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Abstract. Wildfires can significantly impact air quality and human health. However, little is known about how different fuel 

bed components contribute to these impacts. This study investigates the air quality impacts of duff and peat consumption 

during wildfires in southeastern United States, with a focus on the differing contributions of fine particulate matter less than 

2.5 μm in size (PM2.5) and ozone (O3) to air quality episodes associated with the four largest wildfire events in the region during 

this century. The emissions of duff burning were estimated based on a field measurement of a 2016 southern Appalachian fire. 10 

The emissions from the burning of other fuels were obtained from the Fire INventory from NCAR (FINN). The air quality 

impacts were simulated using a 3-D regional air quality model. The results show the duff burning emitted PM2.5 comparable 

to the burning of the above-ground fuels. The simulated surface PM2.5 concentrations due to duff burning increased by 61.3% 

locally over a region approximately 300 km within the fire site and by 21.3% and 29.7% in the remote metro Atlanta and 

Charlotte during the 2016 southern Appalachian fires, and by 131.9% locally and by 17.7% and 24.8% in the remote metro 15 

Orlando and Miami during the 2007 Okefenokee fire. However, the simulated ozone impacts from the duff burning were 

negligible due to the small duff emission factors of ozone precursors such as NOx. This study suggests the need to improve the 

modeling of PM2.5 and the air quality, human health, and climate impacts of wildfires in moist ecosystems by including duff 

burning in global fire emission inventories. 

1 Introduction  20 

Wildfires, caused by natural factors or human activities, have a fundamental impact on air quality, human health, and climate. 

Wildfires contribute up to 40% organic carbon (OC) emissions in Europe, 42% in Asia, 64% globally, and dominate the 

regional particular matters (PM) concentrations over the major fire regions in Africa and South America (Granier et al., 2011; 

Diehl et al., 2012). Fires contribute 26.9% of total volatile organic compounds (VOC) emissions and 27.5% of PM emissions 

in the U.S. according to the 2014 US Environmental Protection Agency (EPA) National Emissions Inventory (NEI) (USEPA, 25 

2017). Wildfires are large sources of atmospheric aerosols (Crutzen and Andreae, 1990; Bond et al., 2005; Bowman et al., 

2009; Brey and Fischer, 2016), contributing 30% of the aerosol optical thickness (AOT) in Europe (Hodzic et al., 2007), more 

than 80% in the Amazon area during the fire season (Reddington et al., 2019), and 10% globally (Tosca et al., 2013). In the 

contiguous US during 2008 - 2012, fires contribute 11% of the total PM2.5 concentrations (Wilkins et al., 2018).  
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 30 

Wildfires emit tracer gases including ozone precursors and therefore contribute to tropospheric ozone, a critical air pollution 

compound that adversely impacts human health (McKee, 1993). Ozone production has been detected in fire plumes (Goode et 

al., 2000; Jaffe et al., 2008). Wildfires accounts for 3.5% of global tropospheric ozone production, though ozone production 

rates of individual fires vary with location, time, fuel type, combustion efficiency, meteorology, and local pre-existing 

atmospheric composition, etc. (Alvarado et al., 2010; Jaffe and Wigder, 2012). In the United States, when fires are present, 35 

14% of simulated maximum daily 8-h average ozone concentrations surpassed 70 ppb (Wilkins et al., 2018), which is the 

standard from EPA.  

 

High-severity fire events have frequently impacted metropolitan regions. For example, the smoke from the 2013 Rim Fire and 

wildfires during 2017 and 2018 in California, US was transported long-range and affected large urban areas (Liu et al., 2016; 40 

Navarro et al., 2016; Mass and Ovens, 2019; Brown et al., 2020). The smoke from the 2009 Attica forest fires decreased the 

surface solar irradiance levels by 70% in Athens, Greece (Amiridis et al., 2012). The 2017 Italian Alps fire had a significant 

impact on metro Torino, Italy (Bo et al., 2020). Similar fire events impacted urban air quality in other regions around the world 

(Shaposhnikov et al., 2014; Mallia et al., 2015; He et al., 2016; Cuchiara et al., 2017). In many regions around the world, 

including the U.S., wildfires have an increasing trend during recent decades in both the number and the area of total large fires 45 

(Dennison et al., 2014; Barbero et al., 2015). In addition, weather with high fire potential has appeared more frequently. (Yang 

et al., 2011; Jolly et al., 2015; Abatzoglou and Williams, 2016), leading to an increasing concern on their adverse impact on 

air quality (Singh et al., 2012; Goodrick et al., 2013; Liu et al., 2014; Zhang and Wang, 2016). 

 

Negative impacts of wildfires on human health are devastating when smoke plumes are transported to populated metropolitan 50 

areas (Kunzli et al., 2006). Epidemiological studies have revealed fire emissions’ contribution to PM2.5 oxidative potential, 

which is related to respiratory and cardiovascular diseases (Verma et al., 2014; Yang et al., 2016; Fang et al., 2016). During 

the fire events in northwestern U.S. during August-September, a regional mortality of 183 due to PM2.5 exposure was estimated, 

in which 95% was contributed by fire emissions (Zou et al., 2019). Based on the U.S. respiratory hospital admissions and 

additional premature deaths during and after fire events, the economic loss is $11 – 20 billion due to short term exposures, and 55 

$76 – 130 billion due to long-term exposures (Fann et al., 2018).   

 

Several datasets and three-dimensional atmospheric models have been used to understand the amount, transport, and physical 

and chemical processes of fire emissions (Liu et al., 2020; Pan et al., 2020). Some widely used global fire emission inventories 

include the Global Fire Emission Dataset (GFED) (Randerson et al., 2012; Giglio et al., 2013; Van Der Werf et al., 2017), Fire 60 

INventory from NCAR (FINN) (Wiedinmyer et al., 2006; Wiedinmyer et al., 2011),  Global Fire Assimilation System (GFAS) 

(Kaiser et al., 2009; Kaiser et al., 2012), Fire Energetics and Emissions Research (FEER) (Ellison et al., 2014), and Quick Fire 

Emissions Dataset (QFED) (Darmenov and da Silva, 2013). Global atmospheric models such as the Community Earth System 
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Model (CESM) were used to study wildfire smoke transport and interactions with land and atmosphere (Jiang et al., 2020; 

Zhang et al., 2020; Zou et al., 2020) and the GEOS-Chem model was used to evaluate the wildfire contribution to atmospheric 65 

chemistry (Lu et al., 2016). Regional air quality models, such as the Weather Research and Forecasting model with Chemistry 

(WRF-Chem) and the Community Multiscale Air Quality (CMAQ) model have higher spatial resolutions, thus have 

advantages when simulating fire smoke aging and regional plume transport (Jaffe et al., 2008; Lu and Sokolik, 2017; San Jose 

et al., 2017; Wilkins et al., 2018; Guan et al., 2020).  

 70 

Emissions from duff burns are an important contributor to the global carbon cycle. Duff typically represents the detritus or 

dead plant organic materials fallen at the top layer of soil. Besides duff, peat is another burnable organic soil that typically 

represents the fermentation below the duff layer (Frandsen, 1987). “Organic soil” is often used to represent soil formed by 

plant and animal decomposition, including peat and duff. Duff, peat and organic soil were sometimes used interchangeably, 

and we focus on duff in this study. Temperate and boreal duff layers are well distributed in forests and swamps in North 75 

America, Europe and Asia (Wieder et al., 2006). Compared to the burning of above-ground fuel, duff burning can have a 

similar or larger amount of carbon emission, enlarging the regional and global effect from wildfires (Ballhorn et al., 2009; 

Reddy et al., 2015). Ground-based studies have been conducted to estimate the carbon loss from temperate duff flaming or 

smouldering. Davies et al. (2013) surveyed the peatland smouldering in the Scottish Highlands, UK and estimated a 17.5 ± 2.0 

cm burned depth of below-ground fuel and 9.6 ± 1.5 kg m-2 carbon loss due to smouldering. In North Carolina, US, the 1985 80 

Pocosin Lakes fire resulted in a carbon flux of 0.2 - 11 kg m-2, that varies with burned depth, vegetation type and burning 

severity (Poulter et al., 2006). Assuming 50% of the duff mass is carbon (Watts, 2013), this fuel loading results in a carbon 

loss of approximately 1.6 kg m-2. Watts (2013) estimated 4.18 kg m-2 carbon release from the wetland combustion in the Big 

Cypress National Preserve in southern Florida, US. Duff and peat are a major reservoir of wetland carbon and contribute 3% 

of global land cover (Gorham, 1991; Yu et al., 2010). The burning properties and emission factors of the below-ground organic 85 

soils, including duff and peat, are similar (Raaflaub and Valeo, 2009; Urbanski, 2014). The air quality impacts from peatland 

burning have also been evaluated in tropical peatlands in Indonesia (Page et al., 2002; Kiely et al., 2020). 

