

Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight and oxidation level

Shuang Han^{1,2}, Juan Hong^{1,2}, Qingwei Luo^{1,2}, Hanbing Xu³, Haobo Tan^{4,5}, Qiaoqiao Wang^{1,2},
Jiangchuan Tao^{1,2}, Yaqing Zhou^{1,2}, Long Peng^{1,2}, Yao He^{1,2}, Jingnan Shi^{1,2}, Nan Ma^{1,2}, Yafang Cheng^{6,7}
5 and Hang Su^{6,7}

¹ Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China

² Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China

³ Experimental Teaching Center, Sun Yat-Sen University, Guangzhou 510275, China

10 ⁴ Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, CMA, Guangzhou 510640, China

⁵ Foshan Meteorological Service of Guangdong, Foshan 528010, China

⁶ Minerva Research Group, Max Planck Institute for Chemistry, Mainz

⁷ Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany

Correspondence: Juan Hong (juanhong0108@jnu.edu.cn) and Nan Ma (nan.ma@jnu.edu.cn)

15 **Abstract.** **Aerosol hygroscopicity strongly influences the number size distribution, phase state, optical properties as well as multiphase chemistry of aerosol particles. Due to the big number of organic species in atmospheric aerosols, the determination of the hygroscopicity of ambient aerosols remains challenging. In this study, we measured the hygroscopic properties of 23 organics including carboxylic acids, amino acids, sugars and alcohols using a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). Earlier studies have characterized the hygroscopicity either for a limited number of organic compounds**
20 **using similar techniques or for particles at sizes beyond the micro-scale range or even bulk samples by other methodologies. Here, we validate these studies and extend the data by measuring the hygroscopicity of a broader suite of organics for particles with size under the submicron range that are more atmospheric relevant. Moreover, we systematically evaluate the roles of related physico-chemical properties that play in organic hygroscopicity. We show that hygroscopicity of organics varies widely with functional groups and organics with the same carbon number but more functional groups show higher hygroscopicity.**
25 **However, some isomers, which are very similar in molecular structures, show quite different hygroscopicity, demonstrating that other physico-chemical properties, such as water solubility may contribute to their hygroscopicity as well.** If the organics are fully dissolved in water (solubility $> 7 \times 10^{-1}$ g/ml), we found that their hygroscopicity is mainly controlled by their molecular weight. For the organics that are not fully dissolved in water (slightly soluble: 5×10^{-4} g/ml $<$ solubility $< 7 \times 10^{-1}$ g/ml), we observed that some of them show no obvious water uptake, which probably due to that they may not deliquesce
30 under our studied conditions up to 90 % RH. The other type of slightly soluble organics is **moderately hygroscopic**, and the larger their solubility the higher their hygroscopicity. Moreover, the hygroscopicity of organics generally increased with O:C ratios, although this relationship is not linear. Hygroscopicity of organic compounds were also predicted by two thermodynamic models, **including the Extended Aerosol Inorganics Model (E-AIM), and the University of Manchester System Properties (UManSysProp)**. We show that hygroscopicity results of almost all organic compounds except those tricarboxylic

删除了: Hygroscopic properties of 23 organics including carboxylic acids, amino acids, sugars and alcohols were characterized using a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). We show that hygroscopicity of organics varies widely with different functional groups and organics with additional functional groups are more hygroscopic. However, some compounds sharing the same molecular formula or functionality show quite different hygroscopicity, demonstrating that other physico-chemical properties may contribute to their hygroscopicity as well.

删除了: moderate hygroscopic

45 acids were poorly represented by the UManSysProp and the E-AIM over-estimated the hygroscopicity of all amino acids. These discrepancies were likely due to that both models do not consider phase transition and intermolecular interactions of these selected compounds in the simulations. These results may further improve our understandings of the interactions between organics and water molecular and will benefit the estimate of the hygroscopicity and CCN (cloud condensation nuclei) activities of any mixtures, for instance, ambient mixtures based on known composition data.

删除了: using the Extended Aerosol Inorganics Model (E-AIM) and UManSysProp. Both models do not consider phase transition and intermolecular interactions in the simulations and show poor representation of the hygroscopicity for most of the organics.

50 1 Introduction

Atmospheric aerosol particles consist of numerous organic species with both anthropogenic and biogenic origins (Zhang et al., 2007; Jimenez et al., 2009; Zhang et al., 2015; Wang et al., 2018). These organic species often contribute a significant fraction to the mass of sub-micrometer aerosols, and have vital effects on air-quality and climate (McFigans et al., 2006; Randall et al., 2007; Zheng et al., 2015). To obtain a systematic understanding of their effects, it is necessary to acquire correct 55 information on the chemical composition and physico-chemical properties of these organics (Seinfeld and Pandis, 2016). Hygroscopicity is one of the most important physico-chemical properties and it describes the ability of particles to take up water and grow in size under sub- and supersaturated conditions (Petters and Kreidenweis, 2007). Thus, it strongly influences the number size distribution, phase state, optical properties as well as multiphase chemistry of aerosol particles (Cheng et al., 2008; Su et al., 2010; Hong et al., 2018; Tang et al., 2019).

60 Given the large number of organic species in atmospheric aerosols, the determination of their hygroscopicity is quite experimentally difficult. Current models normally use aggregate quantities, such as the atomic oxygen-to-carbon (O:C) ratio or the average oxidation state of organics to simply parameterize the hygroscopicity of organic species in ambient aerosols. However, recent studies show that the hygroscopicity of organic aerosols cannot be fully explained by their oxidation level and the empirical relationship between hygroscopicity and O:C might not be linear (Lambe et al., 2011; Kuwata et al., 2013;

65 Rickards et al., 2013; Marsh et al., 2017). This suggests that this simplified approach to quantify organic hygroscopicity might be problematic and a more mechanistic understanding of the complex link between hygroscopicity and other physico-chemical properties such as molecular functionality, molecular weight and water solubility of organics should be examined.

Due to these challenges, prediction of the hygroscopicity of organic compounds sometimes relies on thermodynamic models which explicitly includes these properties, for instance molecular functionality, molecular weight, into simulations. These

70 thermodynamic models, including the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) (Zuend et al., 2008; Zuend et al., 2011), the Extended Aerosol Inorganic Model (E-AIM), and the University of Manchester System Properties (UManSysProp) (Clegg et al., 1998; Topping et al., 2016) use group contribution methods to calculate water activity for organic species of atmospheric relevance. However, involving these thermodynamic simulations in transport or climate models to predict the hygroscopicity for such a large number of organic compounds in ambient aerosols

75 is computationally expensive. Moreover, these models, based on parameterizations from measurements, are semi-empirical, and thus need more experimental data to constrain their predictions (Suda and Petters, 2013). Particularly, when it comes to

删除了: (Zhang et al., 2007; Zhang et al., 2015; Wang et al., 2018; Jimenez et al., 2009)

删除了: (McFigans et al., 2006;

删除了: (Wang et al., 2015). Hygroscopicity is one of the most important physico-chemical properties, which describes the ability of particles to take up water and grow in size under sub- and supersaturated conditions (Su et al., 2010; Hong et al., 2018; Tang et al., 2019; Cheng et al., 2008).

删除了: big

删除了: This suggests that other physico-chemical properties such as molecular functionality, molecular weight and water solubility of organics may also influence their hygroscopicity.

删除了: this challenge

删除了: rely

删除了: UManSysProp

删除了: (Topping et al., 2016; Clegg et al., 1998)

删除了: using

very dry conditions, these models may perform even worse and cannot capture the non-ideality of the solutions accurately (Ohm et al., 2015). Therefore, quantifying the hygroscopicity of atmospheric relevant organic species through laboratory measurements by systematically varying the type of studied organics is an intrinsic necessity. Chan et al. (2008) studied the hygroscopic properties and CCN activities of a series of dicarboxylic acids and saccharides using an electrodynamic balance (EDB) and found that the CCN activities of highly water soluble organic compounds can be well predicted by the Köhler theory. Suda et al. (2014) examined the hygroscopicity of a few synthetic organic compounds that are atmospheric relevant but not commercially available using a CCN counter (CCNc). They found that the compounds with hydroxyl or carboxyl groups are the most hygroscopic, while the ones with nitrate or methylene are the least. Jing et al. (2016) investigated the hygroscopic properties of a series of dicarboxylic acids with levoglucosan using a HTDMA, but they mainly focused on the multicomponent interactions between organic compounds. Marsh et al. (2017) collected experimental hygroscopicity data for 23 organic compounds by a comparative kinetics EDB (CK-EDB) to compare with thermodynamic predictions and discussed that the hygroscopicity of organic compounds with increasing branching and chain length are poorly represented by models.

All these cases discussed above shows that there is already some experimental hygroscopicity data for organics with high atmospheric abundance and relevance (Peng et al., 2001; Prenni et al., 2007; Chan et al., 2008; Lambe et al., 2011; Kuwata et al., 2013; Marsh et al., 2017; Lei et al., 2018). However, some of these measurements were conducted using different techniques rather than the HTDMA, all of which have different limitations. Measurements using a CCNc could only probe the hygroscopic properties or CCN activities at supersaturated conditions, where many compounds may already fully dissolve in water droplets. The EDB or CK-EDB approaches normally analyze the droplets in the micrometer size range, far beyond the size range of atmospherically relevant aerosols. In contrast, the HTDMA system allows direct measurement of particle hygroscopicity at subsaturated conditions and for particles at the size from tens to a few hundreds nanometers, which is a good complement closing the gaps beyond the reaches of other techniques. Furthermore, some of the aforementioned studies using similar HTDMA systems focused on quite a small number of organics discussing only one or two properties potentially influencing the hygroscopicity, leading to a limited coverage of the experimental datasets. Thus, a general picture in understanding the observed hygroscopicity among different organic species still remains unclear.

Therefore, in this work, we extend the compositional complexity and diversity of the studied organic compounds with varying functional groups, molecular structures and other relevant physico-chemical properties. We try to form a systematic matrix of experimentally- determined HTDMA data synthesizing a large suite of organics, providing unambiguous measurements of particles at atmospherically relevant size range. Combined with these experimental data, we aim to evaluate the roles of different physico-chemical properties that play in organic hygroscopicity and gain some insight on their limitations and applicability. In addition, predictions from two widely used thermodynamic models, E-AIM and the UManSysProp, are compared against our experimental data, which may benefit the validation and improvement of the fidelity of these models.

