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Abstract 17 

Significant reductions of emissions of SO2, NOx, volatile organic compounds (VOCs) 18 

and primary particulate matter (PM) took place in the US from 1990 to 2010. We 19 

evaluate here our understanding of the links between these emissions changes and 20 

corresponding changes in concentrations and health outcomes using a chemical 21 

transport model, the Particulate Matter Comprehensive Air Quality Model with 22 

Extensions (PMCAMx) for 1990, 2001 and 2010. The use of the Particle Source 23 

Apportionment Algorithm (PSAT) allows us to link the concentration reductions to 24 

the sources of the corresponding primary and secondary PM. The reductions in SO2 25 

emissions (64%, mainly from electric generating units) during these 20 years have 26 

dominated the reductions in PM2.5 leading to a 45% reduction in sulfate levels. The 27 

predicted sulfate reductions are in excellent agreement with the available 28 

measurements. Also, the reductions in elemental carbon (EC) emissions (mainly from 29 

transportation) have led to a 30% reduction of EC concentrations. The most important 30 

source of organic aerosol (OA) through the years according to PMCAMx is biomass 31 

burning, followed by biogenic secondary organic aerosol (SOA). OA from on-road 32 

transport has been reduced by more than a factor of three. On the other hand, changes 33 

in biomass burning OA and biogenic SOA have been modest. In 1990, about half of 34 

the US population was exposed to annual-average PM2.5 concentrations above 20 μg 35 

m-3, but by 2010 this fraction had dropped to practically zero. The predicted changes 36 
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in concentrations are evaluated against the observed changes for 1990, 2001, and 37 

2010, in order to understand if the model represents reasonably well the 38 

corresponding processes caused by the changes in emissions.  39 

 40 

1. Introduction 41 

 During recent decades, regulations by the US Environmental Protection 42 

Agency (EPA) have led to significant reductions of the emissions of SO2, NOx, 43 

VOCs, and primary PM from electrical utilities, industry, transportation, and other 44 

sources (EPA, 2011). Xing et al. (2013) estimated that, from 1990 to 2010, emissions 45 

of SO2 in the US were reduced by 67%, NOx by 48%, non-methane VOCs by 49%, 46 

and primary PM2.5 by 34%. An increase of ammonia emissions by 11% was estimated 47 

for this twenty-year period. At the same time, there have been significant observed 48 

reductions in the ambient PM2.5 levels in practically all areas of the US (Meng et al., 49 

2019). However, our ability to link these changes in estimated emissions with the 50 

observed changes in PM2.5 faces challenges. The available PM2.5 composition and 51 

mass concentration measurements are sparse in space and are quite limited before 52 

2001. Three-dimensional chemical transport models (CTMs) are well suited to help 53 

address this problem, since they simulate all the major processes that impact PM2.5 54 

concentrations and transport.  55 

 There have been several efforts to quantify historical changes in PM2.5 levels 56 

and composition. These rely heavily on measurements (both ground and satellite for 57 

the more recent changes) and on a number of statistical techniques including land-use 58 

regression models to calculate the concentrations of PM2.5 over specific areas and 59 

periods (Eeftens et al., 2012; Beckerman et al., 2013; Ma et al., 2016; Li et al., 60 

2017a).  Milando et al. (2016) used positive matrix factorization (PMF) of PM 61 

measurements to interpret the observed trends of PM2.5 from 2004 to 2011 in Detroit 62 

and Chicago. They concluded that as secondary sulfate was declining, emissions from 63 

biomass burning, vehicles and metals sources are becoming relatively more important. 64 

More recent efforts also include applications of chemical transport models. For 65 

example, Meng et al. (2019) estimated historical PM2.5 concentrations over North 66 

America from 1981 to 2016 combining the predictions of GEOS-Chem, satellite 67 

remote sensing, and ground-based measurements. That study focused on the 68 

estimation of total PM2.5 levels to assess long-term changes in exposure and 69 
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associated health risks. The composition of PM2.5 and its sources were not analyzed in 70 

that work. Jin et al. (2019) combined information from ground-based observations, 71 

remote sensing and chemical transport models to estimate that the PM2.5-related 72 

mortality decreased by 67% in New York State from 2002 to 2012. Li et al. (2017a) 73 

combined in-situ and satellite observations with the global CTM, GEOS-Chem, to 74 

quantify global and regional trends in the chemical composition of PM2.5 over 1989–75 

2013. They concluded that the predicted average trends for North America were 76 

consistent with the available measurements for PM2.5, secondary inorganic aerosols, 77 

organic aerosols and black carbon. Nopmongcol et al. (2017) used CAMx with the 78 

Ozone Source Apportionment Technology (OSAT) and Particulate Source 79 

Apportionment Technology (PSAT) algorithms for six different years within five 80 

decades (1970-2020), to calculate the contributions from different emission sources to 81 

PM2.5 and O3 in the US. The same meteorology and the same natural emissions 82 

(including wildfires) were used for all six simulated years. The authors concluded that 83 

the contribution of electrical generation units (EGUs) and on-road sources to fine PM 84 

has declined in most areas while the contributions of sources such as residential, 85 

commercial, and fugitive dust emissions stand out as making large contributions to 86 

PM2.5 that are not declining. The use of constant meteorology did not allow the direct 87 

evaluation of these predictions. 88 

 In this study, we use period-specific meteorological data and source-resolved 89 

emissions for every year simulated, to estimate the concentrations, composition, and 90 

sources of PM2.5 over 20 years in the US. Three specific years are used as snapshots 91 

of US air quality in time. Given that significant emissions changes have taken place 92 

over the decades between the examined years, the predicted concentration changes 93 

reflect mostly changes in these emissions plus some year to year meteorological 94 

variability. The model predictions are compared with the available measurements. 95 

The sources responsible for the PM2.5 reductions in various areas of the country are 96 

identified and their contribution to the reductions is quantified. We also quantify 97 

trends in population exposure and estimated health outcomes. 98 

 99 

 100 

 101 

 102 
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2. Model Description 103 

2.1 PMCAMx 104 

PMCAMx (Karydis et al., 2010; Murphy and Pandis, 2010; Tsimpidi et al., 2010; 105 

Posner et al., 2019) uses the framework of the CAMx model (Environ, 2006) to 106 

describe horizontal and vertical advection and diffusion, wet and dry deposition, and 107 

gas and aqueous-phase chemistry. A 10-size section (30 nm to 40 µm) aerosol 108 

sectional approach is used to dynamically track the evolution of the aerosol mass 109 

distribution. The aerosol species modeled include sulfate, nitrate, ammonium, sodium, 110 

chloride, elemental carbon, mineral dust, and primary and secondary organics. The 111 

