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Abstract. Aerosol hygroscopicity strongly influences the number size distribution, phase state, optical properties as well as 15 

multiphase chemistry of aerosol particles. Due to the big number of organic species in atmospheric aerosols, the determination 

of the hygroscopicity of ambient aerosols remains challenging. In this study, we measured the hygroscopic properties of 23 

organics including carboxylic acids, amino acids, sugars and alcohols using a Hygroscopicity Tandem Differential Mobility 

Analyzer (HTDMA). Earlier studies have characterized the hygroscopicity either for a limited number of organic compounds 

using similar techniques or for particles at sizes beyond the micro-scale range or even bulk samples by other methodologies. 20 

Here, we validate these studies and extend the data by measuring the hygroscopicity of a broader suite of organics for partic les 

with size under the submicron range that are more atmospheric relevant. Moreover, we systematically evaluate the roles of 

related physico-chemical properties that play in organic hygroscopicity. We show that hygroscopicity of organics varies widely 

with functional groups and organics with the same carbon number but more functional groups show higher hygroscopicity. 

However, some isomers, which are very similar in molecular structures, show quite different hygroscopicity, demonstrating 25 

that other physico-chemical properties, such as water solubility may contribute to their hygroscopicity as well. If the organics 

are fully dissolved in water (solubility > 7×10-1 g/ml), we found that their hygroscopicity is mainly controlled by their 

molecular weight. For the organics that are not fully dissolved in water (slightly soluble: 5×10-4 g/ml < solubility < 7×10-1 

g/ml), we observed that some of them show no obvious water uptake, which probably due to that they may not deliquesce 

under our studied conditions up to 90 % RH. The other type of slightly soluble organics is moderately hygroscopic and the 30 

larger their solubility the higher their hygroscopicity. Moreover, the hygroscopicity of organics generally increased with O:C 

ratios, although this relationship is not linear. Hygroscopicity of organic compounds were also predicted by two 

thermodynamic models, including the Extended Aerosol Inorganics Model (E-AIM), and the University of Manchester System 

Properties (UManSysProp). We show that hygroscopicity results of almost all organic compounds except those tricarboxylic 
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acids were poorly represented by the UManSysProp and the E-AIM over-estimated the hygroscopicity of all amino acids. 45 

These discrepancies were likely due to that both models do not consider phase transition and intermolecular interactions of 

these selected compounds in the simulations. These results may further improve our understandings of the interactions between 

organics and water molecular and will benefit the estimate of the hygroscopicity and CCN (cloud condensation nuclei) 

activities of any mixtures, for instance, ambient mixtures based on known composition data. 

1 Introduction  50 

Atmospheric aerosol particles consist of numerous organic species with both anthropogenic and biogenic origins (Zhang et al., 

2007; Jimenez et al., 2009; Zhang et al., 2015; Wang et al., 2018). These organic species often contribute a significant fraction 

to the mass of sub-micrometer aerosols, and have vital effects on air-quality and climate (McFiggans et al., 2006; Randall et 

al., 2007; Zheng et al., 2015). To obtain a systematic understanding of their effects, it is necessary to acquire correct 

information on the chemical composition and physico-chemical properties of these organics (Seinfeld and Pandis, 2016). 55 

Hygroscopicity is one of the most important physico-chemical properties and it describes the ability of particles to take up 

water and grow in size under sub- and supersaturated conditions (Petters and Kreidenweis, 2007). Thus, it strongly influences 

the number size distribution, phase state, optical properties as well as multiphase chemistry of aerosol particles (Cheng et al., 

2008; Su et al., 2010; Hong et al., 2018; Tang et al., 2019).  

Given the large number of organic species in atmospheric aerosols, the determination of their hygroscopicity is quite 60 

experimentally difficult. Current models normally use aggregate quantities, such as the atomic oxygen-to-carbon (O:C) ratio 

or the average oxidation state of organics to simply parameterize the hygroscopicity of organic species in ambient aerosols. 

However, recent studies show that the hygroscopicity of organic aerosols cannot be fully explained by their oxidation level 

and the empirical relationship between hygroscopicity and O:C might not be linear (Lambe et al., 2011; Kuwata et al., 2013; 

Rickards et al., 2013; Marsh et al., 2017). This suggests that this simplified approach to quantify organic hygroscopicity might 65 

be problematic and a more mechanistic understanding of the complex link between hygroscopicity and other physico-chemical 

properties such as molecular functionality, molecular weight and water solubility of organics should be examined. 