删除了: Moreover, these models, based on parameterizations from experimental data are semi-empirical and cannot capture the non-ideality of the solutions accurately, especially under very dry conditions (Suda and Petters, 2013). Particularly, when it comes to the mixtures with the presence of inorganic species, these models may perform even worse without the consideration of the ion-neutral interactions (Lei et al., 2014; Jing et al., 2016; Luo et al., 2020). These limitations in models demonstrate an imperfect understanding of the interactions between organic species and water molecular. In order to better understand their interactions and further improve the parameterization in models, there is an intrinsic necessity to quantify organic hygroscopicity through laboratory measurements. Suda et al. (2014) examined the hygroscopicity of a few organic compounds with an extra or more functional groups to similar molecules. They found that the compounds with hydroxyl or carboxyl groups are the most hygroscopic, while the ones with nitrate or methylene are the least. Marsh et al. (2017) collected hygroscopicity data for 23 organic compounds to compare with thermodynamic predictions and discussed that the hygroscopicity of organic compounds are poorly represented by models with increasing branching and chain length of the molecules. Although there is some experimental data of the hygroscopicity of organics with high atmospheric abundance and relevance (Peng et al., 2001; Prenni et al., 2007; Chan et al., 2008; Lambe et al., 2011; Kuwata et al., 2013; Marsh et al., 2017; Lei et al., 2018), those previous studies mostly focus on either a quite small number of organics or one or two perspectives influencing the hygroscopicity. A general picture in understanding the observed hygroscopicity among different organic species remains unclear. Hence, a systematic matrix of experimentally determined hygroscopicity data synthesizing a large suite of organics is essentially needed.

In the present study, we investigated the hygroscopicity of 23 atmospheric relevant organic species by a self-assembled Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). In particular, we systematically evaluated the role of molecular complexity including both molecular structures and relevant physico-chemical properties in classifying aerosol hygroscopicity. In addition, predictions from two thermodynamic models are compared against the experimental data.

2 Measurements

Submicron aerosol particles were generated by nebulizing the aqueous solutions (0.1 g L^{-1}) of each compound using a constant output atomizer (TSI, 3076). The solutions were prepared by ~~using ultrapure~~ water (Millipore, resistivity $\geq 18.2 \text{ M}\Omega$). The ~~physico-chemical~~ properties of the studied 23 compounds are summarized in Table 1.

After particle generation, the particles were introduced into a ~~custom-made~~ HTDMA system where their hygroscopic growth factor (GF(RH)) can be measured. GF(RH) is defined as Eq. (1):

$$GF(RH, D_0) = \frac{D(RH)}{D_0}, \quad (1)$$

where $D(RH)$ and D_0 are the equilibrium mobility diameter of the particles at a given RH and ~~under dry conditions~~ ($< 10\%$ RH), respectively. Figure S1 shows the schematic of the HTDMA system. ~~The detailed schematic~~ of the HTDMA system can be found in Tan et al. (2013). Residence time for humidification of the generated aerosols is around 2.7 seconds. Calibration of the system was performed using ammonium sulfate (AS) and the results shown in Fig. S2 display that the measured hygroscopic behaviour of AS agreed well with previous studies with the deliquescence RH around 78 %.

~~Swietlicki et al. (2008) summarized the potential sources of error in HTDMA measurements and concluded that the reliability of the measured data is strongly associated with the stability and accuracy of DMA2 RH as well as the accurate measurement of particle diameter by DMAs. According to Mochida and Kawamura (2004), the uncertainty in the measured GF can be calculated by Eq. (2):~~

$$\sqrt{\left(GF \frac{\sqrt{\varepsilon_{Dp}}}{Dp} \right)^2 + \left(\varepsilon_{RH} \frac{dGF}{dRH} \right)^2}, \quad (2)$$

where GF is the measured growth factor with respect to any measured RH, ε_{Dp} and ε_{RH} are the errors in the measured Dp and RH. In our system, the accuracy of DMA2 RH was maintained to be $\pm 1\%$ and the uncertainty for the mobility diameter was $\pm 1\%$ according to PSL (Polystyrene Latex particles) calibration. Hence, for our system, ε_{RH} and ε_{Dp}/Dp are 1% and 0.01, respectively. The calculated uncertainty according to the above-mentioned method is added in the measured GF in the following section.

According to κ -Köhler theory, we converted the measured hygroscopic growth factor to the single hygroscopicity parameter κ (Eq. 3-6) to facilitate the comparison of the hygroscopic properties among different compounds (Petters and Kreidenweis, 2007):

$$\kappa = (GF^3 - 1) \left(\frac{Ke}{RH} - 1 \right), \quad (3)$$

$$Ke = \exp \left(\frac{4\sigma_{sol}M_w}{RT\rho_w D(RH)} \right), \quad (4)$$

$$RH/100\% = a_w Ke, \quad (5)$$

$$\kappa = \frac{(GF^3 - 1)(1 - a_w)}{a_w}, \quad (6)$$

~~删除了: ultrapure~~

~~删除了: physicochemical~~

~~删除了: self-assembled~~

~~删除了: dry condition~~

~~删除了: The detailed principle~~

设置了格式: 字体: 字体颜色: 深红, (国际) Cambria Math, 英语(美国), 突出显示

~~删除了: Eq. 2,3~~

where a_w is the water activity, M_w and ρ_w are the molar mass and the density of pure water at temperature T , respectively; σ_{sol} is the solution droplet surface tension, which was assumed to be the surface tension of water (0.072 J m^{-2}) and R is the ideal gas constant.

205

3 Modeling

The E-AIM and UManSysProp are applied in this study to simulate the hygroscopic behaviour of the 23 organic species. E-AIM is a thermodynamic model for calculating gas, liquid and solid partitioning in aerosol systems (Clegg et al., 1998; Wexler, 2002), while UManSysProp (University of Manchester System Properties) is an online model to predict the hygroscopic growth factors of organic and inorganic species. Both models use the group contribution method of Universal quasi-chemical Functional group Activity Coefficients (UNIFAC) to characterize the subgroups of organic molecules and calculate activity coefficients based on the contributions from these subgroups (Fredenslund et al., 1975; Hansen et al., 1991). The detailed input setting and calculations for E-AIM and UManSysProp are given in Supplement.

210

4 Results and discussion

215 4.1 Hygroscopicity of individual organics

In this section, we summarized the measured and predicted hygroscopic properties of the 23 organic species, which are classified into three groups based on their functionality. Particles at the dry size of 200 nm were selected for analysis.

220

4.1.1 Carboxylic acids

Carboxylic acids are the most abundant water-soluble components identified in atmospheric aerosols (Chebbi and Carlier, 1996; Mochida et al., 2003; Kundu et al., 2010). Hygroscopic properties of straight-chain dicarboxylic acids have been extensively investigated in previous studies (Chan et al., 2008; Kuwata et al., 2013; Rickards et al., 2013), however, experimental data for dicarboxylic acids with additional substitutions and tricarboxylic acids are limited. To achieve a comprehensive overview of the hygroscopicity of carboxylic acids, we measured the water uptake of several common straight-chain dicarboxylic acids in the atmosphere and further extended the hygroscopic measurements for dicarboxylic acids with substitutions and tri-carboxylic acids. Figure 1 shows the measured and predicted humidograms of straight-chain dicarboxylic acids (Fig. 1a), dicarboxylic acids with substitutions (Fig. 1b) and tricarboxylic acids (Fig. 1c), respectively. Need to note that the E-AIM model cannot simulate the dissociation of tricarboxylic acids in aqueous phase. Hence, the hygroscopic growth of tricarboxylic acids was only modeled with the UManSysProp.

225

Among the studied straight-chain dicarboxylic acids, only malonic acid showed continuous hygroscopic growth with increasing RH and the measured GF at 90 % RH was 1.47, which agrees well with previous studies (Peng et al., 2001; Prenni et al., 2001; Wise et al., 2003). Figure 1a also shows that the hygroscopic behaviour of malonic acid was well represented by

$$\text{删除了: } \kappa = \frac{(GF^3 - 1)(1 - \frac{RH}{Ke})Ke}{RH}, \quad (2)$$

$$Ke = \exp \left(\frac{4\sigma_{sol} M_w}{RT \rho_w D(RH)} \right), \quad (3)$$

where M_w and ρ_w are the molar mass and the density of pure water at temperature T , respectively; σ_{sol} is the solution droplet surface tension, which was assumed to be the surface tension of water (0.072 J m^{-2}) and R is the ideal gas constant.

删除了: Chan et al., 2008; Rickards et al., 2013; Kuwata et al., 2013

删除了: To achieve a comprehensive overview of the hygroscopicity of carboxylic acids, we extended our hygroscopic measurements for dicarboxylic acids with substitutions and tri-carboxylic acid besides those commonly used straight-chain dicarboxylic acids.

删除了: dicarboxylic acid,

删除了: Malonic

删除了: Malonic

the E-AIM but overestimated by the UManSysProp. The other straight-chain dicarboxylic acids (i.e., **succinic, adipic, pimelic, suberic and azelaic acids**) did not show any water uptake at RH $\leq 90\%$, which was not captured by the UManSysProp.

删除了: Succinic, Adipic, Pimelic, Suberic and Azelaic acids

Assuming a solid state of these dicarboxylic acids, the E-AIM was capable to predict their non-hygroscopicity. Similar results were also found in previous studies (Prenni et al., 2001; Kuwata et al., 2013; Rickards et al., 2013; Jing et al., 2016) and Chan et al. (2008) explained that these dicarboxylic acids have quite low-solubility in water and once they crystallized, they would not deliquesce even under high RH conditions (e.g., RH $< 90\%$). Moreover, we found that the measured GFs of these dicarboxylic acids were less than 1, which could be attributed to the adsorption of a small amount of water at the particle surface, leading to the rearrangements of the microstructure and compaction of the particle (Mikhailov et al., 2004; Mikhailov et al., 2009).

255 The humidograms of the three dicarboxylic acids with substitutions (i.e., double bond or hydroxy group) are illustrated in Fig. 1b. The continuous water uptake indicates that these particles may be at liquid state under dry conditions. We observed a small leap of the GFs from 80 % to 85 % RH, implying that these particles were only partially deliquesced and further dissolution occurred at elevated RH. However, considering the measurement uncertainties, the statement of the partial deliquescence could not be fully confirmed and thus further evidence from other measurements is needed. On the other hand, the E-AIM could well represent their hygroscopic properties at RH between 10–90 %, while there are still some deviations between the measurements and the UManSysProp predictions, especially for malic and tartaric acids, even taking into account of their measurement uncertainties. This could be due to that the UManSysProp is a more simplified model taking into account less input data or parameterization. For instance, the phase state or the dissociation process of the studied compound at different conditions could not be assumed or considered in the simulation. Therefore, additional processes or properties should be included into this model for the further improvements of its predictions.

260 A similar gradual phase transition was observed for aconitic acid and citric acid (Fig. 1c), while the other tricarboxylic acid showed continuous hygroscopic growth over the studied RH range, indicating no obvious phase change for these particles upon hydration. However, it is quite interesting to note that predictions from the UManSysProp become more approaching to the experimental data, especially above 80 % RH, considering the measurement uncertainties.