Carbon Bond 05 (CB5) mechanism (Yarwood et al., 2005) is used in this application 112 

of PMCAMx for gas-phase chemistry calculations. The version of CB5 used here 113 

includes 190 reactions of 79 surrogate gas-phase species. For condensation and 114 

evaporation of inorganic species, a bulk equilibrium approach was used, assuming 115 

equilibrium between the bulk inorganic aerosol and gas phases. The partitioning of 116 

each semi-volatile inorganic species between the gas and aerosol phases is determined 117 

by the ISORROPIA aerosol thermodynamics model (Nenes et al., 1998). The mass 118 

transferred between the two phases in each step is distributed to the size sections 119 

using weighting factors based on the effective surface area of each size bin (Pandis et 120 

al., 1993). Organic aerosols (primary and secondary) are simulated using the volatility 121 

basis set approach (Donahue et al., 2006). For primary organic aerosols (POA), 8 122 

volatility bins, ranging from 10-1 to 106 µg m-3 at 298 K saturation concentration are 123 

used. Secondary organic aerosols (SOA) are split between aerosol formed from 124 

anthropogenic sources (aSOA) and from biogenic ones (bSOA) and modeled with 4 125 

volatility bins (1, 10, 102, 103 µg m-3) (Murphy and Pandis, 2009). NOx-dependent 126 

yields (Lane et al., 2008) are used. For better representation of the chemistry in NOx 127 

plumes, the Plume-in-Grid modeling approach of Karamchandani et al. (2011) has 128 

been used for the major point sources following Zakoura and Pandis (2019). 129 

 130 

2.2 Particulate Source Apportionment Technology (PSAT) 131 

The PSAT algorithm (Wagstrom et al., 2008; Wagstrom and Pandis, 2011a, 2011b; 132 

Skyllakou et al., 2014; 2017) is an efficient algorithm that tracks and computes the 133 

contributions of different sources to pollutant concentrations. The advantages of 134 

PSAT are that it runs in parallel with PMCAMx, so there is no need to modify the 135 
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CTM for different applications and that it is quite computationally efficient. PSAT 136 

takes advantage of the fact that the molecules of each pollutant at each location 137 

regardless of their source have the same probability of reacting, depositing, or getting 138 

transported to avoid repeating the simulations of these processes. For secondary 139 

species, it follows the apportionment of their precursor vapors. For example, the 140 

apportionment of secondary organic aerosol is based on the apportionment of VOCs 141 

or IVOCs, sulfate on SO2, nitrate on NOx, and ammonium on NH3.  142 

 In this study, we use the version of PSAT developed by Skyllakou et al. 143 

(2017) that is compatible with the Volatility Basis Set to calculate the contribution of 144 

each emission source to the concentration of PM2.5 and its components. 145 

 146 

3. Model Application 147 

PMCAMx-PSAT was applied over the continental United States (CONUS) for the 148 

years 1990, 2001, and 2010 using a grid of 132 by 82 cells with horizontal dimensions 149 

of 36 km by 36 km (covering an area of 4752 × 2952 km) and 14 layers of varying 150 

thickness up to an altitude of approximately 13 km. We selected this resolution as it 151 

has been shown to be a viable option for keeping computational and storage demands 152 

manageable while providing sufficient quality for long-term simulations and air 153 

quality planning applications (Gan et al., 2016). This coarse resolution introduces 154 

errors in areas where there are significant PM2.5 gradients in space including 155 

California and urban areas in the rest of the western US.  156 

 157 

3.1 Meteorology 158 

Meteorological simulations were performed with the Weather Research Forecasting 159 

model (WRF v3.6.1) over the CONUS area, with horizontal resolution of 12 x 12 km 160 

and 36 vertical (sigma) levels up to a height of about 20 km. The simulations were 161 

executed using 3-day reinitialization from observations. Initial and boundary 162 

conditions were generated from the ERA-Interim global climate re-analysis database, 163 

together with the terrestrial data sets for terrain height, land-use, soil categories, etc. 164 

from the United States Geological Survey database. The WRF modeling system was 165 

prepared and configured in a similar way as described by Gilliam and Pleim (2010). 166 

For the model physical parameterization, the Pleim‐Xiu Land Surface Model (Xiu and 167 

Pleim, 2002) was selected. Other important WRF physics options used in this study 168 
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include the Rapid Radiative Transfer Model/Dudhia radiation schemes (Iacono et al., 169 

2008), the Asymmetric Convective Model version 2 for the planetary boundary layer 170 

(Pleim, 2007a, 2007b), the Morrison double‐moment cloud microphysics scheme 171 

(Morrison et al., 2008), and version 2 of the Kain–Fritsch cumulus parameterization 172 

(John et al., 2004). The selected WRF configuration is recommended for air quality 173 

simulations (Hogrefe et al., 2015; Rogers et al., 2013). 174 

 175 

3.2 Emissions 176 

Emissions for the simulations were obtained from the internally consistent, historical 177 

emission inventories of Xing et al. (2013) that include source-resolved gas and 178 

primary particle emissions. Point source sectors include Electricity Generating Units 179 

(EGU) included in the EPA’s Integrated Planning Model (IPM); industrial sources not 180 

included in the IPM (non-EGU); and all other point sources in Canada and Mexico. 181 

Area sources include on-road emissions in the US, Canada and Mexico; off-road 182 

emissions for the entire domain; and all remaining non-biogenic sources. We used our 183 

WRF meteorology to drive the Model of Emissions of Gases and Aerosols from 184 

Nature (MEGAN3) (Jiang et al., 2018) using the default emission factors for all years 185 

to generate biogenic emissions for the CONUS domain. 186 

 In this application of PSAT, we used 6 different emission categories based on 187 

those described above plus initial and boundary conditions which are each tracked 188 

separately by the model as different “sources”. As a result, the emission source 189 

categories used are: ‘road’ which includes road emissions over the US; ‘non-road’ 190 

which includes the off-road emissions of the entire domain; ‘EGU’; ‘non-EGU’ as 191 

described above; ‘other’ which includes the sum of the other point and area sources 192 

plus the ‘on-road’ emissions from Canada and Mexico and finally biogenic emissions. 193 

Figure 1 depicts the total annual emissions for each source and each year.  194 

 Biomass burning (included in the ‘other’ category) was the dominant source of 195 