 

However, the air quality impacts of emissions from duff fires are still not well understood over some regions (Page et al., 2002; 

Hu et al., 2018). One of the reasons is the lack of the fire emission data (Ward et al., 2012), which is a large uncertainty source 90 

for simulations of the fire impacts on air quality. Satellite remote sensing is a very useful tool to obtain fire emissions with 

detailed global and regional coverage.  The organic soil burning over tropical peatlands has been considered in GFED 

(Randerson et al., 2012; Giglio et al., 2013; Van Der Werf et al., 2017). Indonesia peat fire emissions are also updated and 

evaluated in FINN (Kiely et al., 2019). However, compared to above-ground fuel burning, duff emissions are not documented 

enough by satellite-based global fire emission datasets in forest ecosystems, partially due to the presence of overhead canopies. 95 

Another reason is that duff burning usually occurs during the smouldering phase because of the relatively high soil moisture 

(Ottmar, 2014). Smouldering often lasts over a long time. Also, the emissions do not rise to high elevations due to low heat 
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release. Thus, the emissions, especially particles, have little impact on regional air quality in populated areas far from the 

source region.  

 100 

Similar to many world regions (e.g. tropical forests in southeast Asia (Page et al., 2002) and temperate forests in the Great 

British Isles (Davies et al., 2013)), the southeastern US is a duff-rich region because of the high humidity and large forest 

coverage (Zhu and Evans, 1994; Gaffen and Ross, 1999). The warm and moist climate makes vegetation growth and falling 

leaves and branches decompose fast and therefore accumulate as deep duff, especially in the southern Appalachians (Ottmar 

and Andreu, 2007) and the Okefenokee swamp (Watts and Kobziar, 2012), which are located in the northern and southern 105 

portions of this region, respectively. This region has some unique features among all US regions in the contributions to the 

carbon cycling and regional air pollution. On one hand, most fires in the southeastern US are prescribed (planned) and 

conducted in weather where duff consumption is minimized (Waldrop and Goodrick, 2012). Thus, duff burn may be only a 

small contributor to total pollutant emissions in this region. On the other hand,  there are large wildfires that occur under 

drought conditions and are close to populated areas, although the frequency and severity are usually small relative to those in 110 

the western US (Goodrick et al., 2013). Wildfires in the southeastern US usually occur in spring before the summertime rain 

season starts. Sometimes wildfires can occur in other seasons under drought conditions such as the southern Appalachians fire 

in fall 2016.  As described above, duff burning usually occurs during smouldering phase, however, this situation is changing 

with more frequent occurrences of droughts, which increases the flammability of the duff layer (Hille and Stephens, 2005).  

Duff burn during flaming phase of the 2016 Rough Ridge Fire in the southern Appalachian, which occurred  during a prolonged 115 

severe drought (Park Williams et al., 2017), was reported by fire managers and the related fuel consumption was measured 

(Zhao et al., 2019). The measured duff layer burned by the fire was 4.6 cm deep with 31.5 Mg ha-1 (3.15 kg m-2) fuel loading, 

estimated to account for approximately 60% of total PM2.5 emitted from the fire. The simulations including duff emissions 

conducted by Zhao et al. (2019) indicated that the duff burn was a major contributor to the air pollutions in the nearby metro 

Atlanta. In contrast, a model simulation study on all major 2016 southern Appalachian fires that excluded duff burning resulted 120 

in an underestimation of PM2.5 during the fire events (Guan et al., 2020).  

 

The Okefenokee swamp experienced fires during the dry years of 2007, 2011, and 2017, each with much larger burned area 

than the total burned area from the 2016 southern Appalachian fires. The burning of the duff layer was reported during all 

three fire events in the Okefenokee region (The 2007 Big Turnaround Fire: 125 

https://www.fws.gov/fire/downloads/fire_updates/BigTurnaround.FINAL.pdf, the 2011 Honey Prairie Fire: 

https://www.wunderground.com/blog/weatherhistorian/the-great-okefenokee-swamp-fire-of-2011.html; the 2017 West Mims 

Fire: https://gatrees.org/wp-content/uploads/2020/02/Wildfire-Damage-Assessment-for-the-West-Mims-Fire.pdf). However, 

it is not clear how much the duff burning from these fire events contributed to air pollutions in the populated areas.  

 130 

https://www.fws.gov/fire/downloads/fire_updates/BigTurnaround.FINAL.pdf
https://gatrees.org/wp-content/uploads/2020/02/Wildfire-Damage-Assessment-for-the-West-Mims-Fire.pdf
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The literature is still not conclusive on the differing impacts of duff burning on various air pollutants. The emission factors of 

duff are different from those of above-ground fuels (Yokelson et al., 2013; Urbanski, 2014; Hu et al., 2018; Kiely et al., 2019). 

For example, the temperate forest duff emission factor of nitrogen oxides (NOx) is 0.67 g/kg (Yokelson et al., 2013), more 

than 50% smaller than the conifer forest emission factors.  However, the temperate forest duff emission factor of PM2.5 is 50 

± 16 g/kg (Geron and Hays, 2013), which is more than twice of the PM2.5 emission factors from conifer forests (13 - 23 g/kg) 135 

(Yokelson et al., 2013; Urbanski, 2014). Because NOx is a major precursor of ozone formation, these different emission factors 

potentially lead to a stronger PM2.5 impact than ozone impact for duff burning.  

 

The goal of this study is to investigate the contributions of duff burning from the largest wildfires this century in the 

southeastern US to regional air pollutions and the differences between PM2.5 and ozone. The simulations of regional smoke 140 

transport were conducted based on the duff measurements from the Rough Ridge Fire (Zhao et al. 2019) and the global fire 

emission dataset from FINNv1.5. The simulated concentrations of air pollutants were compared with those from observations, 

between burns with and without duff, and between PM2.5 and ozone. The results are expected to provide important 

implications for the needs in improving global fire emission inventories and understanding the contributions of duff and peat 

burnings in other world regions to regional air pollution.  145 

2 Methods  

2.1 Study region 

The study region is the southeastern US, which comprises the states of Florida, Alabama, Georgia, South Carolina, North 

Carolina, Tennessee, Mississippi, and Louisiana. This region is dominated by a humid subtropical climate (Belda et al., 2014). 

The summers are typically long with high temperature and humidity, contributed by the water vapor transport from Bermuda 150 

High (Li et al., 2011). The winters are typically dry in peninsular Florida, but relatively wet in the mid-south, such as Tennessee 

and the northern Georgia and Alabama (Gaffen and Ross, 1999). The ecozones in the southeastern US include broadleaf forest 

over the Appalachian region in the west of North Carolina and South Carolina, and the north of Georgia, and mixed forest in 

the other regions including most Georgia and Florida (Bachelet et al., 2001; Blood et al., 2016). Hardwood and pine are major 

above-ground fuels in the southeastern US (Ottmar and Andreu, 2007). Because of the sufficient light and the regularly high 155 

humidity the duff layer is accumulated in the southeastern US and contributes as the potential below-ground fuel, especially 

in wildlife refuges or regions where deciduous trees are widely distributed with lack of prescribed burn removal. 

 

The wildfire cases investigated in this study occurred in three areas. The first is the southern Appalachian Mountains in the 

northern part of the southeastern US. This area is located in the boundaries of Georgia, North Carolina, South Carolina, 160 

Tennessee, Virginia, West Virginia, and Kentucky. The Southern Appalachian region is deciduous forests dominated, with 

small proportions of evergreen forests and mixed forests. The main forest type is the hardwood oak forest (Southern 
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Appalachian Man and the Biosphere, 1996). The second area is the Okefenokee Swamp located across the Georgia-Florida 

border. The 438,000 acres swamp is mainly covered by the Okefenokee National Wildlife Refuge. Cypress forests and scrub-

shrub vegetation are the major vegetation types over the Okefenokee region, and the wetland is covered by a duff layer with a 165 

depth of up to 4.6 m (Url: https://www.fws.gov/refuge/okefenokee/, last access: November 17, 2020). The Okefenokee region 

is sensitive to rainfall. Under drought conditions, the region is vulnerable to wildfire. The third area is coastal eastern North 

Carolina.  The ground forest fuels are rich of organic decomposition due to the moist and warm climate. There are many 

populated metros nearby in the west including Raleigh-Durham-Chapel Hill triangle. Smoke from fires in this area can be 

transported to affect these metros rapidly under easterly winds.  170 

2.2 Fire cases 

In this study, we investigated six wildfire cases (Table 1), and the map of the fire cases over the studies regions shown in Fig. 

1 and Fig. S2. The first case included 10 large fires from mid-October to December 2016  in the southern Appalachian 

mountains during an extreme drought (Konrad and Knox, 2017; Park Williams et al., 2017). The fires burned 91,191 acres of 

forest, caused losses of 14 lives and massive property loss (McDowell et al., 2017; Pouliot et al., 2017). The largest fires were 175 

the Rough Ridge Fire (34.88° N, 84.63° W, ignited on October 16, 27,610 acres burned), the Rock Mountain Fire (34.98° N, 

83.52° W, ignited on November 9, 25,224 acres burned), and the Tellico Fire (35.28° N, 83.58° W, ignited on November 3, 

14,172 acres burned). We denote this case as App16. 