删除了: The humidograms of the three dicarboxylic acids with substitutions (i.e., double bond or hydroxy group) are illustrated in Fig. 1b. The continuous water uptake indicates that these particles may be at liquid state under dry conditions. We observed a small leap of the GFs from 80 % to 85 % RH, implying that these particles were only partially deliquesced and further dissolution occurred at elevated RHs. Mikhailov et al. (2009) provided a plausible explanation that a gel-like structure in the aqueous droplets may form at low water activities but collapse when the volume fraction of water exceeds a certain amount, which leads to a prompt increase in GF at relative higher RHs. However, without a proper estimate of the phase state of particles, both models did not capture this gradual phase transition accurately, suggesting that current models are quite simplified with insufficient input data and additional measurements improving the parameterization in models are needed.

Gradual phase transition was also observed for Citric acid (Fig. 1c), while the other two tri-carboxylic acids (i.e., Aconitic acid and Tricarboxylic acid) did not show visible phase change with continuous hygroscopic growth over the studied RH range. Predictions from the UManSysProp mostly agreed well with the experimental data, especially above 80 % RH, with some slight underestimations at lower RHs.

删除了: The continuous water uptake

删除了: Serine, Glutamine and Aspartic acid

删除了: Alanine acid particles showed no water uptake with GFs less than unity at RH $< 90\%$, which has also been reported in previous works (Chan et al., 2005; Darr et al., 2018)

删除了: Glycine

删除了: Previous literatures

删除了: Glycine

删除了: Marsh et al., 2017; Chan et al., 2005; Darr et al., 2018

删除了: Glycine

of these structurally-rearranged particles, especially at lower RH range, will be erroneous as the volume change of the particles upon wetting may not only due to the water absorption but also the compaction of the original particles. This phenomena complicates the accurate estimation of the actual water amount absorbed by the particles due to their intrinsic hygroscopicity.

315 In a recent study by Nakao et al. (2014), in order to avoid the influence from particle restructuring upon wetting, they sized wet particles without drying after generation and studied their droplet activation using a wet CCN. This approach they introduced might be an easier attempt, offering an unique solution for current problem from particle restructuring during the hydration processes.

320 Predictions of serine, glutamine, alanine and aspartic acid are generally in better agreement with measurements than that of glycine, although overestimation was observed for all the 5 amino acids. Luo et al. (2020) discussed that the UNIFAC ignored the intramolecular interactions between amine and carboxylic groups in both models, resulting in the observed difference in the measured and predicted GFs.

4.1.3 Sugars and Sugar alcohols

325 Two-stage-like gradual hygroscopic growth was also observed for particles of fructose, mannose, sucrose, xylitol and L-arabitol, shown in Fig. 3. The experimental results of those sugars and sugar alcohols are consistent with previous literature data (Chan et al., 2008; Estillor et al., 2017). Compared to other sugars and sugar alcohols, sucrose is slightly less hygroscopic with a mild downward trend in GFs at low RHs and the GF at 85 % RH was around 1.21, which is similar with the results of Estillor et al. (2017). Moreover, mannitol is the least hygroscopic or even hydrophobic with GF less than unity at 90 % RH, which also agrees with previous literature (Ohrem et al., 2014; Martau et al., 2020).

330 Similarly, phase transition or microstructural rearrangements of particles was not included in the models. Thus, these sugars and sugar alcohols were generally less hygroscopic than the values predicted by the E-AIM (except L-arabitol) under low RH conditions. However, at elevated RHs, whereas particles are fully dissolved, the E-AIM predictions agree well with most of the measured hygroscopic GFs within the measurement uncertainties.

4.2 Relating the hygroscopicity of organic compounds to their physico-chemical properties

335 In this section, we explore the effects from different physico-chemical properties such as molecular functionality, water solubility and organic oxidation level that potentially contribute to the observed hygroscopicity κ . Note that the hygroscopicity parameter κ discussed in this section was converted by using growth factor data measured at 90 % RH.

4.2.1 κ vs. organic functionality

340 Figure 4a shows the measured hygroscopicity of the 23 organics as a function of carbon number. The functional groups with their corresponding numbers are indicated with colors and symbols. In order to facilitate the comparison of the compounds with the same carbons, the carbons with only one compound are not illustrated. For the studied organic compounds with the same carbon number, the hygroscopicity was increased by the addition of extra functional groups to the carbon backbone. For

删除了: Moreover, Marsh et al. (2017) and Darr et al. (2018) observed that water content of glycine aerosols began to increase continuously above 60 % RH. Though, the droplet size shrink or grow slightly under different RH conditions in our observations, the mass fraction of water was always increasing, which agrees well with previous results. Actually, it can not be defined that deliquescence of Glycine particles occurred at RH < 90 % under our experimental conditions.

删除了: Serine, Glutamine, Alanine and Aspartic

删除了: agrees generally better with

删除了: Glycine

删除了: growths were

删除了: Fructose, Mannose, Sucrose, Xylitol and L-Arabinol,

删除了: Sucrose

删除了: Mannitol

删除了: literatures (Martau et al., 2020; Ohrem et al., 2014).

删除了: Similarly, phase transition or microstructural rearrangements of particles was not included in the models. Thus, these sugars and sugar alcohols were generally less hygroscopic than the values predicted by the E-AIM (except L-Arabinol) under low RH conditions. On the other hand, at elevated RHs, whereas particles are fully dissolved, the E-AIM is capable to well represent their hygroscopic properties as well as for Mannitol if a solid state was assumed in the simulations and the microstructural rearrangement of particles was ignored.

设置了格式: 字体颜色: 深红, 英语(美国), 突出显示

删除了: Need to note that

删除了: (except for Sucrose at 85 % RH).

370 instance, **maleic, malic, tartaric and aspartic acid**, with extra functional groups (e.g., C=C, -OH and -NH2) with respect to **succinic** acid with only two -COOHs are more hygroscopic. For C7 compounds, **adding an** carboxylic acid group to the carbon backbone leads to an elevated hygroscopicity from **pimelic** to **tricarboxylic** acid. Moreover, organic compounds with the same carbon numbers but different molecular functionality presented quite distinct hygroscopicity. For example, for C3 compounds, if replacing the -CH3 with an -OH or replacing the -OH group by an -COOH in their parental molecules, the hygroscopicity

删除了: Maleic, Malic, Tartaric and Aspartic acid

删除了: Succinic

删除了: an additional

删除了: Pimelic

删除了: Tricarboxylic

375 was significantly increased. Taking another example from C4 compounds, the organics with a hydroxyl group (-OH) instead of an -NH2 or with a double bond (C=C) instead of the hydroxyl group in their carbon backbones were more hygroscopic. Similar difference in hygroscopicity was also observed between **aconitic** acid (C6) with a C=C and **citric** acid (C6) with a (-OH). **By summarizing the results in current study, κ increased with the functionality in the following order: (-CH3 or -NH2) < (-OH) < (-COOH or C=C or C=O).** However, it has to be noted that this comparison is quite qualitative, might be ambiguous

删除了: Aconitic

删除了: Citric

380 **and further evidence from other organic compounds is needed in order to drive a more general conclusion.** Suda et al. (2012) and Chen et al. (2019) concluded that the hygroscopicity of organic compounds is closely related to their individual polarity and highly polar compounds are usually more hygroscopic. Kier (1981) ranked the polarity of different functional groups in the sequence of -CH3 < -NH2 < -OH < -CHO < -NH2OH < -COOH, which could explain the difference in the hygroscopicity of organics with various functionalities in our study.

删除了: In general, the κ increased with the functionality in the following order: (-CH3 or -NH2) < (-OH) < (-COOH or C=C or C=O).

385 Figure 4b shows that the measured hygroscopicity of the straight-chain dicarboxylic acids alternate with the parity of the carbon numbers. It has to be noted that data of **glutaric** acid (C5) is quoted from Chan et al. (2008). Bilde et al. (2003) observed an alternation in the volatility of dicarboxylic acids with the number of carbon atoms similar to the ones we observed for their hygroscopicity. They attributed this to the alternation in the molar enthalpies of fusion of those compounds. Moreover, we observed that some compounds (**xylitol** vs. **L-arabitol** and **fructose** vs. **mannose**) share the same molecular formula or

删除了: Glutaric

390 functionality but vary differently in hygroscopicity as shown in Fig. 4c. Both findings suggest that other physico-chemical properties of organics besides molecular functionality may also contribute to the observed variation in their hygroscopicity.

删除了: Xylitol vs. L-Arabitol and Fructose vs. Mannose

395 Previous studies (**Marcolli and Peter, 2005; Petters et al., 2017**), reported that the position of the functional groups could influence the hygroscopicity properties of organic compounds. For instance, Petters et al. (2017) suggested that organic molecules with the hydroperoxy group close the end of carbon chain were more hygroscopic. Similarly, **fructose**, observed in our study, with the hydroxyl group in the tail of the carbon chain and being far away from the C=O group, is more hygroscopic than **mannose**, of which these two groups are much closer to each other.

删除了: (Petters et al., 2017; Marcolli and Peter, 2005)

删除了: Fructose

删除了: Mannose

4.2.2 κ vs. water solubility and molar volume

Previous studies suggested that for highly soluble compounds which are fully dissolved in the aqueous droplet, their hygroscopicity are mainly controlled by their molar volume (M_{org}/ρ_{org}); while for slightly soluble compounds, their 400 hygroscopicity is limited by their low water solubility (Petters et al., 2009; Kuwata et al., 2013; Nakao, 2017; Wang et al., 2019). Hence, we considered two regimes in our study: (A) compounds that fully dissolved (highly soluble with solubility > 7×10^{-1} g/ml in this work or not saturated regime) and **(B) compounds that are not fully dissolved (slightly or sparingly soluble**

compounds with solubility in the range between 1e^{-3} to 3e^{-1} g/ml or saturated regime) in the aqueous droplets under 90 % RH condition. In regime A, as shown in Fig. 5, the hygroscopicity decrease with increasing molar volume. Besides molar volume,

420 the van't Hoff factor (i), which accounts for the degree of dissociation of a compound in water, could also contribute to the overall hygroscopicity for fully dissolved compounds. Sugars, as non-electrolytes with van't Hoff factor of 1, do not dissociate in aqueous solutions (Giebel et al., 2002; Koehler et al., 2006; Rosenørn et al., 2006) and thus are less hygroscopic than the dicarboxylic acids which can dissociate in water and contribute to the reduction in water activity. Frosch et al. (2010) related the van't Hoff factor with the pKa values for a series of carboxylic acids and found that the stronger the acid with smaller values of pKa , the larger the van't Hoff factor. This could explain why maleic acid, even with a larger molar volume but a smaller pKa value (1.8) is more hygroscopic than malonic acid ($\text{pKa} = 2.4$).

425 Organic compounds with low water solubility (regime B) could be obviously divided into two categories according to their hygroscopicity. One is non- or almost non-hygroscopic organics with κ close or equal to 0. These organics might present at solid or crystalline state and did not deliquesce at our measurement conditions during the whole RH range. Thus, their 430 hygroscopicity is not only limited by their low water solubility but also their phase state and the energy that needed for the phase transition. Compared to these non-hygroscopic slightly/sparingly soluble organic compounds, there are some other slightly/sparingly soluble organics, showing moderately water uptake with κ values larger than 0.1. These organics with limited solubility may already partially deliquesce under our studied RH conditions (Hartz et al., 2006; Chan et al., 2008), and we 435 found that their hygroscopicity increase with water solubility. This is physically reasonable that the aqueous droplet of these organics with limited solubility can be considered as being composed of an effectively insoluble core with a saturated solution. The organic with higher water solubility would dissolve more and have a higher molar concentration in the saturated solution. The higher molar concentration corresponds to a stronger reduction in water activity, which would lead the particles to become more hygroscopic.