EC and remained relatively constant during the simulated period. The second most 196 

important source of EC was road transport, with the corresponding emissions having 197 

been reduced by a factor of 3.5 from 1990 to 2010. The overall reduction of EC 198 

emissions was 40%.  199 

 Biomass burning and other sources, were the dominant source also for POA, 200 

with almost constant contributions. Based on the emissions that Xing et al. (2013) 201 
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reported in the category ‘other’, we can estimate that biomass burning was 202 

responsible for 46% of the total ‘other’ POA emissions. This contribution increased to 203 

80% in 2001 and 83% in 2010. The PM emitted from biomass burning, according to 204 

the inventory, is similar for these three years (Xing et al., 2013). The second most 205 

important source of POA during 1990 was road transport contributing 5%. This 206 

emission source was reduced by a factor of 3.5 from 1990 to 2010. Overall POA 207 

emissions in the inventory were reduced by 27% from 1990 to 2010. 208 

 Emissions of VOCs by on-road sources were reduced by a factor of 3.5 during 209 

these 20 years. On the other hand, the VOCs emitted by non-road transport decreased 210 

by only 8%. The biogenic VOC emissions varied from year to year based on the 211 

prevailing meteorology, but their changes were less than 20%. The total 212 

(anthropogenic and biogenic) VOC emissions decreased by 31% from 1990 to 2010.  213 

 The emissions of the most important SO2 source, EGUs, were reduced 33% 214 

from 1990 to 2001 and 67% from 1990 to 2010. This resulted in a 64% reduction of 215 

the total SO2 emissions over these 20 years.  216 

 For NH3, the most important source is agriculture (included in the ‘other’ 217 

category), and the corresponding emissions increased by 9% during these 20 years.  218 

 Road transportation is one of the major NOx sources with the corresponding 219 

emissions having been reduced by 21% from 1990 to 2001 and 58% from 1990 to 220 

2010. The second most important source for NOx in 1990, were the EGUs, which 221 

emitted 25% less NOx in 2001 and 66% less in 2010 compared to 1990. Total NOx 222 

emissions in the inventory were 47% lower in 2010 compared to 1990. 223 

 224 

4. Results 225 

4.1 Annual-average concentrations and sources 226 

We examine first the source apportionment results of PMCAMx-PSAT for the major 227 

components of PM2.5 for the three simulated years.  228 

 On-road transportation was a major source of EC especially in urban areas in 229 

1990 (Figure 2). The EC concentrations originating from this source were reduced by 230 

more than a factor of 3 from 1990 to 2010. The industrial sources (EGUs and non-231 

EGU) contributed less than 0.1 μg m-3 of EC in all areas during these years. The 232 

‘other’ source which includes all types of biomass burning was the most important 233 
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source during the simulated period. Long range transport (LRT), which represents the 234 

transport from areas outside of the domain, contributed approximately 0.1 μg m-3.  235 

 The predicted average total OA levels defined as the sum of POA and SOA 236 

are shown in Figure 3. The OA originating from road transport was about 0.7 μg m-3 237 

during 1990 over the Eastern US, but it was reduced to less than 0.5 μg m-3 during 238 

2010. ‘Non-road’ transport and ‘non-EGU’ emission sources had smaller 239 

contributions to OA, with less than 0.2 μg m-3 in most areas during all years. Biogenic 240 

SOA was almost 1 μg m-3 over the south-east US both during 1990 and 2001, but 241 

during 2010 it had higher concentrations in some areas. Especially in the South due to 242 

local meteorology predicted SOA was much higher compared to 1990. In 2010, the 243 

biogenic VOC concentrations were on average 15% higher compared to 1990 due 244 

mainly to the meteorological conditions during these two specific years. This small 245 

increase is consistent with the biogenic VOC emissions estimated by Sindelarova et 246 

al. (2014). Also, high OA concentrations were predicted to originate from biomass 247 

burning during 1990. The average contribution of long-range transport OA was 248 

approximately 0.6 μg m-3.  249 

 Sulfate was the dominant component of PM2.5 in the Eastern US in 1990 and 250 

the EGUs were its dominant source contributing more than 5 μg m-3 over wide areas 251 

of the East (Figure 4). The corresponding sulfate concentrations from EGUs were 252 

reduced to 3 μg m-3 in 2001 and to 1.5 μg m-3 in 2010 due to the dramatic reduction of 253 

these SO2 emissions over these 20 years. Sulfate concentrations originating from non-254 

EGU and other emission sources were 1 μg m-3 or less during all years. Long-range 255 

transport contributed approximately 0.9 μg m-3 to the sulfate levels during the 256 

simulated period.  257 

 258 

4.2 Evaluation of the model predictions 259 

The model was evaluated both on an annual and daily basis against ground- level 260 

measurements from the IMPROVE and CSN networks (STN U.S. EPA, 2002; 261 

IMPROVE, 1995). The metrics used in the main analysis, include the normalized 262 

mean bias (NMB), the normalized mean error (NME), the mean bias (MB), the mean 263 

absolute gross error (MAGE), the fractional bias (FBIAS), and the fractional error 264 

(FERROR) (Fountoukis et al., 2011): 265 

 266 
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where Pi represents the model-predicted value for site i, Oi is the corresponding 270 

observed value and n is the total number of sites. During 1990, there were only 27 271 

measurement sites for PM2.5 composition, all parts of the IMPROVE network, but this 272 

number increased dramatically in 2001 to more than one hundred and 2010 to 273 

approximately three hundred stations. There was almost an order of magnitude more 274 

measurements and stations for just PM2.5 mass concentration. The results for annual 275 

evaluation are summarized in Table 1 and for the evaluation based on daily average 276 

concentrations in Table 2.  277 

 278 

 PMCAMx reproduced the annual average concentrations with an absolute 279 

fractional bias less than 16% and fractional error less than 25%. 280 

 Based on these criteria, the ability of the model to reproduce the annual 281 

average concentrations of the sites is excellent for OA, good to excellent for PM2.5, 282 

EC, and ammonium, good for sulfate, and average for nitrate. 283 

  284 

 According to Morris et al. (2005), the level of the performance of the model 285 

for daily resolution is considered excellent if it meets the following criteria: FBIAS ≤ 286 

± 0.15 and FERROR ≤ 0.35; good if FBIAS ≤ ± 0.30 and FERROR ≤ 0.50; is average 287 

if FBIAS ≤ ± 0.60 and FERROR ≤ 0.75; and is problematic if: FBIAS > ± 0.60, 288 

FERROR> 0.75. For simplicity we have adopted the same performance 289 

characterization scheme for annual resolution. 290 

 Based on these criteria, the ability of the model to reproduce the dailyannual 291 

average concentrations of the sites is excellent for OA, good to excellent for PM2.5, 292 

