meirink et al. (2013), for example, found a calibration offset of - 8% for VIS006 during the years 2004 to 2008 by195

comparing MSG SEVIRI and MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua observations. For our purpose,

we use the approach to find a suitable calibration offset by minimising the average histogram difference between the observed

and simulated solar reflectance distribution. Through this, we found an offset of -13% between observations and our reference

simulation.

To derive SEVIRI infrared brightness temperature from the model state, we use the efficient methods implemented in the RT-200

TOV 12.1 package (Saunders et al., 2018), which is used by many weather services. The spatial resolution of MSG SEVIRI

VIS006 and IR108 observations is 3 km x 3 km at subsatellite point and reduces to 6 km x 3 km in the ICON-D2 domain, with

a temporal resolution of 15 min.

For the evaluation, we applied both operators at the full model resolution and interpolated solar reflectances and brightness

temperature to observation space afterwards to avoid additional representativeness errors. (Marseille and Stoffelen, 2017).205

2.4 Global horizontal irradiance observation and forward operator

Global horizontal irradiance (GHI) is the total amount of shortwave radiation and includes both direct normal irradiance (DNI)

and diffuse horizontal irradiance (DHI). Deutscher Wetterdienst operates a dense network of GHI observations across Germany.

GHI is an hourly average and is evaluated at 122 pyranometer stations (Fig. 1). The model’s radiative transfer scheme RRTM

(Rapid Radiative Transfer Model) simulates DNI and DHI (Mlawer et al., 1997).210

2.5 Verification metrics

A combination of metrics is applied to evaluate synthetic satellite imagery at 12 UTC with observations. The verification

domain (red rectangle in Fig. 1) is smaller than the ICON-D2 domain to exclude nesting effects at the domain boundaries

and signals from snow-covered surfaces in the Alps that exhibit reflectances similar to clouds. We show VIS006 and IR108

probability density functions (PDF) of our simulations Psim and calibrated observations Pobs, without coarsening or thinning.215

The number of bins N of the PDFs is 50, with R∈[0,1] and BT∈[200,300]K. From that, we define the cloudiness (C) as

the fraction of pixels in which the solar reflectance is higher than a threshold value Rc of 0.2. This value is an upper limit

for the clear-sky reflectance in the considered verification domain (see discussion in Scheck et al. (2018)). Violin plots are

used to visualize the daily bin-by-bin deviation of the PDF (deviation computed for each day d and bin n) from the reference

run and model/operator sensitivity experiments: εhist
n,d = Pobs

n,d −Psim
n,d . This allows for a consistent comparison of VISOP and220

model uncertainty, by examining the median deviation (the mean is always zero), the interquartile range (difference between

75th and 25th percentile) as a measure for variability and the range as the extent of deviations. We further analyze clouds by

constructing contoured 2D probability density function (PDF) plots of brightness temperature and solar reflectance, comparable

to contoured frequency by altitude diagrams (CFADs) of radar observations. We use the US. Standard Atmosphere 1962
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Figure 3. Time series of observed and simulated cloudiness at 12 UTC during period (26 May - 24 June 2016).

(Sissenwine et al., 1962) to classify brightness temperatures into three cloud categories (low, middle and high clouds) as225

defined in the International Cloud Atlas (Cohn, 2017). In the US Standard Atmosphere, the surface temperature is 288K and

the (wet) temperature lapse rate is 0.65K/100m, leading to temperature ranges of T > 275K for the surface and low clouds,

275K ≤ T ≤ 243K for middle clouds and T < 243K for high clouds.

2.6 Synoptic overview and cloudiness

A 30-day period from 26 May to 24 June 2016 is analysed, which is dominated by strong summer-time convection in Germany.230

In the beginning, large parts of Europe were affected by high-impact weather events over almost two weeks. Atmospheric

blocking and interaction of low thermal stability and weak mid-tropospheric winds were the ingredients for this exceptional

sequence of thunderstorms and related flash floods (Piper et al., 2016). Many authors have discussed these two weeks (see e.g.

Necker et al. (2020); Bachmann et al. (2020); Keil et al. (2019); Necker et al. (2018); Zeng et al. (2018)). In the subsequent

weeks (10. - 24. June), the wind direction changed to south-westerly flow, advecting warm and humid air masses from the235

Atlantic and the Mediterranean to Germany and supporting cloud formation (Fig. 3). In general, the simulated cloudiness

(defined in section 2.5) is predominantly overestimated, leading to a period mean observed and simulated cloudiness of 0.73

and 0.76, respectively. This convective period with high cloud cover at different levels is well suited to examine the cloud

climatology and its sensitivity to cloud-related parameterisations.

3 Reference run240

3.1 Selected cases

In this section, we exemplarily discuss two days of the period to illustrate the methodology of evaluating clouds using visible

and infrared satellite channels. On the first one (29 May), deep convection and severe thunderstorms occurred leading to a

9
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(a) observed solar reflectance (b) observed brightness temperature

(c) simulated solar reflectance (d) simulated brightness temperature

(e) solar reflectance distribution (f) brightness temperature distribution

Figure 6. (Regional) distribution of solar reflectances (top) and brightness temperatures

(bottom) and their corresponding distribution for 29 May at 12 UTC. cmap unit is missing

The second day is characterized by locally driven convective bubbles along a low-470

level convergence line, with a clear and definite cloud signal in the VIS006 (Fig. 7a &471

