Supplement of

The number fraction of iron-containing particles affects OH, HO₂ and H₂O₂ budgets in the atmospheric aqueous phase

Amina Khaled, Minghui Zhang, and Barbara Ervens

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France *Correspondence to: Barbara Ervens (barbara.ervens@uca.fr)*

Figure S1. Same as Figure 2 (cloud case) but for a, b) pH = 3 and c, d) pH = 6 (lower part)

Figure S2. Same as Figure 3 (aerosol case) but for a, b) pH = 3 and c, d) pH = 6 (lower part)

Figure S3. Relative difference [%] of net phase transfer rates ΔR_{PT} (Equation E.6) for (a-c) cloud and (d-f) aerosol case

Figure S4. Comparison of aqueous phase concentrations and phase transfer rates for a) OH, b) HO₂, c) H₂O₂ using the physical Henry's law constant for H₂O₂ ($K_H = 1.02 \cdot 10^5$ M atm⁻¹) and the effective Henry's law constant ($K_{Heff} = 2.7 \cdot 10^8$ M atm⁻¹) as determined based on measurements of gas and particle H₂O₂ concentrations

Figure S5. Relative contributions of chemical and phase transfer rates to the total sources and losses of the three ROS. The total rates [mol $g_{air}^{-1} s^{-1}$] are shown in boxes of each panel; for the FeN<100 approach, the contribution in iron-free and iron-containing droplets (particles) are displayed as open and dashed bars. Simulations were performed at constant pH values of pH = 3 (red), 4.5 (black). and 6 (blue) for cloud conditions: a) H₂O₂, b) OH, c) HO₂ and aerosol conditions: d) H₂O₂, e) OH, f) HO₂. The chemical source (S) and loss (L) reactions in the aqueous phase are listed between the panels. These results show the rates at t = 2000 s.

Figure S6. ROS aqueous phase concentrations for a-c) cloud case and d-f) aerosol case for droplet and particle diameters that differ by a factor of 0.5 and 2, respectively, from those of the base case.