Due to these challenges, prediction of the hygroscopicity of organic compounds sometimes relies on thermodynamic models 

which explicitly includes these properties, for instance molecular functionality, molecular weight, into simulations. These 

thermodynamic models, including the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients 70 

(AIOMFAC) (Zuend et al., 2008; Zuend et al., 2011), the Extended Aerosol Inorganic Model (E-AIM), and the University of 

Manchester System Properties (UManSysProp) (Clegg et al., 1998; Topping et al., 2016) use group contribution methods to 

calculate water activity for organic species of atmospheric relevance. However, involving these thermodynamic simulations 

in transport or climate models to predict the hygroscopicity for such a large number of organic compounds in ambient aerosols 

is computationally expensive. Moreover, these models, based on parameterizations from measurements, are semi-empirical, 75 

and thus need more experimental data to constrain their predictions (Suda and Petters, 2013). Particularly, when it comes to 
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very dry conditions, these models may perform even worse and cannot capture the non-ideality of the solutions accurately 

(Ohm et al., 2015). Therefore, quantifying the hygroscopicity of atmospheric relevant organic species through laboratory 

measurements by systematically varying the type of studied organics is an intrinsic necessity. Chan et al. (2008) studied the 100 

hygroscopic properties and CCN activities of a series of dicarboxylic acids and saccharides using an electrodynamic balance 

(EDB) and found that the CCN activities of highly water soluble organic compounds can be well predicted by the Köhler 

theory. Suda et al. (2014) examined the hygroscopicity of a few synthetic organic compounds that are atmospheric relevant 

but not commercially available using a CCN counter (CCNc). They found that the compounds with hydroxyl or carboxyl 

groups are the most hygroscopic, while the ones with nitrate or methylene are the least. Jing et al. (2016) investigated the 105 

hygroscopic properties of a series of dicarboxylic acids with levoglucosan using a HTDMA, but they mainly focused on the 

multicomponent interactions between organic compounds. Marsh et al. (2017) collected experimental hygroscopicity data for 

23 organic compounds by a comparative kinetics EDB (CK-EDB) to compare with thermodynamic predictions and discussed 

that the hygroscopicity of organic compounds with increasing branching and chain length are poorly represented by models.  

All these cases discussed above shows that there is already some experimental hygroscopicity data for organics with high 110 

atmospheric abundance and relevance (Peng et al., 2001; Prenni et al., 2007; Chan et al., 2008; Lambe et al., 2011; Kuwata et 

al., 2013; Marsh et al., 2017; Lei et al., 2018). However, some of these measurements were conducted using different 

techniques rather than the HTDMA, all of which have different limitations. Measurements using a CCNc could only probe the 

hygroscopic properties or CCN activities at supersaturated conditions, where many compounds may already fully dissolve in 

water droplets. The EDB or CK-EDB approaches normally analyze the droplets in the micrometer size range, far beyond the 115 

size range of atmospherically relevant aerosols. In contrast, the HTDMA system allows direct measurement of particle 

hygroscopicity at subsaturated conditions and for particles at the size from tens to a few hundreds nanometers, which is a good 

complement closing the gaps beyond the reaches of other techniques. Furthermore, some of the aforementioned studies using 

similar HTDMA systems focused on quite a small number of organics discussing only one or two properties potentially 

influencing the hygroscopicity, leading to a limited coverage of the experimental datasets. Thus, a general picture in 120 

understanding the observed hygroscopicity among different organic species still remains unclear.  

Therefore, in this work, we extend the compositional complexity and diversity of the studied organic compounds with varying 

functional groups, molecular structures and other relevant physico-chemical properties. We try to form a systematic matrix of 

experimentally- determined HTDMA data synthesizing a large suite of organics, providing unambiguous measurements of 

particles at atmospherically relevant size range. Combined with these experimental data, we aim to evaluate the roles of 125 

different physico-chemical properties that play in organic hygroscopicity and gain some insight on their limitations and 

applicability. In addition, predictions from two widely used thermodynamic models, E-AIM and the UManSysProp, are 

compared against our experimental data, which may benefit the validation and improvement of the fidelity of these models.  
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2 Measurements 

Submicron aerosol particles were generated by nebulizing the aqueous solutions (0.1 g L-1) of each compound using a constant 

output atomizer (TSI, 3076). The solutions were prepared by using ultrapure water (Millipore, resistivity ≥ 18.2 MΩ). The 170 

physico-chemical properties of the studied 23 compounds are summarized in Table 1. 

After particle generation, the particles were introduced into a custom-made HTDMA system where their hygroscopic growth 

factor (GF(RH)) can be measured. GF(RH) is defined as Eq. (1):  

𝐺𝐹(𝑅𝐻,𝐷0) =
𝐷(𝑅𝐻)

𝐷0
 ,           (1) 

where D(RH) and 𝐷0 are the equilibrium mobility diameter of the particles at a given RH and under dry conditions (< 10 % 175 

RH), respectively. Figure S1 shows the schematic of the HTDMA system. The detailed schematic of the HTDMA system can 

be found in Tan et al. (2013). Residence time for humidication of the generated aerosols is around 2.7 seconds. Calibration of 

the system was performed using ammonium sulfate (AS) and the results shown in Fig. S2 display that the measured 

hygroscopic behaviour of AS agreed well with previous studies with the deliquescence RH around 78 %.  