4.2.3 κ vs. O:C ratio

440 Previous studies have suggested that the hygroscopicity parameter of organic species (κ_{org}) is closely related with their O:C ratios (Jimenez et al., 2009; Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011; Lambe et al., 2011; Kuwata et al., 2013; Rickards et al., 2013). In this study, we plotted our measured κ of the 23 organic compounds with their O:C ratios in Fig. 6, and for a wider atmospheric implication we compared them against previous results obtained from different atmospheric environments (Mei et al., 2013; Wu et al., 2013; Hong et al., 2015; Wu et al., 2016; Deng et al., 2018; Hong et al., 2018; Kuang 445 et al., 2020). Clearly, ambient organics show much lower O:C value as seen in Fig. 6. Ng et al. (2010) compiled the measured O:C data from different environments and concluded that at most sites, ambient organic aerosols mainly consist of oxygenated organic material (OOA) and hydrocarbon-like organic material (HOA). HOA, which arises from vehicle emissions, is the least oxidized with the average O:C value less than 0.2 (Ng et al., 2010; Xu et al., 2015; Xu et al., 2016; Cao et al., 2019; Li et al., 2020). Hence, with the inclusion of HOA in ambient aerosols, the average O:C value of the bulk organic is less than 1, being 450 generally lower than our laboratory-generated aerosols.

删除了: (B) compounds that are not fully dissolved (slightly soluble or saturated regime) in the aqueous droplets under 90 % RH condition.

删除了: hoff

删除了: Hoff

删除了: hoff

删除了: Hoff

删除了: Maleic

删除了: Malonic

删除了: With similar water solubility ranging from $\sim 1\text{e}^{-3}$ to $\sim 3\text{e}^{-1}$ g/ml as the non-hygroscopic type, the other type of organics is moderate hygroscopic with κ values larger than 0.1.

删除了: Chan et al., 2008; Hartz et al., 2006

删除了: hygroscopic

删除了: This is physically reasonable that the aqueous droplet of these organics with limited solubility can be considered as being composed of an effectively insoluble core with a saturated solution. The organic with higher water solubility would dissolve more in the saturated solution, which has a stronger 'solute effect', and thus contribute more to the water uptake and become more hygroscopic.

删除了: Jimenez et al., 2009; Chang et al., 2010; Lambe et al., 2011; Kuwata et al., 2013; Rickards et al., 2013; Cappa et al., 2011; Massoli et al., 2010). In this study, we plotted our measured κ of the 23 organic compounds with their O:C ratios in Fig. 6 and for a wider atmospheric implication we compared them against previous results from different atmospheric environments (Mei et al., 2013; Wu et al., 2013; Hong et al., 2015; Wu et al., 2016; Hong et al., 2018; Deng et al., 2018; Kuang et al., 2020).

删除了:

删除了: arise

删除了: Xu et al., 2015; Ng et al., 2010; Xu et al., 2016; Li et al., 2020; Cao et al., 2019

A general trend of the increase of κ_{org} with increasing O:C has also been observed for laboratory results but the correlation between κ and O:C falls into two categories. One is a non-hygroscopic organic group with a weak O:C-dependence as the blue shaded area in Fig. 6. We suggested these compounds with limited water solubility might not deliquesce yet under 90 % RH as discussed previously. The other slightly/sparingly soluble organics shaded in red area in Fig. 6 is a moderate-hygroscopic group with a slightly stronger O:C-dependence. However, the correlation of both categories is not good, which may be effected from the other properties which discussed above. Compared to those laboratory-generated pure organic compounds, ambient organics are more complex, with divergent O:C-dependent hygroscopicity among different environments. For instance, the hygroscopicity of urban aerosols in Beijing was almost constant, being less sensitive to the variations of the organic oxidation level, which is similar to our non-hygroscopic organics (Wu et al., 2016). On the contrast, the suburban aerosols in central Germany (Wu et al., 2013) and in Guangzhou (Hong et al., 2018) exhibit a slightly stronger influence from their O:C ratio, being close to the behaviour (slope ≈ 0.12) of the moderate hygroscopic organics with relative higher water solubilities in our study. As discussed in previous works (Rickards et al., 2013) some of the laboratory-generated pure organics share identical O:C ratio but differ widely in hygroscopicity. However, no molecular-specific information could be concluded further for those ambient organics. This, on the other hand, indicates that great uncertainties may arise from the approximation of organic hygroscopicity based on their atomic O:C ratio for ambient aerosols. The use of a simplified average property (i.e., O:C ratio) to describe the hygroscopicity of ambient organics, whose constitute may be complex, is quite risky as compounds with similar O:C ratio may vary considerably in hygroscopicity. Additional measurements of other properties (e.g., functionality or water solubility) may be difficult due to both the highly complex mixture of ambient aerosols and technique limitations. However, laboratory-generated surrogate mixtures representing the complexity of ambient aerosols at least should be examined to test the variety in the relationship between the O:C ratio and κ .

5 Atmospheric implication

Our laboratory observations reveal that current thermodynamic models may not always accurately simulate the hygroscopic behavior of organic compounds, despite their previous success. Phase transition may occur during the hydration cycle, which are not reasonably considered in the thermodynamic models. This will lead to significantly biased predictions of organic hygroscopic behaviour, as can be seen in the case of the slightly soluble organics in our study. Moreover, the interactions between functional group and water molecules were previously believed to dominate particle hygroscopicity rather than the interactions between functional groups. However, we found that the groups-groups interaction may be also important in water uptake processes. This effect is clearly revealed in our study by the discrepancy in the hygroscopicity of amino acids between measurements and model prediction. These limitations suggest that an improved mechanism with the inclusion of these processes (e.g., phase transition and intramolecular interactions) into these thermodynamic models is needed and require comprehensive data from empirical measurements to complement these models for validating predictions. Furthermore, extra

删除了: The other type shaded in red area in Fig. 6 is a moderate-hygroscopic group with a slightly stronger O:C-dependence.

删除了: not well,

删除了: as our

删除了: This on the other side indicates

删除了: The use of a simplified average property (i.e., O:C ratio) to describe the hygroscopicity of ambient organics, whose constitute may be diverged considerably is quite risky.

删除了: group-group

删除了: process.

care must be taken to deal with even more complex systems, such as multi-component mixtures with the presence of inorganic
525 compounds in atmospheric particles.

Previous studies (Swietlicki et al., 2008; Duplissy et al., 2009; Wu et al., 2011; Suda et al., 2013) suggested that the residence
time for humidification may also potentially influence the observed water uptake of particles as the measured particles,
especially for some organic compounds, may not reach their equilibrium humidified sizes during a quite short time of wetting.
However, extending the humidification time for hours using the EDB, no water uptake was also observed for most of our
530 studied dicarboxylic acids (Chan et al., 2008) as well as for glycine and alanine particles (Chan et al., 2005), which was also
confirmed by Darr et al., (2018), using another different measurement technique, i.e., ATR-FTIR (Attenuated Total Reflection
Fourier Transform Infrared) with a residence time of 2 minutes. Estillore et al. (2017) reported a quite similar value of GF at
90% RH (1.24) for sucrose as ours using a different HTDMA with a much longer residence time (40s), similar as the one by
Hodas et al. (2015) based on DASH-SP (Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe) with a residence
535 time of 4s. However, at intermediate RHs, our measured GF were much lower than theirs. Moreover, for glutamine and serine
particles, no deliquescence was observed by Chan et al. (2005) even with a much longer residence time, while in our study a
moderate water uptake for both compounds were observed. Using an STXM (Scanning Transmission X-ray Microscopy) with
a residence time of 5-10 minutes, Piens et al. (2016) obtained a lower GF of fructose compared to ours, which should not be
caused by the evaporation losses due to its low volatility. These aforementioned comparisons pointed out the influence of
540 residence time on the observed water uptake of particles might not be conclusive. Therefore, other technical reasons should be
raised for the measurement discrepancies between different instruments and studies using similar technique but different
residence times should be suggested for understanding the effect from residence time on hygroscopicity.”

设置了格式: 字体: (中文)+中文正文(宋体), 字体颜色: 深红, (中文) 中文(中国), (其他) 英语(美国)

In the previous section discussing the role of different physico-chemical properties of organics plays in aerosol hygroscopicity,
the parameter κ was converted by the measured GF under 90 % RH. For those low or sparingly soluble organic compounds,
545 the GF-derived κ (also known as apparent κ) is RH-dependent (see Fig. S3 as an example) and cannot express their intrinsic
 κ (expressed by fully dissolved compounds), when compounds are sufficiently soluble in water. As the RH increases, further
dissolution of these organic compounds with promoted hygroscopicity is expected. In the real atmosphere, different RH
conditions including both sub- and supersaturation can be reached. The measured GF or the apparent κ of ambient aerosols at
550 a certain RH may not be able to reveal their real hygroscopicity under various atmospheric conditions. Further calculations of
other variables, for instance the liquid water content (LWC), surface area of wet particles and number concentration of CCN
associated with the apparent κ will be significantly biased. If possible, hygroscopicity measurements over large saturation
range up to supersaturation, especially with the combination of CCN measurements provide an option to reduce the
uncertainties, but requiring fast and stable scanning of RHs during the experiments. Technical improvement, for example in
HTDMA system is essentially needed.

555 **Data availability.**

The details data can be obtained from the corresponding author upon request.

Supplement.

[A detailed description of the HTDMA implementation](#), calibration of instrument by using ammonium sulfate, calculations for E-AIM and UManSysProp models, hygroscopicity parameter κ as a function of RH for sparingly soluble organics.

删除了: The Principle of HTDMA system,

560 **Author contributions.**

SH contributed to investigation, data curation, visualization and writing original draft. JH and NM contributed to resources, writing review and editing. HBX contributed software, HBT, JCT, YQZ, LP, YH contributed to resources. QQW contributed to fund acquisition. JNS contributed to investigation. YFC, HS contributed to resources and fund acquisition.

Competing interests.

565 The authors declare no competing financial interest.

Acknowledgments.

This work was supported by the National Natural Science Foundation of China (No. 41705099 and 91644218), the National Key Research and Development Program of China (Grant 2017YFC0210104), and Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06N263).

570

References

Bilde, M., Svenningsson, B., Mørnster, J., and Rosenørn, T.: Even– odd alternation of evaporation rates and vapor pressures of C3– C9 dicarboxylic acid aerosols, *Environ. Sci. Technol.*, 37, 1371–1378, <https://doi.org/10.1021/es0201810>, 2003.