 Table S1. Irreversible aqueous reactions

	Reactants		Products	$k [M^{-1} s^{-1}]$	E_a/R [K]
R1	$SO_2 + O_3$	\rightarrow	$S(VI) + O_2$	$2.4 \cdot 10^4$	
R2	$HSO_3^- + O_3$	\rightarrow	$S(VI) + O_2$	$3.7 \cdot 10^5$	5530
R3	$SO_3^{2-} + O_3$	\rightarrow	$S(VI) + O_2$	$1.5 \cdot 10^9$	5280
R4	$H_2O_2 + HSO_3 + H^+$	\rightarrow	$S(VI) + H_2O$	$7.2 \cdot 10^7 \text{ M}^{-2} \text{ s}^{-1}$	4000
R5	$HO_2 + HO_2$	\rightarrow	$H_2O_2 + O_2$	$8.3 \cdot 10^5$	2720
R6	$O_2^- + HO_2$	\rightarrow	$H_2O_2 + O_2$	$9.7 \cdot 10^7$	1060
R7	$OH + CH_2O$	\rightarrow	HO ₂ + HCOOH	1.10^{9}	1000
R8	OH + CH ₃ OOH	\rightarrow	$CH_3O_2 + H_2O$	$2.4 \cdot 10^7$	1680
R9	OH + CH ₃ OOH	\rightarrow	HO ₂ + HCOOH	$6 \cdot 10^{6}$	1680
R10	$O_3 + O_2^- (+ H^+)$	\rightarrow	$OH + 2 O_2$	$1.5 \cdot 10^9$	2200
R11	OH + CHOCHO	\rightarrow	$HO_2 + CHOCOOH$	$1.1 \cdot 10^{9}$	1516
R12	OH + CHOCOOH	\rightarrow	$HO_2 + H_2C_2O_4$	$3.6 \cdot 10^8$	1000
R13	OH + CHOCOO ⁻	\rightarrow	$H_2C_2O_4$ -	$2.9 \cdot 10^{9}$	4300
R14	$OH + C_2 O_4^{2-}$	\rightarrow	$O_2^{-} + 2 CO_2 + OH^{-}$	$1.6 \cdot 10^8$	4300
R15	$OH + HC_2O_4^-$	\rightarrow	$HO_2 + 2 CO_2 + OH^2$	$1.9 \cdot 10^{8}$	2800
R16	$OH + H_2C_2O_4$	\rightarrow	$HO_2 + 2 CO_2 + H_2O$	$1.4 \cdot 10^{6}$	
R17	$OH + CH_3C(O)COOH$	\rightarrow	$HO_2 + CO_2 + CH_3COO^2$	7.10^{8}	
R18	OH + CH ₃ COCOOH	\rightarrow	$HO_2 + H_2O + CH_3COOH$	$1.2 \cdot 10^{8}$	
R19	OH + CHOCHO	\rightarrow	$HO_2 + CHOCOOH$	$1.1 \cdot 10^{9}$	1516
R20	OH + HCOO	\rightarrow	$HO_2 + CO_2 + H_2O$	$3.2 \cdot 10^{9}$	1000
R21	OH + HCOOH	\rightarrow	$HO_2 + CO_2 + H_2O$	$1.3 \cdot 10^{8}$	1000
R22	$CH_{3}O_{2} + CH_{3}O_{2}$	\rightarrow	$CH_2O + CH_3OH + HO_2$	$1.7 \cdot 10^{8}$	2200
R23	$H_2O_2 + OH$	\rightarrow	$HO_2 + H_2O$	3.10^{7}	1680
R24	OH + WSOC	\rightarrow	$WSOC + HO_2$	$3.8 \cdot 10^8$	
R25	$Fe^{2+} + H_2O_2$	\rightarrow	Fe^{3+} +OH+OH	55	
R26	$Fe^{3+} + HO_2$	\rightarrow	$Fe^{2+} + O_2 + H^+$	$1.3 \cdot 10^5$	
R27	$Fe^{3+} + O_2^{-1}$	\rightarrow	$Fe^{2+} + O_2$	$1.5 \cdot 10^8$	
R28	$Fe^{3+} + H_2O_2$	\rightarrow	$Fe^{2+} + HO_2 + H^+$	0.002	
R29	$Fe^{2+} + H_2O_2$	\rightarrow	$Fe^{4+} + H_2O$	0.06	
R30	$Fe^{2+} + O_2$	\rightarrow	$O_{-}^{-} + Fe^{3+}$	200	
R31	$Fe^{2+} + O_2^- (+2H^+)$	\rightarrow	$Fe^{3+} + H_2O_2$	1.10^{7}	
R32	$Fe^{3+}+C_2Q_4^{2-}$	\rightarrow	$[Fe(C_2O_4)]^+$	$2.9 \cdot 10^9$	
R33	$[Fe(C_2O_4)^+] + C_2O_4^{2-}$	\rightarrow	$[Fe(C_2O_4)]^{2-}$	$1.89 \cdot 10^4$	
R34	$[Fe(C_2O_4)^2] + C_2O_4^2$	\rightarrow	$[Fe(C_2O_4)_2]^{3-1}$	114	
R35	$[Fe(OH)]^{2+} + O_2^{-}$	\rightarrow	$O_2 + Fe^{2+} + OH^{-}$	$1.5 \cdot 10^8$	
R36	$[Fe(OH)]_{2++}HO_{2}$	\rightarrow	$O_2 + Fe^{2+} + H_2O$	$1.3 \cdot 10^5$	
R37	$[Fe(OH)_2] + O_2^{-1}$	\rightarrow	$O_2 + Fe^{2+} + 2.0H^{-}$	$1.5 \cdot 10^8$	
R38	$[Fe(OH)_2] + HO_2$	\rightarrow	$O_2^- + Fe^{2+} + H_2O$	$1.3 \cdot 10^5$	
R 39	$Fe^{3+} + H_2O$	\rightarrow	$[Fe(OH)]^{2+} + H^+$	$4.7 \cdot 10^4$	
R40	$[Fe(OH)]^{2+} + H_2O$	\rightarrow	$[Fe(OH)_{2}]^{+} + H^{+}$	$1.1 \cdot 10^3$	
R41	$[Fe(OH)]^{2+} + H^{+}$	\rightarrow	$Fe^{3+} + +H_2O$	$4.3 \cdot 10^8$	
R42	$[Fe(OH)_2]^+ + H^+$	\rightarrow	$[Fe(OH)]^{2+} + H_2O$	8.10^{7}	
1112		'		0 10	

