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S1 Implementation of soil NOx and NH3 emission in CLM4.5-BGC 6 

S1.1 Soil NOx 7 
We incorporate new equations to calculate NOx released as by-products of nitrification and denitrification. Default 8 
CLM estimates the amount of N2O leakage during nitrification by applying a constant scale factor to the 9 
nitrification rate (Li et al., 2000) while that from denitrification is variable and evaluated using the Century 10 
approach (Del Grosso et al., 2000). Building on the work of previous studies (Parton et al., 2001, 2004; Zhao et 11 
al., 2017), we compute a ratio of NOx to N2O to account for the leaking of the former during nitrification and 12 
denitrification using the following equations: 13 
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where Dr is the relative gas diffusivity of soil vs. air and is calculated as a function of air-filled pore space (AFPS) 14 
of soil (Davidson and Trumbore, 1995): 15 
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Eq. 3 

where θV and θV,sat are instantaneous and saturated volumetric soil water content (in m3 m–3), respectively. 16 
 17 
In addition, we also rectify a coding mistake in CLM by restoring a missing 20% of microbial mineralized nitrogen 18 
for nitrification to correct the rapid denitrification in previous versions (Parton et al., 2001), and applied a 19 
temperature factor to correct the overestimation at high latitudes as suggested in some previous studies (Xu and 20 
Prentice, 2008; Zhao et al., 2017): 21 
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where Tsoil is soil temperature in Kelvin (K). 22 
 23 
S1.2 Soil NH3 24 
We add into this model a new NH3 emission scheme consistent with another standalone biogeochemical model, 25 
DNDC version 9.5 (Li et al., 2012), which has been used for studying agricultural NH3 emission (Balasubramanian 26 
et al., 2015, 2017; Zhang and Niu, 2016). 27 
 28 
For each model soil layer, NH3 volatilization is considered as a multistage process, which is formulated as: 29 
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where [NH4+ (soil)] (in g-N m–2) is the amount of soil NH4+; Δt is model time step size in CLM (default = 30 min 1 
or 1800 s). 2 
 3 
Due to electrostatic attraction, a portion of soil NH4+ adsorbs on the naturally negatively charged surface of soil 4 
particles. Our scheme estimates the fraction of NH4+ adsorbed, fads, as: 5 

 𝑓+=* = 0.99(7.2733𝑓?<+@' − 11.22𝑓?<+@" + 5.7198𝑓?<+@ + 0.0263) Eq. 6 

where fclay is soil clay fraction as prescribed by the CLM surface data (Bonan et al., 2002). 6 
 7 
The non-adsorbed NH4+ dissociates reversibly into aqueous NH3 and hydrogen ion (NH4+(aq) ⇌ NH3 (aq) + H+). The 8 
fraction of such NH4+ dissociated into aqueous NH3, fdis, is determined by the following equations (Li et al., 2012): 9 
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 𝐾+ = (1.416 + 0.01357𝑇*:;<) × 10#1 Eq. 9 

 [H4] = 10#CD Eq. 10 

where Ka (in mol L-1) and Kw (in mol L-2) are dissociation constants for NH4+/NH3 and hydrogen-/hydroxide-ion 10 
equilibria, respectively; Tsoil (in ºC) is soil temperature; [H+] (in mol) is the concentration of aqueous hydrogen 11 
ion in the soil calculated from soil pH. The model has yet to be capable of calculating soil pH implicitly, and NH3 12 
volatilization is sensitive to soil pH, so we perform our simulations using a constant pH of 6.8, as is adopted by 13 
DNDC, for a more concise analysis. 14 
 15 
Lastly, we use this equation to calculate the fraction of aqueous NH3 volatilized as gaseous NH3, fvol: 16 
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where s (in m s-1) is surface wind speed; Tsoil (in ºC) is soil temperature; l and lmax (both in m) are the depth of 17 
each particular soil layer and the maximum depth of a soil column, respectively. 18 
  19 



 3 

S2 Supplementary figures  1 

 2 
Figure S1. Summertime changes in (a) absorbed solar radiation, (b) albedo, (c) 2-meter surface temperature, (d) 3 
2-meter relative humidity, (e) soil moisture, (f) vegetation transpiration, (g) stomatal resistance, (h) sensible heat 4 
flux, and (i) latent heat flux driven by LAI increase under dynamic meteorology. 5 
 6 

 7 
Figure S2. Same as Fig.S1 but driven by canopy height increase. 8 
  9 
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