EC, and ammonium, good for sulfate, and average for nitrate. For the daily resolution, 293 

the PMCAMx performance is good for PM2.5, average for EC, OA, sulfate, 294 

ammonium, and problematic for nitrate. The model faced significant problems in 295 

reproducing the PM measurements in California, mainly because of the coarse grid 296 

resolution used (Table S1). CTMs at this resolution cannot capture the significant PM 297 
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gradients and high concentrations observed in that area. Excluding the California sites 298 

from the evaluation the performance metrics improved significantly (Table S2 and 299 

S3). For example, for the annual averages, the performance for PM2.5 and ammonium 300 

was excellent for all years. There were also improvements in the metrics for all other 301 

major PM components. The model also tends to underpredict PM2.5 and its 302 

components in some urban areas in Western US (Table S1). The coarse resolution 303 

used here is not sufficient to represent the gradients observed between some relatively 304 

isolated urban areas and the relatively clean background in this part of the country.  305 

The daily PM2.5 concentrations, for which there are many more stations and 306 

measurements in 2001 and 2010, are reproduced with fractional bias of 3 to 13% and 307 

fractional error less than 50% (Table 2). For 1990, there is little bias, while there is a 308 

small tendency towards overprediction in the later years.  309 

 The version of PMCAMx used in these simulations has difficulties 310 

reproducing the nitrate levels. There several reasons for these problems including the 311 

spatial resolution used here, the assumption of bulk equilibrium, etc., that will be 312 

analyzed further in future work. PMCAMx has a small tendency towards 313 

underprediction of the OA and the EC. There is also a tendency towards 314 

overprediction of the sulfate and as a result, the ammonium too.  315 

 We also followed the approach suggested by Emery et al. (2017) for the 316 

characterization of the model performance. This approach relies on the NMB, NME 317 

and correlation coefficient (r) as metrics. The results of the corresponding analysis are 318 

summarized in Tables S4, S5 and S6 and suggest that the model is acceptable for all 319 

components and periods with two exceptions: sulfate during 2010 and ammonium 320 

during 2001.  321 

 One of the important results of this evaluation is the relatively consistent 322 

performance of PMCAMx during the different years. The use of a consistent emission 323 

inventory, consistent meteorology and measurements have probably contributed to 324 

this outcome. 325 

 326 

4.3 Regional contributions of sources to PM2.5 components 327 

The US was divided in seven regions (Fig. 5) to facilitate the spatial analysis of the 328 

source contributions and their changes during the simulated period. The Northeast 329 

(NE) region includes major cities such as New York, Boston, Philadelphia, Baltimore 330 
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and Pittsburgh, while the Mideast (ME) includes the Ohio-river valley area with a 331 

number of electrical generation units. The Midwest (MW) has significant agricultural 332 

activities, while much of the West (WE) is relatively sparsely populated. California 333 

(CA) was kept separate from the other western regions. The southern US was split 334 

into a southeast region (SE) with significant biogenic emissions and the southwest 335 

(SW) with much less vegetation.  336 

 Figure 6a shows the predicted average concentrations of EC for each year in 337 

each region. The highest concentrations for 1990 were predicted in Northeast, 338 

followed by the Mideast and the California. Biomass burning, included in the ‘other’ 339 

source, was the dominant source of EC in all regions, with relatively constant 340 

concentration through the years, except from CA, where the contribution from this 341 

source in 1990 was much higher due to the annual variation in fires. There was 342 

significant reduction of the EC levels in all regions except for the West, where the EC 343 

originates mainly from biomass burning and long-range transport. The highest 344 

reductions were predicted for the eastern US. Figure 6b shows the population 345 

exposure (Walker et al., 1999), which is calculated in this work as the product of the 346 

average annual concentration of each computational cell times the population living in 347 

the cell. The US population distribution was calculated for each year based on the US 348 

Census Bureau (2019) data and is different for 1990, 2001 and 2010. The population 349 

distribution of 2001 is assumed to be the same with that of 2000. The population 350 

exposure is significant in areas with high population density, for example in CA. The 351 

US population increased from 1990 to 2010 by almost 24%. This increase would have 352 

led to a corresponding increase in total population exposure if the emissions had not 353 

changed during this period. 354 

 The source contributions to the annual-average concentrations of OA are 355 

depicted in Figure 7a. The predicted concentrations of OA in 1990 in the eastern US 356 

(NE, SE and ME regions) were almost 3 μg m-3 and in the other regions, less than 2.5 357 

μg m-3. OA originating from biomass burning dominated the concentrations of OA 358 

during all years and regions. Biogenic SOA was the second most significant OA 359 

component in the Southeast. OA originating from on-road transport contributed, 360 

according to the model, almost 0.5 μg m-3 during 1990 and almost 0.2 μg m-3 during 361 

2010 in the eastern US. Significant reductions of OA are predicted for the Northeast, 362 

Mideast, and California while moderate reductions for the Midwest, West, and 363 
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Southwest. The OA in the Southeast has more complex behavior due to the predicted 364 

increase of biogenic SOA in 2010 that leads to a small increase of the total OA 365 

compared to 2001. The population exposure for OA (Figure 7b) is almost the same for 366 

Northeast and Mideast during 1990 and it decreased during 2001 and 2010. For the 367 

Midwest, West, and Southwest the population exposure to OA remained almost 368 

constant though the years. For all regions, the highest population exposure was due to 369 

biomass burning and the “other” sources. In addition, 20% of the population exposure 370 

was due to road transport during 1990 at the highest populated areas (NE, ME, and 371 

CA), but this percentage was reduced to almost 10% during 2010. 372 

 The highest concentrations of sulfate for 1990 are predicted in the Eastern US 373 

(NE, ME and SE) in regions downwind of the EGUs which are the dominant SO2 374 

source in these areas (Fig. 8a). The drastic reductions of the EGU emissions are 375 

predicted to have led to major reductions in the sulfate levels in these three regions. 376 

More modest, but significant reductions of sulfate are also predicted for the Midwest 377 

and the Southwest. The reductions in the West and in California from the EGU source 378 

are small given that the sulfate there even in the 1990s was relatively low and was 379 

dominated on average by long-range transport. Regarding the population exposure for 380 