575 Cao, L.-M., Huang, X.-F., Wang, C., Zhu, Q., and He, L.-Y.: Characterization of submicron aerosol volatility in the regional atmosphere in southern China, *Chemosphere*, 236, 124383, <https://doi.org/10.1016/j.chemosphere.2019.124383>, 2019.

Cappa, C. D., Che, D. L., Kessler, S. H., Kroll, J. H., and Wilson, K. R.: Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation, *J. Geophys. Res. Atmos.*, 116, <https://doi.org/10.1029/2011JD015918>, 2011.

Chan, M. N., Kreidenweis, S. M., and Chan, C. K.: Measurements of the hygroscopic and deliquescence properties of organic 580 compounds of different solubilities in water and their relationship with cloud condensation nuclei activities, *Environ. Sci. Technol.*, 42, 3602–3608, <https://doi.org/10.1021/es7023252>, 2008.

Chan, M. N., Choi, M. Y., Ng, N. L., and Chan, C. K.: Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species, *Environ. Sci. Technol.*, 39, 1555–1562, <https://doi.org/10.1021/es0495841>, 2005.

585 Chang, R.-W., Slowik, J., Shantz, N., Vlasenko, A., Liggio, J., Sjostedt, S., Leaitch, W., and Abbatt, J.: The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation, *Atmos. Chem. Phys.*, 10, 5047–5064, <https://doi.org/10.5194/acp-10-5047-2010>, 2010.

Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review, *Atmos. Environ.*, 30, 4233–4249, [https://doi.org/10.1016/1352-2310\(96\)00102-1](https://doi.org/10.1016/1352-2310(96)00102-1), 1996.

590 Chen, J., Lee, W.-C., Itoh, M., and Kuwata, M.: A significant portion of water-soluble organic matter in fresh biomass burning particles does not contribute to hygroscopic growth: an application of polarity segregation by 1-Octanol–water partitioning method, *Environ. Sci. Technol.*, 53, 10034–10042, <https://doi.org/10.1021/acs.est.9b01696>, 2019.

Cheng, Y., Wiedensohler, A., Eichler, H., Heintzenberg, J., Tesche, M., Ansmann, A., Wendisch, M., Su, H., Althausen, D., and Herrmann, H.: Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface 595 boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study, *Atmos. Environ.*, 42, 6373–6397, <https://doi.org/10.1016/j.atmosenv.2008.04.009>, 2008.

Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system $\text{H}^+ - \text{NH}_4^+ - \text{Na}^+ - \text{SO}_4^{2-} - \text{NO}_3^- - \text{Cl}^- - \text{H}_2\text{O}$ at 298.15 K, *J. Phys. Chem. A*, 102, 2155–2171, <https://doi.org/10.1021/jp973043j>, 1998.

Darr, J. P., Gottusso, S., Alfara, M., Birge, D., Ferris, K., Woods, D., Morales, P., Grove, M., Mitts, W. K., and Mendoza- 600 Lopez, E.: The Hydropathy Scale as a Gauge of Hygroscopicity in Sub-Micron Sodium Chloride-Amino Acid Aerosols, *J. Phys. Chem. A*, 122, 8062–8070, <https://doi.org/10.1021/acs.jpca.8b07119>, 2018.

Deng, Y., Kagami, S., Ogawa, S., Kawana, K., Nakayama, T., Kubodera, R., Adachi, K., Hussein, T., Miyazaki, Y., and Mochida, M.: Hygroscopicity of Organic Aerosols and Their Contributions to CCN Concentrations Over a Midlatitude Forest in Japan, *J. Geophys. Res. Atmos.*, 123, 9703–9723, <https://doi.org/10.1029/2017JD027292>, 2018.

605 Duplissy, J., Gysel, M., Sjogren, S., Meyer, N., Good, N., Kammermann, L., Michaud, V., Weigel, R., Martins dos Santos, S.,
and Gruening, C.: Intercomparison study of six HTDMAs: results and recommendations, *Atmos. Meas. Tech.*, 2, 363-378,
<https://doi.org/10.5194/amt-2-363-2009>, 2009.

Estillore, A. D., Morris, H. S., Or, V. W., Lee, H. D., Alves, M. R., Marciano, M. A., Laskina, O., Qin, Z., Tivanski, A. V.,
and Grassian, V. H.: Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex
610 carbohydrates, and authentic sea spray aerosol particles, *PCCP*, 19, 21101-21111, DOI:10.1039/C7CP04051B, 2017.

Fredenslund, A., Jones, R. L., and Prausnitz, J. M.: Group-contribution estimation of activity coefficients in nonideal liquid
mixtures, *AIChE J.*, 21, 1086-1099, <https://doi.org/10.1002/aic.690210607>, 1975.

Frosch, M., Zardini, A. A., Platt, S., Müller, L., Reinnig, M.-C., Hoffmann, T., and Bilde, M.: Thermodynamic properties and
cloud droplet activation of a series of oxo-acids, *Atmospheric Chemistry & Physics Discussions*, 10,
615 <https://doi.org/10.5194/acp-10-5873-2010>, 2010.

Giebl, H., Berner, A., Reischl, G., Puxbaum, H., Kasper-Giebl, A., and Hitzenberger, R.: CCN activation of oxalic and malonic
acid test aerosols with the University of Vienna cloud condensation nuclei counter, *J. Aerosol Sci.*, 33, 1623-1634,
[https://doi.org/10.1016/S0021-8502\(02\)00115-5](https://doi.org/10.1016/S0021-8502(02)00115-5), 2002.

Hansen, H. K., Rasmussen, P., Fredenslund, A., Schiller, M., and Gmehling, J.: Vapor-liquid equilibria by UNIFAC group
620 contribution. 5. Revision and extension, *Industrial & Engineering Chemistry Research*, 30, 2352-2355,
<https://doi.org/10.1021/ie00058a017>, 1991.

Hartz, K. E. H., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M., and Pandis, S. N.: Cloud condensation nuclei
activation of limited solubility organic aerosol, *Atmos. Environ.*, 40, 605-617, <https://doi.org/10.1016/j.atmosenv.2005.09.076>,
2006.

625 Hodas, N., Zuehd, A., Mui, W., Flagan, R., and Seinfeld, J.: Influence of particle-phase state on the hygroscopic behavior of
mixed organic-inorganic aerosols, *Atmos. Chem. Phys.*, 15, 5027-5045, <https://doi.org/10.5194/acp-15-5027-2015>.

设置了格式: 字体颜色: 深红

Hong, J., Kim, J., Nieminen, T., Duplissy, J., Ehn, M., Äijälä, M., Hao, L., Nie, W., Sarnela, N., and Prisle, N.: Relating the
hygroscopic properties of submicron aerosol to both gas-and particle-phase chemical composition in a boreal forest
environment, *Atmos. Chem. Phys.*, 15, 11999-12009, <https://doi.org/10.5194/acp-15-11999-2015>, 2015.

630 Hong, J., Xu, H., Tan, H., Yin, C., Hao, L., Li, F., Cai, M., Deng, X., Wang, N., and Su, H.: Mixing state and particle
hygroscopicity of organic-dominated aerosols over the Pearl River Delta region in China, *Atmos. Chem. Phys.*, 18, 14079-
14094, <https://doi.org/10.5194/acp-18-14079-2018>, 2018.

Jimenez, J. L., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., and
Ng, N.: Evolution of organic aerosols in the atmosphere, *Science*, 326, 1525-1529, DOI: 10.1126/science.1180353, 2009.

635 Jing, B., Tong, S., Liu, Q., Li, K., Wang, W., Zhang, Y., and Ge, M.: Hygroscopic behavior of multicomponent organic aerosols
and their internal mixtures with ammonium sulfate, *Atmos. Chem. Phys.*, 16, 4101-4118, <https://doi.org/10.5194/acp-16-4101-2016>, 2016.

Kier, L. B.: Quantitation of solvent polarity based on molecular structure, *J. Pharm. Sci.*, 70, 930-933, <https://doi.org/10.1002/jps.2600700825>, 1981.

640 Koehler, K., Kreidenweis, S., DeMott, P., Prenni, A., Carrico, C., Ervens, B., and Feingold, G.: Water activity and activation diameters from hygroscopicity data-Part II: Application to organic species, *Atmos.Chem.Phys.*, 6, 795-809, <https://doi.org/10.5194/acp-6-795-2006>, 2006.

Kuang, Y., Xu, W., Tao, J., Ma, N., Zhao, C., and Shao, M.: A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels, *Curr. Pollut. Rep.*, 6, 410-645 424, <https://doi.org/10.1007/s40726-020-00164-2>, 2020.

Kundu, S., Kawamura, K., Andreae, T., Hoffer, A., and Andreae, M.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α -dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers, *Atmos.Chem.Phys.*, 10, 2209-2225, <https://doi.org/10.5194/acp-10-2209-2010>, 2010.

650 Kuwata, M., Shao, W., Lebouteiller, R., and Martin, S.: Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN), *Atmos.Chem.Phys.*, 13, <https://doi.org/10.5194/acp-13-5309-2013>, 2013.

Lambe, A., Onasch, T., Massoli, P., Croasdale, D., Wright, J., Ahern, A., Williams, L., Worsnop, D., Brune, W. H., and Davidovits, P.: Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA), *Atmos.Chem.Phys.*, 11, <https://doi.org/10.5194/acp-11-8913-2011>, 2011.

655 Lei, T., Zuend, A., Wang, W., Zhang, Y., and Ge, M.: Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols, *Atmos. Chem. Phys.*, 14, 11165-11183, <https://doi.org/10.5194/acp-14-11165-2014>, 2014.

Lei, T., Zuend, A., Cheng, Y., Su, H., Wang, W., and Ge, M.: Hygroscopicity of organic surrogate compounds from biomass 660 burning and their effect on the efflorescence of ammonium sulfate in mixed aerosol particles, *Atmos.Chem.Phys.*, 18, 1045, <https://doi.org/10.5194/acp-18-1045-2018>, 2018.

Li, J., Liu, Z., Gao, W., Tang, G., Hu, B., Ma, Z., and Wang, Y.: Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China, *Atmos. Environ.*, 220, 117070, <https://doi.org/10.1016/j.atmosenv.2019.117070>, 2020.

665 Luo, Q., Hong, J., Xu, H., Han, S., Tan, H., Wang, Q., Tao, J., Ma, N., Cheng, Y., and Su, H.: Hygroscopicity of amino acids and their effect on the water uptake of ammonium sulfate in the mixed aerosol particles, *Sci. Total Environ.*, 139318, <https://doi.org/10.1016/j.scitotenv.2020.139318>, 2020.

Marcolli, C. and Peter, T.: Water activity in polyol/water systems: new UNIFAC parameterization, 5, 1545-1555, <https://doi.org/10.5194/acp-5-1545-2005>, 2005.

670 Marsh, A., Miles, R. E., Rovelli, G., Cowling, A. G., Nandy, L., Dutcher, C. S., and Reid, J. P.: Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids, *Atmos.Chem.Phys.*, 17, 5583, <https://doi.org/10.5194/acp-17-5583-2017>, 2017.