				K_a [M]
E1	H_2O	\rightleftharpoons	OH^-+H^+	1.0.10-14
E2	HO_2	\rightleftharpoons	$O_2^- + H^+$	$1.60 \cdot 10^{-5}$
E3	CHOCOOH	\rightleftharpoons	$CHOCOO^{-} + H^{+}$	$6.60 \cdot 10^{-4}$
E4	HCOOH	\rightleftharpoons	$HCOO^{-} + H^{+}$	$1.77 \cdot 10^{-4}$
E5	$H_2C_2O_4$	\rightleftharpoons	$HC_2O_4^- + H^+$	$6.40 \cdot 10^{-2}$
E6	$HC_2O_4^-$	\rightleftharpoons	$C_2O_4^{2-} + H^+$	$5.25 \cdot 10^{-5}$
E7	HNO ₃	\rightleftharpoons	$NO_3^- + H^+$	22
E8	$SO_2 + H_2O$	\rightleftharpoons	$HSO_3^- + H^+$	0.013
E9	HSO ₃ ⁻	\rightleftharpoons	$SO_3^{2-} + H^+$	$6.60 \cdot 10^{-8}$
E10	H_2SO_4	\rightleftharpoons	$HSO_4^- + H^+$	1000
E11	HSO_4^-	\rightleftharpoons	$SO_4^{2-} + H^+$	0.102
E12	NH_3	\rightleftharpoons	$\mathrm{NH_4^+} + \mathrm{OH^-}$	1.76.10-5

Table S3. Photolyses in the aqueous phase

	Reaction			J [s ⁻¹]
P1	$[Fe(OH)^{2+}] + h\nu$	\rightarrow	$Fe^{2+} + OH$	$1.83 \cdot 10^{-4}$
P2	$[Fe(OH)_2]^+ + h\nu$	\rightarrow	$Fe^{2+} + OH + OH^{-}$	$1.83 \cdot 10^{-4}$
P3	$[Fe(C_2O_4)_2]^- + h\nu$	\rightarrow	$Fe^{2+} + C_2O_4^{2-} + C_2O_4^{}$	9.19·10 ⁻⁴
P4	$[Fe(C_2O_4)_3]^{3-} + h\nu$	\rightarrow	$Fe^{2+} + 2C_2O_4^{2-} + C_2O_4^{}$	$9.19 \cdot 10^{-4}$
P5	$H_2O_2 + h\nu$	\rightarrow	2 OH	8.13·10 ⁻⁶

Table S4. Phase transfer parameters, used in Eq-1 and Eq-2, molecular weight M_g [mol g⁻¹, mass accommodation coefficient α (dimensionless), gas phase diffusion coefficient D_g [cm s⁻¹] and Henry's law constant K_H [M atm⁻¹]

Species	Mg	α	Dg	K _H
O ₃	48	0.05	0.148	$1.14 \cdot 10^{-2}$
H_2O_2	34	0.1	0.118	$1.02 \cdot 10^5$
OH	17	0.05	0.153	25
HO_2	33	0.01	0.104	9.10^{3}
НСНО	30	0.02	0.164	$4.99 \cdot 10^3$
CH_3O_2	47	0.0038	0.135	310
CH ₃ OOH	48	0.0038	0.135	310
HNO ₃	63	0.054	0.132	$2.1 \cdot 10^5$
N_2O_5	108	0.0037	0.110	1.4
SO_2	64	0.035	0.128	1.23
HCOOH	46	0.012	0.153	$1.77 \cdot 10^{-4}$
$(CHO)_2$	58	0.023	0.115	$4.19 \cdot 10^5$
CH ₃ COCHO	72	0.1	0.115	$3.2 \cdot 10^4$
NH ₃	17	0.1	0.1	60.7

Species	Mixing ratio	
O ₃	30	
H_2O_2	1	
HCHO	1	
HNO ₃	1	
SO_2	0.5	
NH ₃	1	
NO	2	
CO	150	
C_5H_8	2	
C_7H_8	2	
C_2H_4	0.5	

Table S5. Initial gas phase mixing ratios [ppb]; all other species are not initialized