Swietlicki et al. (2008) summarized the potential sources of error in HTDMA measurements and concluded that the reliability 180 

of the measured data is strongly associated with the stability and accuracy of DMA2 RH as well as the accurate measurement 

of particle diameter by DMAs. According to Mochida and Kawamura (2004), the uncertainty in the measured GF can be 

calculated by Eq. (2): 

 √(𝐺𝐹
√2𝜀𝐷𝑝

𝐷𝑝
)
2

+ (𝜀𝑅𝐻
𝑑𝐺𝐹

𝑑𝑅𝐻
)
2

,           (2) 

where GF is the measured growth factor with respect to any measured RH, 𝜀𝐷𝑝 and 𝜀𝑅𝐻 are the errors in the measured Dp and 185 

RH. In our system, the accuracy of DMA2 RH was maintained to be ±1% and the uncertainty for the mobility diameter was 

±1% according to PSL (Polystyrene Latex particles) calibration. Hence, for our system, 𝜀𝑅𝐻  and 𝜀𝐷𝑝/Dp are 1% and 0.01, 

respectively. The calculated uncertainty according to the above-mentioned method is added in the measured GF in the 

following section. 

According to κ-Köhler theory, we converted the measured hygroscopic growth factor to the single hygroscopicity parameter 190 

κ (Eq. 3-6) to facilitate the comparison of the hygroscopic properties among different compounds (Petters and Kreidenweis, 

2007): 

𝜅 = (𝐺𝐹3 − 1)(
𝐾𝑒

𝑅𝐻
− 1),           (3) 

𝐾𝑒 = 𝑒𝑥𝑝⁡(
4𝜎𝑠𝑜𝑙𝑀𝑤

𝑅𝑇𝜌𝑤𝐷(𝑅𝐻)
),           (4) 

𝑅𝐻/100⁡% = 𝑎𝑤𝐾𝑒,           (5) 195 

𝜅 =
(𝐺𝐹3−1)(1−𝑎𝑤)

𝑎𝑤
,           (6) 
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where 𝑎𝑤 is the water activity, 𝑀𝑤 and 𝜌𝑤 are the molar mass and the density of pure water at temperature T, respectively; 

𝜎𝑠𝑜𝑙  is the solution droplet surface tension, which was assumed to be the surface tension of water (0.072 J m -2) and R is the 

ideal gas constant. 205 

3 Modeling 

The E-AIM and UManSysProp are applied in this study to simulate the hygroscopic behaviour of the 23 organic species. E-

AIM is a thermodynamic model for calculating gas, liquid and solid partitioning in aerosol systems (Clegg et al., 1998; Wexler, 

2002), while UManSysProp (University of Manchester System Properties) is an online model to predict the hygroscopic 

growth factors of organic and inorganic species. Both models use the group contribution method of Universal quasi-chemical 210 

Functional group Activity Coefficients (UNIFAC) to characterize the subgroups of organic molecules and calculate activity 

coefficients based on the contributions from these subgroups (Fredenslund et al., 1975; Hansen et al., 1991). The detailed input 

setting and calculations for E-AIM and UManSysProp are given in Supplement. 

4 Results and discussion 

4.1 Hygroscopicity of individual organics 215 

In this section, we summarized the measured and predicted hygroscopic properties of the 23 organic species, which are 

classified into three groups based on their functionality. Particles at the dry size of 200 nm were selected for analysis. 

4.1.1 Carboxylic acids 

Carboxylic acids are the most abundant water-soluble components identified in atmospheric aerosols (Chebbi and Carlier, 

1996; Mochida et al., 2003; Kundu et al., 2010). Hygroscopic properties of straight-chain dicarboxylic acids have been 220 

extensively investigated in previous studies (Chan et al., 2008; Kuwata et al., 2013; Rickards et al., 2013), however, 

experimental data for dicarboxylic acids with additional substitutions and tricarboxylic acids are limited. To achieve a 

comprehensive overview of the hygroscopicity of carboxylic acids, we measured the water uptake of several common straight-

chain dicarboxylic acids in the atmosphere and further extended the hygroscopic measurements for dicarboxylic acids with 

substitutions and tri-carboxylic acids. Figure 1 shows the measured and predicted humidograms of straight-chain dicarboxylic 225 

acids (Fig. 1a), dicarboxylic acids with substitutions (Fig. 1b) and tricarboxylic acids (Fig. 1c), respectively. Need to note that 

the E-AIM model cannot simulate the dissociation of tricarboxylic acids in aqueous phase. Hence, the hygroscopic growth of 

tricarboxylic acids was only modeled with the UManSysProp. 

Among the studied straight-chain dicarboxylic acids, only malonic acid showed continuous hygroscopic growth with 

increasing RH and the measured GF at 90 % RH was 1.47, which agrees well with previous studies (Peng et al., 2001; Prenni 230 

et al., 2001; Wise et al., 2003). Figure 1a also shows that the hygroscopic behaviour of malonic acid was well represented by 
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𝐾𝑒 = exp⁡(
4𝜎𝑠𝑜𝑙𝑀𝑤

𝑅𝑇𝜌𝑤𝐷(𝑅𝐻)
) , (3)
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the E-AIM but overestimated by the UManSysProp. The other straight-chain dicarboxylic acids (i.e., succinic, adipic, pimelic, 

suberic and azelaic acids) did not show any water uptake at RH <= 90 %, which was not captured by the UManSysProp. 