7b) and IR108 imagery (Fig. 7c & 7d). For the simulation however, it is harder to dis-472

tinguish these bubbles in the solar than in the thermal channel, due to a low-level and473

spatially extended cloud field in the southern part of the verification domain and, ad-474

ditionally, the initiation of convection in the model seems to be too late on this specific475

day. The forecasted cloudiness is 6.5 percentage-points less than observed. One main rea-476

son is that the spatially extended fog / low stratus signal (high BT & R>0.2) easterly477

of Great Britain is not fully forecasted by the model. The miss in the fog forecast also478

leads to a strong clear-sky signal arising from the North Sea (Rocean ⇡ 0.05) (Fig. 7e).479

The solar reflectance distribution further reveals a relatively good agreement between480

observed and simulated cloudy reflectances. That is also true for the BT-distribution,481

however the number of middle to high clouds are systematically underpredicted.482

These two days, with clouds on di↵erent levels and optical thicknesses already high-483

lights the importance of combining a solar and thermal channel and illustrates the high484

variability in cloud distribution, depending on the underlying atmospheric condition.485

Figure 8 puts the information of the two channels in a 2D density plot together,486

and allows us to analyze clouds in the BT-R space. The observed product for the syn-487

optic day reveals an approximately linear relationship between BT and solar reflectance,488

with two maxima in cloudy regions. The maxima located at BT ⇡ 230 K and R ⇡ 0.5489

is probably caused by relatively thin cirrus clouds above a second cloud layer, whereas490

–13–

Figure 4. (Regional) distribution of solar reflectances (top) and brightness temperatures (bottom) and their corresponding distribution for 29

May at 12 UTC (EUMETSAT).

flash flood that caused severe damage in Braunsbach, a small town in the south-western part of Germany. The second one (02

June) was dominated by low-level clouds. According to Piper et al. (2016), warm, moist and unstable air masses characterized245

both days. However, large-scale ascent dominated on 29 May and subsidence on 02 June. Figure 4 shows the VIS006 and

IR108 satellite images, together with the corresponding distributions of solar reflectance and brightness temperatures on 29

May 2016. The VIS006 satellite image (Fig. 4a & 4b) shows the early stage of a cyclogenesis over Germany, characterized by

a prominent vortex structure, in both the observation and model simulation. However, the feature is shifted to the south-west

in the simulation. The relatively high cloudiness of 88% in the observation and 89% in the simulation leads to a relatively250

uniform distribution of observed solar reflectances (Fig. 4e). Overall, the agreement between observed and simulated visible

histograms is relatively good given that the model is forced towards the current weather only through the boundary conditions.

The vortex structure of the cyclogenesis is also apparent in the IR108 observation (Fig. 4b), but the simulation shows clear

systematic errors. In the simulation, the cloud pattern is dominated by relatively high ice clouds (Fig. 4d), which are less fre-
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(a) observed solar reflectance (b) observed brightness temperature

(c) simulated solar reflectance (d) simulated brightness temperature

(e) solar reflectance distribution (f) brightness temperature distribution

Figure 7. As in Figure 6 but for 05 June 2016. cmap unit is missing

the second maxima at BT ⇡ 255 K and R ⇡ 0.7 is a signal of medium high and thick491

convective clouds. The very high and thick clouds in the right-top corner of the 2D den-492

sity plot corresponds to deep convective clouds. The simulation on the other hand, shows493

a much steeper and ”logarithmic” like increase in BT with solar reflectance. This is in494

accordance to the overestimation of high clouds in general, because the maxima is dis-495

tributed over nearly all solar reflectances for low BTs. This leads not only to an under-496

estimation of medium high and thick clouds, but also to an underestimation of the clear-497

sky signal. We think that radiation, reflected from the surface and underlying cloud lay-498

ers is penetrated by a separated high ice cloud layer above, introduced by moisture trans-499

port of deep convection into the upper troposphere. This leads to a general overestima-500

tion of high (ice) clouds of 16.9 % on this specific day, and consequently, middle to low501

clouds are underestimated by 9.1 % and 7.7 %, respectively (Fig. 9e).502

The BT-R distribution on the second day reveals a dominant clear-sky signal in503

both, the observed and synthetic satellite images, together with a strong signal of low504

clouds (BT>275 K). Since the simulated convection is initiated to late on this day, the505

apparent increase in observed solar reflectance with decreasing brightness temperature506

is not reproduced in the simulation, because this signal comes mostly from cloud edges507

(see Fig.8b). The observed maxima at very low BTs and high solar reflectances (corre-508

sponding to deep convective bubbles) is also mirrored in our simulation, although weaker509

pronounced and shifted slightly to lower solar reflectances, because of the delay in ini-510

tiation.511

–14–

Figure 5. As in Fig. 4 but for 02 June 2016 (EUMETSAT).

quent in the observations. The histogram confirms this picture: The signal of high clouds is overestimated in the simulations,255

whereas the signal of medium clouds is underestimated by 40%.

On 02 June 2016, boundary layer clouds dominated in both the observation and simulation (Fig. 5b&d). Additionally, super-

imposed ice clouds are observed in some regions. The simulated IR108 distribution fits the observed one relatively well on this

day (Fig. 5f). In the visible satellite image (Fig. 5a&c), a high cloudiness is apparent, with 87% in the observation and 91%

in the simulation. Different to 29 May, however, the distribution (Fig. 5e) reveals an overestimation of medium-thick clouds,260

together with an underestimation of thick clouds (R>0.6).

The examples discussed above show that the examination of a single channel (VIS or IR) can lead to opposite conclusions

with respect to forecast quality. The agreement of the histograms for 29 May is good in the visible range but not in the IR.