Martäu, G. A., Coman, V., and Vodnar, D. C.: Recent advances in the biotechnological production of erythritol and mannitol, *Crit. Rev. Biotechnol.*, 1-15, <https://doi.org/10.1080/07388551.2020.1751057>, 2020.

675 Massoli, P., Lambe, A., Ahern, A., Williams, L., Ehn, M., Mikkilä, J., Canagaratna, M., Brune, W., Onasch, T., and Jayne, J.: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, *Geophys. Res. Lett.*, 37, <https://doi.org/10.1029/2010GL045258>, 2010.

McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., and Lohmann, U.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, *Atmos.Chem.Phys.*, 6, 680 2593-2649, <https://doi.org/10.5194/acp-6-2593-2006>, 2006.

Mei, F., Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., Kuster, W., de Gouw, J., Jimenez, J. L., and Wang, J.: Droplet activation properties of organic aerosols observed at an urban site during CalNex -LA, *J.Geophys.Res.Atmos.*, 118, 2903-2917, <https://doi.org/10.1002/jgrd.50285>, 2013.

Mikhailov, E., Vlasenko, S., Niessner, R., and Pöschl, U.: Interaction of aerosol particles composed of protein and salt with water vapor: hygroscopic growth and microstructural rearrangement, *Atmos. Chem. Phys.*, 4, 323-350, 685 <https://doi.org/10.5194/acp-4-323-2004>, 2004.

Mikhailov, E., Vlasenko, S., Martin, S., Koop, T., and Pöschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations, *Atmos.Chem.Phys.*, 9, 9491-9522, <https://doi.org/10.5194/acp-9-9491-2009>, 2009.

690 Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., and Yamazaki, K.: Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific, *J.Geophys.Res.Atmos.*, 108, [https://doi.org/10.1029/2002JD002355,2003](https://doi.org/10.1029/2002JD002355).

[Mochida, M. and Kawamura, K.: Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles, *J. Geophys. Res.-Atmos.*, 109, D21202, <https://doi.org/10.1029/2004jd004962>, 2004.](#)

695 Nakao, S., Suda, S., Camp, M., Petters, M., and Kreidenweis, S.: Droplet activation of wet particles: development of the Wet CCN approach, *Atmos. Meas. Tech.*, 7, 2227-2241, <https://doi.org/10.5194/amt-7-2227-2014>, 2014.

Nakao, S.: Why would apparent κ linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols, *Aerosol Sci. Technol.*, 51, 1377-1388, <https://doi.org/10.1080/02786826.2017.1352082>, 2017.

Ng, N., Canagaratna, M., Zhang, Q., Jimenez, J., Tian, J., Ulbrich, I., Kroll, J., Docherty, K., Chhabra, P., and Bahreini, R.: 700 Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, *Atmos.Chem.Phys.*, 10, 4625-4641, <https://doi.org/10.5194/acp-10-4625-2010>, 2010.

设置了格式: 字体颜色: 深红

Ohrem, H. L., Schornick, E., Kalivoda, A., and Ognibene, R.: Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms?, *Pharm. Dev. Technol.*, 19, 257-262, <https://doi.org/10.3109/10837450.2013.775154>, 2014.

705 Ohm, P. B., Asato, C., Wexler, A. S., and Dutcher, C. S.: Isotherm-Based Thermodynamic Model for Electrolyte and Nonelectrolyte Solutions Incorporating Long-and Short-Range Electrostatic Interactions, *J. Phys. Chem. A*, 119, 3244-3252, <https://doi.org/10.1021/jp512646k>, 2015.

设置了格式: 字体颜色: 深红, 突出显示

Peng, C., Chan, M. N., and Chan, C. K.: The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions, *Environ. Sci. Technol.*, 35, 4495-4501, <https://doi.org/10.1021/es0107531>, 2001.

710 Petters, M. and Kreidenweis, S.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, <https://doi.org/10.5194/acp-7-1961-2007>, 2007.

Petters, M., Kreidenweis, S., Prenni, A., Sullivan, R., Carrico, C., Koehler, K. A., and Ziemann, P.: Role of molecular size in cloud droplet activation, *Geophys. Res. Lett.*, 36, <https://doi.org/10.1029/2009GL040131>, 2009.

715 Petters, S. S., Pagonis, D., Claflin, M. S., Levin, E. J., Petters, M. D., Ziemann, P. J., and Kreidenweis, S. M.: Hygroscopicity of organic compounds as a function of carbon chain length and carboxyl, hydroperoxy, and carbonyl functional groups, *J. Phys. Chem. A*, 121, 5164-5174, <https://doi.org/10.1021/acs.jpca.7b04114>, 2017.

Piens, D. S., Kelly, S. T., Harder, T. H., Petters, M. D., O'Brien, R. E., Wang, B., Teske, K., Dowell, P., Laskin, A., and Gilles, M. K.: Measuring mass-based hygroscopicity of atmospheric particles through *in situ* imaging, *Environ. Sci. Technol.*, 50, 5172-5180, <https://doi.org/10.1021/acs.est.6b00793>, 2016.

设置了格式: 字体颜色: 深红

720 Prenni, A. J., Petters, M. D., Kreidenweis, S. M., DeMott, P. J., and Ziemann, P. J.: Cloud droplet activation of secondary organic aerosol, *J. Geophys. Res. Atmos.*, 112, <https://doi.org/10.1029/2006JD007963>, 2007.

Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell, L. M., and Ming, Y.: The effects of low molecular weight dicarboxylic acids on cloud formation, *J. Phys. Chem. A*, 105, 11240-11248, <https://doi.org/10.1021/jp012427d>, 2001.

725 Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., and Srinivasan, J.: Climate models and their evaluation, in: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR), Cambridge University Press, 589-662, 2007.

Rickards, A. M., Miles, R. E., Davies, J. F., Marshall, F. H., and Reid, J. P.: Measurements of the sensitivity of aerosol hygroscopicity and the κ parameter to the O/C ratio, *J. Phys. Chem. A*, 117, 14120-14131, <https://doi.org/10.1021/jp407991n>, 2013.

730 Rosenørn, T., Kiss, G., and Bilde, M.: Cloud droplet activation of saccharides and levoglucosan particles, *Atmos. Environ.*, 40, 1794-1802, <https://doi.org/10.1016/j.atmosenv.2005.11.024>, 2006.

Seinfeld, J. H. and Pandis, S. N.: *Atmospheric chemistry and physics: from air pollution to climate change*, John Wiley & Sons, Inc., New York, 2016.

设置了格式: 字体颜色: 深红

735 Su, H., Rose, D., Cheng, Y., Gunthe, S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard

to hygroscopic growth and CCN activation, *Atmos.Chem.Phys.*, 10, 7489-7503, <https://doi.org/10.5194/acp-10-7489-2010>, 2010.

Suda, S. R. and Petters, M. D.: Accurate determination of aerosol activity coefficients at relative humidities up to 99% using the hygroscopicity tandem differential mobility analyzer technique, *Aerosol Sci. Technol.*, 47, 991-1000, 740 <https://doi.org/10.1080/02786826.2013.807906>, 2013.

Suda, S. R., Petters, M., Matsunaga, A., Sullivan, R., Ziemann, P., and Kreidenweis, S.: Hygroscopicity frequency distributions of secondary organic aerosols, *J.Geophys.Res.Atmos.*, 117, <https://doi.org/10.1029/2011JD016823>, 2012.

Suda, S. R., Petters, M. D., Yeh, G. K., Strollo, C., Matsunaga, A., Faulhaber, A., Ziemann, P. J., Prenni, A. J., Carrico, C. M., and Sullivan, R. C.: Influence of functional groups on organic aerosol cloud condensation nucleus activity, *Environ. Sci. Technol.*, 48, 10182-10190, <https://doi.org/10.1021/es502147y>, 2014.

Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Petäjä, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments – a review, Tellus B, 60, 432–469, <https://doi.org/10.1111/j.1600-0889.2008.00350.x>, 2008.

设置了格式: 字体颜色: 深红

750 Tan, H. B., Xu, H. B., Wan, Q. L., Li, F., Deng, X. J., Chan, P. W., Xia, D., and Yin, Y.: Design and Application of an Unattended Multifunctional H-TDMA System, *Journal of Atmospheric and Oceanic Technology*, 30, 1136-1148, 10.1175/Jtech-D-12-00129.1, <https://doi.org/10.1175/JTECH-D-12-00129.1>, 2013.

Tang, M., Chan, C. K., Li, Y. J., Su, H., Ma, Q., Wu, Z., Zhang, G., Wang, Z., Ge, M., and Hu, M.: A review of experimental techniques for aerosol hygroscopicity studies, *Atmos.Chem.Phys.*, 19, 12631-12686, <https://doi.org/10.5194/acp-19-12631-2019>, 2019.

Topping, D., Barley, M., Bane, M. K., Higham, N., Aumont, B., Dingle, N., and McFiggans, G.: UManSysProp v1. 0: an online and open-source facility for molecular property prediction and atmospheric aerosol calculations, *Geoscientific Model Development*, 9, 899-914, <https://doi.org/10.5194/gmd-9-899-2016>, 2016.

760 Wang, J., Shilling, J. E., Liu, J., Zelenyuk, A., Bell, D. M., Petters, M. D., Thalman, R., Mei, F., Zaveri, R. A., and Zheng, G.: Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility, *Atmos.Chem.Phys.*, 19, 941-954, <https://doi.org/10.5194/acp-19-941-2019>, 2019.

Wang, Z., Jing, B., Shi, X., Tong, S., Wang, W., and Ge, M.: Importance of water-soluble organic acid on the hygroscopicity of nitrate, *Atmos. Environ.*, 190, 65-73, <https://doi.org/10.1016/j.atmosenv.2018.07.010>, 2018.

765 Wang, Z., Su, H., Wang, X., Ma, N., Wiedensohler, A., Pöschl, U., and Cheng, Y.: Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles, *Atmospheric Measurement Techniques*, 8, 2161-2172, <https://doi.org/10.5194/amt-8-2161-2015>, 2015.

Wexler, A. S.: Atmospheric aerosol models for systems including the ions H⁺, NH4⁺, Na⁺, SO42⁻, NO3⁻, Cl⁻, Br⁻, and H2O, *J. Geophys. Res.*, 107, <https://doi.org/10.1029/2001JD000451>, 2002.

Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert, M. A.: Hygroscopic growth of ammonium sulfate/dicarboxylic acids, *J.Geophy.Res.Atmos.*, 108, <https://doi.org/10.1029/2003JD003775>, 2003.

770 Wu, Z., Nowak, A., Poulain, L., Herrmann, H., and Wiedensohler, A.: Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate, *Atmos.Chem.Phys.*, 11, 12617-12626, <https://doi.org/10.5194/acp-11-12617-2011>, 2011.