Assuming a solid state of these dicarboxylic acids, the E-AIM was capable to predict their non-hygroscopicity. Similar results 

were also found in previous studies (Prenni et al., 2001; Kuwata et al., 2013; Rickards et al., 2013; Jing et al., 2016) and Chan 

et al. (2008) explained that these dicarboxylic acids have quite low-solubility in water and once they crystallized, they would 250 

not deliquesce even under high RH conditions (e.g., RH < 90 %). Moreover, we found that the measured GFs of these 

dicarboxylic acids were less than 1, which could be attributed to the adsorption of a small amount of water at the particle 

surface, leading to the rearrangements of the microstructure and compaction of the particle (Mikhailov et al., 2004; Mikhailov 

et al., 2009).  

The humidograms of the three dicarboxylic acids with substitutions (i.e., double bond or hydroxy group) are illustrated in Fig. 255 

1b. The continuous water uptake indicates that these particles may be at liquid state under dry conditions. We observed a small 

leap of the GFs from 80 % to 85 % RH, implying that these particles were only partially deliquesced and further dissolution 

occurred at elevated RH. However, considering the measurement uncertainties, the statement of the partial deliquescence could 

not be fully confirmed and thus further evidence from other measurements is needed. On the other hand, the E-AIM could well 

represent their hygroscopic properties at RH between 10 -90 %, while there are still some deviations between the measurements 260 

and the UManSysProp predictions, especially for malic and tartaric acids, even taking into account of their measurement 

uncertainties. This could be due to that the UManSysProp is a more simplified model taking into account less input data or 

parameterization. For instance, the phase state or the dissociation process of the studied compound at different conditions could 

not be assumed or considered in the simulation. Therefore, additional processes or properties should be included into this 

model for the further improvements of its predictions. 265 

A similar gradual phase transition was observed for aconitic acid and citric acid (Fig. 1c), while the other tricarboxylic ac id 

showed continuous hygroscopic growth over the studied RH range, indicating no obvious phase change for these particles 

upon hydration. However, it is quite interesting to note that predictions from the UManSysProp become more approaching to 

the experimental data, especially above 80 % RH, considering the measurement uncertainties. 

4.1.2 Amino acids 270 

Figure 2 shows the measured humidograms of the 5 amino acids and their corresponding thermodynamic predictions. 

Continuous water uptake was observed for particles of serine, glutamine and aspartic acid,, indicating that there was no phase 

transition occurred during the hydration cycle. Considering the measurement uncertainties, no water uptake is observed for 

alanine particles, which has also been reported in previous works (Chan et al., 2005; Darr et al., 2018). For glycine, we observed 

a continuous shrink in wet particle size from 30 % RH to 80 % RH, and above 80 % RH the GFs increased slightly. Previous 275 

studies have reported that glycine particles started to absorb water above 60 % RH (Chan et al., 2005; Marsh et al., 2017; Darr 

et al., 2018). prior to deliquescence due to capillary effect, which could also be the potential reason for the shrinkage in particle 

size of glycine during hydration as a result of the microstructural rearrangement of particles upon humidification. The sizing 
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of these structurally-rearranged particles, especially at lower RH range, will be erroneous as the volume change of the particles 

upon wetting may not only due to the water absorption but also the compaction of the original particles. This phenomena 

complicates the accurate estimation of the actual water amount absorbed by the particles due to their intrinsic hygroscopicity. 

In a recent study by Nakao et al. (2014), in order to avoid the influence from particle restructuring upon wetting, they sized 315 

wet particles without drying after generation and studied their droplet activation using a wet CCN. This approach they 

introduced might be an easier attempt, offering an unique solution for current problem from particle restructuring during the 

hydration processes. 

Predictions of serine, glutamine, alanine and aspartic acid are generally in better agreement with measurements than that of 

glycine, although overestimation was observed for all the 5 amino acids. Luo et al. (2020) discussed that the UNIFAC ignored 320 

the intramolecular interactions between amine and carboxylic groups in both models, resulting in the observed difference in 

the measured and predicted GFs. 

4.1.3 Sugars and Sugar alcohols 

Two-stage-like gradual hygroscopic growth was also observed for particles of fructose, mannose, sucrose, xylitol and L-

arabitol, shown in Fig. 3. The experimental results of those sugars and sugar alcohols are consistent with previous literature 325 

data (Chan et al., 2008; Estillore et al., 2017). Compared to other sugars and sugar alcohols, sucrose is slightly less hygroscopic 

with a mild downward trend in GFs at low RHs and the GF at 85 % RH was around 1.21, which is similar with the results of 

Estillore et al. (2017). Moreover, mannitol is the least hygroscopic or even hydrophobic with GF less than unity at 90 % RH, 

which also agrees with previous literature (Ohrem et al., 2014; Martău et al., 2020).  