 

The next three cases occurred in Okefenokee in 2007, 2011, and 2017, respectively. We denote them as Oke07, Oke11, and 180 

Oke17. The 2007 Okefenokee mega wildfire was ignited in the Okefenokee Wildlife Refuge (30.67° N, 82.45° W) on April 

16, and had burned more than 500,000 acres until late June (Fire Behavior Assessment Team, 2007). Protracted drought led to 

low water levels in the Okefenokee swamp and provided the condition of burning in a mix of shrub scrub, wetland prairies, 

duff, cypress and long-leaf pine forests. This fire remains the largest wildfire in the history of Georgia and Florida (Url: 

https://www.fws.gov/fire/downloads/fire_updates/BigTurnaround.FINAL.pdf, last access: October 29, 2020).  185 

 

The 2011 Honey Prairie Fire was ignited on April 30 under a severe drought, during which the Okefenokee Swamp water level 

was lower than that during the 2007 mega-fire (https://www.fws.gov/refuges/news/HoneyPrairieFire_05112011.html, last 

access: December 3, 2020). 147,065 acres were burned (Finco et al., 2012). The 2017 West Mims Fire was ignited on April 6 

under an extreme drought and developed fast in early May (http://www.gatrees.net/forest-management/forest-health/alerts-190 

and-updates/Wildfire%20Damage%20Assessment%20for%20the%20West%20Mims%20Fire.pdf, last access: December 3, 

2020). 166,737 acres were burned. Historical fire records from 19th century revealed the strong connection between drought 

and Okefenokee fires, leading to a ‘Okefenokee drought-fire cycle’ (https://www.frames.gov/catalog/34075, last access: 

November 5, 2021). Although the Okefenokee fires from 2007 to 2017 was more frequent than the historical mean, more 

information on the fire cycle change is needed.  195 

https://www.frames.gov/catalog/34075
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The other two fire cases occured in the coastal southeastern US. The 2008 Evans Road Fire was ignited to the south of the 

Pocosin Lakes National Wildlife Refuge, North Carolina on June 1, 2008 by lightning. 41,060 acres were burned 

(https://files.nc.gov/ncdeq/Air%20Quality/monitor/specialstudies/exceptionalevents/2008/Exceptional%20Event%20Evans

%20Road%20Fire.pdf, last access: October 27, 2021). The 2011 Pains Bay Fire was ignited in the FWS Alligator River 200 

National Wildlife Refuge in the coastal North Carolina, 29,400 acres were burned 

(https://www.geobabble.org/~hnw/first/EWSNews/EWS_Fire_PainsBay_2011-0601.pdf, last access: October 27, 2021). 

Significant organic/ground fuels were burned during the two coastal fires, causing subsequent air quality impacts and health 

impacts (Rappold et al., 2011; Tinling et al., 2016). We denote these two fire cases as ER08 and PB11, respectively.  

2.3 Model simulations 205 

2.3.1 Model 

The model components and implementation procedure used for simulations are illustrated in Fig. 2. We used WRF-Chem 

version 3.9.1 (Grell et al., 2005; Fast et al., 2006; Powers et al., 2017) to simulate the aerosol, gas transport, and atmospheric 

chemistry over the southeastern US. The model has coupled gas-phase atmospheric chemistry (Wang et al., 2015; Zhang et 

al., 2016), aerosol optical properties (Barnard et al., 2010), and the new Thompson graupel microphysics scheme (Thompson 210 

et al., 2008). The radiation scheme is the Rapid Radiative Transfer Method for Global Climate Models (GCMs) (RRTMG) 

(Iacono et al., 2008; Mlawer et al., 1997). The kinetic preprocessor (KPP) library was used for chemical reactions (Damian et 

al., 2002; Sandu et al., 2003; Sandu and Sander, 2006). The 1° x 1° meteorological data from National Centers for 

Environmental Prediction (NCEP) FNL (final) Operational Model Global Tropospheric Analyses (FNL NCEP, 2000) was 

used as the meteorological initial and boundary conditions for the simulations. 215 

 

The Model for Ozone and Related chemical Tracers (MOZART) (Emmons et al., 2010) was used as the WRF chemistry 

module, coupled with Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) aerosol 

scheme (Chin et al., 2002). Madronich F-TUV photolysis scheme was applied, with a time step of 15 minutes (Madronich, 

1987). The time step was 3 minutes for chemistry. Gas and aerosol dry deposition, aerosol wet scavenging, vertical mixing, 220 

subgrid convective transport, and subgrid aqueous chemistry (Peckham et al., 2018) were included in the model simulations. 

The global simulation result from MOZART (Pfister et al., 2011b) was used as the chemical initial and boundary conditions 

of the simulation in this study. The ozone initial and boundary conditions from MOZART were also scaled by comparing the 

mean surface ozone concentration over the simulation domain with the US EPA Air Quality System (AQS) observations 

(https://www.epa.gov/outdoor-air-quality-data, last access: October 22, 2020).  225 

 

https://files.nc.gov/ncdeq/Air%20Quality/monitor/specialstudies/exceptionalevents/2008/Exceptional%20Event%20Evans%20Road%20Fire.pdf
https://files.nc.gov/ncdeq/Air%20Quality/monitor/specialstudies/exceptionalevents/2008/Exceptional%20Event%20Evans%20Road%20Fire.pdf
https://www.geobabble.org/~hnw/first/EWSNews/EWS_Fire_PainsBay_2011-0601.pdf
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2.3.2 Simulation domains 

The simulation domain for App16 was from 30.4° N to 37.5° N and from 88.3° W to 77.7° W, with a spatial resolution of 12 

km. This domain included the major burning sites and the downwind nearby large cities including Atlanta (33.75° N, 84.39° 

W) and Charlotte (35.23° N, 80.84° W). The simulation period was November 7 - 22, 2016. The daily trend of FINN organic 230 

carbon (OC) emissions over the fire region is shown in Fig. S1, indicating that the simulation period cases contained the most 

severe burning that occurred during the fire case. 

 

The simulation domain for the three Okefenokee cases was from 23.9° N to 37.0° N and from 92.6° W to 72.4° W, with a 

spatial resolution of 12 km (Fig. 1). The Okefenokee Wildlife Refuge was located at the center of this domain. Nearby cities 235 

and the ocean were included to evaluate the smoke transport to urban and remote areas. The simulation periods were May 6-

30, 2007, May 4-15, 2011, and April 19 - May 13, 2017, respectively. The simulation domain for the PB11 cases is the same 

as the Oke11 case, and the simulation domain for the ER08 case was from 31.7° N to 38.1° N and from 84.9° W to 74.1° W. 

2.3.3 Simulations and evaluations 

For each fire case, we conducted three simulations to evaluate the air quality impacts from fires and duff burning (Table 1). 240 

(1)  sim_nofire:  no fire emissions; (2) sim_FINN:  FINNv1.5 fire emission dataset was used as the fire emission input, but 

duff burning was not included in this dataset; (3) sim_FINN+duff:  same as sim_FINN but with duff burning emissions. We 

used the differences in the results between sim_FINN and sim_nofire to represent the impacts from fire, and the differences 

between sim_FINN+duff and sim_FINN to represent the impacts from duff burning. 

 245 

We evaluated the model performances in simulating air pollutant concentrations by comparing them with the EPA Air Quality 

System (AQS) in-situ hourly observations for PM2.5 and ozone (https://www.epa.gov/outdoor-air-quality-data, last access: 

October 22, 2020). Starting in 2008, EPA included the Federal Reference Methods (FRM) or Federal Equivalent Methods 

(FEM) for the particulate measurement as a systematic framework, which provides standard methodologies and procedures 

for measuring and analyzing PM (Noble et al., 2001). During Oke07, the FRM/FEM was not spread out in the PM2.5 250 

measurement system from EPA AQS. For the consistency of all the fire cases, both FRM/FEM and non-FRM/FRM datasets 

were used for comparison. 56 PM2.5 observation sites and 53 ozone observation sites are included in the evaluation for App16, 

76 PM2.5 observation sites and 225 ozone observation sites for Oke07, 112 PM2.5 observation sites and 215 ozone observation 

sites for Oke11 and PB11, 120 PM2.5 observation sites and 208 ozone observation sites for Oke17, 38 PM2.5 observation sites 

and 101 ozone observation sites for ER08.  255 

 

The day-time surface ozone concentrations, calculated by averaging surface ozone concentrations from local time 10 am to 6 

pm, were evaluated between the baseline simulations (sim_FINN) and the observations. In the model evaluation and the 
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following result analysis, the surface concentrations in the simulation are defined as the concentrations at the bottom layer in 

the model, which was also the layer where the surface emission input was added in.  260 

2.4 Emission data 

2.4.1 Fire emissions of above-ground fuels 

The fire emissions from FINNv1.5 were implemented into WRF-Chem by Pfister et al. (2011a), which contains the daily 

burned area and emissions of an amount of gas and aerosol species with a spatial resolution of 1 km (Wiedinmyer et al., 2011). 

No a-priori diurnal cycle of the fire emission was applied in the WRF-Chem model, and the hourly fire emission applied in 265 

the WRF-Chem simulations was the hourly emission converted from the daily fire cases from FINN, assuming that fire at each 

observed fire hotspot lasted for one day. The plume rise calculation of the fire emission using a 1-D time-dependent dynamic 

cloud model was called every 30 minutes (Freitas et al., 2007; Grell et al., 2011). The high-resolution in both space and time 

with the FINN fire data is a valuable feature for this study.  