The opposite is observed for the 02 June. This shows that both channels provide complementary information. In the following,

we show that further information can be obtained by using the combined information of both channels in 2D PDF plots of265

brightness temperature and reflectance. We have already discussed how the IR histogram shows an overestimation of high
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(a) observed (b) observed

(c) simulated (d) simulated

(e) Cloud category: relative di↵erence

Figure 10. Histograms of observed (top) and simulated (bottom) cloud frequency as a func-

tion of brightness temperature and solar reflectance at 29 May (left) and 05 June 2016 (right) at

12 UTC. White contours correspond to the observed limits in the colorbar.

–23–

Figure 6. Cloud PDF of observations (top) and simulations (bottom), normalized by the sum as a function of brightness temperature and

solar reflectance at 29 May (left) and 02 June 2016 (right) at 12 UTC.
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(a) solar reflectance (b) infrared brightness temperature

(c) observed (d) simulated

Figure 4. Climatology of VIS006 solar reflectance (a), IR108 infrared brightness tempera-

ture (b) and combined product (bottom) of observations (c) and simulations (d) at 12 UTC.

magnitude der Korrelation in IR108 umgekehrt: Vielleicht kleiner Käfer in RRTOV? :-)

3.2 Cloud footprint in reality and simulation - distribution of VIS006371

solar reflectance and IR108 brightness temperature.372

3.2.1 Cloud climatology373

The observed period mean VIS006 solar reflectance distribution at 12 UTC reveals374

a relatively uniform distribution, with a dominant clear sky signal (R 2 [0, 0.2]) and a375

sharp decrease for reflectances higher than 0.8, while in the reference run largest discrep-376

ancies occur for medium-thick clouds (R⇡0.5) and relatively thick clouds with solar re-377

flectances between 0.6 and 0.8 (Fig. 4a). The cloudiness is overestimated in the refer-378

ence simulation with a relative bias of -3.6 %. This overestimation in cloud cover is partly379

compensated through the simulated distribution, so that the relative bias in solar reflectance380

reduces to -2.0 %.381

Fig. 4b presents a histogram of the period mean IR108-BT at 12 UTC and con-382

firms findings from previous studies using convection-resolving models that there are gen-383

erally to many clouds with low BTs. This, together with the underprediction of middle384

clouds might be an relic from the old COSMO-DE model (Baldauf et al., 2011). This385

characteristic deficiencies in simulated BTs is a known fact for a long time (e.g. Illingworth386

–10–

Figure 7. Climatology of VIS006 solar reflectance (a) (with cloudiness in the legend), IR108 infrared brightness temperature (b) and cloud

PDF (bottom) of observations (c) and simulations (d) at 12 UTC.

clouds on the 29 May. The combined histograms (Fig. 6a & 6c) provide the additional information that this overestimation of

clouds mostly happens for thick clouds (R>0.6). This indicates that the model produced too strong deep convection. On 02

June, where lower clouds dominated the scene, the observation and simulations agree on the vertical location of the shallow

cumulus clouds (Fig. 6b & 6d). However, solar reflectances are primarily distributed around 0.7 in the observation and around270

0.5 in the simulation. Compared to the 1D reflectance histogram, the 2D PDF provides the additional information that the

systematic reflectance errors are related to low clouds. These two days with predominantly deep convective clouds (29 May)

and low clouds (02 June) are exemplarily for different cloud types and formation processes. Their analysis therefore illustrates

the benefit of combining a solar and an infrared channel.
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3.2 VIS006 and IR108 climatology275

The analysis of individual cases presented above illustrates certain characteristics, but longer periods are required to identify

systematic model deficiencies. To address this, we now present results for the 30-day period. The observed mean VIS006 solar

reflectance distribution at 12 UTC reveals a clear-sky peak at low reflectance values (R∈ [0, 0.2]), a nearly uniform distribution

for higher reflectances (R∈ [0.2,0.8]) and a sharp decrease for reflectances higher than 0.8 (Fig. 7a). The distribution of the

reference simulation overall looks similar, but shows some deviations from the flat plateau seen for the observations, with a280

surplus of clouds around a reflectance 0.5. Fig. 7b presents a histogram of the 30-day mean IR108-BT at 12 UTC and overall

confirms findings from previous studies using convection-permitting models. There are generally too many clouds with low

brightness temperatures (BT<240K). This, together with an underestimation of mid-level clouds in our ICON simulations is

a well known issue that has also been found in other studies (e.g. Illingworth et al., 2007; Pfeifer et al., 2010; Böhme et al.,

2011; Keller et al., 2016). The distribution further reveals a clear-sky bias, where the model underpredicts high BT values.285

In general, the cloud climatology based on 2D PDF plots indicates that the model and observation distributions have simi-

lar structures (Fig. 7c & 7d). Noticeable differences in the distribution occur in boundary-layer clouds. The increase in solar

reflectance with decreasing brightness temperature (increasing height) is noticeably steeper in the observations (indicated by

dashed white lines in the plots). This means that thick boundary-layer clouds consistently reach higher levels in the observa-

tions, and suggests that shallow convection is too weak in the model. The 2D PDFs further indicate that the surplus of clouds290

around a reflectance of 0.5 in the model is related to boundary layer clouds, revealing a deficiency in the model representation

of liquid water clouds. In addition, the simulation lacks in producing enough mid-level clouds at all solar reflectances. Finally,

a secondary maximum at low BTs and high solar reflectance (R≈0.8) is apparent in the simulations but not in the observations.

This maximum mainly corresponds to deep convective and precipitating clouds, which are either too active or produce too much

ice, similar to 29 May. High-level clouds (cirrus as well as iced cloud tops) and low-level clouds are generally overestimated.295

The combined histograms clearly show important shortcomings in shallow and deep convection. Combined histograms can

thus provide additional information on the nature of the systematic errors evident in the 1d histograms, and very valuable

information for model development, showing which model configuration produces more realistic clouds.