Similarly, phase transition or microstructural rearrangements of particles was not included in the models. Thus, these sugars 330 

and sugar alcohols were generally less hygroscopic than the values predicted by the E-AIM (except L-arabitol) under low RH 

conditions. However, at elevated RHs, whereas particles are fully dissolved, the E-AIM predictions agree well with most of 

the measured hygroscopic GFs within the measurement uncertainties. 

4.2 Relating the hygroscopicity of organic compounds to their physico-chemical properties 

In this section, we explore the effects from different physico-chemical properties such as molecular functionality, water 335 

solubility and organic oxidation level that potentially contribute to the observed hygroscopicity κ. Note that the hygroscopicity 

parameter κ discussed in this section was converted by using growth factor data measured at 90 % RH. 

4.2.1 κ vs. organic functionality 

Figure 4a shows the measured hygroscopicity of the 23 organics as a function of carbon number. The functional groups with 

their corresponding numbers are indicated with colors and symbols. In order to facilitate the comparison of the compounds 340 

with the same carbons, the carbons with only one compound are not illustrated. For the studied organic compounds with the 

same carbon number, the hygroscopicity was increased by the addition of extra functional groups to the carbon backbone. For 
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instance, maleic, malic, tartaric and aspartic acid with extra functional groups (e.g., C=C, -OH and -NH2) with respect to 370 

succinic acid with only two -COOHs are more hygroscopic. For C7 compounds, adding an carboxylic acid group to the carbon 

backbone leads to an elevated hygroscopicity from pimelic to tricarboxylic acid. Moreover, organic compounds with the same 

carbon numbers but different molecular functionality presented quite distinct hygroscopicity. For example, for C3 compounds, 

if replacing the -CH3 with an -OH or replacing the -OH group by an -COOH in their parental molecules, the hygroscopicity 

was significantly increased. Taking another example from C4 compounds, the organics with a hydroxyl group (-OH) instead 375 

of an -NH2 or with a double bond (C=C) instead of the hydroxyl group in their carbon backbones were more hygroscopic. 

Similar difference in hygroscopicity was also observed between aconitic acid (C6) with a C=C and citric acid (C6) with a (-

OH). By summarizing the results in current study, κ increased with the functionality in the following order: (-CH3 or -NH2) 

< (-OH) < (-COOH or C=C or C=O). However, it has to be noted that this comparison is quite qualitative, might be ambiguous 

and further evidence from other organic compounds is needed in order to drive a more general conclusion.  Suda et al. (2012) 380 

and Chen et al. (2019) concluded that the hygroscopicity of organic compounds is closely related to their individual polarity 

and highly polar compounds are usually more hygroscopic. Kier (1981) ranked the polarity of different functional groups in 

the sequence of -CH3< -NH2< -OH< -CHO< -NH2OH< -COOH, which could explain the difference in the hygroscopicity of 

organics with various functionalities in our study.  

Figure 4b shows that the measured hygroscopicity of the straight-chain dicarboxylic acids alternate with the parity of the 385 

carbon numbers. It has to be noted that data of glutaric acid (C5) is quoted from Chan et al. (2008). Bilde et al. (2003) observed 

an alternation in the volatility of dicarboxylic acids with the number of carbon atoms similar to the ones we observed for their 

hygroscopicity. They attributed this to the alternation in the molar enthalpies of fusion of those compounds. Moreover, we 

observed that some compounds (xylitol vs. L-arabitol and fructose vs. mannose) share the same molecular formular or 

functionality but vary differently in hygroscopicity as shown in Fig. 4c. Both findings suggest that other physico-chemical 390 

properties of organics besides molecular functionality may also contribute to the observed variation in their hygroscopicity. 

Previous studies (Marcolli and Peter, 2005; Petters et al., 2017) reported that the position of the functional groups could 

influence the hygroscopicity properties of organic compounds. For instance, Petters et al. (2017) suggested that organic 

molecules with the hydroperoxyl group close the end of carbon chain were more hygroscopic. Similarly, fructose observed in 

our study, with the hydroxyl group in the tail of the carbon chain and being far away from the C=O group, is more hygroscopic 395 

than mannose of which these two groups are much closer to each other. 

4.2.2 κ vs. water solubility and molar volume 

Previous studies suggested that for highly soluble compounds which are fully dissolved in the aqueous droplet, their 

hygroscopicity are mainly controlled by their molar volume (𝑀𝑜𝑟𝑔 /𝜌𝑜𝑟𝑔 ); while for slightly soluble compounds, their 

hygroscopicity is limited by their low water solubility (Petters et al., 2009; Kuwata et al., 2013; Nakao, 2017; Wang et al., 400 

2019). Hence, we considered two regimes in our study: (A) compounds that fully dissolved (highly soluble with solubility > 