 270 

The biogenic emissions from the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther, 2006; 

Sakulyanontvittaya et al., 2008) were used as the WRF-Chem input, from which monthly biogenic emissions with a spatial 

resolution of approximately 1 km were derived. The dust, dimethylsulfide (DMS) and sea salt emissions from GOCART were 

included in the model (Ginoux et al., 2001; Chin et al., 2002). For the model anthropogenic emission input, we used the NEI 

2014v2 hourly anthropogenic emission dataset for the US, based on the criteria pollutant emissions from the 2014 EPA 275 

platform (USEPA, 2018b) implemented for the National Air Toxics Assessment (USEPA, 2018a). During the simulation, the 

meteorological field was nudged towards the 1° x 1° NCEP FNL reanalyses (FNL NCEP, 2000) every 6 hours, using the WRF 

Four-Dimensional Data Assimilation (FDDA) method (Stauffer and Seaman, 1990).  

2.4.2 Fire emissions of duff 

Current major global fire emission inventories, such as GFED and FINN (Wiedinmyer et al., 2011; Giglio et al., 2013; Van 280 

Der Werf et al., 2017), do not include enough duff and peat emissions. The fuel loading in FINN is based on the regional 

average from Global Wildland Fire Emission Model (GWEM) (Hoelzemann et al., 2004). Total fuel loading of each grid is 

assigned with one of specific land cover classifications. Litter is included in GWEM, but peat and duff are not. In contrast, 

duff is explicitly included in GFED. GFED4s assumes the PM2.5 emission factor of 9.1 g/kg from duff and peat burning 

based on Andreae and Merlet (2001), which is smaller than the above-ground fuel emission factors, and significantly smaller 285 

than the recent field and experiment results (Yokelson et al., 2013; Urbanski, 2014). Andreae (2019) updated the PM2.5 

emission factor of peat burning to 18.9 g/kg, which is larger than the above-ground fuel emission factors, but the latest fire 

emission inventory has not been updated accordingly yet.  
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The amount of duff burned during the fire cases investigated in this study was estimated based on the measurements from 290 

Zhao et al. (2019). During the 2016 Rough Ridge Fire, 4.6 cm of a duff layer was burned within one day, which accounted for 

more than 90% of the total duff.  The duff burning was estimated to have contributed 60% of the total PM2.5 emission. To our 

best knowledge, this measurement is the only duff burned depth measurement during the flaming phase in the temperate region. 

In previous studies, duff burning in the smoldering phase was evaluated. For example, the duff smoldering depth in North 

Carolina peat fires were measured from 0.5 cm to 10 cm (Wilbur and Christensen, 1983; Poulter et al., 2006), and Watts (2013) 295 

estimated 8.9 ± 5.2 cm duff burn depth during the smoldering in cypress swamps in Florida. Light detection and ranging 

(LiDAR) instruments detected an approximately 47 cm soil elevation loss during the 2011 Lateral West fire in a swamp in 

Virginia (Reddy et al., 2015). Because smoldering occurs at a low temperature in the long-term (months to years) (Rein and 

Belcher, 2013), which just creates weak and low plumes, here we only studied the regional air quality impact from duff flaming.  

 300 

The duff emission estimation in this study is described in Fig. 3. We estimated duff emissions and added them to FINN with 

the following method. First, we calculated the daily duff mass burned, 𝑀(𝑥, 𝑦, 𝑡) (kg day-1), in the burning case over the model 

grid box (x, y) on the day (t): 

𝑀(𝑥, 𝑦, 𝑡) = 𝑎(𝑥, 𝑦, 𝑡)ℎ𝜌 ,           (1) 

where 𝑎(𝑥, 𝑦, 𝑡) is burned area (m2), ℎ is the average duff-layer depth burned daily in the case (ℎ = 0.045 m day-1 assumed), 305 

and ρ is the density of duff, which was assumed to be  57.4 kg m-2 m-1  according to the measurements over the southeastern 

US with the vegetation type of Pine and Hardwoods (Ottmar and Andreu, 2007). The measurements from different locations 

showed a 21% standard error of mean duff density.  

 

The duff emissions were then added to FINN fire emission 𝐸(𝑥, 𝑦, 𝑡)𝐹𝐼𝑁𝑁+𝑑𝑢𝑓𝑓,𝑠 (kg day-1) for each grid box, day, and species 310 

(s):   

𝐸(𝑥, 𝑦, 𝑡)𝐹𝐼𝑁𝑁+𝑑𝑢𝑓𝑓,𝑠 =  𝐸(𝑥, 𝑦, 𝑡)𝐹𝐼𝑁𝑁,𝑠 + 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝐸𝐹𝑠 ∗ 0.001  ,     (2) 

where 𝐸(𝑥, 𝑦, 𝑡)𝐹𝐼𝑁𝑁,𝑠 is the original FINN fire emission, and 𝐸𝐹𝑠 is the duff emission factor of the species s (g/kg).  

 

The PM2.5 emission factor of duff / peat burning varies noticeably among the studies across the world regions and ecosystems 315 

(Table S1). The four studies in the southeastern US obtained average values of about 50 g/ kg (a field study that made in-situ 

measurements of PM2.5 emission factors from three different peat fires in coastal North Carolina, Geron and Hays, 2013), 5.5 

g/ kg (a laboratory study that measured EF from peat core samples from two locations in North Carolina, Black et al. 2016), 

44 g/ kg (Benner 1977), and 30 g/ kg (McMahon et al. 1980). The first two studies took soil samples from the same peat 

location in eastern North Carolina, US. Due to a previous fire investigated by the first study, the sample from the second one 320 

had much less carbon but more ash. This was a major reason for the much lower PM2.5 emission factor proposed by the 
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authors. For this reason, we did not consider the value from the second study when we specified the emission factor value for 

our study. The value from the first study was used as the US temperate duff burning emission factor in the review paper by 

Urbanski (2014). It was also used in our study because it is likely to better represent the burning on the vegetation type in the 

southeastern US. Previous studies of measuring the PM2.5 emission factors of duff/peat/organic soil burning are summarized 325 

in Table S1. 

 

As described in the introduction section, the differences in emission factors between duff and above-ground fuels suggest 

different impacts of duff burning on PM2.5 and ozone (Table 2). The emission factor of PM2.5 from duff burning used in this 

study (50 g kg-1) is more than 3 times that from forest burning (13 g kg-1). However, the emission factors of NOx from duff 330 

burning (0.559 g kg-1 for NO and 0.176 g kg-1 for NO2) are less than 25% of those from forest fire (0.34 g kg-1 for NO and 2.7 

g kg-1 for NO2). Although the NOx emission factors vary from different locations and ecosystems, the gap of NOx emission 

factors from duff and the above-ground fuel was shown in different previous studies, summarized in Table S3 (Clements and 

McMahon, 1980; McMeeking et al., 2009; Burling et al., 2010; Selimovic et al., 2018). Except for NOx and PM2.5, a set of 

major fire emission compounds were added to duff emissions, as reported by Yokelson et al. (2013). The duff emission species 335 

considered in this study is summarized in Table 1 and Table S2.  

 

For App16, where fires had been absent for decades before 2016 in many fire sites, emissions from duff burning were 

calculated using the measured depth of duff burn at the Rough Ridge Fire site.  The situation was the same for Oke07. However, 

some areas of Oke11 were overlapped with those of Oke07, while some burned areas of Oke17 overlapped with those of Oke07 340 

and/or Oke11. From the FINN emission dataset, 87% of the burned area in Oke11 was burned by Oke07, and 79% of Oke17 

was burned by the 2007 and 2011 fires. We assumed a duff layer recovery rate of 1 mm/year based on previous studies 

(Ovenden, 1990; Frolking et al., 2001; Borren et al., 2004; Milner et al., 2020). Only a fraction of the measured burned duff 

depth for the Rough Ridge Fire (Zhao et al., 2019) was assumed for the reburned areas. For example, if the burning during 

Oke11 was also burned in 2007, only 4 mm of the duff layer was assumed to be burned and the related duff emissions were 345 

added to the 2011 sim_FINN+duff run. For the other fire cases that the burning region had not been burnt in the previous 

decade, a duff flaming rate of 4.6 cm/day was applied. The case mean duff flaming rate and the corresponding fuel loading is 

summarized in Table S4. 

2.5 Sensitivity experiments 

Many fire inventories using satellite-based models often underestimate fire emissions for a variety of reasons (clouds, small 350 

burned areas, timing, etc.) (Wiedinmyer et al., 2011) and a-priori emissions are normally scaled up to improve model - 

measurement agreement (Ward et al., 2012). We found that the burned area in all four wildfire cases from FINN was 

approximately 50% less than the burned area summarized in MTBS (Eidenshink et al., 2007), which is obtained based on 

vegetation changes before and after a fire rather than hot spots. The FINN emissions were also lower approximately at this 
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rate than the calculated emissions from based on the measured above-ground fuel consumption by the Rough Ridge Fire in 355 

northern Georgia on November 10 and 14, 2016 (Zhao et al. 2019). This FINN emission underestimate would lead to 

uncertainty in quantitatively estimating the contribution relative to the above-ground fuel consumption. To roughly assess the 

uncertainty, we did a sensitivity experiment by doubling FINN emissions for the Oke07 case (Exp_FINN, Table 1).   