NE and ME, the percentage of population exposure due to EGUs during 1990 was 381 

58% for the NE and 64% for the ME, but during 2010 these percentages were reduced 382 

to 44% and 53% respectively.  383 

 The mortality rates caused by total PM2.5 were also calculated for the three 384 

simulated periods, following the relationships of Tessum et al. (2019) and using the 385 

death rates of US population by Murphy et al. (2013). We estimated 861 deaths per 386 

100,000 persons for 1990, 777 for 2001, and 658 for 2010. 387 

 388 

4.4 Linking average changes in emissions, concentrations, and exposure 389 

The 72% reduction of emissions of EC from road transport, from 1990 to 2010 390 

according to PMCAMx led to a 72% reduction of EC concentrations and a 70% 391 

reduction in human exposure to EC from this source (Table 3). The changes in 392 

concentrations are practically the same as those of the emissions because EC is inert 393 

and the atmospheric processes that affect it (transport and removal) are close to linear. 394 

The small difference between the change in emissions and that of exposure is due to 395 

small differences in the spatial distributions of the EC concentrations from road 396 
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transport and the population density. The differences are small because most road 397 

transport emissions are in densely populated areas. The similarity in the fractional 398 

change of emissions and concentrations applies as expected to all EC source types 399 

(Table 3). However, for all these other sources the reduction in exposure is less than 400 

the reduction in emissions (or concentrations). For example, the 44% reduction of EC 401 

emissions from non-road transport, was accompanied by a 43% reduction in 402 

concentrations, but a 35% reduction of human exposure. This is due to the location of 403 

the reductions of these non-road transport emissions. A significant fraction of these 404 

reductions took place away from densely populated regions (e.g., in agricultural 405 

regions) therefore they resulted in a smaller reduction of human exposure. The 406 

situation is a little different for total EC. The 40% reduction in emissions is predicted 407 

to have led to a 31% reduction in concentration. The difference here is due to the 408 

contribution of long-range transport (sources outside of the US) which are assumed to 409 

have remained approximately constant during this period. The predicted reduction in 410 

exposure is 33% and is due to the local sources. The changes in EC exposure in each 411 

region are depicted in Figure 6b.  412 

 The changes in fresh POA are a little more interesting because it is treated as 413 

semi-volatile and reactive in PMCAMx. For all US sources, the reduction in 414 

concentrations is a little higher than that of the emissions (Table 3). For example, a 415 

25% reduction of POA emissions of non-road POA, is predicted to have resulted in a 416 

30% reduction of the POA concentrations. This difference is due mostly to the non-417 

linear nature of the partitioning of these emissions between the gas and the particulate 418 

phase. As the emissions are reduced, the corresponding OA concentrations are 419 

reduced and more of the organic material is transferred to the gas phase to maintain 420 

equilibrium. This additional evaporation leads to an additional reduction of the POA 421 

concentrations. This is the case for all sources, so the 27% reduction in POA 422 

emissions corresponds according to PMCAMx to a 33% average reduction in POA 423 

concentrations. The reduction in exposure is, in absolute terms, a little less than that 424 

of the concentrations for the same reasons as for EC. This difference is small (-74% 425 

versus -71%) for road transport, but more significant for sources located outside urban 426 

centers (e.g. for EGU it is -13% for concentrations and -6% for exposure).  427 

 The reductions predicted by PMCAMx for SOA (aSOA+bSOA) 428 

concentrations are far more complex than those of fresh POA, since the formation of 429 
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secondary organic species involves non-linear processes such as partitioning, 430 

dependence on oxidant levels, NOx-dependence of the yields, and the complexity of 431 

the chemical aging. Overall, PMCAMx predicts that the reductions in exposure are 432 

less than the reductions in average concentrations over the US which are also less than 433 

the reductions in the emissions of the anthropogenic volatile and intermediate 434 

volatility organic compounds. One explanation of this behavior is that the 435 

simultaneous decreases in NOx levels have led to increased SOA formation yields. A 436 

second factor is the time required for the formation of SOA especially when multiple 437 

generations of reactions are required. The result of this time delay is SOA is often 438 

produced away from its sources located in high urban density areas. The reasons for 439 

this complex behavior will be analyzed in detail in future work.  440 

 The predicted reductions in sulfate concentrations are less than the reductions 441 

in emissions due mainly to the non-linearity of the aqueous-phase conversion of SO2 442 

to sulfate (Seinfeld and Pandis 2016) (Table 3). Such non-linearity has been predicted 443 

also in past CTM applications (Karydis et al., 2007; Tsimpidi et al., 2007). Taking 444 

into account the transport of some of the sulfate from areas outside of the US, the 445 

model predicts that the 64% reduction in SO2 emissions has resulted in a 45% 446 

reduction of the sulfate concentration on average. The reduction in exposure is a little 447 

less, 40% on average, because both the major sources of SO2 are located and the 448 

higher reductions of sulfate take place, according to PMCAMx, away from the major 449 

urban centers. 450 

 451 

4.5 Distribution of population exposure to PM2.5 from different sources 452 

We have calculated the percentage of people exposed to different PM2.5 453 

concentrations from the major sources (‘other’, ‘EGUs’, ‘road transport’) for the three 454 

different periods. Almost half of the US population was exposed to PM2.5 455 

concentrations above 20 μg m-3 in 1990. A decade later this percentage was less than 456 

20% and close to zero during 2010 (Fig. 9a). During 1990, almost 90% of the US 457 

population was exposed to PM2.5 concentrations above 10 μg m-3, the suggested 458 

annual mean by the World Health Organization (WHO, 2006). This percentage was 459 

reduced to 83% in 2001 and 70% in 2010 (Fig. 9a and Fig. S2h). 460 

 The predicted distribution of the population exposed to PM2.5 from the source 461 

‘other’ in 1990 covered a wide range extending from approximately 1 to 16 μg m-3. 462 
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The exposure from these sources was reduced significantly in the following years 463 

mainly due to the reductions in the emissions of paved/unpaved road dust, prescribed 464 

burning, and industrial emissions (Xing et al., 2013). The average emissions from 465 

wildfires did not change appreciably, but this distribution was sharper in 2010, with 466 

maximum percentages of people exposed appearing for PM2.5 concentrations ranging 467 

from 5 to 8 μg m-3. The random spatial variation of biomass burning sources can 468 

affect areas with different population density. 469 

 The exposure of the population to primary and secondary PM2.5 from EGUs 470 

has been dramatically decreased (Fig. 9c). In 1990 according to PMCAMx 56% of the 471 