7×10-1 g/ml in this work or not saturated regime) and  (B) compounds that are not fully dissolved (slightly or sparingly soluble 
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compounds with solubility in the range between 1e-3 to 3e-1 g/ml or saturated regime) in the aqueous droplets under 90 % RH 

condition. In regime A, as shown in Fig. 5, the hygroscopicity decrease with increasing molar volume. Besides molar volume, 

the van’t Hoff factor (i), which accounts for the degree of dissociation of a compound in water, could also contribute to the 420 

overall hygroscopicity for fully dissolved compounds. Sugars, as non-electrolytes with van’t Hoff factor of 1, do not dissociate 

in aqueous solutions (Giebl et al., 2002; Koehler et al., 2006; Rosenørn et al., 2006) and thus are less hygroscopic than the 

dicarboxylic acids which can dissociate in water and contribute to the reduction in water activity. Frosch et a l. (2010) related 

the van’t Hoff factor with the pKa values for a series of carboxylic acids and found that the stronger the acid with smaller 

values of pKa, the larger the van’t Hoff factor. This could explain why maleic acid, even with a larger molar volume but a 425 

smaller pKa value (1.8) is more hygroscopic than malonic acid (pKa = 2.4).  

Organic compounds with low water solubility (regime B) could be obviously divided into two categories according to their 

hygroscopicity. One is non- or almost non-hygroscopic organics with κ close or equal to 0. These organics might present at 

solid or crystalline state and did not deliquesce at our measurement conditions during the whole RH range. Thus, their 

hygroscopicity is not only limited by their low water solubility but also their phase state and the energy that needed for the 430 

phase transition. Compared to these non-hygroscopic slightly/sparingly soluble organic compounds, there are some other 

slightly/sparingly soluble organics, showing moderately water uptake with κ values larger than 0.1. These organics with limited 

solubility may already partially deliquesce under our studied RH conditions (Hartz et al., 2006; Chan et al., 2008), and we 

found that their hygroscopicity increase with water solubility. This is physically reasonable that the aqueous droplet of these 

organics with limited solubility can be considered as being composed of an effectively insoluble core with a saturated solution. 435 

The organic with higher water solubility would dissolve more and have a higher molar concentration in the saturated solution. 

The higher molar concentration corresponds to a stronger reduction in water activity, which would lead the particles to become 

more hygroscopic. 

4.2.3 κ vs. O:C ratio 

Previous studies have suggested that the hygroscopicity parameter of organic species (𝜅𝑜𝑟𝑔) is closely related with their O:C 440 

ratios (Jimenez et al., 2009; Chang et al., 2010; Massoli et al., 2010; Cappa et al., 2011; Lambe et al., 2011; Kuwata et al., 

2013; Rickards et al., 2013). In this study, we plotted our measured κ of the 23 organic compounds with their O:C ratios in 

Fig. 6, and for a wider atmospheric implication we compared them against previous results obtained from different atmospheric 

environments (Mei et al., 2013; Wu et al., 2013; Hong et al., 2015; Wu et al., 2016; Deng et al., 2018; Hong et al., 2018; Kuang 

et al., 2020). Clearly, ambient organics show much lower O:C value as seen in Fig. 6. Ng et al. (2010) compiled the measured 445 

O:C data from different environments and concluded that at most sites, ambient organic aerosols mainly consist of oxygenated 

organic material (OOA) and hydrocarbon-like organic material (HOA). HOA, which arises from vehicle emissions, is the least 

oxidized with the average O:C value less than 0.2 (Ng et al., 2010; Xu et al., 2015; Xu et al., 2016; Cao et al., 2019; Li et al., 

2020). Hence, with the inclusion of HOA in ambient aerosols, the average O:C value of the bulk organic is less than 1, being 

generally lower than our laboratory-generated aerosols. 450 
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A general trend of the increase of 𝜅𝑜𝑟𝑔with increasing O:C has also been observed for laboratory results but the correlation 

between κ and O:C falls into two categories. One is a non-hygroscopic organic group with a weak O:C-dependence as the blue 

shaded area in Fig. 6. We suggested these compounds with limited water solubility might not deliquesce yet under 90 % RH 485 

as discussed previously. The other slightly/sparingly soluble organics shaded in red area in Fig. 6 is a moderate-hygroscopic 

group with a slightly stronger O:C-dependence. However, the correlation of both categories is not good, which may be effected 

from the other properties which discussed above. Compared to those laboratory-generated pure organic compounds, ambient 

organics are more complex, with divergent O:C-dependent hygroscopicity among different environments. For instance, the 

hygroscopicity of urban aerosols in Beijing was almost constant, being less sensitive to the variations of the organic oxidation 490 

level, which is similar to our non-hygroscopic organics (Wu et al., 2016). On the contrast, the suburban aerosols in central 

Germany (Wu et al., 2013) and in Guangzhou (Hong et al., 2018) exhibit a slightly stronger influence from their O:C ratio, 

being close to the behaviour (slope ≈ 0.12) of the moderate hygroscopic organics with relative higher water solubilities in our 

study. As discussed in previous works (Rickards et al., 2013) some of the laboratory-generated pure organics share identical 

O:C ratio but differ widely in hygroscopicity. However, no molecular-specific information could be concluded further for 495 

those ambient organics. This, on the other hand, indicates that great uncertainties may arise from the approximation of organic 

hygroscopicity based on their atomic O:C ratio for ambient aerosols. The use of a simplified average property (i.e., O:C ratio) 

to describe the hygroscopicity of ambient organics, whose constitute may be complex, is quite risky as compounds with similar 

O:C ratio may vary considerably in hygroscopicity. Additional measurements of other properties (e.g., functionality or water 

solubility) may be difficult due to both the highly complex mixture of ambient aerosols and technique limitations. However, 500 

laboratory-generated surrogate mixtures representing the complexity of ambient aerosols at least should be examined to test 

the variety in the relationship between the O:C ratio and κ. 

