1	Supplementary of
2	Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition
3	through terrestrial ecosystem feedbacks
4	Xueying Liu, et al.
5	Correspondence to: Amos P. K. Tai (amostai@cuhk.edu.hk)

6 S1 Implementation of soil NO_x and NH₃ emission in CLM4.5-BGC

7 **S1.1 Soil NO***x*

8 We incorporate new equations to calculate NO_x released as by-products of nitrification and denitrification. Default 9 CLM estimates the amount of N₂O leakage during nitrification by applying a constant scale factor to the 10 nitrification rate (Li et al., 2000) while that from denitrification is variable and evaluated using the Century 11 approach (Del Grosso et al., 2000). Building on the work of previous studies (Parton et al., 2001, 2004; Zhao et 12 al., 2017), we compute a ratio of NO_x to N₂O to account for the leaking of the former during nitrification and 13 denitrification using the following equations:

$$NO_x: N_2O = 15.2 + \frac{35.5 \tan^{-1}[0.68\pi(10D_r - 1.86)]}{\pi}$$
Eq. 1

- 14 where D_r is the relative gas diffusivity of soil vs. air and is calculated as a function of air-filled pore space (AFPS)
- 15 of soil (Davidson and Trumbore, 1995):

$$D_{\rm r} = 0.209 {\rm AFPS}^{\frac{4}{3}}$$
 Eq. 2

$$AFPS = 1 - \frac{\theta_{V}}{\theta_{V,sat}}$$
 Eq. 3

- 16 where θ_{V} and $\theta_{V,sat}$ are instantaneous and saturated volumetric soil water content (in m³ m⁻³), respectively.
- 17

In addition, we also rectify a coding mistake in CLM by restoring a missing 20% of microbial mineralized nitrogen for nitrification to correct the rapid denitrification in previous versions (Parton et al., 2001), and applied a temperature factor to correct the overestimation at high latitudes as suggested in some previous studies (Xu and Prentice, 2008; Zhao et al., 2017):

$$f_T = \min\left(1, e^{308.56 \left(\frac{1}{68.02} - \frac{1}{T_{\text{soil}} + 46.02}\right)}\right)$$
Eq. 4

22 where T_{soil} is soil temperature in Kelvin (K).

23

24 S1.2 Soil NH3

25 We add into this model a new NH₃ emission scheme consistent with another standalone biogeochemical model,

26 DNDC version 9.5 (Li et al., 2012), which has been used for studying agricultural NH₃ emission (Balasubramanian

27 et al., 2015, 2017; Zhang and Niu, 2016).

- 28
- 29 For each model soil layer, NH₃ volatilization is considered as a multistage process, which is formulated as:

$$\frac{\mathrm{d}[\mathrm{NH}_{3\,(\mathrm{g})}]}{\mathrm{d}t}_{\mathrm{soil}} = [\mathrm{NH}_{4\,(\mathrm{soil})}^{+}](1 - f_{\mathrm{ads}})f_{\mathrm{dis}}f_{\mathrm{vol}}(\frac{1}{\Delta t})$$
Eq. 5

1 where $[NH_{4^+(soil)}]$ (in g-N m⁻²) is the amount of soil NH_{4^+} ; Δt is model time step size in CLM (default = 30 min 2 or 1800 s).

3

4 Due to electrostatic attraction, a portion of soil NH_4^+ adsorbs on the naturally negatively charged surface of soil 5 particles. Our scheme estimates the fraction of NH_4^+ adsorbed, f_{ads} , as:

$$f_{ads} = 0.99(7.2733f_{clay}^3 - 11.22f_{clay}^2 + 5.7198f_{clay} + 0.0263)$$
 Eq. 6

- 6 where f_{clay} is soil clay fraction as prescribed by the CLM surface data (Bonan et al., 2002).
- 7
- 8 The non-adsorbed NH_4^+ dissociates reversibly into aqueous NH_3 and hydrogen ion ($NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+$). The
- 9 fraction of such NH_4^+ dissociated into aqueous NH_3 , f_{dis} , is determined by the following equations (Li et al., 2012):

$$K_{\rm w} = 10^{0.08946 + 0.03605T_{\rm soil}} \times 10^{-15}$$
 Eq. 8

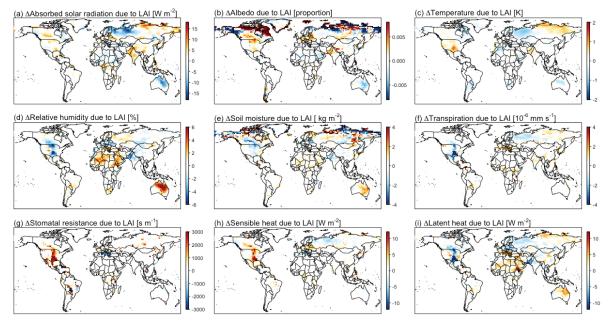
$$K_{\rm a} = (1.416 + 0.01357T_{\rm soil}) \times 10^{-5}$$
 Eq. 9

$$[H^+] = 10^{-pH}$$
 Eq. 10

10 where K_a (in mol L⁻¹) and K_w (in mol L⁻²) are dissociation constants for NH₄⁺/NH₃ and hydrogen-/hydroxide-ion

11 equilibria, respectively; T_{soil} (in °C) is soil temperature; [H⁺] (in mol) is the concentration of aqueous hydrogen