US population was exposed to more than 3 g m-3 from this source. This percentage 472 

was reduced to 39% in 2001 and to 2% in 2010. For the threshold of 5 g m-3 the 473 

reduction was from 18% in 1990, to 1% in 2001 to practically zero in 2010. 474 

 Similarly, significant decreases are predicted for road transport PM2.5. While 475 

in 1990, 79% of the population was exposed to levels exceeding 1 g m-3, this 476 

percentage was 58% in 2001 and 18% in 2010 (Fig. 9d). The corresponding changes 477 

for the 2 g m-3 were from 27% (1990) to 8% (2001) to zero (2010). 478 

 479 

4.6 Predicted spatial changes of concentrations 480 

We calculated the predicted changes in annual-average concentrations between 1990 481 

and 2010 for the main PM2.5 components. Figure S3 shows the reductions in EC 482 

concentrations from 1990 to 2010. The reductions of the EC emissions resulted in 483 

total reductions of the average concentrations of around 30% in the twenty-year 484 

period. Reductions above 20% are predicted not only in the large urban areas but also 485 

in large regions in both the eastern and the western US.  486 

 Average organic aerosol levels were reduced according to PMCAMx by close 487 

to 1.5 μg m-3 from 1990 to 2010 in a wide area extending from the Great Lakes to 488 

Tennessee, but also in parts of the Eastern seaboard (Fig. S4). These reductions 489 

correspond to 35-45% of the OA in both the Northeast and California.  490 

 From 1990 to 2010, sulfate was reduced by 50-60% in the part of the country 491 

to the east of the Mississippi. The corresponding reductions in the middle of the 492 

country and in the western states from 1990 to 2010 were in the 20-30% range for the 493 

relatively low sulfate levels in these regions (Fig. S5). These simulations suggest that 494 



 

16 

 

the Eastern US has benefited more both in an absolute and in a relative sense from 495 

these reductions in SO2 emissions. 496 

 We also compared the predicted and observed concentration changes, using 497 

the Pearson’s correlation coefficient and the average percentage differences, 498 

summarized in Table 4. Also, as for as the exposure changes are concerned, because 499 

of the way that exposure is defined (concentration times population) and the 500 

population is measured, the evaluation metrics of our exposure predictions are exactly 501 

the same as the evaluation metrics of our concentration predictions. For the first two 502 

cases (1990 to 2001 and 1990 to 2010) there were only a few measurements available 503 

for 1990. The model reproduces quite well the predicted changes against the observed 504 

for PM2.5 and its components (Fig. S6).  505 

 For EC, the correlation was high between 1990 and 2001, with r = 0.80; and 506 

between 1990 and 2010, with r = 0.91. However, the analysis for the changes up to 507 

2010 is complicated by the change in the EC measurement protocol in several CSN 508 

sites in the period from 2007 to 2010. The change from the Thermal Optical 509 

Transmittance (ΤΟΤ) to the Thermal Optical reflectance (ΤΟR) resulted in small 510 

increases in the reported EC that were of similar magnitude as the predicted changes 511 

due to the emissions reductions. To partially address this issue, we do not include in 512 

the analysis the results from 14 CSN sites which reported increases in the EC from 513 

2001 to 2010. Excluding these sites an r = 0.39 is calculated (Table 4). The data 514 

points from these sites can be seen in the lower triangle of Fig. S6. The reduced r for 515 

the 2001-10 is probably due, at least partially, to this uncertainty of the measured 516 

changes. 517 

 The predicted average change of OA in the measurement sites from 1990 to 518 

2001 was -13%, in good agreement with the observed -16% in the same locations. 519 

The predicted changes were reasonably well correlated (r = 0.68) with the measured 520 

ones during this decade. However, the model performance during the next decade 521 

(2001-10) deteriorates as it underpredicts on average the changes (predicted -9% 522 

versus observed -18%) and the changes are not correlated to each other in space. 523 

Additional analysis suggested that, while the model does a reasonable job reproducing 524 

the changes in the western half of the country and the northeastern quarter, it 525 

overpredicts the OA concentration in 2010 and thus underpredicts the reductions in 526 

the southeastern US. Our analysis also suggests that this mainly due to an 527 
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overprediction of the biogenic SOA in this part of the country. This is consistent with 528 

the anomalous predicted increase of biogenic SOA from 2001 to 2010 in the SE US 529 

(Figure 7 and Figure S1). This interesting discrepancy regarding the predicted and 530 

observed changes of biogenic SOA will be analyzed in detail in a subsequent paper.   531 

 For sulfate, the model reproduced well the observed changes for the three 532 

comparison periods, with Pearson’s correlation coefficient r = 0.88 (from 1990 to 533 

2001); 0.97, from 1990 to 2010; and 0.92, from 2001 to 2010 (Table 4). Despite the 534 

nonlinearity in the behavior of sulfate, the average predicted and observed percentage 535 

changes were consistent for the three comparison periods.  536 

 Finally, for PM2.5 the model reproduces well the observed changes for the 537 

three comparison periods with r = 0.81 (from 1990 to 2001); 0.82 (from 1990 to 2010) 538 

and 0.61 (from 2001 to 2010). The average percentage changes for the observations 539 

and the predictions were close for all the cases (Table 4).  540 

 541 

5. Conclusions 542 

The CTM, PMCAMx, was used to simulate the changes in source contributions to 543 

PM2.5 and its components over two decades accounting for changes in emissions and 544 

meteorology with internally consistent methods. Biomass burning and ‘other’ sources, 545 

primarily including construction processes; mining; agriculture; waste disposal, and 546 

other miscellaneous sources, contributed approximately half of the total (primary and 547 

secondary) PM2.5 during the examined 20-year period. The corresponding average 548 

PM2.5 concentration levels due to this group of sources have been reduced by 33% 549 

from 1990 to 2010. EGUs were the second most important source of PM2.5; the 550 

corresponding ambient PM2.5 levels have been reduced by 55% and their contribution 551 

to the total from 16% to 11%. On-road transport was the third most important source 552 

of PM2.5. The total average PM2.5 from this source was reduced by 59%, while their 553 

contribution to the average PM2.5 levels has been reduced from 8% to 5%.   554 

 OA was a significant fraction of PM2.5. Biomass burning included in the 555 

‘other’ sources was the most important source of OA with fractional contributions 556 

varying from 38% to 52% depending on the region. Biogenic SOA was the second 557 

dominant component of OA with contributions ranging from 6% to 22% in the South 558 