5 Atmospheric implication 

Our laboratory observations reveal that current thermodynamic models may not always accurately simulate the hygroscopic 

behavior of organic compounds, despite their previous success. Phase transition may occur during the hydration cycle, which 505 

are not reasonably considered in the thermodynamic models. This will lead to significantly biased predictions of organic 

hygroscopic behaviour, as can be seen in the case of the slightly soluble organics in our study. Moreover, the interactions 

between functional group and water molecules were previously believed to dominate particle hygroscopicity rather than the 

interactions between functional groups. However, we found that the groups-groups interaction may be also important in water 

uptake processes. This effect is clearly revealed in our study by the discrepancy in the hygroscopicity of amino acids between 510 

measurements and model prediction. These limitations suggest that an improved mechanism with the inclusion of these 

processes (e.g., phase transition and intramolecular interactions) into these thermodynamic models is needed and require 

comprehensive data from empirical measurements to complement these models for validating predictions. Furthermore, extra 
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care must be taken to deal with even more complex systems, such as multi-component mixtures with the presence of inorganic 

compounds in atmospheric particles.  525 

Previous studies (Swietlicki et al; 2008; Duplissy et al., 2009; Wu et al., 2011; Suda et al., 2013) suggested that the residence 

time for humidification may also potentially influence the observed water uptake of particles as the measured particles, 

especially for some organic compounds, may not reach their equilibrium humidified sizes during a quite short time of wetting. 

However, extending the humidification time for hours using the EDB, no water uptake was also observed for most of our 

studied dicarboxylic acids (Chan et al., 2008) as well as for glycine and alanine particles (Chan et al., 2005), which was also 530 

confirmed by Darr et al., (2018), using another different measurement technique, i.e., ATR-FTIR (Attenuated Total Reflection 

Fourier Transform Infrared) with a residence time of 2 minutes. Estillore et al. (2017) reported a quite similar value of GF at 

90% RH (1.24) for sucrose as ours using a different HTDMA with a much longer residence time (40s), similar as the one by 

Hodas et al. (2015) based on DASH-SP (Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe) with a residence 

time of 4s. However, at intermediate RHs, our measured GF were much lower than theirs. Moreover, for glutamine and serine 535 

particles, no deliquescence was observed by Chan et al. (2005) even with a much longer residence time, while in our study a 

moderate water uptake for both compounds were observed. Using an STXM (Scanning Transmission X-ray Microscopy) with 

a residence time of 5-10 minutes, Piens et al. (2016) obtained a lower GF of fructose compared to ours, which should not be 

caused by the evaporation losses due to its low volatility. These aforementioned comparisons pointed out the influence of 

residence time on the observed water uptake of particles might not be conclusive. Therefore, other technical reasons should be 540 

raised for the measurement discrepancies between different instruments and studies using similar technique but different 

residence times should be suggested for understanding the effect from residence time on hygroscopicity.” 

In the previous section discussing the role of different physico-chemical properties of organics plays in aerosol hygroscopicity, 

the parameter κ was converted by the measured GF under 90 % RH. For those low or sparingly soluble organic compounds, 

the GF_derived κ (also known as apparent κ) is RH-dependent (see Fig. S3 as an example) and cannot express their intrinsic 545 

κ (expressed by fully dissolved compounds), when compounds are sufficiently soluble in water. As the RH increases, further 

dissolution of these organic compounds with promoted hygroscopicity is expected. In the real atmosphere, different RH 

conditions including both sub- and supersaturation can be reached. The measured GF or the apparent κ of ambient aerosols at 

a certain RH may not be able to reveal their real hygroscopicity under various atmospheric conditions. Further calculations of 

other variables, for instance the liquid water content (LWC), surface area of wet particles and number concentration of CCN 550 

associated with the apparent κ will be significantly biased. If possible, hygroscopicity measurements over large saturation 

range up to supersaturation, especially with the combination of CCN measurements provide an option to reduce the 

uncertainties, but requiring fast and stable scanning of RHs during the experiments. Technical improvement, for example in 

HTDMA system is essentially needed. 
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 800 

Table 1. Substances and their relevant properties investigated in this study. 