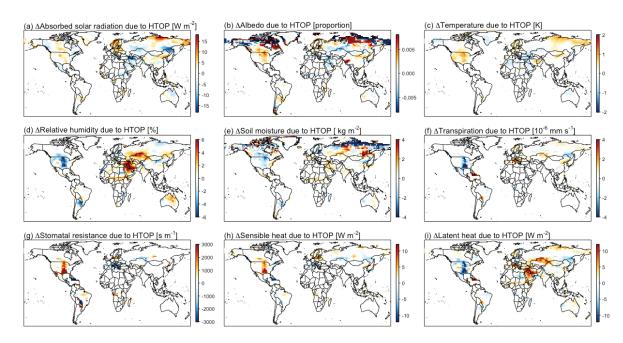
12 ion in the soil calculated from soil pH. The model has yet to be capable of calculating soil pH implicitly, and NH₃


- 13 volatilization is sensitive to soil pH, so we perform our simulations using a constant pH of 6.8, as is adopted by
- 14 DNDC, for a more concise analysis.
- 15
- 16 Lastly, we use this equation to calculate the fraction of aqueous NH₃ volatilized as gaseous NH₃, *f*_{vol}:

$$f_{\rm vol} = \left(\frac{1.5s}{1+s}\right) \left(\frac{T_{\rm soil}}{50+T_{\rm soil}}\right) \left(\frac{l_{\rm max}-l}{l_{\rm max}}\right)$$
Eq. 11

17 where *s* (in m s⁻¹) is surface wind speed; T_{soil} (in °C) is soil temperature; *l* and l_{max} (both in m) are the depth of 18 each particular soil layer and the maximum depth of a soil column, respectively.

19


1 S2 Supplementary figures

2 3

Figure S1. Summertime changes in (a) absorbed solar radiation, (b) albedo, (c) 2-meter surface temperature, (d)

- 4 2-meter relative humidity, (e) soil moisture, (f) vegetation transpiration, (g) stomatal resistance, (h) sensible heat
- 5 flux, and (i) latent heat flux driven by LAI increase under dynamic meteorology.
- 6

7 8

Figure S2. Same as Fig.S1 but driven by canopy height increase.

9

- 2 Balasubramanian, S., Koloutsou-Vakakis, S., McFarland, D. M. and Rood, M. J.: Reconsidering emissions of
- 3 ammonia from chemical fertilizer usage in midwest USA, J. Geophys. Res., 120(12), 6232–6246,

4 doi:10.1002/2015JD023219, 2015.

- 5 Balasubramanian, S., Nelson, A., Koloutsou-Vakakis, S., Lin, J., Rood, M. J., Myles, L. T. and Bernacchi, C.:
- Evaluation of DeNitrification DeComposition model for estimating ammonia fluxes from chemical fertilizer
 application, Agric. For. Meteorol., 237–238, 123–134, doi:10.1016/j.agrformet.2017.02.006, 2017.
- 8 Bonan, G. B., Levis, S., Kergoat, L. and Oleson, K. W.: Landscapes as patches of plant functional types: An
- 9 integrating concept for climate and ecosystem models, Global Biogeochem. Cycles, 16(2), 5-1-5–23,
- 10 doi:10.1029/2000gb001360, 2002.
- Davidson, E. A. and Trumbore, S. E.: Gas diffusivity and production of CO2 in deep soils of the eastern
 Amazon, Tellus B, 47(5), 550–565, doi:10.1034/j.1600-0889.47.issue5.3.x, 1995.
- Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Kulmala, A. E. and Phongpan, S.: General model
 for N2O and N2 gas emissions from soils due to dentrification, Global Biogeochem. Cycles, 14(4), 1045–
 1060, doi:10.1029/1999GB001225, 2000.
- Li, C., Aber, J., Stange, F., Butterbach-Bahl, K. and Papen, H.: A process-oriented model of N 2 O and NO
 emissions from forest soils: 1. Model development, J. Geophys. Res. Atmos., 105(D4), 4369–4384,
 doi:10.1029/1999JD900949, 2000.
- Li, C., Salas, W., Zhang, R., Krauter, C., Rotz, A. and Mitloehner, F.: Manure-DNDC: A biogeochemical
 process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems, Nutr.
 Cycl. Agroecosystems, 93(2), 163–200, doi:10.1007/s10705-012-9507-z, 2012.
- Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R., Ojima, D. S. and
 Schimel, D. S.: Generalized model for NO_x and N₂O emissions from soils, J. Geophys. Res. Atmos.,
 106(D15), 17403–17419, doi:10.1029/2001JD900101, 2001.
- Parton, W. J., Holland, E. A., Del Grosso, S. J., Hartman, M. D., Martin, R. E., Mosier, A. R., Ojima, D. S. and
 Schimel, D. S.: Generalized model for NOx and N2O emissions from soils, J. Geophys. Res. Atmos.,
 106(D15), 17403–17419, doi:10.1029/2001jd900101, 2004.
- 28 Xu, R. and Prentice, I. C.: Terrestrial nitrogen cycle simulation with a dynamic global vegetation model, Glob.
- 29 Chang. Biol., 14(8), 1745–1764, doi:10.1111/j.1365-2486.2008.01625.x, 2008.
- Zhang, Y. and Niu, H.: The development of the DNDC plant growth sub-model and the application of DNDC in
 agriculture: A review, Agric. Ecosyst. Environ., 230, 271–282, doi:10.1016/j.agee.2016.06.017, 2016.
- 32 Zhao, Y., Zhang, L., Tai, A. P. K., Chen, Y. and Pan, Y.: Responses of surface ozone air quality to
- anthropogenic nitrogen deposition in the Northern Hemisphere, Atmos. Chem. Phys., 17(16), 9781–9796,
- 34 doi:10.5194/acp-17-9781-2017, 2017.
- 35