US.  559 
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 The relationship between the changes in concentrations and changes in 560 

exposure is determined by the spatial distributions of these two changes. The more 561 

similar these distributions are, the closer the corresponding changes. The reduction in 562 

exposure was less than the reduction in emissions (or concentrations) for sources that 563 

are located away from densely populated regions (non-road transport and non-EGUs) 564 

due to the spatial non-uniformity of the corresponding PM2.5 reductions.  For example, 565 

sulfate human exposure by non-EGU source was reduced by 46% from 1990 to 2010, 566 

while the corresponding reduction in emissions was 62%. 567 

 From 1990 to 2010, the reduction of human exposure to EC was 33%, to fresh 568 

POA 35%, to sulfate 40%, and to SOA (both anthropogenic and biogenic) 8%. The 569 

reduction of EC was mostly due to the 72% reduction of on-road EC emissions, while 570 

the reduction in sulfate to the 64% reduction of SO2 emissions from EGUs. 571 

 Considering that the US population increased by almost 24% from 1990 to 572 

2010, the fact that the total population exposure to PM was reduced in most areas 573 

indicates that the emission reductions were sufficient to overcome this effect. The 574 

decreases in personal exposure have been higher than these of the total population 575 

exposure.  576 

 During the 20 year-long examined period, the fraction of the US population 577 

exposed to average PM2.5 concentrations above 20 μg m-3 decreased from 578 

approximately 50% to close to zero. In 1990, 12% of the US population was exposed 579 

to PM2.5 concentrations lower than the suggested annual mean by the WHO (10 μg   580 

m-3). This fraction increased to 30% in 2010. 581 

 PMCAMx reproduced the annual average concentrations of PM2.5 with 582 

fractional error less than 30% for the three simulation periods. The corresponding 583 

fractional biases were 16% for 1990 and 5% for both 2001 and 2010. The model also 584 

reproduces well the average reduction of PM2.5 in the measurement sites; the 585 

measured reduction was 28% while the model predicts a reduction of 30%. A model 586 

weakness that requires additional investigation is its tendency to predict an increase in 587 

the biogenic SOA from 2001 to 2010 that appears inconsistent with the observations. 588 

 589 

6. Code and data availability 590 

 The code and simulation results are available upon request 591 

(spyros@chemeng.upatras.gr). 592 
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Table 1: Evaluation metrics for annual average concentrations of PM2.5 and for its 786 

major components for each examined year.   787 

 MB 

(μg m-3) 

MAGE 

(μg m-3) 

NMB NME FBIAS FERROR Stations Comment 

EC 

1990 -0.01 0.07 -0.01 0.23 0.08 0.28 33    Excellent a 

2001  0.13 0.18  0.39 0.56 0.28 0.39 122 Good 

2010 -0.05 0.16 -0.11 0.35 0.06 0.39 304 Good 

OA 

1990 -0.05 0.49 -0.02 0.21  0.05 0.23 33 Excellent 

2001 -0.29 0.66 -0.12 0.28 -0.01 0.28 121 Excellent 

2010  0.05 0.60  0.02 0.27  0.05 0.26 306 Excellent 

   Sulfate 

1990 0.13 0.22 0.09 0.16 0.19 0.23 33 Good 

2001 0.17 0.38 0.13 0.30 0.28 0.37 118 Good 

2010 0.08 0.30 0.05 0.18 0.17 0.27 327 Good 

   Nitrate 

1990 -0.13 0.28 -0.30 0.65 -0.38 0.61 33 Average 

2001 -0.26 0.40 -0.24 0.37 -0.28 0.54 114 Average 

2010 -0.35 0.41 -0.35 0.41 -0.41 0.55 321 Average 

Ammonium 

1990 -0.06 0.16 -0.09 0.25 0.04 0.26 33 Excellent 

2001 -0.01 0.21  0.00 0.23 0.08 0.28 113 Excellent 

2010  0.06 0.18  0.08 0.23 0.17 0.29 326 Good 

PM2.5 

1990 1.04 1.64 0.16 0.26 0.16 0.25 33 Good 

2001 0.94 2.92 0.08 0.24 0.05 0.24 1040 Excellent 

2010 0.71 2.16 0.07 0.22 0.05 0.24 1067 Excellent 

 788 

a Following Morris et al. (2005) criteria: Excellent: FBIAS ≤ ± 0.15, FERROR ≤ 0.35;  789 

Good: FBIAS ≤ ± 0.30, FERROR ≤ 0.50; Average: FBIAS ≤ ± 0.60, FERROR ≤ 0. 790 

 791 

 792 

 793 
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Table 1: Evaluation metrics for annual average concentrations of PM2.5 and for its 794 

major components for each examined year.   795 

 MB 

(μg m-3) 

MAGE 

(μg m-3) 

NMB NME FBIAS FERROR Stations 

EC 

1990 -0.01 0.07 -0.01 0.23 0.08 0.28 33 

2001  0.13 0.18  0.39 0.56 0.28 0.39 122 

2010 -0.05 0.16 -0.11 0.35 0.06 0.39 304 

OA 

1990 -0.05 0.49 -0.02 0.21  0.05 0.23 33 

2001 -0.29 0.66 -0.12 0.28 -0.01 0.28 121 

2010  0.05 0.60  0.02 0.27  0.05 0.26 306 

Sulfate 

1990 0.13 0.22 0.09 0.16 0.19 0.23 33 

2001 0.17 0.38 0.13 0.30 0.28 0.37 118 

2010 0.08 0.30 0.05 0.18 0.17 0.27 327 

  Nitrate 

1990 -0.13 0.28 -0.30 0.65 -0.38 0.61 33 

2001 -0.26 0.40 -0.24 0.37 -0.28 0.54 114 

2010 -0.35 0.41 -0.35 0.41 -0.41 0.55 321 

Ammonium 

1990 -0.06 0.16 -0.09 0.25 0.04 0.26 33 

2001 -0.01 0.21  0.00 0.23 0.08 0.28 113 

2010  0.06 0.18  0.08 0.23 0.17 0.29 326 

PM2.5 

1990 1.04 1.64 0.16 0.26 0.16 0.25 33 

2001 0.94 2.92 0.08 0.24 0.05 0.24 1040 

2010 0.71 2.16 0.07 0.22 0.05 0.24 1067 

 796 

 797 

 798 

 799 

 800 
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Table 2: Evaluation metrics for daily average concentrations of PM2.5 and for its 801 

major components for each examined year. 802 

 803 

a Following Morris et al. (2005) criteria: Good: FBIAS ≤ ± 0.30, FERROR ≤ 0.50; 804 

