The outflow of Asian biomass burning carbonaceous aerosol into the UTLS in spring:

Radiative effects seen in a global model

Prashant Chavan^{1,2}, Suvarna Fadnavis^{1*}, Tanusri Chakroborty¹, Christopher E. Sioris³, Sabine Griessbach⁴, Rolf Müller⁵

¹Indian Institute of Tropical Meteorology, Center for climate change, MoES, India ²Savitribai Phule Pune University, Pune, India

³Air Quality Research Division, Environment and Climate Change, Toronto, Canada
⁴Forschungszentrum Jülich GmbH, Jülich Supercomputing Center, Jülich, Germany,
⁵Forschungszentrum Jülich GmbH, IEK7, Jülich, Germany
Corresponding author email: suvarna@tropmet.res.in

Supplementary Figures

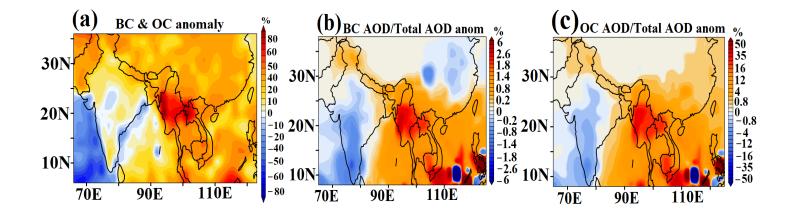


Figure S1: Distribution of anomalies (BMaeroon - BMaerooff) for spring 2013 (a) atmospheric column concentration of BC and OC together (%), (b) ratio of BC-AOD to the total AOD (%), (c) ratio of OC-AOD to total AOD (%).

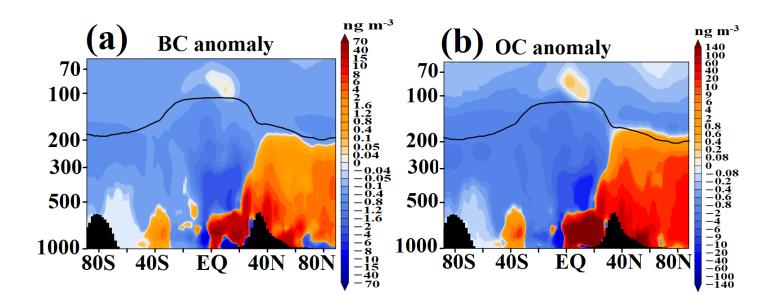


Figure S2: Vertical section of anomalies of BC (ng m⁻³) for spring 2013 from ECHAM6-HAMMOZ simulations (BMaeroon – Bmaerooff) (a) latitude-pressure section over South Asia (averaged for 70°E-95°E); (b) same as (a) but for OC.

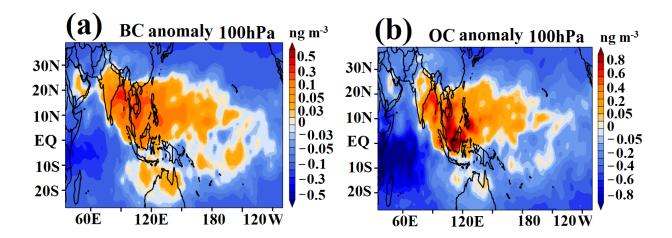


Figure S3: Horizontal distribution of anomalies of (a) BC (ng m⁻³), (b) OC (ng m⁻³) at 100 hPa from ECHAM6-HAMMOZ simulation (BMaeroon - BMaerooff).

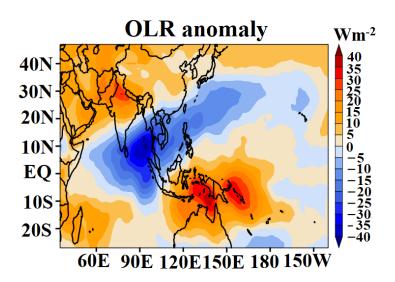


Figure S4. Distribution of anomalies in OLR (Wm⁻²) from the ECHAM6-HAMMOZ simulations (BMaeroon - BMaerooff) averaged for spring 2013.