775 Wu, Z., Zheng, J., Shang, D., Du, Z., Wu, Y., Zeng, L., Wiedensohler, A., and Hu, M.: Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime, *Atmos.Chem.Phys.*, 16, 1123-1138, <https://doi.org/10.5194/acp-16-1123-2016>, 2016.

780 Wu, Z., Poulain, L., Henning, S., Dieckmann, K., Birmili, W., Merkel, M., Pinxteren, D. v., Spindler, G., Müller, K., and Stratmann, F.: Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign, *Atmos.Chem.Phys.*, 13, 7983-7996, <https://doi.org/10.5194/acp-13-7983-2013>, 2013.

785 Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A. S., Vonwiller, M., Szidat, S., Ge, J., and Ma, J.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, *Atmos.Chem.Phys.*, 16, 14937-14957, <https://doi.org/10.5194/acp-16-14937-2016>, 2016.

790 Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates, *Atmos.Chem.Phys.*, 15, 7307-7336, <https://doi.org/10.5194/acp-15-7307-2015>, 2015.

Zhang, Q., Jimenez, J. L., Canagaratna, M., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M., Takami, A., Middlebrook, A., and Sun, Y.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, *Geophys. Res. Lett.*, 34, <https://doi.org/10.1029/2007GL029979>, 2007.

Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.: Formation of urban fine particulate matter, *Chem. Rev.*, 115, 3803-3855, <https://doi.org/10.1021/acs.chemrev.5b00067>, 2015.

Zheng, G., Duan, F., Su, H., Ma, Y., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., and Chang, D.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, *Atmos.Chem.Phys.*, 15, 2969-2983, <https://doi.org/10.5194/acp-15-2969-2015>, 2015.

795 Zuent, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, *Atmos.Chem.Phys.*, 8, 4559-4593, <https://doi.org/10.5194/acp-8-4559-2008>, 2008.

Zuent, A., Marcolli, C., Booth, A., Lienhard, D. M., Soonsin, V., Krieger, U., Topping, D. O., McFiggans, G., Peter, T., and Seinfeld, J. H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups, *Atmos.Chem.Phys.*, 11, 9155-9206, <https://doi.org/10.5194/acp-11-9155-2011>, 2011.

设置了格式: 字体颜色: 深红

Table 1. **Substances** and their relevant properties investigated in this study.

Compounds	Molecular structure	Chemical formula	Molar weight (g mol ⁻¹)	Density (g cm ⁻³)	O/C	Solubility (g ml ⁻¹)	Supplier/purity
Ammonium sulfate		(NH ₄) ₂ SO ₄	132.14 ^a	1.77 ^a	-	0.77 ^a	Macklin, 99.99%
Sugars							
D(-)-Fructose		C ₆ H ₁₂ O ₆	180.16 ^a	1.59 ^a	1	3.75 ^a	Sigma Aldrich, ≥99%
D(+)-Mannose		C ₆ H ₁₂ O ₆	180.16 ^a	1.54 ^a	1	2.48 ^a	Sigma Aldrich, ≥99%
Sucrose		C ₁₂ H ₂₂ O ₁₁	342.30 ^a	1.58 ^a	0.9	2.1 ^b	Sigma Aldrich, 99%
Sugar alcohols							
Xylitol		C ₅ H ₁₂ O ₅	152.15 ^a	1.52 ^a	1	0.642 ^b	Sigma Aldrich, ≥99%
L(-)-Arabitol		C ₅ H ₁₂ O ₅	152.15 ^a	1.15 ^a	1	0.664 ^d	Sigma Aldrich, ≥98%
D-Mannitol		C ₆ H ₁₄ O ₆	182.17 ^a	1.52 ^a	1	0.216 ^b	Sigma Aldrich, ≥99.0%

删除了: Substance

删除了: Supplier/purity

Carboxylic acids							
Malonic acid		C ₃ H ₄ O ₄	104.06 ^a	1.62 ^a	1.33	0.763 ^b	Sigma Aldrich, 98%
Succinic acid		C ₄ H ₆ O ₄	118.09 ^a	1.19 ^a	1	0.0832 ^b	Sigma Aldrich, ≥99.0%
Adipic acid		C ₆ H ₁₀ O ₄	146.14 ^a	1.36 ^a	0.67	0.03 ^b	Sigma Aldrich, 99%
Pimelic acid		C ₇ H ₁₂ O ₄	160.17 ^a	1.33 ^a	0.57	0.05 ^b	Yuanye Bio-Technology, 98%
Suberic acid		C ₈ H ₁₄ O ₄	174.19 ^a	1.30 ^a	0.5	0.0006 ^a	Yuanye Bio-Technology, 99%
Azelaic acid		C ₉ H ₁₆ O ₄	188.22 ^a	1.03 ^a	0.44	0.0024 ^a	Yuanye Bio-Technology, 98%
Maleic acid		C ₄ H ₄ O ₄	116.07 ^a	1.59 ^a	1	0.79 ^a	Aladding, ≥99.0%
DL-Malic acid		C ₄ H ₆ O ₅	134.09 ^a	1.61 ^a	1.25	0.592 ^b	Sigma Aldrich, ≥99%
Tartaric acid		C ₄ H ₆ O ₆	150.09 ^a	1.79 ^b	1.5	1.43 ^c	CATO, 99.7%
cis-Aconitic acid		C ₆ H ₆ O ₆	174.11 ^a	1.66 ^a	1	0.4 ^d	Sigma Aldrich, ≥98%
Citric acid		C ₆ H ₈ O ₇	192.12 ^a	1.54 ^a	1.17	0.383 ^b	Sigma Aldrich, ≥99.5%
Butane-1,2,4-tricarboxylic acid		C ₇ H ₁₀ O ₆	190.15 ^a	1.48 ^a	0.86	0.3897 ^c	Bidepharm, 97%

Amino acids

DL-Alanine		C ₃ H ₇ NO ₂	89.09 ^a	1.42 ^a	0.67	0.164 ^b	Macklin, 99%
Glycine		C ₂ H ₅ NO ₂	75.07 ^a	1.59 ^a	1	0.25 ^a	Sigma Aldrich, ≥99.0%
L-Aspartic		C ₄ H ₇ NO ₄	133.10 ^a	1.66 ^a	1	0.005 ^a	Sigma Aldrich, ≥99%
L-Glutamine		C ₅ H ₁₀ N ₂ O ₃	146.14 ^a	1.47 ^a	0.6	0.0413 ^b	Sigma Aldrich, ≥99.5%
L-Serine		C ₃ H ₇ NO ₃	105.09 ^a	1.60 ^a	1	0.425 ^b	Sigma Aldrich, ≥99%

^a<https://www.chemicalbook.com/>^b<https://pubchem.ncbi.nlm.nih.gov/>^c<https://www.chemspider.com/>

805 ^d<https://hmdb.ca/>^ePeng et al. (2001)

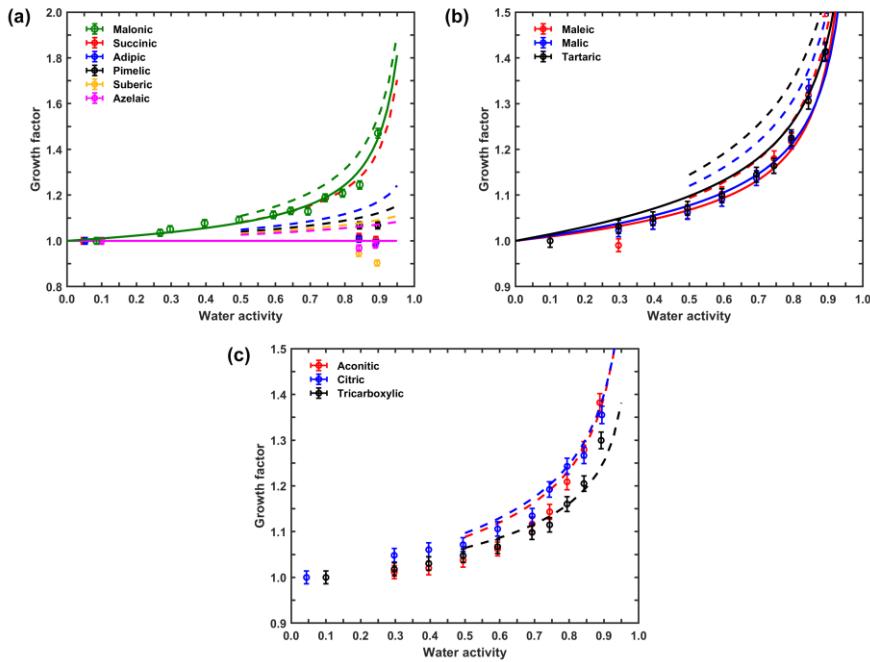
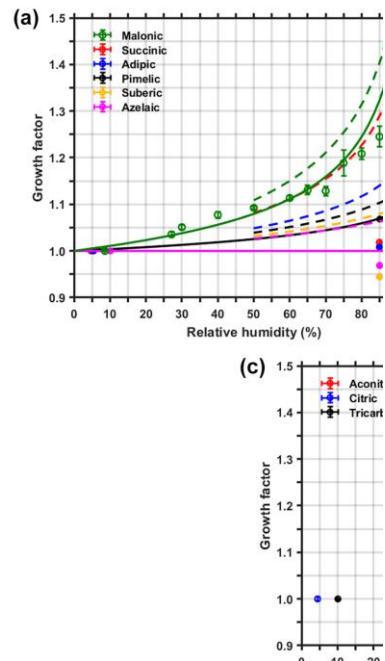



Figure 1: Hygroscopic growth curves of straight-chain dicarboxylic acids (a), dicarboxylic acids with substitutions (b) and tricarboxylic acids (c) particles (200 nm). Points represent the measurement data; the solid lines indicate the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines show the UManSysProp calculated predictions.

带格式的: 居中

删除了:

删除了: Figure 1. Hygroscopic growth curves of (a) and (b) dicarboxylic acids, (c) tricarboxylic acids particles (200nm). Points represent the measurement data; the solid lines indicate the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines show the UManSysProp calculated predictions....

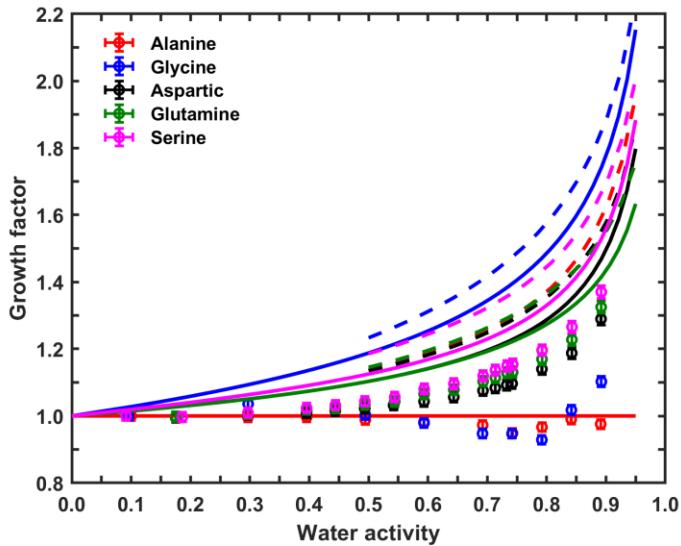
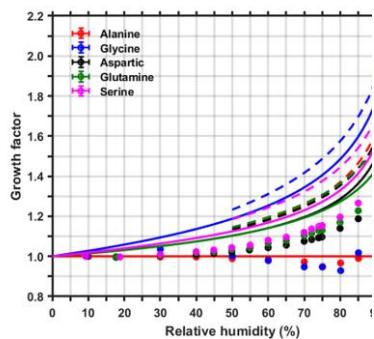



Figure 2. Hygroscopic growth factors of amino acids. Points represent the measurement values; the solid lines indicate the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines represent the UManSysProp predictions.