3.3 Global horizontal irradiance

In the previous section, we examined systematic deviations between observed and simulated VIS006 solar reflectance and300

IR108 brightness temperature. Now we investigate if improvements in the forecast of satellite solar reflectence are related

to improvements of irradiance forecasts at the surface, which are crucial for the prediction of PV power production. For an

effective cloud albedo (CAL, Mueller et al., 2011), the basic relation between surface solar irradiance (SSI) and CAL is

predominantly linear, assuming energy conservation (Cano et al., 1986; Beyer et al., 1996). CAL is based on a broadband

visible channel and SSI is the downwelling broadband solar irradiance. However, using one narrowband visible channel the305

dependency can not be exactly linear because of several reasons: A high amount of incoming solar energy is absorbed in the

atmosphere by water vapour and ozone, which is not represented in VIS006 solar reflectance, since its wavelength is centered
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(a) VIS006 (b) IR108

Figure 3. VIS006 solar reflectance (a) and IR108 brightness temperature (b) against fraction

of incoming surface solar irradiance (SSI/E0) at 12 UTC. Here, E0 is assumed to be 1367 W/M2

and the number of matches is 3365.

3.1 Capability of SEVIRI VIS006 solar reflectance to derive surface so-343

lar irradiance344

Figure3a reveals a strong negative correlation between the incoming portion of SSI345

(SSI divided by solar constant E0 = 1367 W/m2; here, we assume that global horizon-346

tal irradiance (GHI), measured at SYNOP station is equal to SSI! ) and the solar re-347

flectance, with ⇢obs = -0.75 and ⇢sim = -0.86 at SYNOP stations. This apparent di↵er-348

ence in magnitude of the correlation coe�cient can be attributed to errors and the ne-349

glection of processes discussed in sec. 2.4. Consequently, 56 % of the SSI variance can350

be directly explained by the solar reflectance variance, which is even higher in our sim-351

ulation (74 %, coe�cient of determination). Likewise, Figure3b shows the dependence352

of SSI on the IR108 brightness temperature with observed correlation coe�cients of 0.63353

and in the simulation of 0.54, respectively. This implies that the lower the brightness tem-354

peratures, the lower SSI. This only makes sense, because of two dependent reasons: First,355

IR108 is mainly a signal of cloud top height, rather than optical thickness (see discus-356

sion in sec. 2.2), and second, the investigated period was predominantely characterized357

by an exceptionally large number of severe thunderstorms (deep convective clouds). For358

that reason, the measured SSI decreases with higher cloud tops and vice versa. In con-359

trast, for less convective periods or during winter, the authors suggest that the corre-360

lation is lower.361

In essence, the visible forward operator MFASIS can be used to derive SSI values362

with a high spatial resolution, which can be directly compared to observations. The ac-363

curacy could be further increased if VIS008 is also considered to construct an e↵ective364

cloud albedo. This functions as our proof of concept that MFASIS produces reliable syn-365

thetic satellite images. However, the derivation of SSI using this method assumes reli-366

able cloud forecasts, with small systematic deviations. The cloud climatology and cor-367

responding errors during the period is discussed next. Wäre vielleicht interessant die abgeleit-368

ete Klimatologie von SSI für gesamt Deutschland zu zeigen? Oder Fehler: Fehlerverteilung369

von SSI und abgeleiteter SSI recht ähnlich bei SYNOP Stationen.370

–9–

Figure 8. VIS006 solar reflectance (a) and IR108 brightness temperature (b) against fraction of incoming global horizontal irradiance

(GHI/E0) at 12 UTC. Here, E0 is assumed to be 1367 W/m2 and the number of matches is 3365.

in the atmospheric window. Additionally, the solar reflectance also depends on sun-satellite geometry and 3D RT effects.

Moreover, 3D RT effects also influence the irradiance at the surface (e.g. by cloud enhancement). Still, one would expect

reflectance to be anticorrelated with GHI. The incoming portion of GHI (GHI divided by solar constant E0= 1367 W/m2)310

and VIS006 solar reflectance at pyranometer stations indeed reveals a strong negative correlation, with ρobs = -0.75 and ρsim

= -0.86, respectively (Fig. 8a). Theoretically, we can expect a higher correlation between these two quantities. However, the

observed values differ in timing as GHI is an integrated quantity over the last hour, whereas VIS006 solar reflectance is an

instantaneous value. This reduces the correlation due to advection, formation or dissipation of clouds during the observation

time window of GHI. Additionally, aerosols are neglected in our reference simulation and with standard operator settings. A315

rough estimate of the contribution of aerosols on solar reflectance distribution is provided in Sect. 4.2.

For the infrared channel, one would expect BT to be primarily anticorrelated with cloud top height, and not the optical

thickness of the clouds, which determines how much radiation reaches the surface. However, as many high clouds are caused

by convection, there should still be some correlation between BT and GHI. Figure 8b shows the dependence of GHI on the

IR108 brightness temperature with correlation coefficients of 0.63 and 0.54 for observations and simulation, respectively. As320

expected, correlation values are lower than for VIS006, and additionally, it should be noted that the correlation of brightness

temperature and GHI may be reduced for other weather situations and less convective periods.