 

As described above, there are large variations in PM2.5 and NOx emission factors. There were not enough duff measurements 360 

for the fire cases we investigated, and the duff emission factors between smouldering and flaming were also not well 

investigated. To evaluate the uncertainty of our simulation results due to high spatial variation of the duff layer depth, we 

conducted week-long sensitivity runs for App16 and Oke07 with changes of the duff burning rates by ±30% (Exp_duff, Table 

1). In addition, another set of sensitivity runs was conducted for App16 and Oke07 by doubling the duff emission of NOx to 

evaluate the uncertainties of the ozone effect due to the NOx emission factors (Exp_2x_duff_NOx, Table 1).  365 

3 Results  

3.1 Comparisons between simulations and observations 

Here we define the fire influence based on the PM2.5 impact from fire. If the PM2.5 difference between sim_nofire and 

sim_FINN is less than 1 µg m-3 over a specific region (and time), then this region (and time) is not influenced by fire smoke. 

This value is near the low end of the thresholds often used to assess the smoke impacts (Munoz-Alpizar et al. 2017, Matz et 370 

al. 2020). For both sim_nofire and sim_FINN, the simulated PM2.5 concentrations agree with the observations over the areas 

not influenced by fire events (Fig. S3). However, the baseline simulation (sim_FINN) underestimates PM2.5 concentrations 

over the fire-impacted areas, shown in Fig. 4. For example, in the App16 areas (34.5° N to 36° N, 82° W to 84° W), the model 

underestimates PM2.5 by 56.6% for sim_nofire and by 29.2 % for sim_FINN. For Oke07 and Oke11, the massive plume 

simulated by the model is transported to a large area of Georgia. The model underestimates PM2.5 in Georgia by 56.2 % in 375 

2007 and 49.0% in 2011 for sim_nofire, and 47.5 % in 2007 and 39.5% in 2011 for sim_FINN. The simulated smoke from 

Oke17 disperses more widely in space than that from Oke11, so the intensity of the mean fire impact is minor. The comparisons 

of time series comparison show similar results, that is, sim_FINN underestimated PM2.5 surface concentrations (Fig. 4). Figure 

4 also shows a PM2.5 increase in all the 4 cases due to duff emissions, which improves the overall model performance, although 

the simulations still underestimate in the Oke11 and Oke17 cases, and slightly overestimates the PM2.5 level in the App16 case. 380 

 

The model is able to reproduce the spatial distributions of surface ozone for all fire cases (Fig. S7). The baseline (sim_nofire) 

runs capture the observed background daytime ozone concentrations and the concentrated PM2.5 spots (the spots with high-

level surface PM2.5 concentrations directly due to fire smoke) in the fire and remote areas. For example, the model reproduces 

the high ozone concentrations from northern Alabama and Georgia to northwestern South Carolina and North Carolina and 385 
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eastern Tennessee, as well as the coastal Louisiana and Mississippi and central Florida from Oke07 (Fig. S7f). However, the 

model overestimates surface ozone in the western South Carolina and North Carolina mountains (Fig. S7c and Fig. S7g). This 

might be caused by the uncertainty of estimating biogenic VOC emissions. 

 

The observed ozone maximum 8-hour average (MDA8) shows an agreement with the baseline simulation for all fire cases. 390 

The observation-simulation correlation coefficients are larger than 0.5 for App16 and larger than 0.6 for the Okefenokee cases 

(Fig. S4). Both sim_FINN and sim_FINN+duff simulations also agree with the observations in terms of the time series and 

trend during the fire events (Fig. 5). The model overestimates night-time ozone by approximately 10 ppb for App16, indicating 

the potential bias on night-time ozone chemistry or planetary boundary layer height estimation (Li and Rappenglueck, 2018).   

 395 

While the sim_FINN simulations underestimate PM2.5 concentrations over the burning region, especially sites with the smoke 

impact, sim_FINN+duff simulations have better agreement with the observations, as shown in Fig. S5. The slope of the linear 

regression is 0.91 between sim_FINN+duff results and the observations, while the slope is only 0.15 between sim_FINN and 

observations. Although adding duff burning improves the regional simulation in terms of both the slope and the correlation 

coefficient (from 0.29 to 0.56), the correlation coefficient is still low, indicating the potential spatial-temporal uncertainty of 400 

the fire emissions. The evaluations for the SA16, Oke11 and Oke17 fires are similar to the Oke07 results as shown in Fig. S5. 

 

The model performance in simulating the spatial patterns of smoke is evaluated by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) image product from the Terra satellite. Fig. S6 shows that the simulated smoke transport agrees 

well with the satellite image of the smoke. The results in the Oke07, Oke11 and Oke17 fires also shows good agreement 405 

between the simulation and the satellite image. In the following sections, we will further discuss the spatial and temporal 

patterns of smoke ozone and PM2.5. 

3.2 The PM2.5 emission and transport from duff burning 

Here we show the improvement of model performance in simulating PM2.5 by including duff burning emissions. The simulation 

results on selected dates of November 15, 2016, May 10, 2007, May 8, 2011, and April 29, 2017 for the four fire cases are 410 

shown in Fig. 6 and Fig. 7, and those on other days are provided in Figs. S8 to S15.  

 

The sim_FINN simulated smoke from App16 is transported southeastward to Georgia, South and North Carolinas on 

November 15, 2016 (Fig. 7a and Fig. 7e), leading to increased air pollution.  However, the model underestimates the observed 

surface PM2.5 concentrations by approximately 50% in areas with peak local concentration (Fig. 6e). On November 10 and 16, 415 

2016, the simulated plume moves in the clockwise direction, causing air pollutions in the large cities in Georgia (Fig. S9). Fig. 

7a and Fig. 7e indicate that the PM2.5 concentrations from duff burning are at the same magnitude as or even slightly higher 
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than those from the emissions of above-ground fuel burning. Thus, implementing duff burning doubles the fire-induced PM2.5 

concentrations during App16 over the study domain.  

 420 

The total burned area of Oke07 was 5 times more than that of App16, and over the periods of the simulations, the daily average 

fire emission during Oke07 was 3 times more than that during App16 (Fig. S1). Correspondingly, the simulated PM2.5 

concentrations during Oke07 are greater. In addition, different from App16 that occurred in November, Oke07 occurred in 

May. Thus, the photochemistry of ozone and its precursors was more active. In the sim_FINN+duff runs, the simulated surface 

PM2.5 in the fire plume effectively approaches the underestimated regions showing greatest fire impact, but the enhancement 425 

is still not enough over some regions. For example, on May 10, the simulations including duff emissions are in better agreement 

with the observation over southwestern Florida, where the simulated concentrations are underestimated by a factor of 2-5 (Fig. 

6f and Fig. 6j). Over the fire impacted region (24° N - 34° N, 76° W - 86° W) on May 10, the surface PM2.5 increase due to 

duff burning is 126% more than that due to above-ground fuel burning. However, the simulation that is the closest to the 

observation still underestimates the surface PM2.5 concentrations in the fire impacted region in northern Georgia and North 430 

Carolina. The sim_FINN simulation underestimates some concentrated PM2.5 during the fire, including southwest Florida on 

May 11, the Atlanta region on May 16, and western Georgia on May 26, by as much as more than 10 times sometimes (Fig. 

S9).  

 

Similar to the other cases, the sim_FINN+duff simulated surface PM2.5 concentrations from Oke11 and Oke17 are 435 

approximately doubled over the fire areas of those simulated in sim_FINN (Fig. 7c, 7d, 7g and 7h). However, the sim_FINN 

simulation of the fire cases does not underestimate PM2.5 as much as Oke07. Because a large portion of the two fires was 

burned by the previous fires in 2007 (and 2011 for the 2017 fire), the simulated duff impacts from them are weaker. In addition, 

the simulated smoke from the two fires is transported to the ocean during half of the major burning periods (May 9 - 11, 2011 

and May 2 - 12, 2017) (Fig. S14 and Fig. S15), which weakens the fire impact in the land areas. This inter-case comparison 440 

over the same area supports the evidence that the underestimation of PM2.5 in the sim_FINN runs is mainly due to the missing 

of duff burning emissions. 

 

The important PM2.5 impacts of duff burning are also seen in the temporal variations of stational surface concentrations (Fig. 

8).  The panels 7a, d, g and h show the locations close to the fire areas. During App16, the simulated PM2.5 concentrations 445 

increase by approximately 100% during the major burning days on November 7, 8, 13, 14 and 15, due to including duff burning 

(Fig. 8a). The daily variations are different between observations and simulations because the observed fire emission dataset 

was at daily rather than hourly intervals. The sim_FINN+duff improves the simulations of PM2.5 surface concentrations in 

metro Atlanta, Georgia (Fig. 8b) and metro Charlotte, North Carolina (Fig. 8c) on major burning days.  