带格式的: 居中

删除了:

删除了: Figure 2. Hygroscopic growth factors of amino acids. The solid lines indicate the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines represent the UManSysProp calculated predictions.

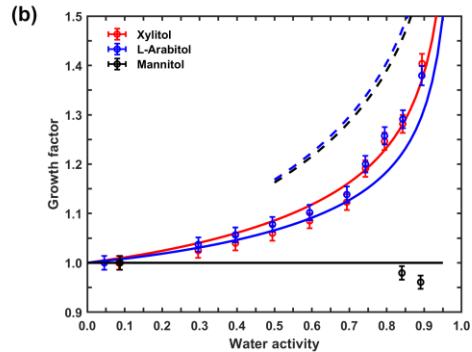
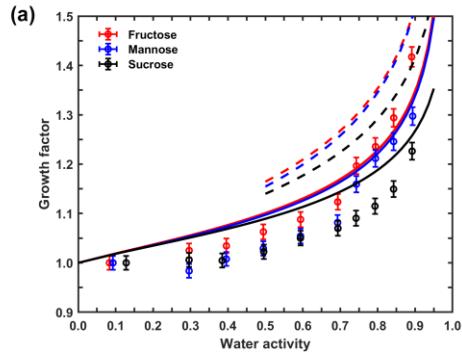
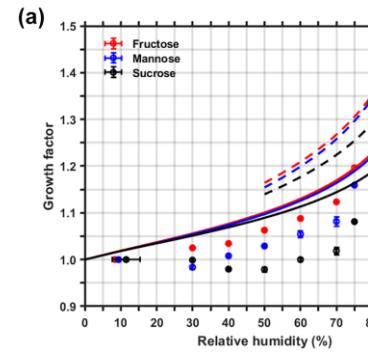
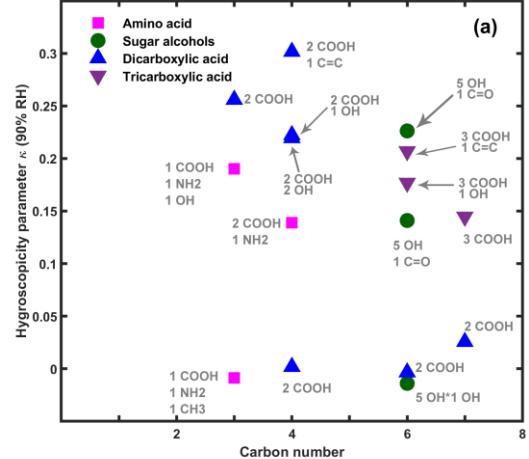
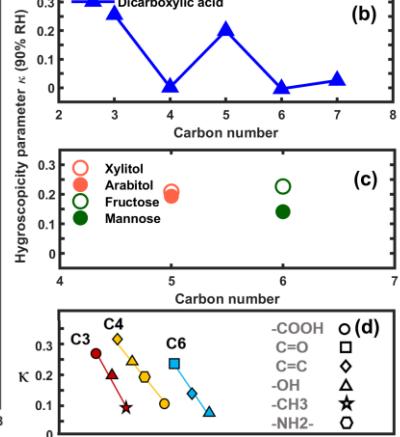
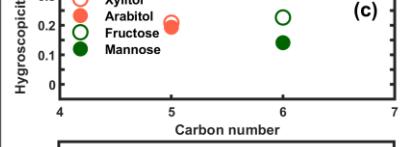
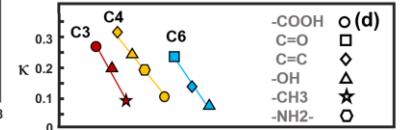





Figure 3. Hygroscopic growth curves of sugars (a) and alcohols (b). Points represent the measurement values; the solid lines indicate the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines represent the UManSysProp calculated predictions.

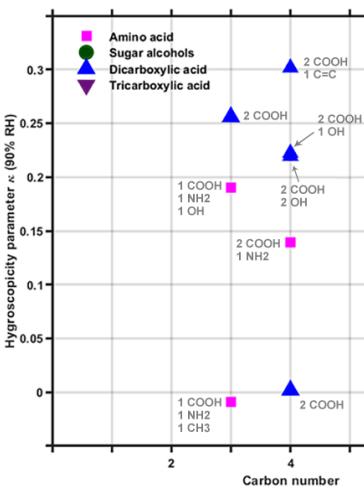


刪除了:
帶格式的: 居中


刪除了: Figure 3. Hygroscopic growth curves of (a) sugars, (b) alcohols. Points represent the measurement values; the solid lines indicate the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines represent the UManSysProp calculated predictions....


(a)

(b)


(c)

(d)

Figure 4. Hygroscopicity of organics as a function of carbon number (a); hygroscopicity of dicarboxylic acids vs carbon number (b); hygroscopicity of isomers (c); organic hygroscopicity as a function of their functionality with the same carbon number (d).

带格式的: 居中

删除了:

删除了: Figure 4. (a) Hygroscopicity of organics as a function of carbon number; (b) hygroscopicity of dicarboxylic acids vs carbon number; (c) hygroscopicity of isomers

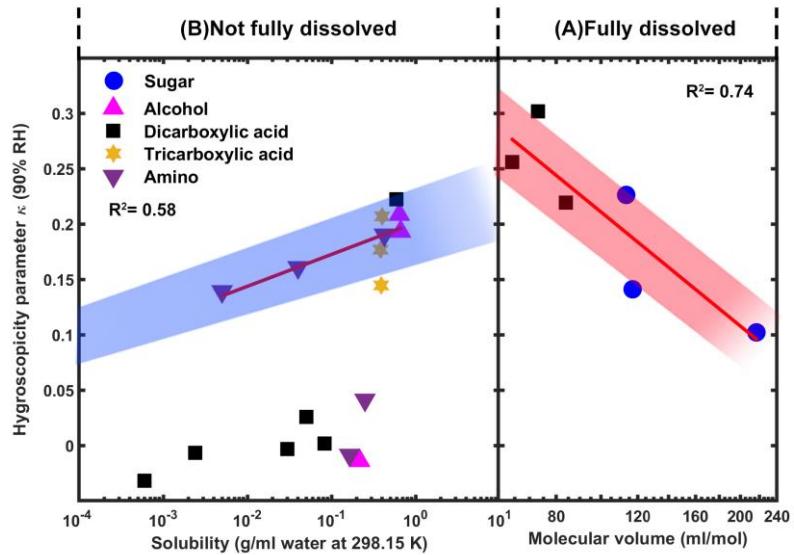
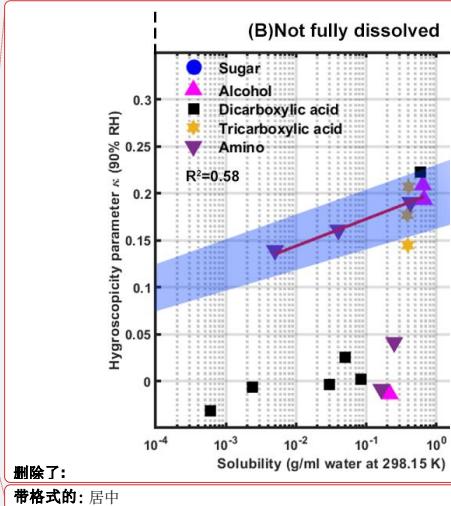



Figure 5. Hygroscopicity of organic compounds as a function of molecular volume (A) and solubility (B).

刪除了: Figure 5. Hygroscopicity of organic compounds as a function of (A) molecular volume, (B) solubility.

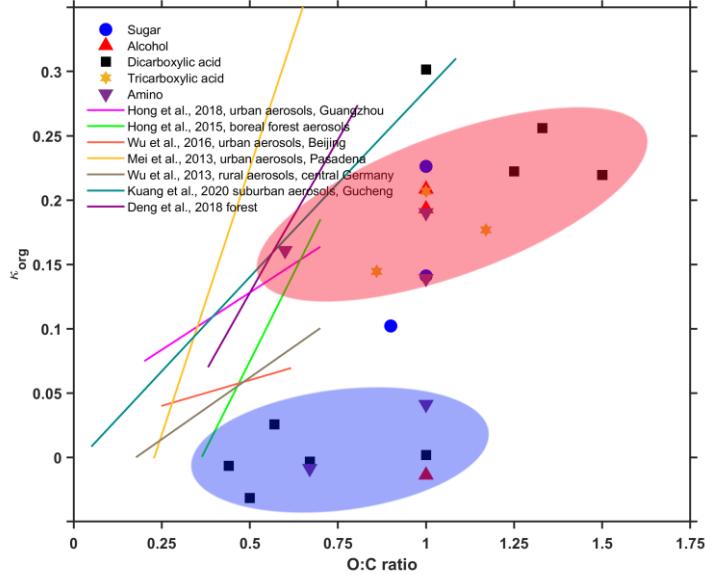
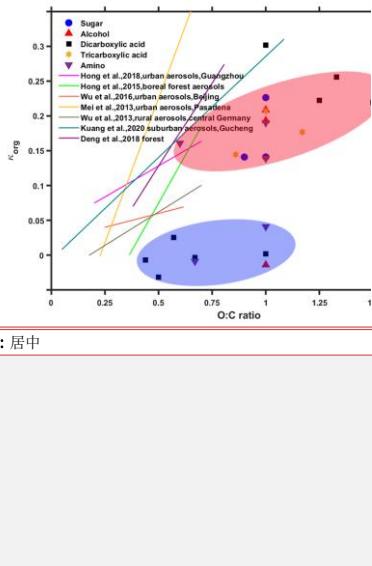



Figure 6. Correlation between O:C ratio and κ_{org} , and comparison with previous literature results. Blue and red shades represent the fitting of results of non-hygroscopic and more hygroscopic organics, respectively.

删除了:
带格式的: 居中

删除了: Figure 6. Correlation between O:C ratio and κ_{org} . Comparing previous literatures results with pure compounds measured in this study. Blue and red shades represent the fitting of non-hygroscopic and more hygroscopic organics, respectively.

设置了格式: 字体颜色: 深红