These results indicate that reducing the error of synthetic satellite images, in particular for visible satellite channels, should

improve radiation forecasts.
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Figure 9. Visible reflectance histograms for the test period computed for the observations (OBS) and the reference experiment (REF). The

additional distributions were computed using only the grid-scale clouds (REF-grid), onyl the water clouds (REF-W) and only the ice clouds

(REF-IS) of the reference experiment, respectively. For the red line (REF-WI) water and ice clouds are taken into account and only the

snow contribution to the ice clouds was omitted. The numbers in the legend indicate the cloudiness, i.e. the fraction of pixels exceeding a

relfectance of 0.2.

4 Sensitivity of synthetic VIS006, IR108 satellite and surface irradiance observation325

4.1 Contributions of different clouds to the reflectance distribution

For understanding the sensitivity of the synthetic visible satellite images to changes in operator settings and model modifi-

cations, it is helpful to determine the contribution of different hydrometeor types and subgrid-scale clouds to the reflectance

histogram of the reference run (Fig. 7a). Figure 9 shows the observed and simulated VIS006 solar reflectance distribution (OBS

and REF are the same as in Fig. 7a), the distribution that results from taking only grid-scale clouds into account (REF-grid)330

and several distributions obtained by using only certain types or combinations of hydrometeors.

Grid-scale clouds only lead to a distribution with a nearly flat plateau between reflectances 0.3 and 0.7, a feature that is also

found in the distribution of the observed reflectances. However, the fraction of cloud pixels would decrease from C = 0.76 to

0.5 if only grid-scale clouds were present. Adding subgrid clouds results in much better agreement with the observed value of

C = 0.73. It is thus essential to take these additional subgrid clouds into account. However, the imperfect parameterisation of335

subgrid clouds also contributes to deviations in the shape of the distribution: While the distributions of the observations and

the grid-scale clouds only simulation exhibit a relatively flat plateau, the addition of subgrid clouds leads to a histogram curve

with a pronounced maximum at 0.5 and a minimum at 0.7.

When only water clouds are used as input to the operator (REF-W), the cloudiness falls off fromC = 0.76 toC = 0.70. Primar-
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Figure 10. Differences between reflectance histograms obtained for the reference run with modified operator settings and standard settings.

The modified settings are switching off the cloud top inclination, using maximum-random instead of random subgrid cloud overlap, including

aerosols with an optical depth of 0.1 and changing the cloud ice particle habit to solid columns. For comparison also the difference between

observation and reference run histogram is shown (dashed curve).

ily, reflectances larger than 0.5 become slightly less frequent. In contrast, taking only ice clouds (including snow) into account340

(REF-IS) has a more substantial impact on the histogram and results in much smaller cloudiness of C = 0.29. Water clouds

thus play a much more substantial role for the reflectance distribution than ice clouds. This result is not surprising as the total

column ice content is much smaller than the water content (Fig. 2c) and additionally larger ice particles are less effective in

scattering light than smaller water droplets (Fig. 2a).

In both the water-only and the ice-only cases, the corresponding subgrid clouds are included. The water-only curve (REF-W)345

shows the same deviation from the plateau-like shape of the observed distribution as the curve computed for all clouds (REF),

but the ice-only curve (REF-IS) does not. Thus, it seems that the subgrid water cloud parameterisation needs to be improved

to get better agreement in the histogram shapes. Finally, ignoring the simulated snow content (REF-WI) has a small, but detri-

mental effect. This emphasizes the need for including snow in the computation of the RT input variables as discussed in section

2.3.350

4.2 Estimated uncertainty of VISOP

Forward operators use fast, approximate RT methods and rely on the limited information that is available from the NWP model.

Due to missing RT effects and missing information (e.g. on subgrid-scale cloud properties) their output is to some extent
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uncertain. While forward operators for thermal infrared channels have been available for some time and their uncertainties

have been investigated in several studies (e.g. Senf and Deneke, 2017; Saunders et al., 2017, 2018), no such information is355

available for visible channels. In the following, the uncertainty related to what we regard as the most critical error sources will

be estimated by varying the corresponding operator settings.

The potential sources of uncertainty to be investigated are related to missing 3D RT effects, unknown or inconsistent overlap

statistics of subgrid-scale clouds, the spatial and temporal variation of aerosols and the shape of cloud ice particles. To estimate

upper limits of the uncertainty in the reflectance distribution related to these sources, we repeated the computation of visible360

reflectances applying VISOP to the reference simulation with deactivated cloud top inclination (CTI) parameterisation, random

instead of random-maximum subgrid cloud overlap, and aerosols or a different kind of ice habit included in the MFASIS LUT.

The deviations in the reflectance distribution for the reference run caused by changing these operator settings are shown in

Fig. 10.

The subgrid cloud overlap assumptions would not be a source of operator uncertainty if the assumptions in the NWP model365

and the operator were entirely consistent. However, the near-operational version of ICON employed to perform the model

runs for this study uses inconsistent overlap assumptions in the infrared and visible part of the spectrum. This inconsistency

will likely be corrected in future versions, but at the moment, it means that the operator cannot be entirely consistent with the

model. The deviation in the reflectance distribution caused by changing the assumption from maximum-random to random in

the operator (orange line in Fig. 10) can be regarded as an upper limit for the impact. Changing the assumption shifts the peak370

around R=0.5 (which is related to subgrid clouds, as discussed in Sect. 4.1) to higher reflectances, but has not much influence

on reflectances larger than 0.7.