 450 
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During Oke07, including duff burning makes the simulated PM2.5 levels 1 to 10 times closer to the observed PM2.5 levels at 

many observation locations, for example, on May 9 and May 18 in Duval County, Florida (Fig. 8d), and May 8 to May 13 in 

Orange County, Florida (where metro Orlando is located) (Fig. 8f). The simulation shows a high bias on May 27 in Duval, 

potentially due to the bias on fire emissions, but on the same day, the simulation still underestimates the PM2.5 concentrations 

in Atlanta, Georgia. Duff emission increases the PM2.5 concentrations in Atlanta (Fig. 8e), but the model underestimation still 455 

exists.  

 

Because of the weak impacts of duff burning during Oke11 and Oke17 on PM2.5 in metro areas as shown above, we evaluated 

sim_FINN+duff model performance by comparing with in-situ observation at the locations close to the fire site (Fig. 8g, h). 

Although the sim_FINN+duff simulation overestimates PM2.5 concentrations on May 7, 2011, May 2 - 3, 2017 and May 7, 460 

2017, adding duff burning generally reduces the PM2.5 underestimation in sim_FINN runs on May 9, 12, 14, 2011, April 24 - 

26 and May 9 - 13, 2017. Duff burning increases local PM2.5 concentration by 50-400%, depending on the above-ground fuel 

burning and the duff recovery conditions.  

 

The PM2.5 concentrations in the sim_FINN+duff runs better fit the burning-day observations during ER08 and PB11 (Fig. 12 465 

and Fig. 13). In June 11-12, 2011, the ER08 fire smoke transported throughout North Carolina, affected urban and rural regions 

more than 200 km away from the burning site. Compared to the sim_FINN runs, adding duff burning enhanced PM2.5 by 2 to 

3 times in both the Charlotte metro, North Carolina and the rural region close to burning. The PM2.5 impact from the PB11 fire 

is relatively smaller in both the sim_FINN and the sim_FINN_duff runs, because the burned area is less in PB11 than in ER08, 

and part of the fire smoke transported to the ocean during burning. Due to duff burning, the PM2.5 concentration increased by 470 

approximately 10% in May 11, 2011 in the Charlotte metro, and the increase is up to 100% in the rural region close to fire.  

 

There are large mismatches at times between observations and simulations. Both biases in fire emission calculation and smoke 

transport simulation should be the contributors (Li et al., 2020; Garcia-Menendez et al. 2013). In addition to the uncertainties 

with the FINN fire emissions and duff emission calculation described above, fires have large diurnal variations, but only daily 475 

burned area data for emission calculation were available. Despite the general agreement in spatial patterns between the 

simulated and satellite detected smoke plume as shown above, biases in WRF simulations of atmospheric conditions, especially 

wind direction and speed, would lead to shifts in both space and time of the simulated plume from its actual position.  

3.3 The different ozone and PM2.5 impacts from duff burning 

Although the above-ground fuel burning of App16 led to a 6 - 10 ppb increase of surface ozone on November 15, 2016 (Fig. 480 

9a) over the areas affected by fire plume, adding duff burning to the model simulation does not increase the surface ozone 

concentration. Over the downwind region where the ozone increase is high from above-ground fuel burning, duff burning 

slightly offset the ozone increase by 0 - 4 ppb. A similar minor ozone impact from duff burning is also simulated for other 



16 

 

days (Fig. S20). The ambient VOC concentrations are lower in November than that in summer, which provides a VOC-limited 

scenario in the ozone photochemistry. In this scenario, when NOx concentration is high due to the above-ground fuel burning, 485 

more NOx emissions from duff burning tend to decrease ozone concentrations (Seinfeld and Pandis, 2016). The above-ground 

fuel burning increases ozone concentrations by 10 - 15 ppb on November 13 - 15, but the ozone concentrations in 

sim_FINN+duff are very similar to those in sim_FINN, indicating that the duff burning has a neglectable impact on ozone 

concentrations in App16 (Fig. 11a-c). The ozone simulation agrees better with observations in the urban than in the rural fire 

areas, and similarly to the fire area, the ozone in the urban areas is not significantly affected by duff burning. 490 

 

The simulated duff burning impact on ozone is positive during Oke07, but still smaller than the PM2.5 impact.  The above-

ground fuel burning and the duff burning increase the ozone concentration in the fire-impacted areas (Fig. 10b and 10f, Fig. 

S21). Oke07 occurred in summer and the fire site was located further south in comparison with App16, meaning higher 

temperature, sunlight and biogenic activities. Thus the overall VOC concentrations and the simulated ozone pollution are 495 

stronger than those in November 2016 (Seinfeld and Pandis, 2016). However, the ozone impact is significantly weaker from 

duff burning than from above-ground fuel burning (Fig. 10b and 10f, Fig. S21). The simulated surface ozone increase due to 

duff burning is only 32% of that due to above-ground fuel burning over the fire impacted region (24° N - 34° N, 76° W - 86° 

W) on May 10, 2007. This contribution is much smaller than that of duff burning to the PM2.5 impact, which is 126% more 

than that from above-ground fuel burning. These different contributions of duff burning to PM2.5 and ozone are due to the 500 

larger PM2.5 emission factor but smaller NOx emission factors of duff in comparison with the above-ground fuel, as assumed 

in Section 2.4. The difference is also seen in the temporal variations. The above-ground burning led to ozone increases by 10 

- 20 ppb in Atlanta on May 21 - 23 (Fig. 11e) and by 2 - 15 ppb in Orlando on May 8 - 12 (Fig. 11f), but duff burning led to 

ozone increases by 0 - 7 ppb in both Duval (Fig. 11d) and Orlando (Fig. 11f) on May 8 - 12.  

 505 

The ozone increase is significant due to the above-ground fuel burning from Oke11 and Oke17 (Fig. 10c and Fig. 10d), with 

a level comparable to Oke07. However, the level of ozone increase due to duff burning is low (Fig. 10g and Fig. 10h). This 

low level is also seen in the temporal variations (Fig. 11g, Fig. 11h). The sim_FINN and sim_FINN+duff runs accurately 

capture several ozone peaks on May 8 and May 10, 2011, May 2 and May 8 - 13, 2017. Duff's contribution to the ozone peak 

is weak, similar to that of PM2.5. The duff layer in the Okefenokee swamp in 2011 and 2017 was not well recovered from 510 

Oke07.  

 

The ozone and PM2.5 impacts during the simulated fire periods (App16: November 7-20, 2016; Oke07: May 6-30, 2007; 

Oke11: May 6-14, 2011; Oke17: April 20 - May 13 ,2017; ER08: June 8-14, 2008; PB11; May 6-14, 2011) from duff burning 

and the above-ground burning in the fire areas (6° x 6° in size centered at the fire site) and nearby areas are summarized in 515 

Table 3. The above-ground fuel burning significantly increases ozone over the fire area in all cases except 2017, but duff 

burning does not affect ozone concentrations significantly. However, duff burning has comparable PM2.5 impacts to above-
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ground fuel burning in all the fire cases. Duff burning also significantly affects urban air quality during App16 and Oke07. 

During 2007, when duff burning in the simulation is strong in the Okefenokee swamp, the duff impact accounts for double 

that of the above-ground fuel impact. During Oke11 and Oke17, the duff impacts are weaker due to the slow recovering speed 520 

of the duff layer after the 2007 fire, but the PM2.5 impact is still significant over the fire area. 

 

 

3.4 Sensitivity runs 

The result from Exp_2x_duff_NOx (Figure S26) shows that doubling the NOx emissions from duff does not change the result 525 

of the different PM2.5 and ozone effects from duff burning. During the App16 case, increasing NOx further decreases the ozone 

concentration in the nearby urban and the closest big city. Compared to the sim_FINN runs, ozone decreases 7.5% in Charlotte, 

North Carolina during the App16 case, and 7.9% in the rural region of Macon, North Carolina that is close to fire.  During the 

Oke07 case the ozone increase with more NOx from duff, the ozone in the Exp_2x_duff_NOx case is 1.3% and 4.8% more 

than the sim_FINN runs over the rural region close to fire (Duval, Florida) and over the nearby big city (Orlando, Florida), 530 

still weaker than the PM2.5 effect. 

 

The result from Exp_FINN shows that doubling FINN emission does not affect our conclusions, as shown in Fig. S27. When 

the regional underestimation for PM2.5 is 36% with no duff burning, doubling FINN emission improved the underestimation 

to 20%, but still significantly underestimated the regional fire impacts. Doubling FINN emission did not fix the missing of 535 

some fire peaks on date like May 8, 11 and 14. All four fire cases shown in Fig. S27 overestimated the PM2.5 on May 12, 

potentially due to the model bias on fire emission time and the smoke transport.  

 

The result from Exp_duff (Fig. S24-25) shows that the uncertainty of duff emission does not affect our finding of the different 

PM2.5 and ozone effects by duff burning. The PM2.5 concentrations change by -11.7% to 9.7% near the fire site for App16, and 540 

-38% to +25% for Oke07 (Fig. S24a and Fig. S24c). The ozone concentrations change within ± 2 % (Fig. S25). The PM2.5 

concentrations change by -4.6% to +2.3% in Atlanta, Georgia for App16, and -13% to  +40% in Orlando, Florida for Oke07 

(Fig. S24b and Fig. S24d). 