Average: FBIAS ≤ ± 0.60, FERROR ≤ 0.75; Problematic: FBIAS > ± 0.60, FERROR 805 

> 0.75 806 

 807 

 808 

 MB 

(μg m-3) 

MAGE 

(μg m-3) 

NMB NME FBIAS FERROR Points Comment 

EC 

1990 -0.03 0.16 -0.11 0.53 0.14 0.57 2940   Average a 

2001  0.10 0.27  0.28 0.71 0.38 0.62 18763 Average 

2010 -0.04 0.23 -0.10 0.54 0.23 0.60 29423 Average 

OA 

1990 -0.03 0.16 -0.11 0.53 0.14 0.58 2940 Average 

2001 -0.45 1.37 -0.17 0.53 0.05 0.55 18706 Average 

2010 -0.01 1.20 -0.01 0.56 0.15 0.54 29412 Average 

Sulfate 

1990  0.14 0.62  0.11 0.47 0.31 0.53 3228 Average 

2001 -0.02 0.95 -0.01 0.45 0.25 0.54 18077 Average 

2010  0.18 0.76 0.12 0.52 0.34 0.58 33051 Average 

Nitrate 

1990 -0.11 0.40 -0.26 0.99 -0.78 1.29 2998 Problematic 

2001 -0.30 0.81 -0.31 0.83 -0.62 1.11 18019 Problematic 

2010 -0.33 0.66 -0.34 0.68 -0.74 1.13 30867 Problematic 

Ammonium 

1990 -0.05 0.30 -0.09 0.48 0.14 0.52 2996 Average 

2001 -0.03 0.49 -0.03 0.54 0.24 0.58 17828 Average 

2010  0.05 0.39  0.08 0.54 0.33 0.60 30162 Average 

PM2.5 

1990  0.74 2.73 0.13 0.50 0.16 0.46 2706 Good 

2001  1.27 5.43 0.11 0.46 0.13 0.44 161909 Good 

2010 -0.02 4.33 0.00 0.45 0.03 0.47 212899 Good 
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Table 3: Percentage changes in emissions from each source, and corresponding 809 

changes in average concentrations and exposure from 1990 to 2010. 810 

 811 

 Road Non-

road 

EGU Non-

EGU 

Biogenic Other Total 

EC 

1990 to 2010 

Emissions (EC) -72 -44 -13 -7 - -17 -40 

Concentrations -72 -43 -13 -8 - -18 -31 

Exposure -70 -35 -3 4 - -12 -33 

Fresh POA 

1990 to 2010 

Emissions (fresh POA) -72 -25 -13 -14 - -25 -27 

Concentrations -74 -30 -13 -20 - -31 -33 

Exposure -71 -25 -6 -11 - -32 -35 

SOA 

1990 to 2010 

Emissions 

(IVOCs+VOCs) 
-71 -8 -8 -31 15 -34 -31 

Concentrations -71 -17 -11 -21 23 -27 -21 

Exposure -66 -6 1 -8 37 -18 -8 

Sulfate 

1990 to 2010 

Emissions (SO2) -93 -51 -67 -62 - -52 -64 

Concentrations -91 -44 -63 -54 - -38 -45 

Exposure -88 -30 -60 -46 - -27 -40 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 
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Table 4: Average observed and predicted PM percentage changes, and Pearson’s 821 

correlation coefficient calculated for each comparison case. 822 

 823 

 
Observed changes 

(%) 

Predicted changes 

(%) 
Pearson’s r 

Number 

of Sites 

EC 

1990 to 2001 -19 -12 0.80 21 

2001 to 2010 -19 -17 0.39 75a 

1990 to 2010 -45 -24   0.91b 21 

OA 

1990 to 2001 -16 -13 0.68 21 

2001 to 2010 -18 -9 -0.32 89 

1990 to 2010 -33 -23 -0.16 21 

Sulfate 

1990 to 2001 -9 -9 0.88 21 

2001 to 2010 -35 -22 0.92 75 

1990 to 2010 -40 -29 0.97 21 

PM2.5 

1990 to 2001 -10 -14 0.81 21 

2001 to 2010 -21 -20 0.61 636 

1990 to 2010 -28 -30 0.82 21 

 824 

 825 

a 14 CSN sites reporting increases of EC, probably due to the change in the 826 

measurement protocol in the 2007-09 period, have been excluded from this analysis. 827 

 828 

b The correlations in bold are statistically significant for a significance level of 5%. 829 

 830 

 831 
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 832 

 833 

Figure 1: Annual emissions by each source for the whole domain for: a) elemental 834 

carbon, b) fresh POA, c) non-methane VOCs, d) SO2, e) NH3, and f) NOx. 835 

 836 

 837 

 838 

 839 

 840 

 841 
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 842 

 843 

Figure 2: Predicted annual average ground level PM2.5 elemental carbon 844 

concentrations per source for 1990, 2001, and 2010. 845 
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 846 

 847 

Figure 3: Predicted annual average ground level PM2.5 organic (primary plus 848 

secondary) aerosol concentrations per source for 1990, 2001, and 2010. The EGU 849 

contributions are low and are not shown. 850 
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 851 

 852 

Figure 4: Predicted annual average ground level PM2.5 sulfate concentrations per 853 

source for 1990, 2001, and 2010. The on-road, non-road, and biogenic contributions 854 

are low and are not shown. 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 
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 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

Figure 5: Definition of the 7 regions used in the analysis.  873 

874 
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 875 

 876 

 877 

 878 

Figure 6: Sources of PM2.5 EC for the different regions during 1990, 2001, and 2010 879 

for: a) average concentrations (μg m-3) and b) population exposure (persons μg m-3). 880 

 881 
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 882 

 883 

 884 

Figure 7: Sources of PM2.5 OA for the different regions during 1990, 2001, and 2010 885 

for: a) average concentrations (μg m-3) and b) population exposure (persons μg m-3). 886 

 887 

 888 

 889 
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 890 

 891 

 892 

Figure 8: Sources of PM2.5 sulfate for the different regions during 1990, 2001, and 893 

2010 for: a) average concentrations (μg m-3) and b) population exposure (persons μg 894 

m-3). 895 

 896 

 897 

 898 

 899 
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 900 

 901 

 902 

Figure 9: Distributions of population exposed to annual average PM2.5 during 1990 903 

(grey), 2001 (red), 2010 (blue); and for the dominant sources of PM2.5: a) road 904 

transport, b) EGU, c) other, and h) total PM2.5. 905 

 906 

 907 