Missing or imperfectly modelled 3D RT effects are likely the source of uncertainty that is most difficult to quantify. Accord-

ing to Scheck et al. (2018) the most important 3D effect is related to the inclination of the cloud top surface, which influences

the observed reflectance. The parts of the cloud top surface tilted towards the sun appear brighter and those tilted away from375

the sun darker. The cloud top inclination correction (CTI, see Scheck et al., 2018) accounting for this effect has been shown to

reduce the error with respect to full 3D RT calculations and is included in the reference run. The main effect of the CTI on the

reflectance histogram is to reduce the slope at the high reflectance end of the distribution and to bring it in better agreement

with observations. Switching off the CTI leads to a too steep decline of the distribution at high reflectances, which is visible as

a double peak structure at R> 0.8 in Fig. 10. Other 3D RT effects like cloud shadows may also play a role, in particular for380

larger zenith angles. However, by focusing on observations near local noon, their influence should be minimized.

According to retrievals based on measurements at AERONET stations (see Giles et al., 2019) in Germany, the mean AOD

in June 2016 was in the range 0.06 to 0.12 at a wavelength of 675nm, which is similar to the wavelength of the visible

channel considered here. To estimate the impact of these aerosols on the reflectance histogram, an MFASIS LUT was computed

that includes aerosols (the "continental clean" aerosol mixture available in libRadtran, see Emde et al. 2016) with an optical385

depth of 0.1. Including aerosols in the MFASIS LUT, i.e. taking direct aerosols effect into account, influences the reflectance

histogram in two ways. Aerosols can scatter photons out of their path towards the satellite, which is the dominant effect at

high reflectances, or scatter photons towards the satellite that would otherwise not have reached it, which is important for low
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Figure 11. Maximum VISOP uncertainties, represented by main 3D e↵ect, subgrid-scale

overlap assumptions, aerosol optical depth and di↵erent kind of ice habits.

(a) solar reflectance (b) infrared brightness temperature

Figure 12. Deviation from reference run of VIS006 solar reflectance (top), IR108 infrared

brightness temperature (bottom) of perturbed model simulations.

–24–

Figure 11. Deviation of VIS006 solar reflectance (left) and IR108 infrared brightness temperature (right) PDFs of perturbed model sim-

ulations from the ones for the reference run. For comparison also the difference between observation and reference run is shown (dashed

curve).

reflectances. In the presence of aerosols the high reflectance end of the distribution is thus shifted towards lower reflectances

and the low reflectance end towards higher reflectances. Shifting the pronounced ground peak in the distribution causes a390

double peak structure at low reflectances in Fig. 10, whereas shifting the flat high reflectance end only causes a single negative

peak. In general, the error introduced by direct aerosol effects for events like (Saharan) dust outbreaks can be higher, and could

potentially lead to significant errors in solar reflectances. Days affected by such events, which did not occur during our test

period, should thus be excluded from model evaluation studies.

Finally, the shape of cloud ice particles is also an uncertain factor that influences the reflectances distribution. Changing395

the shapes quite strongly from the baum_v36 general habit mixture (Baum et al., 2014) to solid columns (using the optical

properties by Yang et al. 2005) basically only affects the highest reflectances, which are slightly reduced. The ice habit is thus

not likely to cause large uncertainties in the reflectance distribution.

4.3 Sensitivity to model settings

Figure 11 shows the deviations of the reflectance and BT distributions computed for model runs using modified settings (see400

Sect. 2.1) with respect to the reference run. In general, these deviations are of similar magnitude as the systematic deviations

between the observations and the model equivalents for the reference run discussed in section 3 (see dashed curve in Fig. 11). In

section 3, we identified several reasons for systematic deviations between the simulation and observations: An underestimation

of thick clouds (R in [0.6,0.8]), a too low boundary layer height, too many high clouds and an insufficient representation of

low-level water clouds. As further analysed in Sect. 4.1, we found that the discrepancy in low-level clouds mainly arises from405

subgrid water clouds (R in [0.3,0.6]).
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Figure 11a shows the effect of model modifications on the reflectance distribution. The first modification (experiment II),

reducing the effective radii by increasing the updraft velocity and thus also the number of cloud condensation nuclei, leads

to more thick clouds with R> 0.7 and less thin clouds with R< 0.5. Changing the subgrid cloud parameters (experiment

III) or reinforcing shallow convection (experiment IV) has a qualitatively similar but much stronger impact on the reflectance410

distribution. Pixels with dense clouds become more numerous and the number of pixels with thin to medium clouds is reduced.

These changes are larger than the deviations of the reference run (experiment I) from the observation (dashed line in Fig. 11a).

In case of the modified shallow convection, the cloudiness increases from 0.76 to 0.8, which means that the deviation from the

observed value of 0.73 is considerably larger.

Switching to the double-moment microphysics scheme (experiment V) mainly moves pixels with very high reflectances415

(R> 0.8) to somewhat lower reflectance values between 0.6 and 0.8 and increases the cloudiness slightly. Thin to intermediate

clouds (0.2<R< 0.6) are only weakly affected. Still using the two-moment scheme but turning off subgrid-scale ice clouds

(experiment VI) slightly decreases the cloudiness but basically leads to the same distribution as experiment V. Hence, ice

subgrid-scale clouds cannot be responsible for the surplus of pixels with solar reflectances around R= 0.5 that was attributed

to subgrid clouds in Sect. 4.1. Finally, reducing the subgrid-scale water clouds (experiment VI) in addition leads to much420

larger changes, with negative peaks around R= 0.5 and R= 0.8 and positive values for R< 0.35. These changes point into

the right direction to mitigate the deviations of the reference run (dashed line in Fig. 11a). However, here the modification is

too strong as cloudiness is dramatically underpredicted in this case (C = 0.64). Compared to visible reflectances, the changes

in the BT distribution introduced by modified model settings are more difficult to interpret as the cloud top height is an

important additional parameter. The modifications in experiments II and III only affect water clouds and thus only lead to425

changes at higher BTs. These changes are relatively small compared to those required to correct the deviations of the reference

run (dashed line). Making shallow convection stronger (experiment IV) has a stronger impact and increases the number of

pixels with BT between 250K and 275K at the expense of those with higher values. Switching to the double-moment scheme

(experiment V) increases the number of middle to very high clouds for BT<270 K, and introduces a substantial reduction of

the clear-sky and low-level cloud signal (BT around 280 K). These changes indicate that the two-moment scheme generates430

even more dense ice clouds than the one-moment scheme in the reference run, which already predicts too many of these clouds.