 

4 Conclusions and discussion  545 

Duff burning emissions have been calculated from the largest wildfires in this century in the moist southeastern US based on 

our previous field measurements at the site of the Rough Ridge Fire, one of the fires investigated in the study, and atmospheric 

PM2.5 and ozone concentrations have been simulated using WRF-Chem with the duff burning emissions added to the FINN 
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fire emission inventory. The results indicate that contributions from duff burning to the air pollutions are comparable, and 

sometimes more than the burning of above-ground fuels, which supports the previous finding from a study of the Rough Ridge 550 

Fire (Zhao et al. 2019). The WRF-Chem simulations of all the fire cases including duff burning show better agreements with 

the observed PM2.5 surface concentration than the baseline simulations which include only fire emissions from above-ground 

fuel burning. Thus, regional air quality modeling in the southeastern US can be substantially improved by adding duff burning 

emissions in the existing fire emission datasets. It is further concluded that the impacts of duff burning on PM2.5 are much more 

remarkable than those on ozone. The simulation results indicate that the above-ground fuel burning increases regional ozone 555 

surface concentrations, but the ozone changes due to duff burning are statistically insignificant. 

 

The importance of duff burning contribution to PM2.5 concentrations suggests an effective approach to improve regional air 

quality simulations in the other global regions with deep and peat duff accumulations. As described before, current major fire 

emission inventories, such as GFED and FINN (Wiedinmyer et al., 2011; Giglio et al., 2013; Van Der Werf et al., 2017), do 560 

not include enough duff and peat emissions. FINN v1.5 applied the emission factors mainly based on Andreae and Merlet 

(2001) and Akagi et al. (2011) but the emission factors of duff and peat burning are not included. On the other hand, Tansey 

et al. (2008) investigated the uncertainties of burned area and satellite fire hotspots over the tropical peatlands, indicating that 

duff burning in the emission inventories based on satellite data is highly uncertain. This potentially leads to significant 

underestimation over fire events with duff and peat burning, which further affects the evaluation of the regional air quality and 565 

human health impacts (Reid et al., 2016).  

 

One major uncertainty in this study is the amount of duff burned in the Okefenokee fires. Although reports show that during 

the 2007 Okefenokee extreme drought and fire, 2 feet (61 cm) of duff thicknesses reduction was observed in some intensively 

burned areas, which potentially due to the combination of burning and deflation of domed duff and peat surfaces, an average 570 

duff consumption for simulation is not provided from measurements (Johnson and Schmerfeld, 2016). In the sensitivity runs 

described in Section 3.4, we indicate that this bias has a minimal effect on the major findings of the large PM2.5 impact from 

duff burning and the different impacts between PM2.5 and ozone. Another uncertainty is the values used in the duff emission 

calculation, for example, the bulk density of duff mass and the emission factors of different species from duff burning. We 

used 50 ± 16 g/kg PM2.5 emission factor for duff burns in this study based on fires in North Carolina (Geron and Hays, 2013; 575 

Urbanski, 2014), which is closest to the fire sites. It is comparable to some  other peat fire measurements in the southeastern 

US such as 44 ± 9 g/kg from Benner (1977) and 30 ± 20 g/kg from McMahon et al. (1980). However, the spatial variability of 

duff bulk density is large in the southern US, ranging from 39.4 to 103.7 kg m-2 m-1 (Ottmar and Andreu, 2007). 

 

Many evaluation studies have indicated that WRF-Chem is able to provide ground ozone simulations within reasonable biases, 580 

less than 20% for Europe (Mar et al., 2016) and 15-30% for the western, northeastern and midwestern US (Astitha et al., 2017). 

However, ozone simulation within plume is much more complexed, depending on many factors such as emissions of ozone 
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precursors, photochemical processes, radiation change and temperature changes due to smoke, and lifetime of smoke, which  

make simulate ozone from wildfires challenging (Jaffe and Wigder, 2012). Our simulations did not consider the impacts of 

smoke on radiation, possibly leading to overestimating ozone production in plume (Selimovic et al., 2020). We conducted a 585 

test simulation for the Ofe07 case by including the impacts to evaluate the related uncertainty in ozone simulations. The result 

shows that missing the aerosol radiation impacts leads to approximately 15% of ozone overestimation in the fresh plume, and 

10% of ozone increase in the aged plume. Further evaluation of ozone simulation in fire plume is needed. The recent 

implements of many field campaigns, especially Western wildfire Experiment for Cloud chemistry, Aerosol absorption and 

Nitrogen (WE-CAN) (https://www2.acom.ucar.edu/campaigns/we-can), are expected to help fill the evaluation and simulation 590 

gaps.  

 

The findings from this study on the air quality impacts of wildfires in the southeastern US are valuable for future studies and 

can serve as guidance for other global regions with duff and peat burning such as northeastern China (Jiang et al., 2008) and 

the Great British Isles (Davies et al., 2013). In the southeastern US, the general high humidity provides good conditions for 595 

the duff layer to accumulate, which serves as a large potential fuel source during wildfires under droughts. The peatland in 

boreal forests (e.g. the boreal forest in Canada and Northern Eurasia) and tropical forests (e.g. the peatland in Indonesia) are 

also vulnerable to fire. Although the duff and peat layer and the burning types vary with ecosystems, the carbon loss from duff 

and peat fire and the different emission factors between the below-ground fuel and above-ground fuel are common issues (Page 

et al., 2002; Turetsky et al., 2015), which need to be addressed as what was conducted for the southeastern US in this study. 600 

The PM2.5 emission factor used in this study is  higher than the measurements in the other regions, such as 20.6 g/kg estimated 

in the US prescribed burning (Yokelson et al., 2013), 8-58 g/kg measured in fires in Southeast Asia (Roulston et al., 2018), 

and 18.9 g/kg from global estimation summarized by Andreae (2019). This difference suggests that the impacts of duff burning 

during flaming phase on PM2.5 may be more remarkable in the southeastern US than many other world regions. 

 605 

Duff consumption in different fire cases is highly variable, making it difficult to conduct practical operational prediction of 

duff consumption and the air quality impacts. A number of efforts could be made towards a solution. One is to map spatial 

distributions of duff. Fuel data such as the Fuel Characteristics Classification System (Prichard et al., 2019) could be expanded 

to include more complete duff information. The data need to be dynamical to reflect not only duff accumulation over time but 

also disturbance due to wildland fires. Another effort is to conduct more field measurements of duff consumption by both 610 

wildfires and prescribed fires, such as those by Zhao et al. (2019) and the Fire and Smoke Model Evaluation Experiment 

(FASMEE) (Prichard et al., 2019). The measurements are essential for developing tools for duff consumption and air quality 

impact modeling (Liu et al., 2019). Duff burning by flaming fires occurs mainly under persistent drought conditions. Thus, 

duff fuel moisture is a critically important parameter to predict if and how much duff will be consumed by a wildfire. There 

are fire danger rating systems such as the Canadian Forest Fire Weather Index (FWI) System (FWI) (Stocks et al., 1989) and 615 

FARSITE (Finney, 1998) that estimate duff fuel moisture. They are empirically based rather than physics based dynamical 
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tools. Improvements to these tools and development of dynamical tools, including those that relate duff fuel moisture with 

drought indices such as the Keetch-Byram Drought Index (KBDI) (Keetch and Byram, 1968), are needed. In this study, we 

focused more on duff flaming than smouldering because of the relatively weak ability to transport of smouldering and the 

limitation of WRF-Chem to well processes smouldering. We are planning to dig into the duff smouldering phase more in a 620 

separate study using a specific smoke model such as the PB-P model (Liu et al., 2018) 

 

Under climate change due to the increasing atmospheric greenhouse gases, duff burning becomes more important for PM 

simulation and the air quality impacts. Duff burning is likely to become more active under the changing climate. The increasing 

frequency of extreme droughts has been observed in the US (Mazdiyasni and AghaKouchak, 2015; Clark et al., 2016) and 625 

around the world, and projected for the future climate scenario (Masih et al., 2014; Longo et al., 2018; Grillakis, 2019). 

Therefore, fire events ignited on a generally wet land suffered by extreme drought are likely to happen more often in the future, 

and the duff and peat land that does not burn currently (e.g. the Amazon rainforests and Africa rainforests (Bonal et al., 2016)) 

may become burnable under future extreme drought. The importance of duff burning is further strengthened with climate-

ecosystem interactions. With the increasing mean temperature and CO2 concentrations, the duff layer accumulation is 630 

potentially benefiting from the acceleration of vegetation growth (Qian et al., 2010; Huang et al., 2018; Lawal et al., 2019; Bai 

et al., 2020) and soil organic carbon decomposition (Fierer et al., 2006; Karhu et al., 2014). Besides, tropical peatland fires are 

sensitive to ENSO-induced climate variability, indicating that it is necessary to evaluate the fire-climate interactions in order 

to better understand the duff and peat burning (Field et al., 2009; Tosca et al., 2011).  