Compounds 

 

Molecular  

structure   

Chemical 

formula 

Molar 

weight 

(g mol-1) 

Density 

(g cm-3) 
O/C 

Solubility 

(g ml-1) 
Supplier, purity 

Ammonium 

sulfate 

 

(NH4)2SO4 132.14a 1.77a - 0.77a Macklin, 99.99% 

Sugars  

D(-)-Fructose 

 

C6H12O6 180.16a 1.59a 1 3.75a Sigma Aldrich, ≥99% 

D(+)-Mannose 

 

C6H12O6 180.16a 1.54a 1 2.48a Sigma Aldrich, ≥99% 

Sucrose 

 

C12H22O11 342.30a 1.58a 0.9 2.1b Sigma Aldrich, 99% 

Sugar alcohols  

Xylitol 

 

C5H12O5 152.15a 1.52a 1 0.642b Sigma Aldrich, ≥99% 

L-(-)-Arabitol 

 

C5H12O5 152.15a 1.15a 1 0.664d Sigma Aldrich, ≥98% 

D-Mannitol 

 

C6H14O6 182.17a 1.52a 1 0.216b Sigma Aldrich, ≥99.0% 

删除了:  Substance 

删除了: Supplier /purity
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Carboxylic acids  

Malonic acid 

 

C3H4O4 104.06a 1.62a 1.33 0.763b Sigma Aldrich, 98% 

Succinic acid 

 

C4H6O4 118.09a 1.19a 1 0.0832b Sigma Aldrich, ≥99.0% 

Adipic acid 

 

C6H10O4 146.14a 1.36a 0.67 0.03b Sigma Aldrich, 99% 

Pimelic acid 

 

C7H12O4 160.17a 1.33a 0.57 0.05b 
Yuanye Bio-Technology, 

98% 

Suberic acid 

 

C8H14O4 174.19a 1.30a 0.5 0.0006a 
Yuanye Bio-Technology, 

99% 

Azelaic acid 
 

C9H16O4 188.22a 1.03a 0.44 0.0024a 
Yuanye Bio-Technology, 

98% 

Maleic acid 

 

C4H4O4 116.07a 1.59a 1 0.79a Aladding, ≥99.0% 

DL-Malic acid 

  

C4H6O5 134.09a 1.61a 1.25 0.592b Sigma Aldrich, ≥99% 

Tartaric acid 

 

C4H6O6 150.09a 1.79b 1.5 1.43e CATO, 99.7% 

cis-Aconitic acid 

 

C6H6O6 174.11a 1.66a 1 0.4d Sigma Aldrich, ≥98% 

Citric acid 

 

C6H8O7 192.12a 1.54a 1.17 0.383b Sigma Aldrich, ≥99.5% 

Butane-1,2,4- 

tricarboxylic acid 
 

C7H10O6 190.15a 1.48a 0.86 0.3897c Bidepharm, 97% 

Amino acids  
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DL-Alanine 

 

C3H7NO2 

 
89.09a 1.42a 0.67 0.164b Macklin, 99% 

Glycine 

 

C2H5NO2 75.07a 1.59a 1 0.25a Sigma Aldrich, ≥99.0% 

L-Aspartic  

 

C4H7NO4 133.10a 1.66a 1 0.005a Sigma Aldrich, ≥99% 

L-Glutamine 

 

C5H10N2O3 146.14a 1.47a 0.6 0.0413b Sigma Aldrich, ≥99.5% 

L-Serine 

 

C3H7NO3 105.09a 1.60a 1 0.425b Sigma Aldrich, ≥99% 

a https://www.chemicalbook.com/ b https://pubchem.ncbi.nlm.nih.gov/ c https://www.chemspider.com/ 

d https://hmdb.ca/ e Peng et al. (2001)  805 

https://www.chemicalbook.com/
https://pubchem.ncbi.nlm.nih.gov/
https://www.chemspider.com/
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Figure 1: Hygroscopic growth curves of straight-chain dicarboxylic acids (a), dicarboxylic acids with substitutions (b) and 

tricarboxylic acids (c) particles (200 nm). Points represent the measurement data; the solid lines indicate the E-AIM predictions 

(solid, non-hygroscopic organic GF=1) and the dashed lines show the UManSysProp calculated predictions.   
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the E-AIM predictions (solid, non-hygroscopic organic GF=1) 

and the dashed lines show the UManSysProp calculated 815 
predictions.…
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Figure 2. Hygroscopic growth factors of amino acids. Points represent the measurement values; the solid lines indicate the E-AIM 

predictions (solid, non-hygroscopic organic GF=1) and the dashed lines represent the UManSysProp predictions.   
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 825 

Figure 3. Hygroscopic growth curves of sugars (a) and alcohols (b). Points represent the measurement values; the solid lines indicate 

the E-AIM predictions (solid, non-hygroscopic organic GF=1) and the dashed lines represent the UManSysProp calculated 

predictions.  
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 835 

Figure 4. Hygroscopicity of organics as a function of carbon number (a); hygroscopicity of dicarboxylic acids vs carbon number (b); 

hygroscopicity of isomers (c); organic hygroscopicity as a function of their functionality with the same carbon number (d).  
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Figure 5. Hygroscopicity of organic compounds as a function of molecular volume (A) and solubility (B).  
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Figure 6. Correlation between O:C ratio and 𝜿𝒐𝒓𝒈, and comparison with previous literature results. Blue and red shades represent 

the fitting of results of non-hygroscopic and more hygroscopic organics, respectively. 
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