These high clouds obscure lower clouds and the surface, which leads to less pixels with high BTs. Switching off subgrid ice

clouds in the two-moment simulation (experiment VI) reveals that the peak around BT = 220K is related to grid-scale clouds

in the double-moment scheme, and the distribution of middle clouds is more like the single-moment simulation. Additionally

modifying the subgrid liquid water clouds (experiment VII) again mainly affects the clear-sky and lower-level cloud signal.435

Comparing the changes in the reflectance and BT distribution that were introduced by modified model settings within their

estimated uncertainty leads to the following interpretation: The reflectance distribution is mainly affected by changes to water

clouds and is only weakly influenced by changes to ice clouds. In contrast, the BT distribution is most strongly affected by

changes in the ice clouds, but modified water clouds also have some influence on higher BTs. The distinct changes in the

distributions caused by the individual model modifications allow to assess which modification could be useful to mitigate440

deviations from the observed distributions.
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(a) VISOP uncertainty (b) model uncertainty

Figure 13. Distributions of bin-by-bin di↵erences from reference run. Horizontal dashed

lines indicates 25th, 50th (median), and 75th percentile.

Figure 14. Relative median bias in VIS006 solar reflectances versus relative median bias in

global horizontal irradiance.

–25–

Figure 12. Distributions of bin-by-bin differences from reference run. Horizontal dashed lines indicates 25th, 50th (median), and 75th

percentile.

The results shown in Fig. 11a indicate that a modified version of experiment VII with weaker modifications or a combination

of II, III and IV could be able to achieve the corrections required for the reference run, i.e. to reproduce the dashed line (OBS-

REF). In both cases the subgrid water clouds play an important role. To correct systematic errors in the reflectance distributions

it therefore seems particularly important to tune or advance the subgrid cloud scheme. While the reflectance distribution is not445

sensitive to changes in subgrid ice clouds, these are clearly important for the BT distribution (compare experiments V and VI

in Fig. 11a,b). The combined information from the two parts of the spectrum can thus provide guidance on optimizing the

subgrid cloud scheme.

In contrast to visible reflectances, there is no obvious way to scale or combine the model modifications in order to eliminate

the errors of the reference run, i.e. to reproduce the dashed line in Fig. 11b. Additional or different model modifications appear450

to be required for this purpose, but the results presented here already indicate that particular modifications leading to less

grid-scale ice clouds are required.

4.4 Sensitivity intercomparison for visible reflectances

The comparison of Fig. 10 and Fig. 11a already indicates a considerably larger effect of model modifications compared to that

of operator uncertainties on the reflectance distribution for the full test period. To provide a clearer comparison of the impact of455

model modifications and operator uncertainties, we computed the individual changes on each day of the test period in all of the

reflectance bins (see Sect.2.5). The violin plots in Fig. 12 show these daily bin-by-bin deviations of the reflectance distribution

caused by changes in the operator settings and model modifications. Figure 12 indicates that also for individual days of the

test period the changes due to model modifications are much larger than the ones related to operator uncertainty. The median

deviation and the interquartile range (difference of 75th and 25th percentile) are about one order of magnitude larger for the460
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model uncertainty. As already mentioned, aerosols will have a much stronger impact during e.g. dust events, but such events

should not be included in test periods for model evaluation.

In general, the operator uncertainties are thus a second-order effect compared to model modifications. Visible satellite images

are therefore well-suited to detect and overcome model deficiencies and to provide guidance for model tuning. Still, some of

the deviations of the model reflectance distribution could be related to deficiencies of the operator. An improved cloud top465

inclination or changes in the cloud ice optical properties could mitigate some of the deviations at high reflectances and using

the correct aerosol optical depth can particularly improve the low-reflectance end of the distribution (see Fig. 10). However,

for a broad range of reflectances between 0.2 and 0.8 it is only the inconsistency in the overlap assumption that makes the

operator results uncertain. As discussed above, this is actually only a temporary issue related to the current versions of the

ICON model. As soon as the overlap assumptions in the the model are consistent, the correct choice of the overlap assumption470

can be regarded as a model setting and model evaluation using visible reflectances can provide information on suitable choices.

5 Conclusions

We investigated systematic differences between satellite observations and corresponding synthetic observations from the pre-

operational ICON-DE model to understand better the representation of clouds and radiation in NWP models. For this purpose,

a semi-free 30-day convection-permitting hindcast simulation was conducted that is only forced by low-resolution analysis475

boundary conditions for a highly convective period in May/June 2016. Besides, some additional simulations with modified

model settings were conducted to identify dominant error sources and identify potential approaches for improving the repre-

sentation of clouds in ICON-D2.

The evaluation facilitates a novel approach based on both solar and infrared satellite observations. The combination of obser-

vations in these two spectral ranges provides significantly more and complementary information than the use of only infrared480

observations pursued in previous studies. While infrared observations provide information on cloud top height, their signal

quickly saturates in the presence of clouds. This means that infrared observations can only distinguish a small range of cloud

water contents and information on water clouds may be obscured by cirrus clouds above. In contrast, solar channels are rela-

tively insensitive to ice clouds and can distinguish a much more extensive water content range.