 635 
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Figure 1. The WRF-Chem domain used in (a) App16, (b) the Okefenokee cases, (c) ER08 and (d) PB11. The fire sites and nearby 

major cities are marked. The abbreviations of the US state names are Florida (FL), Alabama (AL), Georgia (GA), South Carolina 

(SC), North Carolina (NC), Tennessee (TN), Mississippi (MS) and Louisiana (LA). 
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Figure 2. Description of the model components, input data, and implementation procedures. 
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Figure 3. Description of the duff emission estimation. 1095 

 

 

Figure 4. The time series of hourly surface PM2.5 concentrations. Black: Measurements averaged over observation sites within the 

simulation domain. Green and red: Simulations of Sim_FINN and Sim_FINN+duff, respectively, averaged over the observation 

sites.   1100 
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Figure 5. The time series of hourly surface ozone concentrations. Black: Measurements averaged over observation sites within the 

simulation domain. Green and red: Simulations of Sim_FINN and Sim_FINN+duff, respectively, averaged over the observation 

sites.   
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 1105 

Figure 6. The mean surface concentration of simulated and observed PM2.5 (µg m-3) on representative days. (a)  App16 (November 

15, 2016), (b) Oke07 (May 10, 2007), (c) Oke11 (May 8, 2011), and (d) Oke17 (April 29, 2017) for sim_nofire. (e) - (h) are the 

corresponding fire cases for sim_FINN, and (i) - (l) are the corresponding fire cases for sim_FINN+duff. The color scatters represent 

the observed daily mean PM2.5 concentrations. 
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 1110 

Figure 7. The surface PM2.5 concentration change (µg m-3) on representative days. (a)  The change due to above-ground fuel 

burning during App16 (November 15, 2016), (b) Oke07 (May 10, 2007), (c) Oke11 (May 8, 2011), and (d) Oke17 (April 29, 2017). (e) 

- (h) are the corresponding changes due to duff burning. 
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Figure 8. Comparisons of in-situ hourly surface PM2.5 concentrations (µg m-3) among the observation (black), sim_nofire (blue), 

sim_FINN (green) and sim_FINN+duff (red) simulations. (a - c) App16, (d - f) Oke07, (g) Oke11 and (h) the 2017 Okefenekee Fire. 

The fire location (red) and site location (blue) are shown in the map attached to each panel. The observation sites are located in (a) 

Macon county, NC, (b) Fulton county, Georgia, (c) Mecklenburg county, NC, (d) Duval county, Florida, (e) Fulton county, Georgia, 1120 
(f) Orange county, Florida, (g) - (h) Duval county, Florida. 
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Figure 9. The day-time mean (from local time 10 am to 6 pm) surface ozone concentration of simulated and observed ozone (ppb) 

on representative days. (a)  App16 (November 15, 2016), (b) Oke07 (May 10, 2007), (c) Oke11 (May 8, 2011), and (d) Oke17 (April 1125 
29, 2017) for sim_nofire. (e) - (h) are the corresponding fire cases for sim_FINN, and (i) - (l) are the corresponding fire cases for 

sim_FINN+duff. The color scatters represent the observed day-time mean surface ozone concentrations. 
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Figure 10. The day-time mean (from local time 10 am to 6 pm) surface ozone concentration change due to above-ground fuel burning 

(ppb) on representative days. (a) 2016 southern Appalachian case (November 15, 2016), (b) Oke07 (May 10, 2007), (c) Oke11 (May 1130 
8, 2011), and (d) Oke17 (April 29, 2017). (e) - (h) are the corresponding changes due to duff burning. 
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Figure 11. Comparisons of in-situ hourly surface ozone concentrations (ppb) among the observation (black), sim_nofire (blue), 

sim_FINN (green) and sim_FINN+duff (red) simulations.  (a - c) App16, (d - f) Oke07, (g) Oke11 and (h) Oke17. The fire location 1135 
(red) and site location (blue) are shown in the map attached to each panel. The studied sites are in (a) Macon county, North Carolina, 

(b) Fulton county, Georgia, (c) Mecklenburg county, NC, (d) Duval county, Florida, (e) Fulton county, Georgia, (f) Orange county, 

Florida, (g) - (h) Duval county, Florida. 
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Figure 12. The PM2.5 distribution and time series during the 2008 Evans Road Fire.  (a-c) PM2.5 daily mean surface concentration 1140 
(µg m-3) on June 12, 2008 simulated in (a) sim_nofire, (b) sim_FINN and (c) sim_FINN+duff runs. (d-e) The PM2.5 daily surface 

concentration differences (µg m-3) between (d) sim_FINN and sim_nofire and between (e) sim_FINN+duff and sim_FINN on June 

12, 2008. (f-g) The comparison of the time series of hourly surface PM2.5 concentrations (µg m-3) between the observation and 

simulations from June 7 to June 14, 2008 in (f) Mecklenburg county, NC and (g) Cumberland county, NC. 

 1145 

Figure 13. The PM2.5 distribution and time series during the 2011 Pains Bay Fire.  (a-c) PM2.5 daily mean surface concentration 

(µg m-3) on May 12, 2011 simulated in (a) sim_nofire, (b) sim_FINN and (c) sim_FINN+duff runs. (d-e) The PM2.5 daily surface 
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concentration differences (µg m-3) between (d) sim_FINN and sim_nofire and between (e) sim_FINN+duff and sim_FINN on May 

12, 2008. (f-g) The comparison of the time series of hourly surface PM2.5 concentrations (µg m-3) between the observation and 

simulations from May 6 to May 15, 2011 in (f) Mecklenburg county, NC and (g) Wayne county, NC. 1150 

 

 

 

Table 1. The simulation period and fire emission inventories applied in different WRF-Chem simulations and experiments. 

Simulation and 

experiment 
Simulation Period 

Fire emission 

FINN fire emission Duff emission 

Sim_nofire App 16: 11/7-11/22, 2016, 91,191 acres 

Oke07: 5/6-5/30, 2007, >500,000 acres 

Oke11: 5/4-5/15, 2011, 147,065 acres 

Oke17: 4/19–5/13, 2017, 166,737 acres 

ER08: 6/7-6/15, 2008, 41,560 acres 

PB11: 5/4-5/15, 2011, 29,400 acres 

No No 

Sim_FINN 1x FINN emission No 

Sim_FINN+Duff 1x FINN emission 1x duff emission 

Exp_FINN Oke07: May 6-16, 2007, >500,000 acres 2x FINN emission 1x duff emission 

Exp_duff 
App16: Nov 7-14, 2016, Oke07: May 6-

16, 2007 
1x FINN emission 

0.7x duff emission 

1.3x duff emission 

2x duff NOx 
App16: Nov 7-14, 2016, Oke07: May 6-

16, 2007 
1x FINN emission 

2x duff emission for NOx 

1x duff emission for the other 

species 

 1155 

Table 2. Comparison of duff and temperate mixed forest emission factors (g/kg) used in this study. 

Species Peat and duff  
FINN temperate 

mixed forest  

CO 271±51a 102e 

NO 0.559b 0.34e 

NO2 0.176b 2.7e 

SO2 1.76b 1f 

NH3 2.67b 1.5e 

PM2.5 50±16c 13f 

OC 37.5d 9.2f 

BC 0.375d 0.56f 
a Urbanski 2014, averaged based on Geron and 

Hays (2013) and Hao et al. (2007). 

b Yokelson et al. (2013) 

c Urbanski 2014, an average of Geron and Hays 

(2013) 
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d An estimated 100:1 ratio of OC/BC emission 

factors based on Jen et al. (2019), after applying the 

PM2.5/carbonaceous aerosol emission ratio from 

the FINN emission factors.  
e Akagi et al. (2011) 

f Andreae (2008) in extratropical Forest 

 

Table 3. Summary of the increased ratio of PM2.5 and ozone due to duff burning and above-ground fuel burning. The bold numbers 

represent that the increase or decrease ratio passes the Student’s t-test with p = 0.05.   

Fire Case Location 
fire-nofire 

PM2.5 

duff-noduff 

PM2.5 

fire-nofire 

ozone 

duff-noduff 

ozone 

Oke07 Fire region 63.40% 131.90% 3.30% 0.90% 

Oke07 Atlanta 13.20% 6.00% 2.10% -0.10% 

Oke07 Charlotte 7.20% 2.60% 1.40% -0.10% 

Oke07 Orlando 28.30% 17.70% 9.10% 2.90% 

Oke07 Miami 27.20% 24.80% 7.00% 1.90% 

Oke07 New Orleans 9.80% 8.50% 4.10% 2.20% 

App16 Fire region 80.60% 61.30% 5.20% -0.20% 

App16 Atlanta 28.10% 21.30% 10.70% 2.50% 

App16 Charlotte 41.20% 29.70% 22.50% 4.90% 

Oke11 Fire region 41.70% 13.00% 4.80% 0.20% 

Oke17 Fire region 29.70% 10.90% 2.70% 0.00% 

ER08 Fire region 60.02% 137.30% 3.80% 0.89% 

PB11 Fire region 14.1% 32.7% 12.0% 0.22% 

*The "fire region" is the squared 6° x 6° area with the fire site in the center. 
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