As solar satellite observations are novel for model evaluation, we conducted a number of sensitivity experiments with modified485

operator settings to investigate the recently developed forward operator’s uncertainty transforming from model to observations

space. The comparison revealed that the operator uncertainty is roughly one order of magnitude smaller than the sensitivity

of the results to modified model settings. This further emphasises the usefulness of solar channels for model evaluation and

improvement.

In addition, we investigated the correlation of these two satellite channels with irradiance in view of improving forecasts of490

photovoltaic (PV) power production. This revealed a strong negative correlation of solar satellite observations with surface

irradiance, which means that such observations are well-suited to improve model cloud parameterisations for better PV power

production forecasts. In contrast, infrared observation only shows a moderate correlation to surface irradiance and irradiance
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observations themselves would be too sparse to provide suitable statistics for a detailed model evaluation.

The combined use of solar and infrared observations allowed to identify specific model deficiencies, e.g. too many high cirrus495

clouds, too weak shallow convection, deficiencies in the model representation of subgrid clouds, too strong deep convection or

too much-related production of cloud ice. Several model sensitivity experiments targeted these deficiencies and point towards

potential approaches for model improvement. However, solving these challenging issues will require additional studies given

the number of interacting processes that contribute to the formation, modification and dissipation of clouds. Nevertheless, it is

of utmost importance to advance the representation of clouds and radiation for the use of cloud-affected satellite observations500

in data assimilation, the prediction of PV power production, and last, but not least accurate climate simulations.
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4548922 (Geiss et al., 2021). The model simulation output will be archived at LRZ for ten years.

Author contributions. All authors have contributed equally505

Competing interests. The authors declare no conflicts of interest.

Acknowledgements. Funding for this research is provided by the integrated project MetPVNet, project number 0350009A, financed by the

Federal Ministry for Economic Affairs and Energy. The authors would like to thank the Hans Ertel Centre for Weather Research (Weissmann

et al., 2014; Simmer et al., 2016) for supporting this work. This German research network of universities, research institutes and the German

Weather Service is funded by the BMVI (Federal Ministry of Transport and Digital Infrastructure).510

23

https://doi.org/10.5194/acp-2021-5
Preprint. Discussion started: 24 February 2021
c© Author(s) 2021. CC BY 4.0 License.



References

Bachmann, K., Keil, C., Craig, G. C., Weissmann, M., and Welzbacher, C. A.: Predictability of deep convection in idealized and operational

forecasts: Effects of radar data assimilation, orography, and synoptic weather regime, Monthly Weather Review, 148, 63–81, 2020.

Baldauf, M., Gebhardt, C., Theis, S., Ritter, B., and Schraf, C.: Beschreibung des operationellen Kürzestfristvorhersagemodells COSMO-D2

und COSMO-D2-EPS und seiner Ausgabe in die Datenbanken des DWD.(2018), 2018.515

Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering

property models with the full phase matrix at wavelengths from 0.2 to 100µm, Journal of Quantitative Spectroscopy and Radia-

tive Transfer, 146, 123 – 139, https://doi.org/https://doi.org/10.1016/j.jqsrt.2014.02.029, http://www.sciencedirect.com/science/article/pii/

S0022407314000867, electromagnetic and Light Scattering by Nonspherical Particles XIV, 2014.

Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and Bormann, N.: Representing Equilibrium and Nonequilibrium520

Convection in Large-Scale Models, Journal of the Atmospheric Sciences, 71, 734 – 753, https://doi.org/10.1175/JAS-D-13-0163.1,

https://journals.ametsoc.org/view/journals/atsc/71/2/jas-d-13-0163.1.xml, 2014.

Beyer, H. G., Costanzo, C., and Heinemann, D.: Modifications of the Heliosat procedure for irradiance estimates from satellite images, Solar

Energy, 56, 207–212, 1996.

Böhme, T., Stapelberg, S., Akkermans, T., Crewell, S., Fischer, J., Reinhardt, T., Seifert, A., Selbach, C., and Van Lipzig, N.: Long-term525

evaluation of COSMO forecasting using combined observational data of the GOP period, Meteorologische Zeitschrift, 20, 119–132, 2011.

Cano, D., Monget, J.-M., Albuisson, M., Guillard, H., Regas, N., and Wald, L.: A method for the determination of the global solar radiation

from meteorological satellite data, Solar energy, 37, 31–39, 1986.

Cohn, S.: A New Edition of the International Cloud Atlas, WMO Bulletin, Geneva, World Meteorological Organization, 66, 2–7, 2017.

Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro,530

L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geoscientific Model Development, 9, 1647–1672,

https://doi.org/10.5194/gmd-9-1647-2016, https://gmd.copernicus.org/articles/9/1647/2016/, 2016.

Geer, A. J., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K., Zhu, Y., Liu, E. H., Collard, A., Bell, W., Migliorini, S., et al.: All-sky

satellite data assimilation at operational weather forecasting centres, Quarterly Journal of the Royal Meteorological Society, 144, 1191–

1217, 2018.535

Geiss, S., Scheck, L., de Lozar, A., and Weissmann, M.: Understanding the model representation of clouds based on visible and infrared

satellite observations - a data set, https://doi.org/10.5281/zenodo.4548922, https://doi.org/10.5281/zenodo.4548922, 2021.

Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Camp-

bell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Ver-

sion 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol540

optical depth (AOD) measurements, Atmospheric Measurement Techniques, 12, 169–209, https://doi.org/10.5194/amt-12-169-2019,

https://www.atmos-meas-tech.net/12/169/2019/, 2019.
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